ARISTOTLE UNIVERSITY OF THESSALONIKI

MSC COMPUTATIONAL PHYSICS

MASTER THESIS

Orbital Dynamics of Impact Ejecta around
65803 Didymos Binary (AIDA Mission)

Supervisors
George VOYATZIS
Kleomenis T'SIGANIS

Author
Michalis GAITANAS

June 22, 2019






Contents

1 Introduction 7
1.1 Asteroids . . . . . . 7
1.2 Position Distribution . . . . . . . . ... 8
1.3 Mass Distribution . . . . . . . . ... 8
1.4 Origin . . . . oo e 8
1.5 Discovery of Asteroids . . . . . . . ... 9
1.6 Binary Asteroids . . . . . . . . .. 10
1.7 Collision with Earth . . . . . . . . . . . 11
1.8 Defense against a Collision . . . . . . . . .. . .. 11
1.9 65803 Didymos Binary . . . . . . .. .. 11
1.10 AIDA MIiSSIONn . . . . . . . . 13

2 Asteroid Modeling 15
2.1 Computational Space . . . . . . . . .. 15
2.2 Didymain Model . . . . . . . 16
2.3 Didymoon Model . . . . . . . . . 22

3 The Binary in Orbit 23
3.1 Coordinate Systems . . . . . . . . . . 23
3.2 Translation and Rotation . . . . . . . . . . . ... 23
3.3 Numerical Method for the ODEs . . . . . . . . . . . . ... ... ... ... ... 28
3.4 Units of Measurement . . . . . . . . . . ... 31
3.5 Initial Conditions and Parameters . . . . . . . . . . . . . ... ... 32
3.6 Simulation Results . . . . . . . . . 34

4 Impact Ejecta 41
4.1 Equations of Motion of the Ejecta . . . . . . . . ... ... ... ... ... ... .. 41
4.2 Escape, Chaos and Collision Detection . . . . . ... ... ... ... ... ..... 44
4.3 Initial Conditions of the Ejecta . . . . . . . . . ... ... . ... ... ... .... 46
4.4 Simulation Results . . . . . . . . . . 48

Appendices 63

A Didymain Model (Source Code) 65

B Didymoon Model (Source Code) 71



W

T Q 42 = g Q

[

Visualisation of the Models (Source Code)

The Binary in Orbit (Source Code)

Visualisation of the Binary’s Orbit (Source Code)
Orbital Elements of the Binary Plots (Source Code)
Ejecta Cloud (Source Code)

Visualisation of the Ejecta Cloud (Source Code)
Ejecta Orbits Plots (Source Code)

Ejecta Population (Source Code)

Mersenne Twister RNG (Source Code)

CONTENTS

73

83

91

99

101

111

121

123

125



Abstract

In this thesis, we use the observations of 65803 Didymos binary asteroid in order to create a
mechanical model, composed of point masses. The surface geometry of the binary’s secondary
component is currently not known to us, thus we assume it is a tri-axial ellipsoid. We provide the
binary with a set of initial conditions that match the observations, then we integrate the equations
of motion of the two asteroids using a Runge-Kutta numerical scheme and then we study the time
varying orbital elements of the secondary for two months. After that, we incorporate the impact
ejecta as an N-body cloud which is expected to be produced when NASA’s space probe DART
crashes on the surface of the secondary. We initialise the ejecta with a set of initial positions and
velocities and then we integrate their equations of motion in space, again using a Runge-Kutta
numerical scheme. Ultimately we study the dynamical evolution of the ejecta cloud near the
binary’s domain for one month.
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Chapter 1

Introduction

1.1 Asteroids

Asteroids are the small bodies of our Solar system and could be briefly described as giant rocks
that are in orbit around the Sun. Their size varies from a few tens of meters to hundreds of
kilometers. Smaller bodies than asteroids are called meteoroids. Asteroids usually have irregular
shape that reminds of a potato, but the bigger they grow, the more spherical tend to become due
to their self gravity. According to the Internationl Astronomical Union, asteroids that are almost
spherical and have not cleared their neighborhood of other material orbiting them, are from now
on called dwarf planets. The majority of asteroids is concentrated in two circumstellar discs called
belts: The Main belt and the Kuiper belt. Asteroids are probably remnants from the formation of
the Solar System and it is estimated that there exist millions. Asteroids that belong to the Main
belt are mainly composed of silicon rocks and metals. 1 Ceres is an exception, because a big part
of it is iced water. On the other hand, the asteroids of the Kuiper belt are mainly composed of
ice. As of October 2017, the Minor Planet Center had data on almost 745,000 objects in the inner
and outer Solar System, of which almost 504,000 had enough information to be given numbered
designations.

Figure 1.1: On the left we can see the asteroid 25143 Itokawa as seen by the Japanese Hayabusa
space probe. On the right we can see the asteroid 4 Vesta as seen by NASA’s Dawn space probe.
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1.2 Position Distribution

The majority of the asteroids of the Main belt is concentrated in the asteroid belt, that is, a region
between the orbits of Mars and Jupiter and in average distance =~ 3 AU from the Sun. There exist
other regions as well, in which we meet asteroids, like the Lagrange points of Mars and Jupiter,
the motion of which the follow. These asteroids are called Trojan bodies. Some asteroids have
themselves one or many orbiting satellites, making a double, triple or multiple asteroid system.
Kuiper belt asteroids are farther Neptune’s orbit and that is why they are known as Transneptunian
Objects (TNOs). Lastly, we have a group of asteroids called centaurs, the orbit of which is between
Jupiter and Neptune.
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Figure 1.2: Main asteroid belt (left) and Kuiper belt (right). The size of the bodies and the
distances are not scaled.

1.3 Mass Distribution

The total mass of the bodies that belong to the Main belt is not large enough. 1 Ceres (dwarf
planet) is the biggest and the first body that was discovered in the Main belt and has approxi-
mately a diameter of 1000 km, whereas its mass is more or less equal to 40% of the whole mass of
all the bodies of the Main belt which is estimated to be around 3 — 4% of the Moon’s mass. The
mass of the seven biggest bodies of the Main belt is equal to 70% of its total. On the contrary, the
total mass of the Kuiper belt is much larger and the biggest of asteroid of the belt has more mass
and longer diameter than the biggest bodies of the Main belt. The biggest and most well known
bodies of the Kuiper belt are: Eris (2003 UB3;3) and the dwarf planet Pluto.

1.4 Origin

During the past years, we believed that the asteroids of the Main belt were debris of a planet which
was crushed by a huge body. Today, the point of view that prevails is that the Main belt was the
structural element of a small planet the size of Mars, but it was never formed due to Jupiter’s
gravitational perturbation. As far as the origin of the Kuiper belt is concerned, the belief is almost
the same; fragments from the original protoplanetary disc around the Sun failed to fully coalesce
into planets and instead formed into smaller bodies (asteroids).
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Figure 1.3: Dwarf planet Pluto (left) as seen from New Horizons space probe, dwarf planet Ceres
(right) as seen from Dawn space probe and asteroid Bennu (bottom) as seen from OSIRIS-REx
spacecraft.

1.5 Discovery of Asteroids

The first (and the biggest) asteroid that was discovered was 1 Ceres (currently a dwarf planet). Its
discovery occurred incidentally during the New Year’s Eve (1801) from Giuseppe Piazzi, a monk
who thought at the beginning that he had discovered a new star. The distance between Earth and
that body was calculated by Gauss to be between Mars’s and Jupiter’s. During the next six years,
three more asteroids were discovered: 2 Pallas, 3 Juno and 4 Vesta. Due to their small size and
their nonsymmetric mass distribution, their discovery was pretty tough and so, after some years
of failed attempts, the general search for asteroids was abandoned. 38 years later, Karl Ludwig
Hencke who kept the search, discovered 5 Astraea and two years later, 6 Hebe. Therefore, the
interest came up on the surface again. It is worth noting that the only year during which there
were no new asteroid discoveries, was 1945. Until the end of the twentieth century, there were
officially thousands of asteroid discoveries. After 1990, the interest for asteroids grew even stronger
because of the concern of probable collision with Earth, which would be devastating. Therefore, a
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new effort began for detailed tracking of their orbit. This happened using both ground telescopes
and tracking devices placed in orbit around Earth. Research has currently mapped hundreds of
thousands of asteroids. 600 of them have diameter more than 1 km and 3,353 of them are at such
orbits that may approach Earth sometime.

Every asteroid, the existance of which is confirmed, receives a serial number. Until that, it is given
a temporary number which consists of the year of discovery, a two-character code that denotes the
week of the discovery year and finally one or two numbers if more asteroids were discovered the
same week. After the confirmation, its code consists of the serial number in parenthesis, followed
by the temporary number, e.g: (3360) 1981 VA, which was the first asteroid without a name. The
serial number is usually used along with the asteroid’s name, if that exists.

1.6 Binary Asteroids

A binary asteroid is a system of two asteroids orbiting around the center of mass of their system.
243 Ida was the first binary that was discovered in 1993 and since then numerous binary and even
triple asteroid systems have been detected. Several theories have been posited to explain their
formation. Many systems have significant macro porosity (a rubble-pile interior). The satellites
orbiting large asteroids of the Main belt such as 22 Kalliope, 45 Eugenia or 87 Sylvia may have
formed by disruption of a parent body after impact or fission after an oblique impact. Trans-
Neptunian binaries may have formed during the formation of the Solar system by mutual capture
or three-body interaction. NEAs most likely formed by spin-up and mass shedding, likely as a
result of the YORP effect. Numercial simulations suggest that when solar energy spins a rubble-
pile asteroid to a sufficiently fast rate by the YORP effect, material is thrown from the asteroid’s
equator. This process also exposes fresh material at the poles of the asteroid.

Figure 1.4: Left: Binary asteroid 243 Ida with its small minor-planet moon, Dactyl, as seen by
Galileo. Right: (486958) 2014 MUsgg, nicknamed Ultima Thule, composed of two planetesimals
that are joined along their major axes.
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1.7 Collision with Earth

The most accepted theory for dinosaurs extinction is an asteroid collision with Earth around 66
million years ago. This theory seems to be confirmed with the discovery of a huge crater that
is located in the Gulf of Mexico. Such collisions seem to be rare according to human time, but
they are actually very often in astronomical scale and the latter holds true not only for Earth,
but for all the planets. Catastrophic collisions can occur every tenths of thousands of years, or
millions of years. When meteorites reach Earth (which happens every day), they are burned during
their descent due to the atmosphere’s aerodynamic friction and they end up being dust in the air.
Asteroids on the other hand are relative big in size and thus if one of them reached Earth, the
atmosphere would barely touch it and thus it would collide with the surface. What would happen
to Earth if such a collision occured? If the asteroid hit dry ground, then the shock wave would
destroy everything in a radius of hundreds of kilometers and would trigger fires and unprecedented
(Earth) quakes. The dust and the cinder which would be produced during the collision, would
spread into the entire atmosphere, shading the Sunlight and creating a phenomenon similar to
nuclear winter which would last for ages. Probably, all life on Earth would vanish... If on the
other hand the asteroid hit an ocean, then the tsunami caused, would have a height of hundreds of
meters and would entirely destroy all cities and villages at distance tenths of kilometers from the
shores. In addition, the heat would boil the seawater, terminating all life near the impact place
and releasing huge quantites of vapor in the atmosphere, perturbing the global climate.

1.8 Defense against a Collision

Collision between an asteroid and the Earth was seriously considered in the middle 1980s, along
with some defense schemes. One of them would be to launch rockets armed with nuclear warheads
meant to crash on the asteroid, not to smash it into dust, but to alter its orbit and therefore avoid
collision. Another proposal is to paint one side of the asteroid with some bright color, so that the
radiation pressure difference between the two sides would alter its obit. Another scenario would be
to set a huge mass in orbit around the asteroid, so that the gravitational perturbation would drag
the asteroid from Earth’s path. Modern technology made possible to officially confirm hundreds of
thousands asteroid orbits, 3,352 of which happen to be near Earth (Near Earth Asteroids (NEAs)).
Those celestial bodies are constantly being observed by specialists that occupy themselves with the
calculation of probability of collision. Luckily, until today (Summer 2019), none of these bodies
have a high collision probability. The highest probability is given to the body (29075) 1950 DA
and is ~ 0.33%

1.9 65803 Didymos Binary

65803 Didymos is a sub-kilometer binary asteroid system and is the target of the proposed AIDA
asteroid mission (see next section). Due to its binary nature, it was then named "Didymos", the
Greek word for twin. The primary asteroid was discovered on 11 April 1996, by the University
of Arizona Steward Observatory’s Spacewatch survey using its 0.9-meter telescope at Kitt Peak
National Observatory in Arizona, United States. The binary nature of the asteroid was discovered
by others. Suspicions of binarity first arose in Goldstone delay-Doppler echoes, and these were
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confirmed with an optical lightcurve analysis, along with Arecibo radar imaging on 23 November
2003. Didymos orbits the Sun at a distance of 1.0 — 2.3 AU once every 2 years and 1 month (770
days). Its orbit has an eccentricity of ~ 0.38 and an inclination of ~ 3° with respect to the ecliptic.
Its approach to Earth in November 2003, was especially close with a distance of 7.18 million km. It
will not come that near until November 2123, with a distance of 5.9 million km. It will also make
a close approach to Mars: 4.69 million km in 2144. Didymos is classified as an S-type (figure 1.5)
based on observations by Deleon et al. and taxonomic classification scheme by Bus and DeMeo
(2009), even though it was originally classified as an Xk-type (Binzel et al. 2004) due to limited
wavelength coverage. The spectrum looks similar to that of Itokawa, which has a composition
close to LL chondrites based on the analysis of the returned samples. The primary asteroid rotates
rapidly, with a period of 2.26 hours and a brightness variation of 0.08 magnitude (U = 3/3),
which indicates that the body has a nearly spheroidal shape. The secondary asteroid, moves in a
mostly circular retrograde orbit with an orbital period of 11.9 hours. It measures approximately
0.163 kilometers in diameter compared to 0.775 kilometers of its primary (a mean-diameter-ratio
of 0.21). Table 1.1 summarizes some important parameters of the binary that will help our study
in the next chapters.

Hormalized Refl ectance
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0ot —— 433 Eros(Binzel et a ) -
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Figure 1.5: Spectrum of Didymos (de Leon et al.) compared with that of Eros (Binzel et al.) and
Itokawa (Binzel et al.).
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\ Parameter Value \
Primary’s indicative size 0.775 km +/ — 10%
Secondary’s indicative size 0.163 km +/ — 0.018 km
Primary’s bulk density 2146 kg - m™3 +/ — 30%
Secondary’s (ellipsoid) axes as =103 m bg =79 m cg = 66 m

Distance between the center

of primary and secondary 1.18 km +0.04/ — 0.02 km

Total mass of the system 5.278 - 10 kg +/ — 0.54 - 10! kg
Geometric albedo 0.154 /—0.04
Radar albedo 0.27+ / —25%
Primary’s rotation period 2.2600 h +/ — 0.0001 h
Heliocentric eccentricity 0.383752501 + / — 7.7-107°
Heliocentric semi-major axis 1.6444327821 + / — 9.8 - 1072 AU
Heliocentric inclination to the ecliptic 3.4076499° + / — 2.4 - 10"%
Mean absolute magnitude (whole system) 18.16 + / — 0.04
Obliquity to heliocentric orbit 171+ / —9°
Diameter ratio 0.21+/—0.01
Secondary’s orbital period 11.920 h 4+0.004/ — 0.006
Secondary’s orbital eccentricity Upper limit: 0.03
Secondary’s orbital inclination (assumed) 0°

Obliquity of the primary principal axis with
respect to the mutual orbital plane (assumed)
Obliquity of the secondary principal axis with
respect to the mutual orbital plane (assumed)

00

00

Table 1.1: Synopsis of some physical and orbital characteristics of Didymos binary.

It is worth noting that the only directly measured dynamical parameters by the observations are
the orbital period of the secondary around the primary, their orbital separation, the rotation period
of the primary and the size ratio of the secondary to the primary. All the other quantities (e.g.
system’s mass, etc) are derived from these measured parameters. A shape model of the primary
is also derived from radar observations combined with optical lightcurve data (see chapter 2).

1.10 AIDA Mission

The Asteroid Impact and Deflection Assessment (AIDA) mission is a proposed pair of space probes
which will study and demonstrate the kinetic effects of crashing an impactor spacecraft into an as-
teroid moon. The mission’s main purpose is to test whether a spacecraft could successfully deflect
an asteroid on a collision course with Earth. The concept proposes two spacecraft: Hera, built by
ESA will orbit the binary and make multiple observations, and Double Asteroid Redirection Test
(DART), built by NASA will impact the moon. Besides the observation of the change of orbital
parameters of the asteroid moon, the observation of the plume, the crater, and the freshly exposed
material will provide unique information for asteroid deflection, science and mining communities.
Initially, Hera’s role was to be realized by a much larger spacecraft called Asteroid Impact Mission
(AIM), but In December 2016 the European Space Agency cancelled the development of the AIM
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spacecraft after Germany decided to fund the ExoMars project only. NASA has continued on with
the development of the DART spacecraft, replacing AIM’s role of monitoring the effects of the
impact with ground-based telescopes. As DART is currently planned to launch in 2021, Hera is
currently intended to arrive at Didymos a few years after DART’s impact. To maximize scientific
outcome, the AIDA team proposes to delay DART’s launch so that Hera will arrive at the asteroid
first, enabling it to witness DART’s impact. While most of the initial objectives of AIDA would still
be met if Hera arrives after DART, as a drawback, data from direct observation of the impact and
ejecta formation will not be obtained. The AIDA mission is a joint international collaboration of
the European Space Agency (ESA), the German Aerospace Center (DLR), Observatoire de la Cote
d’Azur (OCA), NASA, and Johns Hopkins University Applied Physics Laboratory (JHU/APL).
The project was formed by joining two separate studies, DART, an asteroid impactor developed
by NASA, and a monitoring spacecraft - ESA’s Hera (formerly AIM). The plidar instrument on
board Hera will be provided by a consortium of teams from Portugal, Poland, and Ireland. Two
CubeSats will be deployed by Hera while at Didymos. The APEX (Asteroid Prospection Explorer)
CubeSat was developed by Sweden, Finland, Czech Republic and Germany. The Juventas Cube-
Sat is developed by GomSpace and GMV’s Romanian division. Along with monitoring DART’s
impact, Hera itself may also carry an impactor. As proposed by the Japanese Space Agency, this
instrument will be a replica of the Small Carry-on Impactor (SCI), an explosively formed pene-
trator on board the Hayabusa2 asteroid sample return mission. The SCI will hit the asteroid’s
moon at a speed lower than that of DART. By performing a secondary impact, a comparison of
the effects posed by two collisions of different nature on the same asteroid can be realized, helping
validate numerical impact algorithms and scaling laws.

z

v NEXT Engine
Star Tracker wx / 8X Thruster

5X Sun Sensor

2X LGA

Figure 1.6: On the left we can see the kinetic impactor DART which is meant to crash on Didymoon.
On the right we can see Hera spacecraft which is meant to perform numerous scientific observations
when it arrives at the asteroids.



Chapter 2

Asteroid Modeling

In order to calculate the force being acted on a test particle in space provided its gravitational
interaction with N bodies, one could apply Newton’s laws of motion. In case we are dealing with
point masses, Newton’s second law is quite simple because we know the analytic form of the grav-
itational potential V(z,y, z) of a point mass. Unfortunately, asteroids appear to be asymmetric
rigids bodies and thus it is impossible to obtain an analytic function V' (z,y, z) (with finite number
of terms) of their gravitational potential. So how could someone determine the force being acted
on a test particle outside such a body? We could define a rigid body of finite volume as a collection
of N point masses. The more point masses, the more precise the model will be. In such a case,
one could directly find the potential energy of a test particle as the sum of N pontenials that
are generated by those N point masses. After that, Newton’s laws can be applied to obtain the
differential equations of motion. So our first step is to make use of available surface data in order
to create a numerical model of the binary so that we can proceed to our study. From now on, we
will refer to the primary asteroid as Didymain and to the secondary asteroid as Didymoon.

2.1 Computational Space

In order to create a model of an asteroid, we have to define a geometric computational space inside
of which the modeling calculations will take place. The latter will be a rectangular parallelepiped
(box) as shown in figure 2.1, the sides of which will be determined by the asteroid’s natural size:

Az = Ax +2h = Tppaw — Tonin + 2R
Ay = Ay + 2h = Yimaz — Ymin + 2h (2.1)
Az = A2 +2h = 2w — Zmin + 2h

where Toae — Tmin, Ymaz — Ymins Zmaz — Zmin are the maximum distances between the asteroid’s
surface along the x,y and z directions respectively and h is a small positive number which we will
call computational step and will be used for the modeling procedure. In other words, through
equations (2.1), we have defined a computational space of size Az’ Ay’, Az’ and then we have
increased each side by 2h (one direction by h and the oppsite direction by h).

15
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Ay AX

Figure 2.1: Computatonal space

2.2 Didymain Model

We have at our disposal two txt files that contain surface mapping data. The first one contains 1148
sampled surface vertices (points) of Didymain in Cartesian coordintes. The second file originates
from the first and contains 2292 triads of unsigned integers that correspond to triads of vertices
that form triangles (planes) on Didymain’s surface. As far the asteroid’s interior is concerned, it
is not yet known to us, so we need an algorithm that will fill it with vertices (point masses). In
the end we will end up with a full model. Below follows a graphical representation of Didymain’s
surface.

Figure 2.2: Didymain’s surface model. On the left we have 1148 vertices, each enclosed with a
voxel for better visualisation. On the right we have 2292 planes that form a smooth approximation
of the surface.
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The algorithm that creates our model could be as follows:
e Calculate the quantities T,.in, Tmazs Ymins Ymaz> Zmin, Zmae from Didymain’s vertices file.

e Determine a Cartesian step A with which you will move in the computational space along the
directions x,y, z. The shorter h is, the preciser the final model will be (the more points it

will consist of).

e Increase the computational space (i.e. each side of the box) by 2h.

e Loop through all the computational space with step h.
> For your current (x,y, z) position, determine if you are inside the asteroid’s surface or not.
If yes, mark your current (z,y, z) position as an interior point and print it to a file.
Else proceed to the next point.

The process of determining whether a point lies inside or outside the surface is not as easy as it
sounds. As we saw earlier, Didymain’s surface is not given to us in an analytic form f(x,y,z) =0,
nor we can determine any symmetries from figure 2.2. In order to achieve our goal, we will develop
a ray casting algorithm in the 3D space. We will briefly present the algorithm for the 2D space
and then generalise it for the 3D one.

® o
2 intersections 1]
S 7 e =
4 intersections 3
=) e Z
=
/ /;\- N / 7 intersections =
o re
& intersections 3
¢ ~N P
0O intersections
® -

Figure 2.3: Ray casting algorithm representation.

Consider a simple polygon® in the 2D space (figure 2.3). One way of finding whether a point is
inside or outside the polygon is to count how many times a ray, starting from the point and going
in any fixed direction, intersects the edges of the polygon. If the point is outside the polygon, the
ray will intersect its edges an even number of times. If the point is inside the polygon, the ray will
intersect its edges an odd number of times. This method won’t work if the point is on one of the
edges of the polygon. The algorithm is based on the simple observation that if a point moves along
a ray from infinity to a destination point and if it crosses the boundary of the polygon, possibly

In geometry a simple polygon is a flat shape consisting of straight, non-self-intersecting line segments that are
joined pair-wise to form a closed path.
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several times, then it alternately goes from the outside to inside, then from the inside to outside,
etc. As a result, provided that initially the point lies outside the polygon, then after every two
border crossings, the moving point goes outside. Or provided that initially the point lies inside
the polygon, then after two border crossings, the moving point goes inside. This observation can
be mathematically proved using the Jordan curve theorem. The latter can be generalised for the
3D space. In such a case, instead of a simple polygon, we could have a polyhedron (figure 2.2 on
the right), the planes of which are tested for intersection with a ray. So the problem ends up in
the calculation of the intersection between a line (ray) and a plane in the 3D space.

Consider a Cartesian coordinate system Oxyz. Let 7y be the position vector of some known point
Py(x0, Yo, 20) and let @ = n,2T +n,y +n.2 be a nonzero vector. The plane determined by the point
Py and the vector 71 consists of the points P(x,y, z) with position vectors 7, such that the vector
drawn from P, to P is perpendicular to n. Recalling that two vectors are perpendicular if and
only if their dot product is zero, it follows that the desired plane can be described as the set of all
points P such that

A (Ferg) =0=
(na +nyg +n:2) [(x — 20)2 + (y — Y0)J + (2 — 20)2] = 0 =
(x — 20)na + (y — yo)ny + (2 — 20)n. = 0 =

xng + yny, + z2n, — (Tong + yony + 2on.) =0 (2.2)

which reminds our familiar plane equation ax + by +cz +d =0

Now let 7 and 7% be the position vectors of two known points P (x1, 41, 21) and Py(z2,ys, 22). The
line determined by P; and P, consists of the points P(x,y, z) with position vectors 7, such that
the vector drawn from P; to P is parallel to the one drawn from P; to P,. Thus

F—Fl:)\(FQ—F1>:>7?:771+)\(7°2—T1):>

x=ux1+ NMxy — x1)
y=v1+ ANy —y1) (2.3)
z=2z1+ Mz — 21)

which is the parametric equation of a straight line. The locus of points that is defined by the
intersection of a plane and a line can be found by substituting equations (2.3) to (2.2) and in
general is one of the following cases : 1) A point, 2) A line, 3) Void
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Figure 2.4: Gemoetrical representation of a line and a plane in the 3D space.

(2.3) & (2.2) = [w1+N(z2—21)|na+ [y +A (Y2 —v1)ny+ 21+ A (22— 21) [n.— (zong+yony +zon.) = 0 =
L1y + Mg (T2 — 1) + yany + Any(y2 — v1) + z1m. + Ans (20 — 21) — (one + yony + 20m.) = 0=
Ang(z2 — 1) + ny(y2 — y1) + n2(22 — 21)] = (Tong + Yony + 2on.) — (¥10 + Y10y + 210,) =

) = (@o—@)ne + (yo — yi)ny + (20 — 21)ns
(22 — 1)ne + (Y2 — Y1)y + (22 — 2112

By substituting the parameter X in the line equation, we receive the coordinates of the intersection
point.

I (o — x)na + (Yo — Y1)y + (20 — 21)n5 | (25 — 1)
’ (22 — z1)ng + (Y2 — y1)ny + (22 — 21)n, |
(2o — x1)ng + (Yo — y1)ny + (20 — 1)1 |
i =Y+ —
= (g — z1)ny + (Y2 — y1)ny + (22 — 21)0 | (42 = 91)
— (330 — iUl)na: + (yo - yl)ny + (Zo - Zl)nz (22 _ 2’1)
’ (22 — z1)ng + (Y2 — y1)ny + (22 — 21)n
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Returning to the case of Didymain’s surface, we have to check 2292 planes for possible intersection
with each ray we form. The equations of the planes shall be defined from the coordinates of their
3 vertices and the ray shall be a line segment that starts from the computational space point
P(z,y,z) and ends at the destination point Pges(Zmazr + I, y, z). One can use a destination point
at any direction (provided the point is on or out of the computational box), thus for simplicity we
choose the direction of the +x axis for all the rays.

There is still one more issue to solve. Calculating the intersection point between a ray and all
the planes of the asteroid’s surface will not yield desirable results. We must make sure that the
intersection point is strictly limited on the triangle’s surface that is defined by the 3 vertices and
not on the extension of the triangle in the whole 3D space, otherwise all the rays casted will
intersect with all the planes of Didymain’s surface somewhere in the 3D space because non of the
planes will be exactly parallel to any ray (we are dealing with floating point arithmetic). But how
can we decide if a point is part of a 3D triangle’s surface or not? Consider the following picture.

z

Pii

Figure 2.5: Deciding whether a point lies on the syrface of a triangle or not through the summation
of the areas formed by 3 sub-triangles. P; lies on the surface, while P;; does not.

Let Py, P, P, be the vertices of a triangle in the 3D space with area A and let P, be an ar-
bitrary point. Now form the triangles (P,PyP;), (PP P,), (P;P2Py) with corresponding areas
Ajor, Az, Aio. I Ajor + Atz + Ajoo = A, then P lies on the surface, otherwise not (e.g. point P
in figure 2.5). The area of an arbitrary triangle (P, P»P;) in the 3D space can easily be calculated
as:

1 — —
APZ§|P1P2XP1P3|
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Finally, the complete algorithm to create Didymain model is the following;:
e Calculate the quantities T,.in, Tmazs Ymins Ymaz> Zmin, Zmae from Dydimain’s vertices file.

e Determine a Cartesian step h with which you will move in the computational space. The shorter
h is, the preciser the final model will be (the more points it will consist of).

e Increase the computational space (i.e. each side of the box) by h.

e Loop through all the computational space with step h.
> Set the counter of intersection points to zero.
> Form the line segment that connects your current position P(z,vy, z) with the point
Pdest(xma:v + h7 Y, Z)
>> Loop through all the surface planes in search for intersection with the line segment.
O Calculate the intersection point P;(x;, y;, z;) between the current plane and the line
segment formed.
(1 Check if P; sits on the triangle’s surface. If yes, then count P; as an intersection point.
> Check whether the counter of intersection points is odd or even. If it is odd, then
mark your current (x,y, z) position as an interior point and print it to a file. Else
proceed to the next point.

When the above algorithm is executed, we receive the model of figure (2.6).

Figure 2.6: Complete model of Didymain. The gray voxels represent the asteroid’s surface (the
left half of the surface has been removed so that the interior can be visible), while the red ones
represent its interior, that is, all the voxels that were produced from the previous algorithm. They
are 17647 voxels in total (surface + interior), produced with a Cartesian step h = 0.025 km.
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2.3 Didymoon Model

As far as Didymoon is concerned, we don’t have any specific radar observations or detailed surface
optical lightcurves available. Keep in mind that it is a body with an approximate size of only
160 m that is located millions of kilometers away from Earth. So we have decided to consider
Didymoon a tri-axial ellipsoid with semi axes a, b, c. Although it is possible to obtain an analytic
form of the gravitational potential of an ellipsoid, we choose again to create a model that consists
of point masses, such that their macroscopic form match an ellipsoid. Rendering such a model is
pretty easy beacause now we do know the analytic form of the equation of an ellipsoid:
72 2 2

Y _
$+_+§_1

So the algorithm that will create Didymoon model could be as follows:
e Input the semi axes a, b, ¢ of the ellipsoid.

e Determine the computational box from the quantites i = —a, Timar = @, Ymin = —b,
Ymaz = b, Zmin = —Cy Zmaz = C.

e Determine a Cartesian step h with which you will move in the computational box. The shorter
h is, the preciser the final model will be (the more points it will consist of).

e Increase each side of the computational box by 2h.
e Loop through all the computational box with step h. ,
> Check if your current space position (z,y, z) satisfies the inequality i—z + %+ ‘z—i <1

If yes, then mark your current (z,y, z) position as an interior or surface point and print it
to a file. Else proceed to the next point.

When the above algorithm is executed, we receive the model of figure (2.7).

Figure 2.7: Complete model of Didymoon. On the left we can see the model voxel by voxel and
on the right we can see the very same model using a smooth surface. Totally 2323 voxels were
produced with Cartesian step h = 0.01 km.



Chapter 3

The Binary in Orbit

Now that we have both asteroids modeled, we may proceed to the next step: Set the binary in orbit
in the 3D space. To achieve that, we will make some assumptions. These concern the coordinate
systems we will use, the way the asteroids translate and rotate in space, the numerical method we
will use in order to solve the differential equations of motion, the units of measurement and and
the initial conditions and parameters that we will incorporate in the system.

3.1 Coordinate Systems

We consider the three coordinate systems (Fo,F1,F5y) of figure 3.1. The first one is a global inertial
frame Fy, fixed at O(0,0,0) and corresponds to the center of mass of the two asteroids. The second
one is a non-inertial frame Fy, the origin of which always coincides with Didymain’s center of mass
and the frame’s axes always coincide with Didymain’s principal axes of inertia. So while Didymain
moves through space, the origin of F; moves at the same path and while Didymain rotates, the
axes of Fy also rotate the same way. The third one is also a non-inertial frame Fs, the origin of
which always coincides with Didymoon’s center of mass and the frame’s axes always coincide with
Didymoon’s principal axes of inertia. Fy now follows Didymoon at its path and rotates the same
way as Didymoon’s principal axes do.

3.2 Translation and Rotation

In order to calculate the motion of the asteroids in space, we have to define how the two asteroids
interact gravitationally. Both asteroids are considered to be rigid bodies, so each body would
require 6 degrees of freedom in order for its configuration to be fully defined: 3 translational
(position in space) and 3 rotational (orientation in space). Each degree of freedom would be
calculated through the solution of a corresponding ordinary differential equation, which means
that we would need 6 ODEs for each asteroid. However we choose to reduce our calculations by
making use of table 1.1 and the fact that observations show that Didymoon is tidally locked
on Didymain. The latter permits us to get away with the ODEs that describe the rotation of the

23
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asteroids and instead, approximate Didymoon’s rotation manually (we will explain how) without
significant computational errors. Didymain’s rotation ODEs can also be approximated assuming a
constant angular velocity vector &; towards the +z direction of the F; coordinate system. So the
"heavy" calculations end up being 3 ODEs that concern the translation of Didymain and 3 ODEs
that concern the translation of Didymoon.

Body 1 z
Body 2 N2
N1 .
d_lZJ 6] ¢ --
.'. Fl F2 ™
*’ & —
®* o 4 d2_l_i E _
® o El 2t R
2
Ry,
y
Fo
X

Figure 3.1: Two rigid bodies, each consisting of N; and N, point masses respectively, placed in
space. The red and blue vectors are used to formulate their gravitational interaction.

Consider figure 3.1 which depicts two rigid bodies in space. Suppose Body 1 consists of N; point
masses, while Body 2 consists of Ny point masses. Let M; and Ms be the total masses of the two
bodies respectively. Assuming constant bulk density for each body, we can write:

my; = My, for i:1,2,...,N1

Moj; = My, for j:1,2,...,NQ
Also the total mass of each body is the sum of its point masses:
Ny N2
M1 = th‘ and M2 = ngj
i=1 j=1

Let R, be the position vector of the center of mass of Body 1 (Didymain in our case) with respect
to Fp and R, the position vector of the center of mass of Body 2 (Didymoon in our case) with
respect to Fy. Let 7; be the position vector of the i-point mass of Body 1 with respect to F; and
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75; be the position vector of the j-point mass of Body 2 with respect to F';. Finally we define the

vector ij that connects the center of mass of Body 1 with an arbitrary point of Body 2 and the

vector dgy; that connects the center of mass of Body 2 with an arbitrary point of Body 1. The
latter is mathematically expressed as:

§1+d12j :ﬁ2+F2j :>d12j :R2_§1+F2j
R'Q‘FCZQI@':R)I"'FM#J’QM:ﬁl_ﬁ2+Fli

Provided the two bodies interact gravitationally, we want to write down the equations of their
motion. As far as the translational part of their motion is concerned, we only need to know the
motions of the two centers of mass. Application of Newton’s second law, yields:

G G G
MR1 Mm? d121 Mmz d122 + - Mm? dlZNQ =

d121 d122 d?zNg
d; - 2 Ry — Ry + 1%
Rl Gmgz 12] R1 Gm22—2 31 LUNN
= iy ) diy;
( No
Xo—Xi+z
K= Gy Y5 S =ty
= 125
N2
Yo—Y] +
i Gy
= 125
Na
Jo— L1+ 2
Zl—Gm2Z 2 d31 27
{ = 125

where dig; = /(X2 — X1 +29;)% + (Ya = Y1 +y25)? + (Z2 — 21 + 295)?

In a similar way, we can extract the equations of motion for the center of mass of Body 2:

G G G
M/R2 Mmldml Mmldgm + - Mml d21N1 =

3 3 3
d211 d212 d21N1

I N3 5, =
% = R, —R 7
Ry = Gmlzdﬂ = H=am Y e

3
— 214 i=1 d217,
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.. X - X i
ngGmlz 1 d32+x1
i1 21
N1
Y, - Y5 i
Yy = Gy Z 1 d32 + % (3.1)
i1 213
N1
Z1— 7 i
7y = Gy Z 1 d32 + 21
- 21

where dgli = \/(Xl — X2 + Ili)Q + (1/1 - YQ + yli)2 -+ (Zl — ZQ + Zli)Q

One could use a numerical scheme to solve the two systems of the ODEs (as we will see later).
However we can skip some calculations by using Newton’s third law. Applying the latter to the
system of the centers of mass of the two bodies, we get:

ﬁl:_F_)2:>F_)1+F_)2:6:>M1R'1+M2R’2:6if>
MR, + MyRy = & :f> MR, + MyRy = &\t + G =

MR, + MyR, Gt + 6
M1 +M2 M1+M2

The last expression states that the center of mass of the two centers of mass of the two bodies
shall move on a straight line with constant velocity. We set ¢; = ¢, = 0

( My X,
X, = —
- = MR, MY,
MR,y + MRy =0= R = — Y = 3.2
14ty + Modio 1 A, Y M, (3.2)
My 7,
Zy = —
(7 M,

That way, we have fixed the center of mass of the two centers of mass at in the origin of Fy and
instead of solving the ODEs for both bodies, we only need to solve for one of them (e.g equations
(3.1) for Body 2) and then we can use equations (3.2) to find the motion of the other.

As far as the rotational motion of the asteroids is concerned, we set it manually in order to reduce
our calculations. Specifically, we assume that Didymain rotates around the +z axis with constant
angular velocity w, = ?p—’lr, where (according to table 1.1) 77 ~ 2.26 h is the self rotation period.
Didymain consists of N7 point masses, each at posistion (x1;, y1;, 21;) with respect to the frame F;
at t = 0. The rotation is achieved by multiplying all Didymain’s vertices with the rotation matrix

R, around the z axis.
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x); coswt —sinwt 0| [xy
Yy | = |sinwt  coswt 0| |yu
>y
-~
R

where (x);,y1;, 21;) is the position of the i-vertex with respect to F; after the rotation.

The (manual) rotation of Didymoon is slightly more complex. As we stated previously, Didymoon
is assumed to be tidally locked on Didymain. In the case where the orbital eccentricity and the
obliquity are nearly zero, tidal locking results in one side of Didymoon constantly facing its partner,
an effect known as synchronous rotation. The last statement is sufficiently true in our case although
there should be some libration because the Didymoon’s orbit isn’t perfectly circular. Consider the
following figure:

z
- — — I e L e ,L_#
- - -
lP -
P ...._L,__._.... = 5 |
.- — p

P11

Figure 3.2: Representation of Didymoon’s self rotation. The red dot depicts Didymain’s center
of mass at the moments ¢y and ¢; (Pp; and Py; respectively). The blue stick depicts Didymoon’s
largest axis, again at the moments ¢y and ¢; (Py and Pjy respectively).

The red dot represents the center of mass of Didymain. The blue stick represents Didymoon’s
largest axis and its orientation in the 3D space During the time At = t; — t; Didymain’s center of
mass moves from P01 to P, while Dldymoon s center of mass moves from Fyy to P». Now form

the vectors @ = P01P02 and b = P11P12 The unit vector 4 = (@ x b)/|a X b| is perpendicular to the
plane that the angle ¢ scans. In order for Didymoon to constantly face Didymain, Didymoon has
to rotate at an angle ¢ around the vector «. The angle ¢ can be calculated from the dot product
of the vectors @ and b
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ST
S

@-b=|d||b| cosp = cosp =

l

|al|o]

One can decompose the rotation in two sub-rotations (one azimuthal and one polar), but it can
also be done in one rotation. We can use Rodrigues rotation formula to construct the rotation
matrix that rotates by an angle ¢ around the predefined unit vector @ = (uy, u,, u,). Letting

0 —u, uy
W =1 u, 0 —u,
—Uy Uy 1

the Rodrigues rotation matrix is constructed as

R, =1+ (sinp)W + (1 — cosp)W?

where I is the 3 x 3 identity matrix. After that we can perform Didymoon’s rotation, pretty
much like we did with Didymain’s case. Didymoon consists of Ny point masses, each at posistion
(%2i, Yoi, 22;) With respect to the frame Fy at ¢ = 0. The rotation is achieved by multiplying all
Didymoon’s vertices with the rotation matrix R,

/
Lo; Ryii Ruye Rus T2
/
Yo | = [ Ru2i Ruzz Ruas| | y2i
/
Z9; Ruzi Ryss Russ 22i
N J/
Vo
Ry

where (xh;, yb;, 25;) is the position of the i-vertex with respect to Fy after the rotation.

3.3 Numerical Method for the ODEs

The differential equations (3.1) cannot be solved analytically and therefore we have to implement
a numerical method to serve our purpose. Runge-Kutta 4, order method (RK4) combines suf-
ficient accuracy and computational speed, hence we will use it for the solution of the differential
equations. Below we present the RK4 method for the case of one differential equation with one
independant variable. Afterwards, we adapt the method to our differential equations (3.1).

Let an initial value problem (IVP) be specified as follows:

= f(t,x), x(ty) = xo

Here x is an unknown function (scalar or vector) of time ¢, which we would like to approximate.
The function f and the numbers ¢, and xy are known. Provided a sufficiently short step h > 0,
the sequence (t,,x,) that approximates the function z(¢) is given as:
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1
T(tys1) = Tpr1 = T, + E(k +2l+2m+n)

tl,+1 :ty+h
for v =0,1,2,..., where
k=hf(t,,x,)
h k
[ = hf(t,, + §,$V + 5)

h )
m_hf(ty+§,xy+§)

n=~hf(t,+ h,x, +m)

Now reconsider equations (3.1). It is a system of 3 ODEs of second order. In order to directly
apply RK4 method we would like to reduce the order from 2 to 1. Thus we do the following
substitution: X; = Vx,, Y1 = Vy,, Z1 = Vz,. So now we have the following systen of 6 ODEs of

first order:

X2 — VX2
Yy = Vi,
Zy=Vy,
Ny
. X1 —Xo+ a2y
VX = Gm1
’ ; d3); (3.3)
Ny
. Yi - Y5+
Vy2 = Gm1 Z —1 d32 h
i1 214
N1
. 1 — 7. i
Vi = Gy Y S22
213

i=1

We will write down the RK4 method for a general system of 6 ODEs of first order and then we
will apply it to the equations (3.3). Consider the following initial value problem:

‘fl :fl(t,l’l,xg,...,ﬂfﬁ), $1<t0) = X190
Ty = folt,x1, 20, ...,26), X2(to) = X2
te = fo(t,x1,22,...,26), x6(to) = Teo
Here x1,x9,...,1s are unknown functions of time ¢, which we would like to approximate. The

functions fi, fo, ..., f¢ and the numbers ty and x1¢, x99, . . . , Tgo are known. Provided a sufficiently
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short step h > 0, the sequences (t,,21,), (t,,%2,), ..., (t,,Ts,) that approximate the functions

1, Ts,...,Te are given as:
1
1(tyy1) = Ty = D1y + E(kl + 2l 4+ 2my + )

1
To(ty41) = Ta 1 = Ta, + a(ké + 2ly + 2mgy + o)

1
ze(ty+1) = Topt1 = Top + 6(/66 + 2lg + 2mg + ng)

t,/+1 :ty+h
forv =0,1,2,...,6, where

ki=hfi(ty, 21,220, ..., %)
]{72 = hfg(tl,, JZLV, .ZUQ’V, Ce ,ZL‘G’V)
kG - hf6<t1/7 :Ul,zu x2,ua R 7x6,u)
h ko ke
ll = h,fl(tl, + §,$17V + 5,.%27,, + 5, ce 7556,1/ + 3)
h k k k
l2 = hfg(tl, =+ E’xl’y + 5175527” + 52, e 7376,11 + §6>
h 1 k’2 kﬁ
lg =hfs(t, +—=,21,+—=, 200, +—,...,T6, + —
6 fﬁ( + 5 T1, + 5 To, + 5 Tey + 2)
h l l l
my = hfi(t, + Eaxl,u + 51,1’2,1/ + 52, ce Ty T 56)
h ll lg l6
= h’ ZL’l/ o) v a0 v PREERER v ry
mo f2< + 5 T1, + 5 To, + 5 Tey + 2)
h l l l
meg = hf6<tl/ + 5,1’171} + %7332,1/ + 527 ] 7‘7;6,V + 56)
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h
ny = hfi(t, + Euxl,u +my, Ta, + Mo, ..., T, + M)

h
ng = hfa(t, + o Ty 1, Doy My, T+ me)

ne = hfs(t, + §,$1,u +my, Ty, + Mo, ..., T, + Mg)

By substituting the theoretical functions xq, xs, x3, x4, x5, g with the functions of the position
(X2, Ys, Zs) and the velocity (Vx,, Vy,, Vz,) of our problem, we solve the equations.

3.4 Units of Measurement

Instead of measuring our quantities in the SI, we define a new system of measurement, named
TU. In the new system we assume G = M = 1, where G is the gravitational constant and
M = M + M, is the total mass of Didymos binary (M; is the mass of Didymain and M is the
mass of Didymoon). We also choose kilometers to be our unit of length because the size of the
asteroids and the distances we will deal with are of the order of kilometer. Assuming the previous
means that the time ¢7y in the TU system is different than the one of the SI (ts.). We want to
find the relationship between t7y and t,... We use the scalar form of Newton’s gravtiational law:

Er o GwmM |, &
= T 2 O G (3.4)

We choose G = M =1 and km as a unit of length, thus equation (3.4) yields

PN [km]?

2 2
tTU tTU

([km)? - 10°) = 10° (3.5)

In the SI, equation (3.5) takes the form

[m] _n m]?
[m]?5= = 6.67408 - 10 “ﬁ -5.278 - 101 [kg] =

toec [kg][sed]
3 3 kml3 km]?
M g5 99570404 M K as 00570404 (3.6)
tgec [860]2 tgec [860]2
[k /thy _ 10°

(3:5)8(36) = s 7~ = 3590570001

sec
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lsec 109

= —_ =
tru + 35.22579424

tsee ~ 5328.066 t7y (3.7)

Equation (3.7) can be used to convert the time from the TU to the SI and the opposite. For
example 1 TU = 5328.066 sec.

3.5 Initial Conditions and Parameters

We have to set some appropriate initial conditions for the binary to evolve. Table (1.1) informs
us of some orbital elements of the system (though some error), which we will use to set the initial
conditions in Cartesian form. The center of mass of the system will be at O(0,0,0) with respect
to Fo. We know that the distance between the center of the primary and the secondary is 1.18
km +0.04/ — 0.02 km and that the orbital eccentricity is e < 0.03. Also we assume the following;:
1) The orbital inclination of the secondary is ¢ = 0° 2) The obliquity of both the primary and the
secondary principal axes with respect to the mutual orbital plane is zero. Assuming the previous,
the initial conditions of the center of mass of Didymoon can be written the following form:

Ry = (X5,0,0) and Vg, = (0,V4,,0)

where Xy = 1.18 km with respect to Fy and V4, has such a value that the orbital eccentricity of
Didymoon that is calculated from the previous Cartesian coordiantes is e < 0.03. The simplest
case we can think of, is e = 0 which corresponds to circular orbit. Theory suggests that the
velocity of the circular orbit is calculated as |Vy,| = [\/GM/X5| ~ 0.921 km/TU. Didymoon
is at a retrograde orbit, thus Vy, ~ —0.921 km/TU with respect to Fy. Provided Didymoon’s
aforementioned initial conditions and provided that the center of mass of the system is at O(0, 0, 0),
we can find Didymain’s center of mass initial conditions from equations (3.2). Also the initial
orientations of the two asteroids must be set. Those will be such that all x-axes (consequently all
y-axes and all z-axes) of the frames F¢,F;,Fy are parallel. Luckily, we don’t need to incorporate
new angle initial parameters to achieve that, because the asteroids are at those orientations from
the modeling procedure. Didymain’s rotational period is 77 = 2.26 + 0.0001 h. In the SI it is
T\ sec = 2.26 - 3600 ~ 8136 sec and in the TU it is 71 7y = T1 se/5328.066 = 1.5270081 TU. Thus

the angular velocity &; = —w;Z which we will use in order to rotate Didymain is:
2m 2m rad
T o 15270081 TU

Under the assumption that the two asteroids have the same bulk density, the mass ratio of Didy-
moon (M) and Didymain (M;) can be calculated as:
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M, pVy  —3*  Dj
M, PVI 4r D} D:l)’

where D; and D, are the formal diameters of the two asteroids. We also assumed that M;+ My = 1.
Thus solving the system, we receive M; = 0.9907 and M = 0.0093.

We perform three simulations. All simulate the system for a physical time t,,,, = 2 months (in
terms of TU, this means t¢,,,, = 972.96 TU). The difference lies in the time step being used in
the numerical integrations. The first simulation uses a relatively short time step At = 2.66 sec
(in terms of TU, this means At = 0.0005 TU). The second simulation uses a longer time step
At = 26.64 sec (in terms of TU, this means At = 0.005 TU). The third simulation uses a much
longer time step At = 266.40 sec / 4.44 min (in terms of TU, this means At = 0.05 TU).
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3.6 Simulation Results

Case: Short step

Figure (3.3) depicts the binary at the end of the simulation (At = 2.66 seconds and t = t,,4, = 2
months) from three different perspectives. Also, in figure (3.4) we present the plots of Didymoon’s
semi-major axis, eccentricity and inclination as functions of time. It seems that after two months,
Didymoon’s orbit remains quite stable. The functions e(t) and i(¢) oscillate quite steadily, just as
someone would expect in reality (remember that no matter how short the integration time step is,
one should not expect absolutely constant eccentricity and inclination because we are not dealing
with the classic two body problem, but instead two assymetric rigid bodies. Thus, the orbital
elements are variables due to the nature of the problem). However the function a(t) seems to
suffer drag as well. This (which is not expected to happen in reality) is an error incorporated by
the Runge-Kutta 4th order method.

Figure 3.3: Orbit evolution of the binary at t = t¢,,,,., = 2 months with step At = 2.66 sec.
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Figure 3.4: Semi-major axis a, eccentricity e and inclination ¢ of Didymoon as functions of time
for step At = 2.66 sec. The left panels show the evolution of the orbital elements for all the run
time (2 months). The right panels show the evolution of the very same elements, but for a short

amount of time (= 2.07 days).
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Case: Middle step

Figure (3.5) depicts the binary at the end of the simulation (At = 26.64 seconds and t = t,4, = 2
months) from three different perspectives. Also, in figure (3.6) we present the plots of Didymoon’s
semi-major axis, eccentricity and inclination as functions of time. Even though we have increased
the method’s time step by one order of magnitude, the orbit still remains quite stable. The
functions e(t) and i(t) are almost the same with the ones of the previous case. The semi-major
axis a(t) has the same morphology with the corresponding one of the previous case, but now the
drag is more obvious.

Figure 3.5: Orbit evolution of the binary at t = ¢,,,, = 2 months with step At = 26.64 sec.
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Figure 3.6: Semi-major axis a, eccentricity e and

inclination ¢ of Didymoon as functions of time

for step At = 26.64 sec. The left panels show the evolution of the orbital elements for all the run
time (2 months). The right panels show the evolution of the very same elements, but for a short

amount of time (= 2.07 days).
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Case: Long step

Figure (3.7) depicts the binary at the end of the simulation (At = 266.4 seconds and t = t 4, = 2
months) from three different perspectives. Also, in figure (3.8) we present the plots of Didymoon’s
semi-major axis, eccentricity and inclination as functions of time. Again the functions e(¢) and
i(t) oscillate almost around the same values as in the previous two cases, but now we observe a
significant drag of the semi-major axis a(t).

Figure 3.7: Orbit evolution of the binary at t = t,,,, = 2 months with step At = 266.4 sec.
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Chapter 4

Impact Ejecta

Our final step is to incorporate in our simulation the impact ejecta that will be produced from
Didymoon’s surface due to DART’s collsion. In our study we focus on the mechanical environment
near the binary (up to 20 km radius from the center of mass of the system) after DART’s collision.
That is, we don’t include DART’s collision itself in our simulation, but only what happens after
the collision. Besides, even if we did include in our simulation the collision, although there would
be a slight change in the orbital elements of the system, it would barely affect the ejecta orbits. As
soon as the collision occurs, we expect an ejecta cloud to be produced and spread in space. In our
simulation, the cloud is assumed to consist of N point masses. Also we note that we are interested
in the study of the low velocity ejecta, that is, the particles of which their ejection velocity is up
to the escape velocity of Didymos binary (we explain further details about that in section (4.3)).
Each ejected particle will be subjected to the combined gravity of Didymoon and Didymain and
will follow its own trajectory in space. It is worth noting that in reality, not only the gravity of
the two asteroids is applied to the ejecta, but also the gravity of other celestial bodies like the
Sun and the other planets, as well as the radiation pressure of the Sun. In this thesis however, we
reduce our study to the gravity of the two asteroids which is the dominant force. In this chapter
we formulate the equations of motions of the ejecta, we implement collision and escape criterions
and we set some initial conditions and parameters. Our goal is to observe the evolution of the
ejecta cloud for some time and eventually conclude its fate.

4.1 Equations of Motion of the Ejecta

We assume that all ejected bodies are point masses that do not affect the motion of the binary.
Each point mass undergoes the gravitational force of all the particles that make up Didymain plus
the gravitational force of all the particles that make up Didymoon. Figure (4.1) illustrates the
latter.
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Figure 4.1: Representation of an ejected particle p, being attracted by the two asteroids.

Figure (4.1) is almost the same with figure (3 1), shghtly changed to depict the mechanical envi-
ronment of an ejected partlcle The vectors Rl, Rg, T, T2j, represent the same with the ones of

figure (3.1). Now let Rp be the position vector of an ejected particle with respect to Fy. We also

define the vector d; that connects the ejected particle with an arbitrary point of Body 1 and the
vector dy; that connects the ejected particle with an arbitrary point of Body 2. The latter can be

mathematically expressed as:

R’er(fu:R’l‘i‘??lii(ili:

Ry + daj = Ry + o = doj = Ry —

—Rp—FTli

Ry + 1

The equation of motion of an ejected particle (with negligible mass m) is:
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( N1 N2
’ X1 — X, + x4 Xo — X, + 29,
Xp:G<m1 E : d3p =L + mgy E 2 d3p x2]>
, 3

i=1 li j=1

No
.. Yi =Y, +yi Yo=Y, 4+ yo;
Y, =G <m1 E L p Tl di’. g + moy E 2 _p 7 d§ y2j>

j—l 2

N1
- Z1 - Z + 21 Z2 Z + 294
Zp=G<m12T 22 & )
: i j

where dli = \/(Xl — Xp + .Th‘)Q + (Yi - Y;; + yu)Q + (Zl — Zp + Zli)2
and dgj = \/(Xg - Xp + 1’2]')2 + (}/2 - }/p + y2j)2 + (ZQ - Zp + Zgj)Q

We reduce the order of the ODEs from 2 to 1 in order to direclty apply RK4 method by substituting:
X, =Vx,, Y, =W, Z,=Vz,. Thus, for one ejected particle p, we have the following system of 6
ODEs of first order:

X, =Vx,
YZD - VYP
Zp VZT—’

In our simulation we solve the differential equations of motion of the binary and at the same time
we solve the differential equations of motion of the impact ejecta. Both systems will are solved
with the Runge-Kutta 4th order method with the same time step At. The previous equations are
integrated for N ejected particles. Think of it like we are integrating the motion of a cloud that
consists of V bodies.
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4.2 Escape, Chaos and Collision Detection

Suppose that a particle is ejected from Didymoon’s surface. The particle will follow a trajectory
based on its initial conditions. What happens to that particle afterwards? We enumerate 3 possi-
ble cases:

1) Escape from the binary

This case occurs either when a particle is ejected with very high initial velocity or when a particle’s
orbit evolves in such a way that its velocity becomes high enough to satisfy the criterion:

by > \/2G(M1 + M)

r

for > 1

~~
Vesc

Specifically, we decided that 7,,,, = 20 km from the center of mass of the binary. Thus, if a particle
gains velocity v, > Vesc and at the same time r > 7,,4,, then we consider that the particle escaped.
Our algorithm constantly checks the previous criterion during each time step in order to decide
whether a particle escaped from the binary or not.

2) Chaotic orbit near the binary’s domain

This scenario is expected to happen when a particle is ejected with such initial conditions, that
don’t provide them with enough kinetic energy to escape the binary. These particles are expected
to be trapped in chaotic orbits near the binary’s domain of gravitational influence for who knows
how long, until probably, either they collide with one of the two asteroids or escape the binary
due to gravity assist. It is very important to know the long term behavior of the particles in such
a case so that Hera space probe can be prepared for what it is going to meet there (whether the
collision event happens before or after Hera’s arrival).

3) Collision with Didymain or Didymoon

For an ejected particle orbiting the binary, it possible that after a finite amount of time, it will
crash, either on Didymain’s or on Didymoon’s surface. We assume that after a collision between
an ejected particle and an asteroid, the orbit of the particle ends at the exact point at which
the collision took place. Realistically speaking, the last sentence is not true, because of possible
ricochet and cloud regeneration. If for example an ejected body (a rock) has realatively big mass
and velocity and it happens to crash on one of the asteroids almost tangentively, then a new ejecta
cloud will rise. However, we do not include such details in our study. What we want are two
collision detection criterions; one between the ejecta and Didymain and one between the ejecta
Didymoon.
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For Didymain, we assume a circumscribed sphere on its surface (i.e. a sphere centered at the
center of mass of Didymain and radius equal to the longest distance between the center of mass
of Didymain and its surface vertices). If an ejected particle crosses that (virtual) sphere, then we
assume a collision with Didymain. The mathematical criterion for the last sentence is written as:

\/(Xl(t) = Xp(1))2 + (V1i(t) = Yp(1))? + (Z1(1) = Z(1))? < dinaa

where Ry () = (X1(£), Yi(t), Z1(t)) is the position of the center of mass of Didymain at time ¢ with
respect to the global inertial frame Fy (see figure (4.1)), R,(t) = (X, (1), Y,(t), Z,(t)) is the position
of an ejected particle at time ¢, again with respect to the global inertial frame Fy and d,,4, is the

longest distance between the center of mass of Didymain an its surface vertices.

For Didymoon, we can take advantage of the analytical expression of its surface (tri-axial ellipsoid)
in order to write down a precise collision detection criterion. The equation of a tri-axial ellipsoid,
centered at O(0,0,0) with semi axes a, b, ¢ is:

72 2 L2

)
E‘F—‘Fg:l

The equation of a self-translated tri-axial ellipsoid, centered at Py(zo, Yo, 20) With semi axes a, b, ¢
is:

(I - $0)2 (?J - y0)2 (Z - 20)2
a? + b2 + c?

The equation of a self-translated and self-rotated tri-axial ellipsoid, centered at Py(zo, yo, 20), ro-
tated at an angle ¢ around a vector @, with semi axes a, b, ¢ is:

I 2 I 2 I 2
(w ) I (y 3/0) + (Z Zo) —1
a? b2 c?
where
x! Ryn Ry Rus| |z
Z// = |Ru2a1 Ruz2 Ruzs )
2 Rusi Rusa Russ z
Ru

Thus, a collision between Didymoon and an ejected particle p, occurs when the following criterion
is satisfied

(X, — Xo)? N (Y, — Ya)? N (Z, — Z»)?

a? b2 c? <1
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where
X; Rull Ru12 Ru13 Xp
Yp/ - Ru21 Ru22 Ru23 YZD
ZII) RuSl Ru32 Ru33 Zp
R

and ﬁg = (X3, Ys, Z5) is the position vector of the center of mass of Didymoon at time ¢ with
respect to the global inertial frame F\.

4.3 Initial Conditions of the Ejecta

We mentioned previously that we simulate the ejecta motions after the collision between DART
and Didymoon. We also mentioned that we are interested in the particles that are ejected with
relatively low velocities. If we were near Didymoon during the collision event, we would observe
most of the ejected particles being catapulted in space with hypervelocities (depending on mo-
mentum gain parameter ) due to the violent exchange of momentum bewteen the spacecraft and
Didymoon. However, there will be particles ejected in space with relatively low velocities; less
than the escape velocity of the binary at the collision point. These are the ones we are interested
in. Our algorithm provides the ejected particles with a set of initial conditions (positions and
velocities), such that they don’t escape the binary due to the initial ejection. Keep in mind that
a particle can escape from the binary, not only due to an initial hypervelocity, but also due to
chaotic evolution of its orbit near the binary.

We decided that all of the ejected particles shall have the same initial position. This position shall
be at the impact point of Didymoon’s surface and more specifically we decided that point to be
at (0, —b,0) with respect to Didymoon’s local coordinate system (frame Fy of figure (4.1)). In our
simulation, the initial position is not be placed exaclty on Didymoon’s surface, but slightly further
(1 meter). We do this in order to avoid infinities. If we do set the initial position of the ejected
particles exactly on Didymoon’s surface, it will result almost zero distance with some of Didymoon’s
model points which will lead to infinite forces. As far as the initial velocities are concerned, we
make use of available experimental data (Johns Hopkins University / Applied Physics Laboratory)
to see what happens when a hypervelocity aluminium projectile impacts a pumice target (figure
(4.2)). We observe that the geometric distribution of the ejecta cloud right after the collision (left
snapshot) is approximately a bunch of cone layers with different apex angles. After very few video
frames, the cloud seems to occupy a wider region, due to the particles that are ejected with lower
velocities and larger angles (right snapshot). The same principal we follow for the determination
of the initial velocities in our simulation. First of all we assume that the ejecta cloud is generated
in such a way that the velocity vectors of Didymoon and the impactor right before the impact,
point to opposite directions. We also assume that the initial velocity vector components of all the
ejecta are random numbers from the uniform distribution, but bounded in direction and magnitude
so that the geometry of the ejecta approximates the right snapshot of figure (4.2). This way we
achieve to cover a wide range of possible initial velocities. Figure (4.3) represents a sample of 100
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initial velocity vectors calculated as predescribed. As far as the magnitudes of the initial velocities
are concerned, we perform a search algorithm to calculate the initial critical velocity v for which
an ejected particle almost escapes the binary. This value is found to be vy ~ 1.4 km/TU = 0.262
m/sec. The initial conditions of the binary are exactly the same with the ones described in section
3.5. We decided to simulate the system for a physical time ¢,,,, = 1 month with an integration
time step At = 26.64 seconds (in terms of TU, this means t,,,, = 486.48 TU and At = 0.005 TU),
which corresponds to the middle step case of section 3.6. We assume 4000 ejected particles totally.

Figure 4.2: A pumice target of mass 297 gm being impacted by a 1/8" inch aluminium projectile of
mass 0.0459 gm and speed 3.92 km/s. On the left picture we can see the ejecta cloud distribution
right after the collision and on the right we can see the same cloud a few video frames later.

Figure 4.3: Simulated geometric distribution of 100 initial velocity vectors that correspond to low
velocity ejecta. All the initial vectors are considered to be bounded in direction an magnitude in
order to approximate the cloud distribution of figure (4.2). The elliposoid represents Didymoon.
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4.4 Simulation Results

Below follows the evolution of the ejecta cloud at various times. Afterwards, we present the
functions r(t) and v(t) for 21 randomly sampled ejected particles of all the 4000 that were simulated.

day 0| hr 0| min 44 day 0 hr 0| min 44

day 0 | hr 2| min 24 day 0| hr 2| min 24

day 0| hr 3| min 2 day 0| hr3 | min2
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day 2| hr 0| ming day 2| hr 0 | niin 8

day 15 | hr 0 | min 31 - day 15| hr 0 | min 31

day 29| hr 23 | min 15 day 29 hr 23 | min 15

Figure 4.4: Orbital evolution of the low initial velocity ejecta for 1 month.
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Body 3863

Figure 4.6: The orbit in space as a function of time (x(t),y(t), z(t)). The same 21/4000 particles
were chosen as in figure (4.5). the red dot represents the center of mass of the system of the two
asteroids.
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Figure 4.7: Number ejected particles that remain in orbit around the binary, as a function of time.
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Figure (4.4) depicts the time evolution of the low velocity ejecta cloud for 1 month. Screenshots
are taken at times: 44 min, 2 h 24 min, 3 h 2 min, 4 h 35 min, 7 h 17 min, 23 h 23 min, 2
days 8 min, 15 days 31 min and 29 days 23 h 15 min, showing the representative configurations
of the cloud. We observe that the cloud spreads smoothly in space while time passes. Initially,
the cloud surrounds Didymoon and many of its particles directly fall back and reaccumulate on
Didymoon’s surface due to their very low ejection velocity. After 3-4 hours, the cloud begins to
surround Didymain, the same time at which many particles accrete on its surface. 2 days after,
the cloud seems to have spread uniformly in the vicinity of the binary, until, after 15 days, it
begins to dilute. After that, the rate at which the ejecta population reduces slows down. The
latter can be observed from figure (4.7). Until 1 month, 11.75% of the ejected particles crash on
Didymain’s surface, 66.1% crash on Didymoon’s surface and 3.75% escape the binary. In such a
dynamical environment (low velocity particles), an escape occurs due to gravity assist from the
asteroids. The remaining 18.4% is left in chaotic orbits around the binary. Apart from studying
the ejecta cloud as a whole, one could study the behaviour of the ejected particles of the cloud as
individuals. Figure (4.5) illustrates the distances r(¢) and the velocities v(t) of 21,/4000 randomly
sampled ejected particles. Figure (4.6) illustrates the orbits (x(t),y(t), 2(t)) of the same 21,/4000
particles in space. One can observe the possible fates described in section (4.2). For example, the
body 42, orbits the binary at a relatively short distance and at some point, due a gravity assist, it
gains velocity greater than the corresponding escape one and ultimately flies away from the binary.
Another case is the body 3683 which crashes on Didymain’s surface after some time.
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Appendix A

Didymain Model (Source Code)

This code uses the observed surface data of Didymain and fills its
with points. Ultimately a solid filled model is obtained.

Files used as input:
1) main surf vertices.txt
2) main_surf indices.txt

0 N O TR W N

10 Files produced as output:

11 1) main_ interior.txt

12 2) main complete model. txt

13

14 %/

15

16 #include<stdio .h>

17 #include<stdlib .h>

18 #include <math.h>

19 #include <time.h>

20

21 #define FILE NAME 1 "main surf vertices.txt"
22 #define FILE NAME 2 "main surf indices.txt"
23 #define FILE NAME 3 "main interior.txt"

24 #define FILE NAME 4 "main complete model. txt"

26 const double h = 0.025; //3D grid step in km

interior

27 int totalVertices = 0; //number of points that will form the asteroid

29 //Counts the number of rows of a file.
30 int FileRows(FILE xfp)

31 {

32 int rows = 0;

33 char c;

34 while ((c¢ = fgetc(fp)) != EOF)
35 {

36 if (¢ = ’\n’)

37 TOWS—+-+;

38 }

39 TOWS—+-+;

40 rewind (fp);

41 return rows;

12}

44 //Reads the observed vertices x,y,z of the asteroid from the file.
15 void InputVertices (FILE *fp, double *x, double xy, double xz)
46 {

a7 double tempx, tempy, tempz;
48 int i = 0;
49 while (fscanf(fp,"%lf %lf %lf" ,&tempx, &tempy, &tempz) != EOF)

50 {

65
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x[i] = tempx;
y[i] = tempy;
z[i] = tempz;
14+
}
}
//Reads the observed indices of the asteroid from the file , that is,
//triads of points pl,p2,p3 that form triangles.
//Index i corresponds to the i—th row of the vertices file.
void Inputlndices (FILE xfp, int xp[3])
{
int pl,p2,p3;
int i = 0;
while (fscanf(fp,"%d %d %d",&pl,&p2,&p3) != EOF)
//subtract 1 from all indices because the official file
//starts counting from 1, while I start from 0
p[i][0] = pl — 1;
pli][l] = p2 - 1;
pli][2] = p3 - 1;
i++;
}
}
//Calculates the length of a vector.
double Len(double x, double y, double z)
{
return sqrt(x*x + y*xy + z%z);
}
//Calculates the cross product components of two vectors that

//are formed by 3 points. Last argument is

//the component of the cross product that will

used to determine
be returned.

//Possible values of ’coordinate’: 0 —> x, 1 —> y, 2 —> z
; double CrossProduct(double x1, double yl, double zl,
double x2, double y2, double z2,
double x3, double y3, double z3, double coordinate)
{
if (coordinate = 0) return (y2—yl)=*(23—22) — (22—2z1)x(y3—y2);
if (coordinate = 1) return (z2—z1)*(x3—x2) — (x2—x1)%(2z3—22);
if (coordinate = 2) return (x2—x1)x*(y3—y2) — (y2—yl)*(x3—x2);
//else
printf("Error while calculating the normal vectors. Exiting...\n");
exit (EXIT FAILURE);
}
//(nx[i],ny[i],nz[i]) —> coordinates of the i—th normal vector, that is
//the vector which is perpendicular to the triangle formed from
//the i—th triad of the indices file.
void CalculateNormalVectors(double *x, double xy, double xz,
double *nx, double *ny, double =xnz,
int *p[3], int N2)
{
for (int i = 0; 1 < N2; i++)
mx[i] = CrossProduct (x[p[i][0]]. ¥[p[i][0]]. z[p[i][0]].
x[p[i][1]]. yIplil[2]]. z[pli][1]].
x[plil[2]], yIlp[il[2]], =z[p[i][2]], O);
ny[i] = CrossProduct (x[p[i][0]], y[p[i][O]], =z[p[i][O]],
x[plil[1]], y[p[i][L1]], =z[p[i][1]],
x[p[il[2]], ylp[il[2]], =z[pl[i][2]], 1);
nz[i] = CrossProduct (x[p[i][0]], v[p[i][0]], z[p[i][0]],
x[p[i][L]]s yIp[i][1]], =[p[i][1]],
x[pli][2]], y[p[i][2]], =z[p[i][2]], 2);

APPENDIX A. DIDYMAIN MODEL (SOURCE CODE)
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121 //Calculates the min value of a 1D array.
122 double Min(double xarray, int NI1)

123 {

124 double min = array [0];

125 for (int 1 = 1; i < N1; i++)
126 {

127 if (array[i] < min)

128 min = array [i];

129 }

130 return min;

131 }

132

133 //Calculates the max value of a 1D array.
134 double Max(double xarray, int NI)

135 {

136 double max = array [0];

137 for (int i = 1; i < N1; i+4+)
138

139 if (array|[i] > max)

140 max = array |[i];

141 }

142 return max;

143 }

145 //Creates a solid filled 3D model of the asteroid
146 void ComputationalSpace (FILE xfp3, FILE xfp4,

147 double *x, double xy, double xz,
148 double *nx, double xny, double xnz,
149 int *p[3], int N1, int N2)
150 {

151 //calculate the borders of the grid (box)

152 double x min = Min(x,N1);

153 double x max = Max(x,N1);

154 double y min = Min(y,N1);

155 double y max = Max(y,N1);

156 double z_min = Min(z,N1);

157 double z_max = Max(z,N1);

158 //increase the box’s size a little bit

159 x_min —= h;

160 x_max += h;

161 y_min —= h;

162 y_max += h;

163 z_min —= h;

164 z_max += h;

165 //calculate the size of the box

166 double Dx = x_max — x_min;

167 double Dy = y max — y min;

168 double Dz = z_max — z_min;

169

170 printf("Computational space (box) size :\n");

171 printf("\tx min = %1f\n" ,x min);

172 printf ("\tx max = %If\n" ,x max);

173 printf ("\t\tDx = %lf\n" ,Dx);

174 printf ("\ty min = %If\n" ,y min);

175 printf("\ty max = %lf\n",y max);

176 printf("\t\tDy = %1f\n" ,Dy);

177 printf("\tz min = %lf\n",z_ min);

178 printf("\tz max = %I1f\n" ,z max);

179 printf ("\t\tDz = %lf\n" ,Dz);

180 printf("Creating model. Please wait...\n");

181 //loop through all the points of the 3D grid with step h
182 for (double xx = x_min; xx <= x_max; xx += h)

183 {

184 for (double yy = y_min; yy <= y max; yy += h)
185 {

186 for (double zz = z_min; zz <= z_max; zz += h)
187 {

188 int intersections = 0; //counter
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189 //loop through all the triangles in search for intersection

190 for (int i = 0; i < N2; i++)

191 {

192 //define the triangle i from its 3 points

193

194 //point pO

195 double x0 = x[p[i][0]];

196 double y0 = y[p[i][0]];

197 double z0 = z[p[i][0]];

198

199 //point pl

200 double x1 = x|[p[i][1]];

201 double yl1 = y[p[i][1]];

202 double z1 = z[p[i][1l]];

203

204 //point p2

205 double x2 = x[p[i][2]];

206 double y2 = y[p[i][2]];

207 double z2 = z[p[i][2]];

208

209 //intersection point pi

210 double xi = x0 + (yOxny[i] + z0*nz[i] — yy*ny[i] — zz*nz[i])/nx[i];
211 double yi = yy;

212 double zi = zz;

213

214 //Form the following 3 triangles and calculate their area

215 //1) pi p0 pl

216 //2) pi pl p2

217 //3) pi p2 pO

218 double A i01 = 0.5+Len(CrossProduct(xi,yi,zi, x0,y0,z0, x1,yl,z1, 0),
219 CrossProduct (xi,yi,zi, x0,y0,z0, x1,yl,z1, 1),
220 CrossProduct (xi,yi,zi, x0,y0,2z0, x1,yl,z1, 2));
221

222 double A il2 = 0.5«xLen(CrossProduct(xi,yi,zi, x1,yl,z1, x2,y2,2z2, 0),
223 CrossProduct (xi,yi,zi, x1,yl,zl, x2,y2,2z2, 1),
224 CrossProduct (xi,yi,zi, x1,yl,zl, x2,y2,z2, 2));
225

226 double A i20 = 0.5xLen(CrossProduct(xi,yi,zi, x2,y2,z2, x0,y0,z0, 0),
227 CrossProduct (xi,yi,zi, x2,y2,2z2, x0,y0,2z0, 1),
228 CrossProduct (xi,yi,zi, x2,y2,2z2, x0,y0,2z0, 2));
229

230 double A = 0.5%xLen(CrossProduct (x0,y0,2z0, x1,yl,zl, x2,y2,z2, 0),
231 CrossProduct (x0,y0,z0, x1,yl,zl, x2,y2,z2, 1)
232 CrossProduct (x0,y0,2z0, x1,yl,z1, x2,y2,2z2, 2));
233

234 //1if the sum of the 3 areas is equal to the area of the main triangle,
235 //then (xi,yi,zi) is indeed bounded from the triangle p0O pl p2

236 if ((float)(A i01 + A i12 + A i20) = (float)A && xi > xx)

237 intersections+-+;

238

239 //odd —> (xx,yy,zz) is inside the surface

240 //even —> (xx,yy,zz) is outside the surface

241 if (intersections%2 — 1)

242 {

243 fprintf (fp3,"%1f %lf %lf\n" xx,yy,zz);

244 fprintf (fp4,"%lf %lf %lf\n" xx,yy,zz);

245 totalVertices++;

246 }

247 }
248 }

249
250 //append the initial surface vertices to obtain the complete model
251 for (int i = 0; i < N1; i++)

N
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fprintf (fp4,"%1f %1f %If\n" ,x[i],y[i],2[i]);
totalVertices++;
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258 int main ()

259 {

260 FILE xfpl = fopen(FILE NAME 1,"r"); //vertices file

261 if (fpl == NULL)

262

263 printf("Error while reading file. Exiting...\n");
264 exit (EXIT FAILURE);

265

266 int N1 = FileRows(fpl); //number of rows of the vertices file
267 //surface vertices coordinates

268 double xx = (doublex)malloc(Nlxsizeof (double));

269 double xy = (doublex)malloc(Nlkxsizeof(double));

270 double xz = (doublex)malloc(Nlxsizeof (double));

271 InputVertices (fpl ,x,y,z);

272

273 FILE xfp2 = fopen(FILE NAME 2,"r"); //indices file

274 if (fp2 — NULL)

275

276 printf("Error while reading file. Exiting...\n");
277 exit (EXIT FAILURE);

278 }

279 int N2 = FileRows (fp2); //number of rows of the indices file (number of triangles)
280 int #x%p = (ints*x)malloc(N2kxsizeof (int*)); //p|[]|[]: triads of indices that form triangles
281 for (int i = 0; i < N2j; i++)

282 pli] = (int=*)malloc(3*sizeof (int));

283 InputIndices (fp2,p);

284

285 //coordinates of the normal vectors (perpendicular to each triangle)
286 double xnx = (doublex)malloc(N2xsizeof (double));

287 double #ny = (doublex)malloc(N2«sizeof (double));

288 double xnz = (doublex)malloc(N2xsizeof (double));

289 CalculateNormalVectors(x,y,z,nx,ny,nz,p,N2);

290

291 FILE xfp3 = fopen(FILE NAME 3,"w"); //interior points
292 FILE xfp4 = fopen (FILE NAME 4,"w"); //surface AND interior points
293 clock t t1,t2;

294 tl = clock ();

295 ComputationalSpace (fp3,fp4 ,x,y,z,nx,ny,nz,p,N1,N2);

296 t2 = clock ();

297 double cpuTime = (t2—t1)/(double)CLOCKS PER SEC;

298 printf("Model created successfully.\n");

299 printf("Total vertices: %d\n",totalVertices);

300 printf("Estimated completion time: %lf sec\n",cpuTime);
301

302 free(x);

303 free(y);

304 free(z);

305 for (int i = 0; i < N2; i++)

306 free(p[i]);

307 free(p);

308 free (nx);

309 free (ny);

310 free(nz);

311 fclose (fpl);

312 fclose (fp2);

313 fclose (fp3);

314 fclose (fp4);

315 return 0;

316}

codes/MainCompSpace.c



Appendix B
Didymoon Model (Source Code)

This code uses the analytic equation of a tri—axial ellipsoid
in order to create solid filled 3D model of Didymoon.

Files produced as output:
1) moon complete model. txt

0 N O TR W N

10 #include<stdio .h>
11 #include<stdlib .h>
12 #include <math.h>
13 #include <time.h>

14

15 #define FILE N "moon complete model. txt"
16

17 //ellipsoid semi—axes in km

18 const double a = 0.100;
19 const double b = 0.080;
20 const double ¢ = 0.070;
21

22 const double h = 0.01;

//3D grid step in km

23 int totalVertices = 0; //number of points that will form the asteroid
24
25 //Creates a solid filled model of the asteroid

26 void ComputationalSpace (FILE xfp)

27 {

28 //define the borders of the grid (box)
29 double x_min = —a;

30 double x_max = a;

31 double y min = —b;

32 double y _max = b;

33 double z_min = —c;

34 double z_max = c;

35 //increase the box’s size a little bit
36 X_min —= h;

37 x_max += h;

38 y_min —= h;

39 y_max += h;

40 z_min —= h;

41 z_max += h;

12 //calculate the size of the box

43 double Dx = x_max — x_min;

44 double Dy = y max — y min;

15 double Dz = z _max — z_min;

46

a7 printf("Computational space (box) size :\n");
48 printf ("\tx min = %Ilf\n" ,x_min);

49 printf("\tx max = %Ilf\n" ,x_max);

50 printf ("\t\tDx = %Ilf\n" ,Dx);

70



51 printf("\ty min = %Ilf\n",y min);

52 printf ("\ty max = %Ilf\n",y max);

53 printf ("\t\tDy = %lf\n" ,Dy);

54 printf("\tz_min = %1f\n" ,z_ min);

55 printf("\tz max = %lf\n" ,z max);

56 printf ("\t\tDz = %lf\n" ,Dz);

57 printf("Creating model. Please wait...\n");

58 //loop through the computational space with step h

59 for (double x = x_min; x <= x_max; x += h)

60

61 for (double y =y min; y <=y max; y += h)

62 {

63 for (double z = z min; z <= z _max; z += h)

64

65 //check if you are inside or on the ellipsoid surface
66 if ((x*x)/(axa) + (y*y)/(bxb) + (z%z)/(c*c) <= 1.0)
67

68 fprintf (fp,"%.31f %.31f %.31f\n" x,y,z);

69 totalVertices++;

~
—
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76 int main ()

78 FILE xfp = fopen (FILE NAME, "w");

79 clock t t1,t2;

80 tl = clock ();

81 ComputationalSpace (fp);

82 t2 = clock ();

83 double cpuTime = (t2—t1)/(double)CLOCKS PER _ SEC;
84 printf("Model created successfully.\n");

85 printf("Total vertices: %d\n",totalVertices);

86 printf("Estimated completion time: %lf sec\n",cpuTime);
87 fclose (fp);

88 return 0;

codes/MoonCompSpace.c



0~ O Ul R W N

29

50

Appendix C

Visualisation of the Models (Source

Code)

/
This code imports the two asteroid models and renders 3D visualisation.
Use the buttons 1, 27, '3’ 4’ ’5’, ’6’ to jump between models.
x/
#include<stdio .h>
#include<stdlib .h>
#include <math . h>
#include<stdbool .h>
#include<GL/ gl . h>
#include <GL/glu . h>
#include<GL/freeglut .h>
i #define FILE NAME 1 "main surf vertices.txt"
7 #define FILE NAME 2 "main surf indices.txt"
#define FILE NAME 3 "main_interior.txt"
#define FILE NAME 4 "main complete model. txt"
#define FILE NAME 5 "moon complete model. txt"
#define FILE NAME 6 "main surf interpolated vertices.txt"
#define ESCAPE 27 //corresponding ASCII character
1 #define SPACEBAR 32 //corresponding ASCII character
//what you are going to see according to the button you press (’'17,...,’6")
bool mainSurface = true; //didymain surface model
bool mainInterpSurface = false; //didymain’s interpolated surface vertices
bool mainComplete = false; //didymain complete model
bool mainSurfaceAndInterior = false; //didymain surface and interior vertices
bool moonComplete = false; //didymoon’s vertices
bool mainAndMoon = false; //didymain and didymoon surfaces
bool pause = false; //press SPACEBAR to pause/unpause
const float hMainSurf = 0.04; //didymain’s surface voxel size
const float hMainInterpSurface = 0.024; //didymain’s interpolated surface voxel size
const float hMainComplete = 0.024; //didymain’s complete model voxel size
const float hMoonComplete = 0.01; //didymoon’s complete model voxel size
const float axeDistance = 0.6f;
int N1,N2,N3,N4,N5,N6; //corresponding file rows
//didymain surface vertices
float *xxx1 = NULL;
float *yyl = NULL;
float =xzz1 = NULL;
//didymain surface indices
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int sxp = NULL; //p[i][J]

//unit normal vector components (used for shading didymain)
float sux = NULL;
float xuy = NULL;
float *uz = NULL;

//didymain interior
float *x3 = NULL;
float *y3 = NULL;
float *z3 = NULL;

//didymain complete model
float xx4 = NULL;
float *xy4 = NULL;
float =*z4 = NULL;

//didymoon complete model
float =*x5 = NULL;
float =*xyb5 = NULL;
float =xzb = NULL;

//didymain interpolated surface vertices
float *x6 = NULL;
float *xy6 = NULL;
float *z6 = NULL;

//ellipsoid (didymoon) semi—axes in km
const float a = 0.103;
const float b = 0.079;
const float ¢ = 0.066;

//graphics window size
GLsizei width = 1000;
GLsizei height = 900;

//Counts the number of rows of a file.
int FileRows (FILE *fp)
{

int rows = 0;

char c;

while ((c¢ = fgetc(fp)) != EOF)

{

if (¢ = "\n’)
TOWS -3

}

TOWS++;

rewind (fp);

return rows;

}

//Reads the x,y,z data from the file.
void InputVertices (FILE *fp, float *x, float xy, float x*z)
{
float tempx, tempy, tempz;
int i = 0;
while (fscanf (fp,"%f %f %f",&tempx, &tempy, &tempz) != EOF)
{

x[i] = tempx;
y[i] = tempy;
z[i] = tempz;
i+

}

//Reads the observed indices of didymain from the file , that is,

//triads of points pl,p2,p3 that form triangles
//index 1 corresponds to the i—th row of the vertices file.
void InputIndices (FILE x*fp)

73
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120 {

121 int pl,p2,p3;

122 int i = 0;

123 while (fscanf(fp,"%d %d %d",&pl,&p2,&p3) != EOF)
124 {

125 //subtract 1 from all indices because the official file
126 //starts counting from 1, while I start from 0
pli]10] = pl — 1;

128 p[i][1] =p2 = 1;

129 plil[2] = p3 — 1;

130 i++;

131 }

132}

133

134 //Calculates the cross product components of two vectors that
135 //are formed by 3 points. Last argument is used to determine
136 //the component of the cross product that will be returned.
137 //Possible values of ’coordinate’ 0 —> x, 1 —> vy, 2 —> z
138 float CrossProduct(float x1, float yl, float zl,

139 float x2, float y2, float z2,

140 float x3, float y3, float z3, float coordinate)

141 {

142 if (coordinate = 0) return (y2—yl)=*(23—22) — (22—2z1)x(y3—y2);

143 if (coordinate = 1) return (z2—z1)*(x3—x2) — (x2—x1)%(2z3—22);

144 if (coordinate = 2) return (x2—x1)*(y3—y2) — (y2—yl)*(x3—x2);

145 //else

146 printf("Error while calculating the normal vectors. Exiting...\n");
147 exit (EXIT FAILURE);

148 }

149

150 //(nx[i],ny[i],nz[i]) —> coordinates of the i—th normal vector, that is,

151 //the vector which is perpendicular to the triangle formed from
152 //the i—th triad of the indices file.
153 void CalculateNormalVectors ()

154 {

155 float nx,ny,nz; //i—th normal vector

156 for (int 1 = 0; i < N2; 4+i)

157 {

158 nx = CrossProduct (xx1[p[i][0]], yyl[p[i][O]], zzl[p[i][O]],

159 xx1[p[i][1]], yyl[p[i][1]], zzl[p[i][1]]

160 xxlp[i][2]], yyllpl[il[2]], =zzl[p[i][2]], O);
161

162 ny = CrossProduct (xx1[p[i][0]], yyl[p[i][O]], zzl|p|i][O]],

163 xx1[p[i][1]], yyl[p[i][1]], zzl[p[i][l]],

104 xxU[p[i][2]], yyt[p[i][2]], zzl[p[i][2]], 1);
166 nz = CrossProduct (xx1[p[i][0]], yyl[p[i][O]], zzl[p[i][O]],

167 xx1{p[i][1]], yyl[p[i][1]], =zzl[p[i][L]],

168 xx1[p[i][2]], yyllpl[il[2]], =zzl[p[i][2]], 2);
169

170 //i—th unit normal vector

171 ux|[i] = nx/sqrt(nx*nx + ny*ny + nz#*nz);

172 uy[i] = ny/sqrt(nx*nx + nys*ny -+ nz*nz);

173 uz|[i] = nz/sqrt (nx*nx + ny#ny + nz*nz);

174 }

175}

176

177 void setup ()

178 {

179 glEnable (GL_DEPTH_TEST);

180 glEnable (GL_LIGHTO);

181 glEnable (GL_LIGHTING ) ;

182 glEnable (GL_COLOR_MATERIAL) ;
183 glEnable (GL_NORMALIZE) ;

184 glClearColor (1.0,1.0,1.0,0.0);
185 }

186

187 void reshape(GLsizei w, GLsizei h)
188 {
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if (h=0) h=1;

glViewport (0,0 ,w,h);

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity ();

float AspectRatio = (float)w/(float)h;
gluPerspective (60.0, AspectRatio ,0.1,100.0);
glMatrixMode (GL_MODELVIEW ) ;
glLoadIdentity ();

gluLookAt (0,—1.9,0.75, 0,0,0, 0,1,0);

}

void display ()

glClear (GL, COLOR_BUFFER_BIT|GL_DEPTH BUFFER_BIT);

glPushMatrix ();

float lightPosition|[] = {1.0,—-1.0,0.0,0.0};
glLightfv (GL_LIGHTO0,GL_POSITION, lightPosition );

glPopMatrix ();

static float angle = 0.0f;

glColor3f(0.5f,0.5f,0.5f);

if (mainSurface)

{

//voxels

glPushMatrix ();
glTranslatef(—axeDistance ,0.0f,0.0f);
glRotatef(angle ,0,0,1);
for (int i = 0; i < N1; ++i)

glPushMatrix ();
glTranslated (xx1[i],yyl[i],zzl1[i]);
glutSolidCube (hMainSurf);
glPopMatrix ();

glPopMatrix ();

//triangles
glPushMatrix ();
glTranslatef (axeDistance ,0.0f,0.0f);
glRotatef (angle ,0,0,1);
glBegin (GL_TRIANGLES) ;
for (int i = 0; i < N2j; +4+i)
{
glNormal3f(ux|[i],uy[i],uz|[i]); //for the shading
glVertex3f(xx1[p[i][O0]], yyl[p[i][O]], =zzl[p[i][O]]
glVertex3f(xxl[p[i][L]], yyl[p[i][1]], zzl[p[i][L]]
glVertex3f(xx1[p[i][2]], yyl[p[i][2]], zzl[p[i][2]]

—~

glEnd ();
glPopMatrix ();

else if (mainInterpSurface) //plot didymain (surface + interpolated)

{

//non interpolated
glPushMatrix ();
glTranslatef(—axeDistance ,0.0f,0.0f);
glRotatef(angle ,0,0,1);
for (int i = 0; i < N1; ++i)

glPushMatrix ();
glTranslated (xx1[i],yyl[i],zzl1[i]);
glutSolidCube (hMainSurf);
glPopMatrix ();
}
glPopMatrix ();

//interpolated

//plot didymain’s surface models (voxels and triangles)

)

).
).

)
)
)

75
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glPushMatrix ();

glTranslatef (axeDistance ,0.0f,0.0f);

else

{

else

{

else

glRotatef (angle ,0,0,1);
for (int i = 0; i < N6; ++i)

glPushMatrix ();
glTranslated (x6[i],y6[i],26][i]);
glutSolidCube (hMainInterpSurface );
glPopMatrix ();

glPopMatrix ();
if (mainComplete) //plot complete model of didymain
glPushMatrix ();
glRotatef (angle ,0,0,1);
for (int 1 = 0; i < N4; 4++i)
glPushMatrix ();
glTranslated (x4[i],y4[i],2z4[i]);
glutSolidCube (hMainComplete ) ;
glPopMatrix ();

}
glPopMatrix ();

if (mainSurfaceAndInterior) //demonstrate how the interior fits the surface
//surface
glPushMatrix ();

glRotatef (angle ,0,0,1);

for (int 1 = 0; i < N1; +4+i)

if (xx1[i] > 0)

glPushMatrix ();
glTranslated (xx1[i],yyl[i],zz1[i]);
glutSolidCube (hMainSurf);
glPopMatrix ();
}

}
glPopMatrix ();

//interior
glColor3f(0.7f,0.0f,0.0f);
glPushMatrix ();
glRotatef (angle ,0,0,1);
for (int 1 = 0; i < N3; ++1i)

glPushMatrix ();
glTranslated (x3[i],y3[1],23][i]);
glutSolidCube (hMainComplete ) ;
glPopMatrix ();

}
glPopMatrix ();
if (moonComplete) //plot didymoon

glPushMatrix ();
glTranslatef(—axeDistance /3,0.0f,0.0f);
glRotatef (angle ,0,0,1);
for (int 1 = 0; i < Nb; ++1i)

glPushMatrix ();
glTranslated (x5[i],y5[i],25][1i]);
glutSolidCube (hMoonComplete ) ;
glPopMatrix ();

}
glPopMatrix ();
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}

glPushMatrix ();
glTranslatef (axeDistance /3,0.0f,0.0f);
glRotatef (angle ,0,0,1);
glScaled (a,b,c);
glutSolidSphere (1.0,20,20);
glPopMatrix ();
}

else if (mainAndMoon) //plot didymain and didymoon

//didymain triangles
glPushMatrix ();
glTranslatef(—1.18/2,0.0f,0.0f);
glRotatef(angle ,0,0,1);
glBegin (GL_TRIANGLES) ;
for (int 1 = 0; i < N2j; ++41i)

glVertex3f(xx1[p[i][0]], yyl[p[i][O]], zz1[p[i][0]]);
glVertex3f Xxl[p[i][;H yyl[pl[i][1]], zzl[p[l]{é”%,

glNormal3f(ux[i],uy[i],uz[i]); //for the shading
( k)
glVertex3f (xxl[p[i][2]], yyl[p[i][2]], zzl[p[i]

)

glEnd ();
glPopMatrix ();

//didymoon
glPushMatrix ();
glTranslatef (1.18/2,0.0f£,0.0f);
glRotatef (angle ,0,0,1);
glScaled (a,b,c);
glutSolidSphere (1.0,20,20);
glPopMatrix ();
}
angle += 1.0f;
if (angle >= 360.0f)
angle = 0.0f;

glutSwapBuffers ();

void keyboard (unsigned char key, int x, int y)

{

if (key =— 1)

{
mainSurface = true;
mainInterpSurface = false;
mainComplete = false;
mainSurfaceAndInterior = false;
moonComplete = false;
mainAndMoon = false;

else if (key = ’27)

{
mainSurface = false;
mainlnterpSurface = true;
mainComplete = false;
mainSurfaceAndInterior = false;
moonComplete = false;
mainAndMoon = false;

else if (key = ’37)

{
mainSurface = false;
mainlnterpSurface = false;
mainComplete = true;
mainSurfaceAndInterior = false;
moonComplete = false;
mainAndMoon = false;

7
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396 else if (key = ’47)

397 {

398 mainSurface = false;

399 mainlnterpSurface = false;
400 mainComplete = false;

401 mainSurfaceAndInterior = true;
402 moonComplete = false;

403 mainAndMoon = false ;

104

405 else if (key = ’57)

406 {

407 mainSurface = false;

408 mainlnterpSurface = false;
409 mainComplete = false;

410 mainSurfaceAndInterior = false;
411 moonComplete = true;

412 mainAndMoon = false;

413

414 else if (key = ’67)

415 {

416 mainSurface = false;

417 mainlnterpSurface = false;
418 mainComplete = false;

419 mainSurfaceAndInterior = false;
120 moonComplete = false;

421 mainAndMoon = true;

422 }

423 else if (key = ESCAPE)

424 glutLeaveMainLoop ();

425 else if (key = SPACEBAR)

426 pause = !pause;

127}

428

129 void idle ()
430 {

431 if (!pause)
432 glutPostRedisplay ();
433 }

434
435 int main(int argc, char =xargv|[])

136 {

437 FILE xfpl = fopen(FILE NAME 1,"r"); //didymain surface vertices
438 if (fpl = NULL)

439 {

440 printf("Error while reading file. Exiting...\n");
441 exit (EXIT FAILURE);

442

143 N1 = FileRows (fpl);

444 xx1 = (float*)malloc(Nlxsizeof (float));

445 yyl = (float *)malloc(Nlxsizeof (float));

446 zz1l = (float*)malloc(Nlxsizeof (float));

447 InputVertices (fpl ,xx1,yyl,zzl);

448

449 FILE xfp2 = fopen(FILE NAME 2,"r"); //didymain surface indices
450 if (fp2 = NULL)

451

452 printf ("Error while reading file. Exiting...\n");
453 exit (EXIT FAILURE);

454 }

455 N2 = FileRows (fp2);

456 p = (ints**)malloc (N2xsizeof (int *));

457 for (int 1 = 0; i < N2; i++)

458 pli] = (int*)malloc(3xsizeof (int));

159 InputIndices (fp2);

460

461 //unit normal vectors. Used for the shading of didymain.
462 ux = (float*)malloc(N2kxsizeof(float));

463 uy = (float*)malloc(N2xsizeof (float));

464 uz = (float*)malloc(N2«sizeof (float));
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474
475
476
477
478
479
480
481
482
483
484

CalculateNormalVectors ();

FILE xfp3
if (fp3 = NULL)

printf("Error while reading file.

= fopen (FILE_NAME 3,"r"

exit (EXIT_FAILURE);

N3 = FileRows (fp3);
x3 = (float*)malloc(N3xsizeof (float));
y3 = (float *)malloc (N3+sizeof(float));
z3 = (floatx)malloc(N3xsizeof (float));
InputVertices (fp3,x3,y3,23);

FILE xfp4
if (fp4 = NULL)

printf ("Error while reading file.

= fopen (FILE NAME 4, "r"

exit (EXIT FAILURE);

}

N4 = FileRows (fp4);
x4 = (float x)malloc(N4dxsizeof (float));
y4 = (float x)malloc(N4xsizeof (float));
z4 = (float*)malloc(N4sxsizeof (float));
InputVertices (fp4 ,x4,y4,2z4);

FILE xfpb
if (fp5 = NULL)

printf("Error while reading file.

)

)

//didymain surface vertices

Exiting ...\ n");

//didymain surface vertices

Exiting ...\ n");

= fopen (FILE NAME 5,"r"); //didymoon surface vertices

exit (EXIT FAILURE);

N5 = FileRows (fp5);

x5 = (float x)malloc(Nbxsizeof (float )
y5 = (float x)malloc(Nb5xsizeof (float )
z5 = (float*)malloc(Nbxsizeof (float ));

InputVertices (fp5,x5,y5,25);

FILE «fp6
if (fp6 — NULL)

printf("Error while reading file .

= fopen (FILE NAME 6,"r"

exit (EXIT FAILURE);

N6 = FileRows (fp6);
x6 = (floatx)malloc(N6*xsizeof (float));

<
=)
\

)

Exiting ...\ n");

)7
)s
).
//didymain interpolated

Exiting ...\ n");

= (float *)malloc (N6xsizeof (float));

z6 = (floatx)malloc(N6xsizeof (float));
InputVertices (fp6 ,x6,y6,26);

glutInit(&argce,argv);

glutInitWindowSize (width , height );
glutInitWindowPosition (2000,50);

glutInitDisplayMode (GLUT RGB|GLUT DOUBLE|GLUT DEPTH);

glutCreateWindow (" Asteroid Models");

glutDisplayFunc (display );
glutReshapeFunc (reshape);
glutKeyboardFunc (keyboard);
glutldleFunc (idle);

setup ()

)

glutMainLoop ();

free (xx1);

free (yyl);
free(zzl);

for (int

i = 0y

free (p[i]);

free(p)

)

i < N2; ++i)

surface

vertices
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free (x3);
free(y3);
free(z3);

free(x4);
free(y4);
free(z4);

free (x5);
free(y5);
free (z5);

fclose (fpl);
fclose (fp2);
fclose (fp3);
fclose (fp4);
fclose (fp5);
return 0

APPENDIX C. VISUALISATION OF THE MODELS (SOURCE CODE)

codes/AsterModelOpenGL.c



Appendix D
The Binary in Orbit (Source Code)

/
This code sets the two asteroids in orbits and calculates their evolution.

The primary (Didymain) is rotating with constant angular velocity around its z—axis,
while the secondary (Didymoon) is tidally locked to the primary.

Both asteroids are considered to consist of N1 and N2 particles respectively.

All N1 particles have mass (ml), while all N2 particles have

mass (m2). Runge—Kutta 4th order method is being used to solve the ODEs.

0~ O Ul R W N

Case: Short time step (dt = 0.0005 TU = 2.66 sec)

11

12 Files used as input:

13 1) main complete model. txt
14 2) moon complete model. txt

16 Files produced as output:

17 1) main_ orbit.txt

18 2) moon orbit.txt

19 3) orbital elements.txt
20

21 */

22

23 #include<stdio .h>

24 #include<stdlib .h>

25 #include <math.h>

26 #include <time.h>

27

28 #define FILE NAME 1 "main complete model. txt"
29 #define FILE NAME 2 "moon complete model. txt"
30 #define FILE NAME 3 "main orbit.txt"

31 #define FILE NAME 4 "moon orbit.txt"

32 #define FILE_ NAME 5 "orbital elements.txt"

33

34 //system’s parameters 2 months 2.66 sec | 0.04 min

35 const double t0 = 0.0, tmax = 972.96, dt = 0.0005; //t sec = 5328.066x*t u
36 const double G = 1.0; //gravitational constant

37 const double M1 = 0.9907; //total mass of Didymain

38 const double M2 = 0.0093; //total mass of Didymoon

39 const double wl —4.1147; //angular velocity of Didymain (w_u = 2%pi/T u)
40 int N1,N2; //Didymain’s and Didymoon’s number of particles respectively

41 double ml,m2; //mass of each particle of Didymain and Didymoon

42

43 //decide how often are the data printed to the files
44 int printCounter = 0;

45 const int timeSkip = 50;

46

47 //Counts the number of rows of a file.
48 int FileRows(FILE xfp)

49 {

50 int rows = 0;
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76 //Shifts all the x,y,z vertices of Didymain, so that its COM coincides

77 //with O(0,0,0). This happens only once, before the calculation of the orbits.
78 void ShiftCOM(double *x, double %y, double %z, double m, double M, int N)
79

80 //calculate the COM

81 double X = 0.0, Y= 0.0, Z = 0.0;

82 for (int i = 0; i < N; i++)

83 {

84 X 4+=mxx[1i];

85 Y +=mxy[i];

86 Z +=mxz[i];

87 }

88 X /=M;

89 Y /=M;

90 Z /= M;

91 //shift the COM to O(0,0,0)

92 for (int i = 0; i < N; i++)

93 {

94 x[i] —= X;

95 y[i] =Y

96 z[i] —= Z;

97 }

98 }

99

100 //Calculates the length of a vector.

101 double Len(double x, double y, double z)

102 {

103 return sqrt (xxx + yxy + z*z);

104 }

105

106 //Calculates the distance between 2 points.

107 double Distance(double x1, double yl, double zl, double x2, double y2, double z2)
108 {

109 return sqrt ((x2—x1)*(x2—x1) + (y2—yl)=*(y2—yl) + (z2—z1)x(z2—21));

110 }

111

112 //Calculates the maximum distance between the COM of an asteroid and all its
113 //other vertices. Both COMs are located at O(0,0,0) with respect to their frame.
114 double MaxDistance(double #x, double *y, double %z, int N)

115 {

116 double max = Len(x[0],y[0],z[0]);

117 for (int 1 = 1; i < N; i++)

118 {

119 if (Len(x[i],y[i],z[i1]) > max)

82

char c;
while ((c¢ = fgetc(fp)) != EOF)
{
if (¢ = "\n’)
TOWS—H-+;
}
TOWS—++;
rewind (fp);
return rows;
}
//Reads the x,y,z vertices of the asteroid from

void InputVertices (FILE xfp,

{

double x*x,

double tempx,
int i = 0;

tempy, tempz;

APPENDIX D.

the file.

double xy, double x*z)

while (fscanf (fp,"%1f %1f %lf" &tempx, &tempy, &tempz) != EOF)

{

x[i] = tempx;
y[i] = tempy;
z[i] = tempz;
it

}

THE BINARY IN ORBIT (SOURCE CODE)



120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

max = Len(x[i],y[i],z[i]);

}

return max;

}

//Rotates Didymain to an angle wxdt around the z—axis (retrograde).

void RotateDidymain(double xx, double xy)

{

for (int i

{
double

double
x[i] =

y[i] =

}

XX =
Yy =

i < N1; i++)

x[i];
ylil;

xx*cos (wlxdt) — yy*sin (wlxdt);
xx*xsin (wlxdt) + yyxcos(wlxdt);

//Rotates Didymoon so that
void RotateDidymoon (double

double
double
double
double

double ax,ay,az,a len;
ax = X02—XO01;

ay

Y02-Y01;

az = Z7Z02-701;
a_ len = sqrt(ax*ax + aykay + azxaz);
double bx,by,bz,b len;

bx = X2-X1;
by = Y2-Y1;
bz = 7Z2-71;

it remains tidally locked to Didymain.
*x, double xy, double xz,
X1, double Y1, double Z1,
X2, double Y2, double Z2,
X01, double Y01, double ZO01,
X02, double Y02, double Z02)

//vector a

//vector b

b _len = sqrt(bxxbx + bysby + bzxbz);
double nx,ny,nz,n_len; //

nx = ay*bz — azxby;

ny = az*bx — axxbz;

nz = axxby — ayxbx;

n_len = sqrt(nx*nx + nysny + nz*nz);

double ux,uy,uz; //unit vector u <— rotate Didymoon around this
ux = nx/n_len;

uy = ny/n_len;

uz = nz/n_len;

//f —> angle between vectors a and b (angle of rotation)

double cosf
double sinf

double I[3]
double W[3]
double W2[3

double R[3]
//calculate
for (int i

//vector n (perpendicular to a and b)

= (axxbx + ayxby + azxbz)/(a_lenxb len);
= sqrt (1 — cosfxcosf);

[3];

rotation

{ {1,0,0}, {0,1,0},
:} {0,—uz,uy}, {uz,0,—ux}, {—uy,ux,0} };

{070’1} };

= {—uz*uz — uyxuy, uy*ux, uz*ux},
{ux*uy, —uz*uz — ux*ux, uzxuy},
{ux*uz, uyxuz, —uy*uy — uxxux} };

//rotation matrix

i < 3

i++)

for (int j = 0; j < 3; j++)
= I[i][j] + sinfsW[i][]j] + (1—cosf)*«sW2[i]|[]];

R[i

1131

//perform the rotation
i < N2; i)

for (int i

{
double
double
double
x|[i] =
yli] =
z[i] =

XX =

Yy =
727 =

x[i];
y[i];
z[i];

R[0][0]*xx
R[1][0]=*xx
R[2][0]*xx

matrix through Rodrigues formula

vector
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}
double fX2(double vX2)
{
return vX2;
}
double fY2(double vY2)
{
return vY2;
}
double fZ2(double vZ2)
{
return vZ2;
}

/

double fvX2(double *x1, double xyl, double xzl,
double X1, double X2, double Y1, double Y2, double Z1, double Z2)

double sum =
for (int i =
sum += (X

0.0;
0; i < N1; i++)
]__

X24x1[i])/pow ((X1=X24+x1[1])#*(X1-X24x1[i]) +
(Y1-Y24y1[i])*(YI-Y2+y1[i]) +
(Z1-Z2+21[i])*(21-22+21[i]) ,3.0/2.0);

return Gsmlssum;

}

double fvY2(double *x1, double *yl, double =xzl,
double X1, double X2, double Y1, double Y2, double Z1, double Z2)

{
double sum = 0.0;
for (int i = 0; i < N1; i++)
sum += (Y1-Y2+y1[i])/pow ((X1-X24x1[i])*(X1-X24x1[i]) +
(Y1I-Y2+y1[i])*«(Y1=Y2+yl[i]) +
(2172421 [i]) % (Z1-Z2421[i]) ,3.0/2.0);
return Gsmlssum;
}

double fvZ2(double *x1, double *yl, double =xzl,
double X1, double X2, double Y1, double Y2, double Z1, double Z2)

double sum =
for (int i =
sum += (Z

0.0;
0; i < N1; i++)
1—

72421 [1])/pow ((X1-X2+4x1[1])*(X1-X24x1[i]) +
(Y1-Y2iy1[i])*(Y1-Y2iy1[i]) +
(Z1-Z2+42z1[i])*(Z1-Z2+2z1[i]) ,3.0/2.0);

return Gxmlssum;

}

void RK4(double xx1, double *yl, double =xzl,
double X1, double X2, double Y1, double %xY2, double Z1, double *Z2,
double %vX2, double *vY2, double %vZ2)

double kX2 = X2 (%xvX2);
double kY2 = fY2(*xvY2);
double kZ2 = fZ2(xvZ2);

double kvX2 = fvX2(x1l,yl,zl, X1, *X2, Y1, xY2, Z1, xZ2);
double kvY2 = fvY2(x1l,yl,z1, X1, *X2, Y1, xY2, Z1, xZ2);
double kvZ2 = fvZ2(x1l,yl,z1, X1, *X2, Y1, xY2, Z1, xZ2);

double 1X2 = X2 (xvX2+4(dt/2)*xkvX2);
double 1Y2 = {Y2(xvY2+4(dt/2)*kvY2);
double 1Z2 = fZ2(xvZ2+(dt/2)*xkvZ2);



int

double
double
double

double
double
double

double
double
double

double
double
double

double
double
double

= xX2

= %72

*vX2 =

*vZ2 =

lvX2 = fvX2(x1l,yl,z1, X1, *X2+(dt/2)*kX2, Y1, =Y2+4(dt/2)*kY2, Z1,
IvY2 = fvY2(xl,yl,zl, X1, *X2+(dt/2)*kX2, Y1, #Y2+(dt/2)xkY2, Z1,
IvZ2 = fvZ2(x1,yl,z1, X1, *X2+(dt/2)*«kX2, Y1, *Y2+(dt/2)=kY2, Z1,

mX2 = £X2(+vX21(dt/2)*1vX2);
mY2 = fY2(*vY2+(dt/2)x1vY2);
mZ2 = {722 (xvZ2+4(dt /2)*1vZ2);

mvX2 = fvX2(xl,yl,zl, X1, #X2+(dt/2)*1X2, Y1, *Y2+(dt/2)*1Y2, Z1,
mvY2 = fv¥2(x1,yl,z1, X1, «X2+(dt/2)*1X2, Y1, *Y2+(dt/2)*1Y2, Z1,
mvZ2 fvZ2(x1,yl,z1, X1, *xX2+(dt/2)x1X2, Y1, *Y2+(dt/2)x1Y2, Z1,

nX2 = X2 (%vX24+dt+*mvX2);
nY2 = fY2(*vY24+dt+*+mvY2);
nZ2 {Z2 (xvZ2+dt*mvZ2);
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xZ2+(dt /2)xkZ2);
*x724(dt /2)*kZ2);
*Z2+4(dt /2)xkZ2);

*724(dt /2)*1Z22);
#Z2+(dt /2) %122 )
xZ2+(dt /2)x1Z2);

nvX2 = fvX2(xl,yl,z1, X1, *X2+dt*mX2, Y1, *Y2+dt+*mY2, Z1, xZ2+dt+*mZ2);
nvY2 = fvY2(x1l,yl,z1, X1, *X2+dt*mX2, Y1, *Y2+dt*mY2, Z1, xZ2+dt+mZ2);
nvZ2 = fvZ2(x1l,yl,z1, X1, *X2+dt*mX2, Y1, *Y2+dt*mY2, Z1, *Z2+dt*xmZ2);

o (dt/6.0)% (kX2 + 2%1X2 + 2+«mX2 + nX2);

¥Y2  + (dt/6.0) (kY2 + 2%1Y2 + 2%mY2 + nY2);

+ (dt/6.0)*(kZ2 + 2x1Z2 + 2xmZ2 + nZ2);
*vX2 + (dt/6.0)%(kvX2 + 2x1lvX2 + 2xmvX2 + nvX2);
= %xvY2 + (dt/6.0)*(kvY2 + 2xlvY2 + 2+mvY2 + nvY2);
xvZ2 + (dt/6.0)*(kvZ2 + 2x1vZ2 + 2xmvZ2 + nvZ2);

main ()

FILE xfpl = fopen(FILE NAME 1,"r"); //Didymain vertices
if (fpl — NULL)

printf("Error while reading file. Exiting...\n");
exit (EXIT FAILURE);

}
N1 = FileRows(fpl);

double
double
double

(
*x1 = (doublex)malloc (Nlksizeof (double));
xyl = (doublex)malloc (Nlksizeof (double));
xz1 = (doublex)malloc (Nlxsizeof (double));

(

InputVertices (fpl ,x1,yl,z1);

FILE xfp2 = fopen (FILE NAME 2,"r"); //Didymoon vertices
if (fp2 — NULL)

printf("Error while reading file. Exiting...\n");
exit (EXIT FAILURE);

N2 = FileRows (fp2);

double
double
double

*x2 = (doublex)malloc (N2xsizeof (double));
xy2 = (doublex)malloc(N2xsizeof (double));
%72 = (doublex)malloc (N2«sizeof (double));

InputVertices (fp2,x2,y2,22);

ml = M1/N1; //Didymain’s particles mass
ShiftCOM (x1,y1,z1 ,ml1,M1,N1);

m2 = M2/N2; //Didymoon’s particles mass
//no need to shift the COM of Didymoon because by construction, the COM is

ocated at O(0,0,0) at its coordinate system.
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327 //Place the COM of the 2 asteroids at O(0,0,0) and set it to zero velocity
328 double X,Y,Z;

329 double vX,vY,vZ;

330 X=Y=7Z= 0.0;

331 vX = vY = vZ = 0.0;

332

333 //initial conditions for the center of mass of Didymoon

334 double X2,Y2,72, X02,Y02,7Z02;

335 double vX2,vY2,vZ2;

336 X2 =1.18; Y2 = 0.0; Z2 = 0.0;

337 vX2 = 0.0; vY2 = —0.921; vZ2 = 0.0;

338 X02 = X2; Y02 = Y2; 702 = 7Z2; //auxiliary variables

339

340 //initial conditions for the center of mass of Didymain

341 double X1,Y1,7Z1, X01,Y01,7Z01;

342 double vX1,vY1l,vZ1;

343 X1 = —M2xX2/M1; vX1 = —M2xvX2/M1;

344 Y1 = —M2xY2/M1l; vY1l = —M2xvY2/MI;

345 Z1 = —M2xZ2/M1; vZ1 = —M2xvZ2/M1;

346

347 double R2,V2,h2,hx2,hy2, hz2;

348 double a2,e2,i2; //semi major axis, eccentricity , plane inclination
349

350 //calculate the minimum allowed distance for the 2 center

351 //of masses to approach (collision detection)

352 const double maxDistl = MaxDistance(x1,yl,z1, N1);

353 const double maxDist2 = MaxDistance (x2,y2,z2, N2);

354 const double minDist = maxDistl + maxDist2;

355

356 FILE xfp3 = fopen (FILE NAME 3,"w"); //Didymain orbit

357 FILE xfp4 = fopen (FILE NAME 4,"w"); //Didymoon orbit

358 FILE xfp5 = fopen (FILE NAME 5,"w"); //orbital elements

359 printf (" Calculating orbits. Please wait...\n");

360 clock t t1,t2;

361 tl = clock ();

362 for (double t = t0; t <= tmax; t += dt)

363 {

364 printf ("\r%.51f %%",t/tmax*100);

365 fflush (stdout );

366

367 R2 = Len(X2,Y2,Z2);

368 V2 = Len(vX2,vY2,vZ2);

369 hx2 = Y2xvZ2 — Z2xvY2;

370 hy2 = Z2xvX2 — X2xvZ2;

371 hz2 = X2%vY2 — Y2xvX2;

372 h2 = Len(hx2,hy2,hz2);

373

374 a2 = 1.0/(2.0/R2 — V2%V2 /(Gx(M14M2)));

375 e2 = sqrt (1.0 — h2xh2/(Gx(M1HM2)*a2));

376 i2 = acos(hz2/h2)%180.0/M_PI;

377

378 if (printCounter%timeSkip = 0) //print to the files for every timeSkip time steps
379

380 fprintf (fp3,"%lf %lf %lf %lf %lf %lf %lf\n",t,X1,Y1,Z1,vX1,vY1l,vZ1l);
381 fprintf (fp4,"%lf %1t %1f %lf %lf %lf %1f\n" ,t,X2,Y2,22,vX2,vY2,vZ2);
382 fprintf (fp5,"%1f %1t %1f %lf\n",t,a2,e2,i2);

383

384 printCounter+-+;

385

386 //collision detection criterion

387 if (Distance(X1,Y1,Z1, X2,Y2,Z2) < minDist)

388

389 printf("Collision detection at COM positions :\n");

390 printf ("\t(X1,Y1,Z21) = (%.41f, %.41f, %.41f)\n" ,X1,Y1,Z1);
391 printf ("\t(X2,Y2,722) = (%.41f, %.41f, %.41f)\n" ,X2,Y2,7Z2);
392 printf("\tt = %If\n",t);

393 break;

394 }

395
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//update the COM coordinates of Didymoon through Runge—Kutta 4 method
RK4(x1,yl,z1, X1,&X2,Y1,&Y2,71,&7Z2, &vX2,&vY2,&VZ2);

//update the COM coordinates of Didymain through the COM of the 2 asteroids
X1 = —M2xX2/M1; vX1 = —M2xvX2/Ml;

Y1 = —M2xY2/M1; vY1l = —M2+vY2/M1;

71 = —M2xZ2/M1; vZ1 = —M2+vZ2/M1;

//rotate Didymain to an angle wxdt around the z—axis

RotateDidymain (x1,y1);

//rotate Didymoon to an angle, so that it remains tidally locked
RotateDidymoon (x2,y2,z2, X1,Y1,Z1,X2,Y2,Z2, X01,Y01,Z01,X02,Y02,Z02);

//reset auxiliary variables for the next calculation

X01 = X1;
YOl = YI;
701 = Z1;
X02 = X2;
Y02 = Y2;
702 = 72;

printf("\nOrbits calculated.\n");

t2 = clock ();

double cpuTime = (t2—t1)/(double)CLOCKS PER SEC;

printf("Estimated completion time: %lf sec | %lf hrs\n",cpuTime,cpuTime/3600.0);
free(x1);

free(yl);
free(zl);
free (x2);
free(y2);
free(z2);
fclose (fpl)
fclose (fp2);
fclose (fp3);
fclose (fp4)
fclose (fp5)
return 0;

—~~ e~

)

codes/MainMoonData.c
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Appendix E

Visualisation of the Binary’s Orbit
Code)

(Source

This code creates a graphical 3D simulation of Didymos binary orbit.
Rotate the camera view by left clicking and moving the mouse.

Files used as input:
1) main_ surf vertices.txt
2) main_surf indices.txt
3) main_orbit.txt
4) moon orbit.txt

/

4 #include<stdio .h>

#include<stdlib .h>
#include <math.h>
#include<stdbool.h>

18 #include<GL/ gl .h>

#include <GL/glu .h>
#include<GL/ freeglut .h>

#define FILE NAME 1 "main surf vertices.txt"
#define FILE NAME 2 "main surf indices.txt"
#define FILE NAME 3 "main orbit.txt"

#define FILE NAME 4 "moon orbit.txt"

#define ESCAPE 27 //escape ASCII character
#define SPACEBAR 32 //spacebar ASCII character

//mouse left click wvariables

int mousePreX = 0, mouseAftX;
int mousePreY = 0, mouseAftY;
bool pause = false;
Didymain
int N1 = 0; //number of rows of the main surf vertices file
double *x = NULL;
double xy = NULL;
double xz = NULL;
int N2 = 0; //number of rows of the main surf indices file (number of triangles)

int *xp = NULL;

5 //didymain COM

double %X1 = NULL;

88
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double xY1 = NULL;
double %Z1 = NULL;
//unit normal vector components (used for shading Didymain)
double xux = NULL;
double xuy = NULL;
double *uz = NULL;

N Yy,
AR NN e N Yy,

//ellipsoid (didymoon) semi—axes in km
const double a = 0.100;

const double b = 0.080;

const double ¢ = 0.070;

//didymoon COM

double xX2 = NULL;

double xY2 = NULL;

double xZ2 = NULL;

N YN,

int Norb; //number of rows of the files 3,4
int j = 0; //current row of the files 3,4

//t _sec = 5328.066xt u

double t = 0.0;

const double dt = 0.0005;

const double w = —4.1147; //angular velocity of didymain (w u = 2xpi/T u)
const int timeSkip = 50;

//graphics window size
GLsizei width = 1000;
GLsizei height = 900;

//returns the angle in [0,2xpi]|
double atan2pi(double b, double a)

{
double angle;
if (a > 0)
angle = atan(b/a);
else if (b >= 0 && a < 0)
angle = M_PI + atan(b/a);
else if (b < 0 && a < 0)
angle = —M_PI + atan(b/a);
else if (b > 0 && a =— 0)
angle = M_PI/2;
else if (b < 0 && a = 0)
angle = —-M_PI/2;
if (angle < 0)
angle += 2+«M_PI;
return angle;
}

//Counts the number of rows of a file.
int FileRows (FILE *fp)

{
int rows = 0;
char c;
while ((c¢ = fgetc(fp)) != EOF)
{
if (¢ = "\n’)
TOWS -3
}
rows—+-;

rewind (fp);

89
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117 return rows;

118 }

119

120 //Reads the (x,y,z) vertices of didymain from the file.
121 void InputVertices (FILE xfp)

122 {

123 double tempx, tempy, tempz;
124 int i = 0;

125 while (fscanf (fp,"%1f %1f %lf" &tempx, &tempy, &tempz) != EOF)
126 {

127 x|[i] = tempx;

128 y[i] = tempy;

129 z[i| = tempsz;

130 i++;

131 }

132 }

133

134 //Reads the observed indices of didymain from the file , that is,
135 //triads of points pl,p2,p3 that form triangles

136 //index i corresponds to the i—th row of the vertices file.

137 void InputIndices (FILE xfp)

138 {

139 int pl,p2,p3;

140 int i = 0;

141 while (fscanf(fp,"%d %d %d",&pl,&p2,&p3) != EOF)
142 {

143 //subtract 1 from all indices because the official file
144 //starts counting from 1, while I start from 0
145 p[i][0] =pl = 1;

146 p[i][1] = p2 = 1;

plill2] — p3 - 1

148 i++;

149 }

150 }

151

152 void InputDidymainOrbit (FILE *fp)

153 {

154 double t,x,y,z,vx,vy,vz;

155 int i = 0;

156 while (fscanf (fp,"%1f %1f %1f %lf %lf %lf %1f" &t,&x,&y,&z,&vx,&vy, &vz) = EOF)
157 {

158 X1[i] = x;

159 Y1[i] = y;

160 Z1[i] = z;

161 i++;

162 }

163 }

164

165 void InputDidymoonOrbit (FILE *fp)

166 {

167 double t,x,y,z,vx,vy,vz;

168 int i = 0;

169 while (fscanf (fp,"%1f %1f %1f %lf %lf %1t %1f" &t,&x,&y,&z,&vx,&vy,&vz) = EOF)
170 {

171 X2[i] = x;

172 Y2[i] = y;

173 22]i] = z;

174 i4++;

175 }

176 }

177

178 //Calculates the cross product components of two vectors that
179 //are formed by 3 points. Last argument is used to determine
180 //the component of the cross product that will be returned.

181 //Possible values of ’coordinate’ 0 —> x, 1 —> y, 2 —> z

182 double CrossProduct(double x1, double yl, double zl,

183 double x2, double y2, double 2z2,

184 double x3, double y3, double z3, double coordinate)

185 {
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186 if (coordinate = 0) return (y2—yl)#*(23—22) — (22—2z1)x(y3—y2);

187 if (coordinate = 1) return (z2—z1)*(x3—x2) — (x2—x1)%(2z3—22);

188 if (coordinate = 2) return (x2—x1)x*(y3—y2) — (y2—yl)*(x3—x2);

189 //else

190 printf("Error while calculating the normal vectors. Exiting...\n");
191 exit (EXIT FAILURE);

192 }

193

194 //(nx[i],ny[i],nz[i]) —> coordinates of the i—th normal vector, that is,

195 //the vector which is perpendicular to the triangle formed from
196 //the i—th triad of the indices file.
197 void CalculateNormalVectors ()

198 {

199 double nx,ny,nz; //i—th normal vector

200 for (int i = 0; i < N2; i++)

201 {

202 nx = CrossProduct (x[p[i][0]], y[p[i][O]], =z[p[i][O]],
203 x[plil[L1]], y[p[i][L1]], =z[p[i][L]],
204 x[pli][2]], ylp[il[2]], =z[p[i][2]], 0);
205

206 ny = CrossProduct (x[p[i][0]], y[p[i][O]], =z[p[i][O]],
xIplil[1]], ylplil[1I], #[p[il[1]] |
xlplill2]], viplill2]], zlplill2]], 1);
209

210 nz = CrossProduct (x[p[i][O]], y[p[i][O]], =[p[i][O]],
x[p[i]111] yIplill1]], #[pli][1]],
xIplill20] yiplill2]], zlplill2]]) 2);
213

214 //i—th unit normal vector

215 ux[i] = nx/sqrt(nx*nx + ny*ny -+ nz*nz);

216 uy[i] = ny/sqrt (nx*nx + ny*ny + nz+*nz);

217 uz|[i] = nz/sqrt (nx*nx + nysny + nz*nz);

218 }

219 }

220

221 void setup ()

222 {

223 glEnable (GL_DEPTH TEST);

224 glEnable (GL_LIGHTO);

225 glEnable (GL_LIGHTING ) ;

226 glEnable (GL_COLOR_ MATERIAL) ;

227 glShadeModel (GL_SMOOTH) ;

228 glEnable (GL_NORMALIZE) ;

229 glClearColor (0.0,0.0,0.0,0.0);

230 }

231

232 void reshape(GLsizei w, GLsizei h)

233 {

234 if (h = 0) h = 1;

235 glViewport (0,0 ,w,h);

236 glMatrixMode (GL_PROJECTION) ;

237 glLoadIdentity ();

238 float AspectRatio = (float)w/(float )h;

239 gluPerspective (80.0, AspectRatio ,0.1,100.0);

240 glMatrixMode (GL_MODELVIEW ) ;

241 glLoadIdentity ();

242 gluLookAt (1.5,1.5,1.0, 0,0,0, 0,0,1);

243 }

244

245 void Light ()

246 {

247 glPushMatrix ();

248 float lightPosition|[] = {1.0,0.0,0.0,0.0};

249 glLightfv (GL_LIGHTO0,GL_POSITION, lightPosition );

250 glPopMatrix ();

251 }

252

253 void Didymain ()

254 {
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glColor3f(0.4f,0.4f,0.4f); //Didymain and Didymoon color
//draw didymain
glPushMatrix ();
glTranslated (X1[j],Y1[j],Z1]j]);
glRotated (wxt*180/M _PI,0,0,1);
glBegin (GL_TRIANGLES) ;
for (int i = 0; i < N2; i++4)

{
glNormal3d (ux|[i],uy|i],uz[i]); //for the shading
glVertex3d (x[p[i][0]], ylp[il[0]], =[plil[0]]);
glVertex3d (x[p[i][1]], y[p[i][L]], z[p[i][1]]);
glVertex3d (x[pli][2]] . ylplil[2]]. =z[plil[2]]):
glEnd ();

glPopMatrix ();

void Didymoon ()

{

}

//draw didymoon
glPushMatrix ();
glTranslated (X2[j],Y2[j],22[j]);
glRotated (atan2pi(Y2[j],X2[j])*180/M_PI, 0,0,1); //around z—axis

glRotated (acos (Z2[j]/sqrt (X2[j]*«X2[j] + Y2[j]*Y2[j] + Z2[j]*Z2][j]))*180/M_PI + 90.0,

glScaled (a,b,c);
glutSolidSphere (1.0,30,30);
glPopMatrix ();

//draw didymoon’s orbit
glColor3f(0.0f,0.8f,0.0f);
glPushMatrix ();
glBegin (GL_LINE STRIP);
for (int 1 = 0; i < j; i++)
{
glVertex3d (X2[i],Y2[1],22[i]);
glVertex3d (X2[i+1],Y2[i+1],22[i+1]);

}
glEnd ();
glPopMatrix ();

void RenderScene ()

{

}

glClear (GL_COLOR_BUFFER_BIT|GL DEPTH BUFFER_BIT);

Light ();
Didymain () ;
Didymoon () ;

t += timeSkipxdt;

Jj++

if (j >= Norb)
glutLeaveMainLoop ();

glutSwapBuffers ();

void keyboard (unsigned char key, int x, int y)
312 {

}

if (key = ESCAPE)
glutLeaveMainLoop ();

else if (key = SPACEBAR)
pause = !pause;

void motion(int x, int y)

{

mouseAftX = x;
if (mouseAftX — mousePreX > 0)
mousePreX = mouseAftX — 1;

0,1,0);
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328
329

}

else if (mouseAftX — mousePreX < 0)

mousePreX = mouseAftX + 1;
glRotatef (3% (mouseAftX — mousePreX), 0,0,1);
mousePreX = mouseAftX;

330 void idle ()

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

356

{

}

if (!pause)
glutPostRedisplay ();

int main(int argc, char sargv]])

{

FILE xfpl = fopen(FILE NAME 1,"r"); //didymain vertices
if (fpl = NULL)
{
printf ("Error while reading file. Exiting...\n");
exit (EXIT FAILURE);

= (doublex*)malloc (Nlxsizeof (double));

= (doublex)malloc(Nlkxsizeof (double));

= (doublex)malloc(Nlkxsizeof (double));
InputVertices (fpl);

}
N1 = FileRows(fpl);
x
y
z

FILE =fp2 = fopen(FILE NAME 2,"r"); //didymain indices
if (fp2 = NULL)

printf("Error while reading file. Exiting...\n");
exit (EXIT FAILURE);

}

N2 = FileRows (fp2);

p = (int*x)malloc(N2*xsizeof (int*));

for (int i = 0; i < N2; i++)
pli] = (int=*)malloc(3*sizeof (int));

InputIndices (fp2);

//unit normal vectors. Used for the shading of didymain.

ux = (doublex)malloc(N2xsizeof (double));
uy = (doublex)malloc (N2ssizeof (double));
uz = (doublex)malloc(N2«sizeof (double));
CalculateNormalVectors ();

FILE xfp3 = fopen (FILE NAME 3,"r"); //didymain orbit
if (fp3 = NULL)
{
printf ("Error while reading file. Exiting...\n");
exit (EXIT FAILURE);
}
Norb = FileRows (fp3);
X1 = (doublex)malloc (Norbxsizeof (double));
Y1 = (doublex)malloc(Norbxsizeof (double));
Z1 = (doublex)malloc (Norb*sizeof (double));
InputDidymainOrbit (fp3);

FILE xfp4 = fopen (FILE NAME 4,"r"); //didymoon orbit
if (fp4 = NULL)

printf("Error while reading file. Exiting...\n");
exit (EXIT FAILURE);
}
X2 = (doublex)malloc(Norbxsizeof (double));
Y2 = (doublex)malloc(Norbxsizeof (double));
Z2 = (doublex)malloc (Norbxsizeof (double));
InputDidymoonOrbit (fp4);

glutInit(&arge,argv);
glutInitWindowSize (width , height );
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393 glutInitWindowPosition (100,50);
394 glutInitDisplayMode (GLUT RGB|GLUT DOUBLE|GLUT DEPTH);
395 glutCreateWindow ("Didymain — Didymoon orbit");
396 glutDisplayFunc (RenderScene);
397 glutReshapeFunc (reshape);

398 glutKeyboardFunc (keyboard );
399 glutMotionFunc (motion);

400 glutldleFunc (idle);

101 setup ();

402 glutMainLoop ();

103

104 free(x);

105 free(y);

406 free(z);

407 for (int i = 0; i < N2j; i++)
108 free(p[i]);

409 free (p);

110 free (ux);

411 free (uy);

112 free(uz);

413 free (X1);

414 free (Y1);

115 free (Z1);

416 free (X2);

117 free (Y2);

418 free (Z2);

119 fclose (fpl);

420 fclose (fp2);

421 fclose (fp3);

122 fclose (fp4);

423 return 0;

124}

codes/MainMoonOpenGL.c
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Appendix F

Orbital Elements of the Binary Plots
(Source Code)

#This script gathers the data of Didymain and Didymoon orbits

#for all integration cases (short, middle and long time step)

#and creates 2 pairs of plots of the orbital elements a,e,i as functions of time.
#The first pair depicts the evolution of the orbital elements for all the integration
#time. The second pair depicts exactly the same, but for little time. This

#enables us to observe the short time evolution of the functions a(t),e(t),i(t).

import numpy as np
import matplotlib.pyplot as plt

#path to directories for each time step case

path = [’Main_Moon Short/’, ’Main Moon Middle/’ , ’Main Moon Long/’ |
strType = [’short’, middle’, long’|

critLines = np.array ([1350,338,170])

figCounter = 0

for i in range(len(path)):
fileName = path[i] + ’orbital elements.txt’
orbElem = np.loadtxt (fileName)
strl = strType|i]

plt.figure (i + figCounter)

plt . plot (orbElem [:,0] ,orbElem[: ,1])
plt.xlabel (’time (TU)’)
plt.ylabel(’semi—major axis a (km)’)
plt. title (strType[i])

str2 = ' at 1.png’

figName = strl + str2

plt.savefig (figName)

figCounter += 1

plt.figure(i + figCounter)

plt.plot (orbElem[:,0], orbElem[:,2])
plt.xlabel (’time (TU)’)
plt.ylabel(’eccentricity e’)
plt.title (strType[i])

str2 = ’ et 1.png’

figName = strl + str2

plt.savefig (figName)

figCounter += 1
plt.figure (i + figCounter)
plt.plot(orbElem[:,0],orbElem[:,3])

plt.xlabel (’time (TU)’)
plt.ylabel(’inclination (deg)’)
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48 plt. title (strType[i])
19 str2 = ’ it _1.png’

50 figName = strl + str2
51 plt.savefig (figName)

52

53 figCounter += 1

54

55 plt.figure (i + figCounter)

56 plt.plot (orbElem [0: critLines[i],0],orbElem[0:critLines[i],1])
57 plt.xlabel (’time (TU)’)

58 plt.ylabel (’semi—major axis a (km)’)
59 plt.title (strType[i])

60 str2 = ' at 2.png’

61 figName = strl + str2

62 plt.savefig (figName)

63

64 figCounter += 1

65

66 plt.figure (i + figCounter)

67 plt.plot (orbElem [0: critLines[i],0],orbElem[0: critLines[i],2])
68 plt.xlabel (’time (TU)’)

69 plt.ylabel(’eccentricity e’)

70 plt. title (strType[i])

71 str2 = ' et 2.png’

72 figName = strl + str2

73 plt.savefig (figName)

74

75 figCounter += 1

76

77 plt.figure(i + figCounter)

78 plt.plot (orbElem [0: critLines[i],0],orbElem[0: critLines[i],3])
79 plt.xlabel (’time (TU)’)

80 plt.ylabel(’inclination (deg)’)

81 plt.title (strType[i])

82 str2 = ’ it 2.png’

83 figName = strl + str2

84 plt.savefig (figName)

85

86 plt.show ()

codes/MainMoonPlots.py
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Appendix G
Ejecta Cloud (Source Code)

/

This code sets the two asteroids in orbit, calculates their orbital evolution and at the
same time calculates the orbits of 100 ejected particles from Didymoon’s surface.

The code is meant to run in many processors, each calculating 100 orbits. To execute
the code, an argument (for the main() function) must be provided from the terminal. The
argument must be an unsigned integer which corresponds to the initial particle’s

serial number. E.g. ’./EjectaData 400’ will calculate 100 orbits: From particle 400

up to particle 499.

Three possible fates for each ejected particle: 1) The particle is trapped in orbit around

the binary for who knows how long. 2) The particle escapes the binary due to chaotic diffusion.
3) The particle crashes either on Didymain or Didymoon. Runge—Kutta 4th order method is being
used to solve all the ODEs.

Files used as input:
1) main complete model. txt
2) moon_ complete model. txt

Files produced as output:
1) main orbit.txt
2) moon orbit.txt
100 .txt files that contain the orbits of 100 ejetced particles

*/

#include <stdio .h>

#include<stdlib .h>

#include<stdbool .h>

#include <math.h>

#include <time.h>

#include"mtwister .h" //meresenne twister RNG

#define FILE NAME 1 "main complete model. txt"
#define FILE NAME 2 "moon complete model. txt"
#define FILE NAME 3 "main orbit.txt"
#define FILE NAME 4 "moon orbit.txt"

//system’s parameters 1 month 26.64 sec
const double t0 = 0.0, tmax = 486.48, dt = 0.005; //t sec = 5328.066xt u
const double G = 1.0; //gravitational constant

const double M1 = 0.9907; //total mass of Didymain

const double M2 = 0.0093; //total mass of Didymoon

const double wl = —4.1147; //angular velocity of Didymain (w u = 2xpi/T u)
int N1,N2; //Didymain’s and Didymoon’s number of particles respectively
double ml,m2; //mass o each particle of Didymain and Didymoon respectively

const double vEscInitial = 1.4; //initial escape velocity from the binary =~ 26 cm/s
const int numEjecta = 100; //number of ejected particles that will be calculated
const double escDistance = 20.0; //escape distance from the binary (in km)

const double ejectaConeAnglel = M PI/20.0;

97
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51 const double ejectaConeAngle2 = M PI/12.0;

52

53 //decide how often are the data printed to the files
54 int printCounter = 0;

55 const int timeSkip = 5;

56

57 //Didymoon’s semi—axes (in km)

58 const double a = 0.100;

50 const double b = 0.080, phantom b = 0.001;

60 const double ¢ = 0.070;

61

62 //Didymoon’s rotation matrix (initial state)
63 double R[3][3] = { {1.0, 0.0, 0.0},

64 {0.0, 1.0, 0.0},
65 {0.0, 0.0, 1.0} };

67 //Returns a random double in (a,b) from the uniform distribution.
double doubleRNG(double a, double b, mtRand xr)

N o o
S ©

double scale = RNG(r)

; //random number in (0,1)
return a + scalex(b—a);

}

//Counts the number of rows of a file.
int FileRows (FILE *fp)

76 {

SR~ RS BN IS |
(S N N

7 int rows = 0;

78 char c;

79 while ((c¢ = fgetc(fp)) != EOF)
80 {

81 if (¢ = ’\n’)
82 TOWS—++;

83 }

84 TOws-+-+;

85 rewind (fp);

86 return rows;

87 }

88

89 //Reads the x,y,z vertices of the asteroid from the file.
90 void InputVertices (FILE xfp, double *x, double *xy, double *z)

91 {

92 double tempx, tempy, tempz;
93 int i = 0;

94 while (fscanf (fp,"%1f %1f %lf" &tempx, &tempy, &tempz) != EOF)
95 {

96 x[i] = tempx;

97 y[i] = tempy;

98 z[i| = tempsz;

99 i4++;

100 }

101 }

102

103 //Shifts all the x,y,z vertices of Didymain, so that its OOM coincides with O(0,0,0).
104 //This happens only once, before the calculation of the orbits.
105 void ShiftCOM(double #x, double xy, double %z, double m, double M, int N)

106 {

107 //calculate the COM

108 double X = 0.0, Y = 0.0, Z = 0.0;
109 for (int 1 = 0; i < N; i++)
110 {

111 X 4+=mxx[1i];

112 Y +=mxy|i];

113 Z +=mxz[i];

114 }

115 X /=M;

116 Y /=M;

117 Z /= M;

118 //shift the COM to O(0,0,0)
119 for (int 1 = 0; i < N; i++)



120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

186
187
188

N <M
|
Il

N

//Calculates the length of a vector.
double Len(double x, double y, double z)

{
}

//Calculates the distance between 2 points.

return sqrt (x*x + y*xy + z*z);

double Distance(double x1, double yl, double zl,

{

double x2,

double y2,

return sqrt ((x2—x1)=*(x2—x1) + (y2—yl)x(y2—yl) + (22—2z1)*(22—21));

}

//Calculates the maximum distance between the COM of an asteroid and
in their frame.

//all its other vertices. Both COMs are located at O(0,0,0)
double MaxDistance (double *x, double xy, double xz,

{

double max = Len(x[0],y[0],z[0]);
for (int i = 1; i < Nj i++)
{

if (Len(x[i],y[i],z[i]) > max)
, max = Len(x[i],y[i],z[i]);

return max;

}

int N)

double z2)

//Rotates all the vertices of Didymain to an angle wxdt around the z—axis.

void RotateDidymain(double xx, double xy)
{
for (int 1 = 0; i < N1; i++)
{
double xx = x[i];
double yy = y[i];

x[i] = xx*cos(wlxdt) — yy*sin(wlxdt);
y|i] = xxx*sin(wlxdt) + yy*cos(wlxdt);

}

//Rotates Didymoon so that it remains tidally

void RotateDidymoon(double xx, double xy,
double X1, double Y1,
double X2, double Y2,
double X01, double YO1,
double X02, double Y02,

double ax,ay,az,a len; //vector a
ax = X02—-XO01;
ay = Y02-YO01;
az = Z02-701;

a_len = sqrt(ax*xax + ayxay + az*az);
double bx,by,bz,b len; //vector b
bx = X2-X1;

by = Y2-Y1,;

bz = 7Z2-71;

b _len = sqrt(bxxbx + byxby + bzxbz);

double
double
double
double
double

*Z,
71,
72,
Z01,
702)

locked to Didymain.

double nx,ny,nz,n len; //vector n (perpendicular to a and b)

nx = ay*bz — azx*by;

ny = az*bx — axxbz;

nz = ax*xby — ayxbx;

n_len = sqrt(nx*nx + nysny + nz*nz);
double ux,uy,uz; //unit vector u

ux = nx/n_len;

uy = ny/n_len;

99
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189 uz = nz/n_len;

190

191 //f —> angle between vectors a and b

192 double cosf = (axxbx + ayxby + azxbz)/(a_lenxb len);
193 double sinf = sqrt(1 — cosfxcosf);

194

195 double 1[3][3] :{ {17070}7 {07170}7 {07071} }7

196 double W[3][3] = { {0,—uz,uy}, {uz,0,—ux}, {-uy,ux,0} };
197 double W2[3][3] = { {—uz*uz — uyxuy, uy*ux, uz*ux},
198 {ux*uy, —uz*uz — ux*ux, uzxuy},
199 {ux*uz, uy*uz, —uy*uy — uxxux} };
200

201 //calculate rotation matrix through Rodrigues formula
202 for (int 1 = 0; i < 3; i++)

203 for (int j = 0; j < 3; j++)

204 R[i][j] = I[i][j] + sinfsW[i]|[j] + (1—cosf)«W2[i][j];
205

206 //perform the rotation

207 for (int i = 0; i < N2; i++)

208 {

209 double xx = x[i];

210 double yy = y[i];

211 double zz = z[i];

212 x[i] = R[0][0]*xx + R[O][1]*yy + R[O][2]*zz;

213 v[i] = R[1][0]*xx + R[1][1]*yy + R[1][2]*zz;

214 z[i] = R[2][0]*xx + R[2][1]*xyy + R[2][2]*zz;

215 }

216 }

217

218 double fX2(double vX2)

219 {

220 return vX2;

221}

222

223 double fY2(double vY2)

224 {

225 return vY2;

226}

227

228 double fZ2(double vZ2)

220 {

230 return vZ2;

231 }

232

233 ////

234
235 double fvX2(double *x1, double xyl, double x*zl,

236 double X1, double X2, double Y1, double Y2, double Z1, double Z2)
237 {

238 double sum = 0.0;

239 for (int 1 = 0; i < N1; i++)

240 sum 4= (X1-X2+x1[i])/pow ((X1-X24x1[i])*(X1-X2+x1[i]) +

241 (Y1I-Y2+yl[i])*«(Y1=Y2+yl[i]) +

242 (Z21-Z2+2z1 (1)) *(Z21-Z2+=z1[i]) ,3.0/2.0);

243 return Gsmlssum;

244 }

245

246 double fvY2(double *x1, double xyl, double x*zl,

247 double X1, double X2, double Y1, double Y2, double Z1, double Z2)
248 {

249 double sum = 0.0;

N
ot

for (int i = 0; i < N1; i++)

251 sum += (Y1-Y2+yl[i])/pow ((X1-X2+x1[i])*(X1-X24x1[i]) +

252 (Y1I-Y2+yl[i])*«(Y1=Y2+yl[i]) +

253 (Z21-Z2+2z1 (1)) % (Z21-Z22+z1[i]) ,3.0/2.0);
254 return Gsml*sum;

255}

256

257 double fvZ2(double *x1, double xyl, double x*zl,



258
259
260
261
262
263
264
265
266
267
268

/

return

double fXp(double vXp)
{

}

vXp;

double X1, double X2, double Y1, double Y2, double Z1, double Z2)
{
double sum = 0.0;
for (int 1 = 0; i < N1; i++)
sum += (Z1-Z2+z1[i])/pow ((X1-X24x1[1])*(X1-X24x1[i]) +
(Y1=Y2+y1[i])*(Y1-Y2+yl[i]) +
(Z1-72+21[i])*(Z1-224+21[i]) ,3.0/2.0);
return Gsml*sum;
}
void RK4 Moon(double *x1, double *yl, double xzl,
double X1, double X2, double Y1, double *Y2, double Z1, double xZ2,
double *vX2, double *vY2, double %vZ2)
{
double kX2 = X2 (*xvX2);
double kY2 = fY2(*xvY2);
double kZ2 = fZ2(xvZ2);
double kvX2 = fvX2(x1l,yl,zl, X1, *X2, Y1, xY2, Z1, xZ2);
double kvY2 = fvY2(xl,yl,z1, X1, *X2, Y1, *Y2, Z1, %Z2);
double kvZ2 = fvZ2(x1l,yl,z1, X1, *X2, Y1, %Y2, Z1, xZ2);
double 1X2 = X2 (xvX2+4(dt/2)*xkvX2);
double 1Y2 = £Y2(xvY2+(dt/2)xkvY2);
double 172 = fZ2(xvZ2+4(dt/2)*kvZ2);
double 1vX2 = fvX2(x1,yl,z1, X1, *X2+(dt/2)+kX2, Y1, *Y2+(dt/2)xkY2, Z1, =Z2+(dt/2)xkZ2);
double 1lvY2 = fvY2(x1l,yl,z1, X1, *X2+(dt/2)*xkX2, Y1, *Y2+4(dt/2)*kY2, Z1, xZ2+(dt/2)+kZ2);
double 1vZ2 = fvZ2(xl,yl,zl, X1, *X2+(dt/2)*kX2, Y1, *Y2+(dt/2)xkY2, Z1, xZ2+(dt/2)xkZ2);
/ ”/' /
double mX2 = £X2(*vX2+(dt/2)*1vX2);
double mY2 = Y2 (xvY2+(dt/2)*1lvY2);
double mZ2 = fZ2 (xvZ2+(dt/2)*1vZ2);
double mvX2 = fvX2(xl,yl,z1, X1, *X24(dt/2)*I1X2, Y1, *Y2+(dt/2)+1Y2, Z1, *Z2+(dt/2)%1Z2);
double mvY2 = fvY2(x1,yl,zl, X1, *X2+(dt/2)*1X2, Y1, «Y2+4(dt/2)*1Y2, Z1, =Z2+(dt/2)*1Z2);
double mvZ2 = fvZ2(x1,yl,z1, X1, *X2+4+(dt/2)*1X2, Y1, *Y2+4(dt/2)*1Y2, Z1, «Z2+4(dt/2)*1Z2);
double nX2 = X2 (xvX2+dt*mvX2);
double nY2 = fY2(xvY2+dt*mvY2);
double nZ2 = fZ2 (xvZ2+dt*mvZ2);
double nvX2 = fvX2(x1l,yl,zl, X1, *X24dt+*+mX2, Y1, *Y2+dt*mY2, Z1, *Z2+dt*mZ2);
double nvY2 = fv¥Y2(x1,yl,z1, X1, *X2+dt*mX2, Y1, *Y2+dt*mY2, Z1, %Z2+dt*mZ2);
double nvZ2 = fvZ2(x1,yl,zl, X1, *X2+dt+*+mX2, Y1, *Y2+dt*mY2, Z1, *Z2+dt*mZ2);
#X2 = #X2 + (dt/6.0)#(kX2 + 2+I1X2 + 2+mX2 + nX2);
*Y2 = Y2 + (dt/6.0)x(kY2 + 2x1Y2 + 2xmY2 + nY2);
%72 = %72 + (dt/6.0)x(kZ2 + 2x1Z2 + 2+mZ2 + nZ2);
xvX2 = xvX2 + (dt/6.0)*(kvX2 + 2x1vX2 + 2xmvX2 + nvX2);
*vY2 = *vY2 + (dt/6.0)x(kvY2 4+ 2x1vY2 + 2xmvY2 + nvY2);
*vZ2 = xvZ2 + (dt/6.0)x(kvZ2 + 2x1vZ2 + 2xmvZ2 + nvZ2);
}
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327

328 double fYp(double vYp)

329 {

330 return vYp;

331}

332

333 double fZp(double vZp)

334 {

335 return vZp;

336 }

337

338 / ) i

339

340 double fvXp(double *x1, double xx2, double *yl, double *y2, double xz1, double %22,
341 double X1, double X2, double Y1, double Y2, double Zl1, double Z2,
342 double Xp, double Yp, double Zp)

343 {

344 double suml = 0.0; //force from Didymain

345 for (int i = 0; i < N1; i++)

346 suml += (X1—Xp+x1[i])/pow ((X1—Xp+x1[i])*(X1-Xp+x1[i]) +

347 (Y1-Ypt+yl[i])*(Y1-Yp+tyl[i]) +

348 (Z1-Zp+zl1|i])*(Z1-Zptzl[i]),3.0/2.0);

349 double sum2 = 0.0; //force from Didymoon

350 for (int i = 0; i < N2j; i++)

351 sum2 += (X2—Xp+x2[i])/pow ((X2—Xp+x2[i])*(X2—Xp+x2[i]) +

352 (Y2—Ypty2[i])*(Y2-Yp+ty2[i]) +

353 (22—Zp+2z2 [i])*(Z2—Zptz2[i]),3.0/2.0);

354 return Gs*(mlksuml + m2ksum?2);

355}

356

357 double fvYp(double *x1, double xx2, double *yl, double *y2, double xzl, double *z2,
358 double X1, double X2, double Y1, double Y2, double Z1, double Z2,
359 double Xp, double Yp, double Zp)

360 {

361 double suml = 0.0; //force from Didymain

362 for (int 1 = 0; i < N1; i++)

363 suml += (Y1-Yptyl[i])/pow ((X1Xptx1[i])*(X1Xptx1[i]) +

364 (Y1-Yp+yl[i])*(Y1-Yp+yl[i]) +

365 (Z1-Zp+z1|i]|)*(21-Zp+z1[i]),3.0/2.0);

366 double sum2 = 0.0; //force from Didymoon

367 for (int i = 0; i < N2; i++)

368 sum2 += (Y2-Yp+ty2[i])/pow ((X2—Xp+x2[i])*(X2—Xp+x2[i]) +

369 (Y2—Yp+ty2|i])*x(Y2-Ypt+ty2[i]) +

370 (Z2—Zp+z2|i])*(Z2—Zp+z2[i]),3.0/2.0);

371 return Gx*(mlssuml + m2xsum?2);

372 }

373

374 double fvZp(double *x1, double xx2, double *yl, double *y2, double xzl1, double %22,
375 double X1, double X2, double Y1, double Y2, double Z1, double Z2,
376 double Xp, double Yp, double Zp)

377

378 double suml = 0.0; //force from Didymain

379 for (int i = 0; i < N1; i++)

380 suml += (Z1-Zp+zl|i])/pow ((X1—Xp+x1[i])*(X1-Xp+x1[i]) +

381 (Y1=Ypt+yl[i])*(Y1-Yptyl[i]) +

382 (Z1-Zp+z1|i])*(Z1-Zp+z1[i]),3.0/2.0);

383 double sum2 = 0.0; //force from Didymoon

384 for (int 1 = 0; i < N2; i++)

385 sum2 += (Z2-Zp+z2|i])/pow ((X2—Xp+x2[i])*(X2—Xp+x2[i]) +

386 (Y2—Ypty2|i])*(Y2-Yp+ty2[i]) +

387 (Z2—Zp+z2|i])*(Z2-Zp+z2[i]),3.0/2.0);

388 return Gs*(mlssuml + m2ksum?2);

389}

390

301 void RK4 Particle(double *Xp, double %Yp, double *Zp, double *vXp, double xvYp, double *vZp,
392 double X1, double X2, double Y1, double Y2, double Z1, double Z2,
393 double #x1, double *x2, double *yl, double xy2, double *z1, double %2z2)
304 {

395 double kXp = fXp(*vXp);



396
397
398
399
400
401
402
403
104
405
406
407
408
409
410
411
412
113
414
415
416
417
418
419
120
421
422
423
424
425
426
127
428
429
430
431
432
433
434
435
136
437
438
439
440
441
442
143
444
445
446
447
448
449
150
451
452
153
454
455
456
457
458
159
460
461
462
463
464

int

double kYp = fYp(*vYp);
double kZp = {Zp(*vZp);
double kvXp = fvXp(x1,x2,yl,y2,z1,2z2, X1,X2,Y1,Y2,7Z1,72,
double kvYp = fv¥p(x1l,x2,yl,y2,z1,22, X1,X2,Y1,Y2,Z1,7Z2,
double kvZp = fvZp(x1l,x2,yl,y2,z1,22, X1,X2,Y1,Y2,721,72,

*Xp,*Yp,*Zp);
#*Xp,*Yp,*Zp);
*Xp,*Yp,*Zp);

double 1Xp = fXp (xvXp+(dt/2)xkvXp);
double 1Yp = fYp (*xvYp+(dt/2)*xkvYp);
double 1Zp = fZp (xvZp+(dt/2)*xkvZp);
double lvXp = fvXp(x1l,x2,yl,y2,21,2z2, X1,X2,Y1,Y2,71,72,
double 1lvY¥p = fvYp(xl,x2,yl,y2,21,2z2, X1,X2,Y1,Y2,71,72,
double IvZp = fvZp(x1,x2,yl,y2,21,2z2, X1,X2,Y1,Y2,71,Z2,

double mXp = fXp («vXp+(dt/2)*1vXp);
double mYp = fYp (*vYp+(dt/2)*lvYp);
double mZp = {Zp («vZp+(dt/2)*x1vZp);
double mvXp = fvXp(x1l,x2,yl,y2,21,2z2, X1,X2,Y1,Y2,71,72,
double mvYp = fvYp(x1l,x2,yl,y2,21,2z2, X1,X2,Y1,Y2,71,Z2,
double mvZp = fvZp(x1,x2,yl,y2,21,2z2, X1,X2,Y1,Y2,71,7Z2,

*Xp+(dt /2)*kXp,
*Xp+(dt /2)«kXp,
*Xp+(dt /2)«kXp,

*Xp+(dt /2)x1Xp,
*Xp+(dt /2)x1Xp,
*Xp+(dt /2)*1Xp ,

double nXp = {fXp («vXp+(dt/2)*mvXp);
double nYp = fYp(xvYp+(dt/2)*mvYp);
double nZp = {Zp (xvZp+(dt/2)*mvZp);
double nvXp = fvXp(x1l,x2,yl,y2,21,2z2, X1,X2,Y1,Y2,71,Z2,
double nvYp = fvYp(x1l,x2,yl,y2,21,2z2, X1,X2,Y1,Y2,71,7Z2,
double nvZp = fvZp(xl,x2,yl,y2,z1,2z2, X1,X2,Y1,Y2,Z1,Z2,

*Xp+(dt /2)*mXp,
*Xp+(dt /2)*mXp,
*Xp+(dt /2)*mXp,

*Yp+(dt /2)*kYp,
*Yp+(dt /2)*kYp,
*Yp+(dt /2)*kYp,

xYp+(dt /2)x1Yp,
«Yp+(dt /2)x1Yp,
*Yp+(dt /2)*1Yp,

*Yp+(dt /2)*mYp,
*Yp+(dt /2)*mYp,
*Yp+(dt /2)*mYp,

*Xp = #Xp + (dt/6.0)x(kXp + 2x1Xp + 2«xmXp + nXp);
*Yp = *xYp + (dt/6.0)x(kYp + 2%1Yp + 2%mYp + nYp);
xZp = *Zp + (dt/6.0)x(kZp + 2x1Zp + 2*xmZp + nZp);
*vXp = *vXp + (dt/6.0)x(kvXp + 2xlvXp + 2xmvXp + nvXp);
*vYp = *vYp + (dt/6.0)*(kvY¥p + 2xlvY¥p + 2*xmvYp + nvYp);
*vZp = *vZp + (dt/6.0)x(kvZp + 2x1vZp + 2xmvZp + nvZp);

main(int argc, char xargv|[])

FILE xfpl = fopen(FILE NAME 1,"r"); //Didymain vertices

if (fpl = NULL)

printf("Error while reading file. Exiting...\n");

exit (EXIT_FAILURE);

N1 = FileRows(fpl);

double *x1 = (doublex)malloc(Nlksizeof (double));
double xyl = (doublex)malloc(Nlxsizeof (double));
double #z1 = (doublex)malloc(Nlksizeof (double));

InputVertices (fpl ,x1,yl,z1);

FILE xfp2 = fopen (FILE NAME 2,"r"); //Didymoon vertices
if (fp2 — NULL)
{

printf("Error while reading file. Exiting...\n");

exit (EXIT_FAILURE);
}

N2 = FileRows (fp2);

103

*xZp+(dt /2)*kZp);
*xZp+(dt /2)+xkZp);
*xZp+(dt /2)*kZp);

*xZp+(dt /2)*1Zp);
*xZp+(dt /2)*1Zp);
+Zp+(dt /2)1Zp ) ;

*Zp+(dt /2)*mZp);
“Zp(di)/2) emiZp)
*xZp+(dt /2)*mZp);
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465 double xx2 = (doublex)malloc(N2xsizeof (double));

466 double xy2 = (doublex)malloc(N2«sizeof (double));

467 double *z2 = (doublex)malloc (N2xsizeof (double));

468 InputVertices (fp2,x2,y2,22);

469

470 ml = M1/N1; //Didymain’s point masses

471 ShiftCOM (x1,y1,z1 ,ml1,M1,N1);

472

473 m2 = M2/N2; //Didymoon’s point masses

474 //no need to shift the COM of Didymoon because by construction, the COM is
AT5 //located at O(0,0,0) at its coordinate system.

476

477 //Place the COM of the 2 asteroids at O(0,0,0) and set it to zero velocity
478 double X,Y,Z;

479 double vX,vY,vZ;

480 X=Y=7Z= 0.0;

481 vX =vY = vZ = 0.0;

482

483 //initial conditions for the center of mass of Didymoon
484 double X2,Y2,7Z2, X02,Y02,7Z02;

485 double vX2,vY2,vZ2;

486 X2 =1.18; Y2 = 0.0; Z2 = 0.0;

487 vX2 = 0.0; vY2 = —0.921; vZ2 = 0.0;

488 X02 = X2; Y02 = Y2; Z02 = Z2; //auxiliary variables

489

490 //initial conditions for the center of mass of Didymain
191 double X1,Y1,Z1, X01,Y01,Z01;

492 double vX1,vY1l,vZ1;

493 X1 = —M2xX2/M1; vX1 = —M2xvX2/M1;

194 Y1 = —M2+Y2/MI; vYl = —M2xvY2/Ml;

495 Z1 = —M2xZ2/M1; vZ1 = —M2xvZ2/M1;

196

497 //ejecta coordinates and velocitites

498 double *Xp = (doublex)malloc(numEjectaxsizeof (double));
499 double *Yp = (doublex)malloc(numEjectaxsizeof (double));
500 double xZp = (doublex)malloc(numEjectaxsizeof (double));
501 double *vXp = (doublex)malloc(numEjectaxsizeof (double));
502 double *vYp = (double*)malloc (numEjectaxsizeof (double));
503 double *vZp = (doublex)malloc(numEjectaxsizeof (double));
504

505 //decides if ejecta 1 crashed

506 bool *crashed = (boolx)malloc(numEjectaxsizeof (bool));

507 //decides if ejecta i escaped

508 bool xescaped = (boolx)malloc(numEjectaxsizeof (bool));

509

510 double coneR1 = vEscInitialxtan(ejectaConeAnglel );

511 double coneR2 = vEscInitialxtan(ejectaConeAngle2);

512 FILE xfp3 = fopen (FILE NAME 3,"w");

513 FILE xfp4 = fopen (FILE NAME 4,"w");

514 FILE xxfpEjecta = (FILExx)malloc(numEjecta*xsizeof (FILEx));
515 char orbName[50]; //string buffer

516 mtRand r = seedRNG ((unsigned int)time(NULL)); //seed the mersenne twister RNG
517 //initial conditions for the ejecta (Xp[i],Yp|i]|,Zp[i]) and (vXp[i],vYp|i]|,vZp[i])
518 for (int i = 0; i < numEjecta; ++i)

519

520 //all ejecta particles have the same initial position
521 Xpl[i] = X2;

522 Yp[i] = —b — phantom b;

523 Zp|i] = Z2;

524 for (;;) //validate that the initial velocity vector is be bounded by the 2 cones

525 {

526 //Monte Carlo the vx and vz components

527 vXp[i]| = doubleRNG(—coneR2,coneR2, &r);

528 vZp|i] = doubleRNG(—coneR2,coneR2, &r);

529 double d = sqrt (vXp|i]*vXp[i] + vZp|i]*vZp[i]);
530 if (d > coneRl & & d < coneR2)

531 break ;

532

533 //Monte Carlo the vy component



593
594
595
596
597
598
599
600
601
602

vY¥p[i]| = —doubleRNG (1.0, vEscInitial , &r);
crashed|[i] = false; //assume no crashes initially
escaped[i] = false; //assume no escapes initially

sprintf (orbName,"orb %d.txt", i + atoi(argv[1l]));
fpEjecta[i] = fopen (orbName, "w");

}

//calculate the minimum allowed distance between
//ejecta and Didymain (for collision detection)
const double maxDistl = MaxDistance(x1,yl,z1, N1);

//counters
int crashOnMain, crashOnMoon, escapes;
crashOnMain = crashOnMoon = escapes = 0;

printf("Calculating orbits. Please wait...\n");
clock _t tl1,t2;
tl = clock ();
for (double t = t0; t <= tmax; t += dt)
{
printf ("\r%.51f %%" ,t/tmax+100);
fflush (stdout);

//print to the files for every timeSkip time steps
if (printCounter%timeSkip = 0)

fprintf (fp3,"%1f %1f %1f %lf %1f %lf %l1f\n",t,X1,Y1,Z1,vX1,vYl,vZ1);
fprintf (fp4 ,"%1f %1t %1f %lf %lf %lf %1f\n" ,t,X2,Y2,22,vX2,vY2,vZ2);
}

//loop through all the particles and update their status
for (int i = 0; i < numEjecta; ++i)
{
if (crashed[i]| || escaped][i])
continue;

if (printCounter%timeSkip = 0) //print to the file for every timeSkip time steps

fprintf(fpEjecta[i], " "%1f %1f %1f %1f %1f %lf %lf\n",t,Xp[i],Yp[i],Zp[i],vXp[i],vYp[i],vZp[i])

double XXp = R[0][0]*Xp|
double YYp = R[1][0]*Xp]
double ZZp = R[2][0]*Xp]

| + R[O][1]*Yp[i] + R[O][2]*Zp[i];
| + R[1][1]*Yp[i] + R[L][2]=Zp[i];
| + R{2][1]*Yp[i] + R[2][2]*Zp[i];

//collision detection between ejecta i and Didymain
if (Distance(Xp[i],Yp[i],Zp[i], X1,Y1,Z1) < maxDistl)

crashed[i] = true;
crashOnMain+-+;
fclose (fpEjecta[i]);

continue;

//collision detection between ejecta i and Didymoon

else if ((XXp—X2)*(XXp-X2)/(a*xa) + (YYp-Y2)*x(YYp-Y2)/(bxb) + (ZZp—Z2)*(ZZp—Z2)/(cxc) <= 1.0)

crashed[i] = true;

crashOnMoon—++;

fclose (fpEjectali]);

continue ;
}
//escape detection of ejecta i from the binary
else if ( Len(Xp[i],Yp[i],Zp[i]) > escDistance &&

Len(vXp|i],vYp[i],vZp[i]) > sqrt(2.0«Gx(MI4+M2)/Len(Xp[i],Yp[i],Zpli])) )

{

escaped[i] = true;
escapes—+-+;

fclose (fpEjecta[i]);
continue;

}

//update the ejecta i coordinates through Runge—Kutta 4 method

105



106 APPENDIX G. EJECTA CLOUD (SOURCE CODE)

603 RK4 Particle(&Xp[i],&Yp[i],&Zp|i], &vXp[i],&vYp[i],&vZp[i], X1,X2,Y1,Y2,7Z1,Z2, x1,x2,yl,y2,z1,22)
604 }

605

606 //update the OOM coordinates of Didymoon through Runge—Kutta 4 method
607 RK4 Moon(x1,yl,z1, X1,&X2,Y1,&Y2,7Z1,&722, &vX2,&VvY2,&vZ2);

608 //update the (COM coordinates of Didymain through the COM of the 2 asteroids
609 X1 = —M2xX2/M1; vX1 = —M2xvX2/MIl;

610 Y1 = —M2xY2/M1; vY1l = —M2xvY2/Ml;

611 Z1 = —M2xZ2/M1; vZ1 = —M2xvZ2/MIl;

612 //rotate Didymain to an angle wxdt around the z—axis

613 RotateDidymain (x1,y1);

614 //rotate Didymoon to an angle, so that it remains tidally locked to Didymain
615 RotateDidymoon (x2,y2,2z2, X1,Y1,Z1,X2,Y2,Z2, X01,Y01,%01,X02,Y02,Z02);
616 //reset auxiliary variables for the next calculation

617 X01 = X1;

618 Y0l = Y1;

619 701 = 71,

620

621 X02 = X2;

622 Y02 = Y2,

623 702 = 72,

624

625 printCounter+-+;

626

627 printf("\nOrbits calculated.\n");

628 t2 = clock ();

629 double cpuTime = (t2—t1)/(double)CLOCKS PER SEC;

630 printf("Estimated completion time: %1f sec | %lf hrs\n",cpuTime,cpuTime/3600);
631

632 char ejecStatName [30];

633 sprintf (ejecStatName , "stat %d %d.txt",atoi(argv|[1l]),atoi(argv[l])+numEjecta);
634 FILE *fp5 = fopen(ejecStatName ,"w");

635 fprintf (fp5,"%d %d %d" ,crashOnMain ,crashOnMoon , escapes );

636

637 free(x1);

638 free(yl);

639 free(zl);

640 free (x2);

641 free(y2);

642 free(z2);

643 free (Xp);

644 free (Yp);

645 free (Zp);

646 free (vXp);

647 free (v¥p);

648 free (vZp);

649 fclose (fpl);

650 fclose (fp2);

651 fclose (fp3);

652 fclose (fp4);

653 fclose (fp5);

654 for (int i = 0; i < numEjecta; ++i)

655 {

656 if ((!crashed[i]) && (!escaped][i]))

657 fclose (fpEjecta|i]);

658 //else the file was safely fclosed in the i—ejecta for loop

659

660 free (crashed);

661 free (escaped);

662 free (fpEjecta);

663 return 0;

664 }

codes/EjectaData.c



Appendix H

Visualisation of the Ejecta Cloud (Source

Code)

1
2
3 This code imports the orbits of Didymain and Didymoon along with the
4 orbits of 4000 impact ejecta and creates a 3D simulation.

6 Files used as input:
7 1) main_ surf vertices.txt

8 2) main_surf indices.txt

9 3) main_orbit.txt

10 4) moon orbit.txt

11 and 4000 .txt files (ejecta orbits)
12

15 #include<stdio .h>
16 #include<stdlib .h>
17 #include<stdbool .h>
18 #include <math.h>
19 #include<GL/ gl .h>

20 #include <GL/glu .h>

21 #include<GL/freeglut .h>

22

23 #define FILE NAME 1 "main surf vertices.txt"
24 ##define FILE NAME 2 "main surf indices.txt"
25 #define FILE NAME 3 "main orbit.txt"

26 #define FILE NAME 4 "moon orbit.txt"

27

28 #define ESCAPE 27 //escape ASCII character
29 #define SPACEBAR 32 //spacebar ASCII character
30

31 bool pause = false;

32

33 //camera viewing positions

34 bool cam_xyz = true;

35 bool cam xz = false;

36 bool cam xy = false;

37

38 //graphics window size

39 GLsizei winWidth = 1200;

140 GLsizei winHeight = 900;

41 float aspectRatio; // winWidth/winHeight

12

43 // Didymain

int N1 = 0; //number of rows of the main surf vertices files
; double xx = NULL;
double xy = NULL;

~
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double xz = NULL;

B
o © w

int N2 = 0; //number of rows of the main surf indices file (number of triangles)
int *xp = NULL;

o =

//Didymain COM;
double *X1 = NULL;
double xY1 = NULL;

R SA I LIS, IS, IS B
[SL I N

ot

double %Z1 = NULL;
57 //unit normal vector components (used for shading Didymain)
58 double xux = NULL;
50 double xuy = NULL;
60 double xuz = NULL;
61
I N NN,
63
AR NN e S N N Y N
65

66 //ellipsoid (Didymoon) semi—axes in km
67 const double a = 0.100;

68 const double b = 0.080;

69 const double ¢ = 0.070;

70 //Didymoon COM

71 double %xX2 = NULL;

72 double *Y2 = NULL;

73 double %Z2 = NULL;

O s
L N L S N Vs

79 //ejecta coordinates

80 double =x*Xp = NULL;

81 double **xYp = NULL;

82 double *x%xZp = NULL;

83 int *rowsInFile = NULL;

84 const int numEjecta = 4000;

85
.
87

88 int Norb; //number of rows of the files 3,4
89 int k = 0; //current row of the files 3,4
90

91 //t_sec 5328.066xt_u

92 double t = 0.0;

93 const double dt = 0.005;

94 const double w = —4.1147; //angular velocity of Didymain (w u = 2xpi/T u)
95 const int timeSkip = 5;

96 int days = 0, hours = 0, minutes = 0; //physical time rendered on screen
97

98 //Returns the angle in [0,2xpi]
99 double atan2pi(double b, double a)

100 {

101 double angle;

102 if (a > 0)

103 angle = atan(b/a);

104 else if (b >= 0 && a < 0)

105 angle = M_PI + atan(b/a);
106 else if (b < 0 && a < 0)

107 angle = —M_PI + atan(b/a);
108 else if (b > 0 && a = 0)

109 angle = M_PI/2;

110 else if (b < 0 && a =— 0)

111 angle = —M_PI/2;

112

113 if (angle < 0)

114 angle += 2xM_PI;

115

116 return angle;



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

143

180

}

//Counts the number of rows of a file.
int FileRows (FILE *fp)
{

int rows = 0;

char c;

while ((¢ = fgetc(fp)) != EOF)

{
if (¢ = "\n’)
TOWS+-+;
}
Tows+-;
rewind (fp);
return rows;

}

//Reads the observed vertices x,y,z of the asteroid from the file.
void InputVertices (FILE xfp)
{
double tempx, tempy, tempz;
int i = 0;
while (fscanf (fp,"%1f %1f %lf" &tempx, &tempy, &tempz) != EOF)
{

x|i] = tempx;
y[i] = tempy;
z[i| = tempsz;
P

}

//Reads the observed indices of Didymain from the file , that is,
//triads of points pl,p2,p3 that form triangles
//index 1 corresponds to the i—th row of the vertices file.
void InputIndices (FILE x*fp)
{

int pl,p2,p3;

int i = 0;

while (fscanf(fp,"%d %d %d",&pl,&p2,&p3) != EOF)

//subtract 1 from all indices because the official file
//starts counting from 1, while I start from 0

pli][0] = pl — 1;

p[i][1] = p2 = 1;

plill2] = p3 — 1;

i++;

void InputDidymainOrbit (FILE *fp)

{
double t,x,y,z,vx,vy,vz;
int i = 0;
while (fscanf (fp,"%1f %1f %1f %lf %lf %1t %1f" &t,&x,&y,&z,&vx,&vy, &vz) = EOF)
{
X1[i] = x;
Yi[i] = y;
Z1[i] = z;
i++;
}

}

void InputDidymoonOrbit (FILE *fp)

{

double t,x,y,z,vx,vy,vz;
int i = 0;

while (fscanf (fp,"%1f %1f %1f %lf %lf %lf %1f" &t,&x,&y,&z,&vx,&vy, &vz) = EOF)

{

X2[i] = x;
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186 Y2[i] = y;
187 722|i]| = z;
188 i+-+;

189 }
190 }

191
192 void InputEjectaOrbit (FILE xfp, int i)
193 {

194 double t,x,y,z,vx,vy,vz;

195 int j = 0;

196 while (fscanf (fp,"%1f %1t %1t %lf %lf %lf %lf" &t,&x,&y,&z,&vx,&vy,&vz) = EOF)
197 {

108 Xpli][i] = x;

Yol[illj] = v:

200 Zpli]lj] = =z;

201 j++

202 }

203 }

204

205 //Calculates the cross product components of two vectors that are formed by 3 points.

206 //Last argument is used to determine the component of the cross product that will be returned.
207 //Possible values of ’coordinate’: 0 —> x, 1 —> y, 2 —> z

208 double CrossProduct(double x1, double yl, double zl,

209 double x2, double y2, double z2,

210 double x3, double y3, double z3, double coordinate)
211 {

212 if (coordinate = 0) return (y2—yl)=*(z3—22) — (2z2—-z1)x(y3—y2);

213 if (coordinate = 1) return (z2—z1)*(x3—x2) — (x2—x1)%(2z3—22);

214 if (coordinate = 2) return (x2—x1)x*(y3—y2) — (y2—yl)=*(x3—x2);

215 //else

216 printf("Error while calculating the normal vectors. Exiting...\n");
217 exit (EXIT FAILURE);

218}

219

220 //(ux[i],uy[i],uz[i]) —> coordinates of the i—th unit normal vector, that is,

221 //the vector which is perpendicular to the triangle formed from the i—th triad of
222 //the indices file.
223 void CalculateNormalVectors ()

224 {

225 double nx,ny,nz; //i—th normal vector

226 for (int i = 0; 1 < N2; i++)

227 {

228 nx = CrossProduct (x[p[i][0]], y[p[i][O]], =z[p[i][O]],

229 x[p[i][L1]], y[p[i][L]], z[p[i][1]],

230 x[pli][2]], ylp[il[2]], =z[p[i][2]], 0);
231

232 ny = CrossProduct (x[p[i][0]], y[p[i][O]], z[p[i][O]],

253 x[pli][1]], ylplil[1]], alplill1]].

24 xIplil[21] ylplill21]. zlplill2]], 1);
235

236 nz = CrossProduct(x[p[i][0]], y[p[i][O]], z[p[i][O]],

237 x[p[i][1]], ylp[i][L]], =z[p[i][1]],

238 x[p[ill2]], ylp[il[2]], z[p[il[2]], 2);
239

240 //i—th unit normal vector

241 ux[i] = nx/sqrt (nx*nx + ny*ny + nz+*nz);

242 uy|[i] = ny/sqrt(nx#*nx + ny*ny + nz#*nz);

243 uz|[i] = nz/sqrt(nx*nx + nysny + nz#nz);

244 }
245 }

246

247 void setupGL ()

248 {

249 glEnable (GL_DEPTH TEST);

250 glEnable (GL_LIGHTO);

251 glEnable (GL_LIGHTING ) ;

252 glEnable (GL_COLOR_MATERIAL) ;
253 glEnable (GL_NORMALIZE ) ;

254 glPointSize (3.0f);



255 glClearColor (0.0,0.0,0.0,0.0);

256}

257

258 void reshape (GLsizei w, GLsizei h)

259 {

260 if (h = 10) h = 1;

261 winWidth = w;

262 winHeight = h;

263 glViewport (0,0 ,w,h);

264 glMatrixMode (GL_PROJECTION) ;

265 glLoadIdentity ();

266 aspectRatio = (float)w/h;

267 gluPerspective (60.0,aspectRatio ,0.1,100.0);

268 glMatrixMode (GL_MODELVIEW ) ;

269 glLoadIdentity ();

270 }

271

272 //Places the camera in the 3D world (3 possible positions)
273 void Camera()

274 {

275 glLoadIdentity ();

276 if (cam xyz)

277 gluLookAt (2,2,2, 0,0,0, 0,0,1);

278 else if (cam_ xy)

279 gluLookAt (0,0,4, 0,0,0, 0,1,0);

280 else if (cam_xz)

281 gluLookAt(0,—-4,0, 0,0,0, 0,0,1);

282 }

283

284 //Renders the light

285 void Light ()

286 {

287 glPushMatrix ();

288 float lightPosition|[] = {1.0,0.0,0.0,0.0};

289 glLightfv (GL_LIGHTO,GL_ POSITION, lightPosition );
290 glPopMatrix ();

201 }

292

293 //Renders Didymain

294 void Didymain ()

295

296 glColor3f(0.4f,0.4f,0.4f);

297 glPushMatrix ();

208 glTranslated (X1|k|,Y1[k],Z1[k]);

299 glRotated (wxt*x180/M _PI,0,0,1);

300 glBegin (GL_TRIANGLES) ;

301 for (int 1 = 0; i < N2; i+4++)

302 {

303 glNormal3d (ux|[i],uy[i],uz[i]); //for the shading
304 glVertex3d (x[p[i][0]], y[p[i][O]], z[p[i][O]]);
glVertexad (x[pli][1]] y[p[i][1]], z[p[i][1]]);
} glVertexad (x[p[i][2]] . yiplill2]], zlplill2]]);
307

308 glEnd ();

309 glPopMatrix ();

310 }

311

312 //Renders Didymoon

313 void Didymoon ()

314 {

315 glColor3f(0.4f,0.41,0.41);

316 glPushMatrix ();

317 glTranslated (X2[k]|,Y2[k],Z2[k]);

318 glRotated (atan2pi(Y2[k],X2[k])*180/M PI, 0,0,1);
319 glRotated (acos (Z2[k]/sqrt (X2[k]*X2[k] +

320 Y2[k]*Y2[k] +

321 72 [k|*Z2[k]))*180/M _PI + 90.0, 0,1,0);
322 glScaled (a,b,c);

323 glutSolidSphere (1.0,20,20);
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112 APPENDIX H. VISUALISATION OF THE EJECTA CLOUD (SOURCE CODE)

324 glPopMatrix ();

325 }

326

327 //Renders the ejecta

328 void Ejecta()

320 {

330 glColor3f(0.8f,0.8f,0.8f);

331 for (int i = 0; i < numEjecta; ++i)

332 {

333 if (k < rowsInFile[i])

334

335 //in case the program crashes, comment the commands: glPushMatrix() up to glPopMatrix ()
336 //and uncomment the commands: glBegin(GL POINTS) up to glEnd()
337 glPushMatrix ();

338 glTranslated (Xp[i][k],Yp[i][k],Zp[i][k]);
339 glutSolidSphere (0.01,5,5);

340 glPopMatrix ();

341 /*glBegin (GL_POINTS) ;

342 glVertex3d (Xp[i][k],Yp[i][k],Zp[i][k]);
343 glEnd ();*/

344 }

345 }

346}

347

348 //Displays the physical time of the system’s evolution on the window
349 void Timer ()

350 {

351 glDisable (GL_LIGHTING); //disable light calculations

352 //switch to 2D orthographic view

353 glMatrixMode (GL_PROJECTION) ;

354 glLoadIdentity ();

355 if (winWidth >= winHeight)

356 gluOrtho2D (—winWidthxaspectRatio ,winWidth+xaspectRatio,—winHeight , winHeight );
357 else

358 gluOrtho2D (—winWidth , winWidth,— winHeightxaspectRatio , winHeight+*aspectRatio );
359 glMatrixMode (GL_MODELVIEW ) ;

360 glLoadIdentity ();

361

362 //elapsed time

363 days = (5328.066*t/(24.0x3600));

364 hours = (5328.066xt/3600.0);

365 minutes = (5328.066xt/60.0);

366 char tm[50]; //time string

367 sprintf (tm,"day %d | hr %d | min %", days, hours%24, minutes%60);
368 glColor3f(1.0f,1.0f,0.0f);

369 //place the time on the top left of the window

370 if (winWidth >= winHeight)

371 glRasterPos2f((—winWidth+100)+xaspectRatio, winHeight —100);
372 else

373 glRasterPos2f(—winWidth+100, (winHeight —100)xaspectRatio);
374 glutBitmapString (GLUT_BITMAP_HELVETICA_18,tm);

375

376 //switch back to perspective view

377 glViewport (0,0 ,winWidth , winHeight );

378 glMatrixMode (GL_PROJECTION) ;

379 glLoadIdentity ();

380 gluPerspective (60.0,aspectRatio ,0.1,100.0);

381 glMatrixMode (GL_MODELVIEW ) ;

382 glLoadIdentity ();

383 glEnable (GL_LIGHTING); //restore light calculations

384 }

385

386 void display ()

387 {

388 glClear (GL_COLOR_BUFFER_BIT|GL_DEPTH BUFFER_BIT);

389

390 Camera () ;

391 Light ();

392 Didymain ();



393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

452
453
454

455
456
457
458
459
460
461

}

Didymoon () ;
Ejecta ();
Timer ();

t += timeSkipxdt;

k++;

if (k >= Norb)
glutLeaveMainLoop ();

glutSwapBuffers ();

void keyboard (unsigned char key, int x, int y)

{

}

if (key = 1)
cam_Xyz = true;
cam_ Xy false;
cam Xz false;

else if (key = ’27)

{
cam_xyz = false;
cam_Xxy = true;
cam_xz = false;

else if (key = ’37)

{
cam_xyz = false;
cam_xy = false;
cam_xz = true;

}

else if (key == ESCAPE)
glutLeaveMainLoop ();

else if (key == SPACEBAR)
pause = !pause;

//Refresh the frame only if not paused

void idle ()

{

}

if (!pause)
glutPostRedisplay ();

int main(int argc, char *argv|[]|)

{

FILE xfpl = fopen(FILE NAME 1,"r"); //Didymain
if (fpl — NULL)
{

printf("Error while reading file. Exiting...

exit (EXIT FAILURE);

}

N1 = FileRows (fpl);

x = (doublex)malloc (Nlxsizeof (double));
y = (doublex)malloc(Nlxsizeof (double));
z = (double*)malloc(Nl*sizeof (double));
InputVertices (fpl);

FILE xfp2 = fopen (FILE NAME 2,"r"); //Didymain
if (fp2 = NULL)

printf("Error while reading file. Exiting...

exit (EXIT FAILURE);

}
N2 = FileRows (fp2);
p = (ints**)malloc (N2kxsizeof (int *));
for (int 1 = 0; i < N2; i++)
pli] = (int*)malloc(3xsizeof (int));
InputIndices (fp2);

vertices

\n'");

indices

\n'");

113



114 APPENDIX H. VISUALISATION OF THE EJECTA CLOUD (SOURCE CODE)

462

163 //unit normal vectors. Used for the shading of Didymain.
464 ux = (doublex)malloc(N2xsizeof (double));

465 uy = (doublex)malloc(N2«sizeof (double));

466 uz = (doublex)malloc(N2«sizeof (double));

467 CalculateNormalVectors ();

468

469 FILE xfp3 = fopen (FILE NAME 3,"r"); //Didymain orbit

170 if (fp3 = NULL)

471

472 printf ("Error while reading file. Exiting...\n");

473 exit (EXIT FAILURE);

474 }

475 Norb = FileRows (fp3);

476 X1 = (doublex)malloc (Norbxsizeof (double));

477 Y1 = (doublex)malloc(Norbxsizeof (double));

478 Z1 = (doublex)malloc (Norbxsizeof (double));

179 InputDidymainOrbit (fp3);

480

481 FILE xfp4 = fopen(FILE NAME 4,"r"); //Didymoon orbit

482 if (fp4 = NULL)

483

484 printf ("Error while reading file. Exiting...\n");

485 exit (EXIT FAILURE);

186 }

487 X2 = (doublex)malloc(Norbxsizeof (double));

488 Y2 = (doublesx)malloc(Norbxsizeof (double));

489 Z2 = (doublex)malloc (Norbxsizeof (double));

490 InputDidymoonOrbit (fp4);

491

492 FILE xxfpEjecta = (FILExx)malloc(numEjectaxsizeof (FILEx)); //ejecta orbits
193 rowsInFile = (int#)malloc(numEjectaxsizeof (int));

494 Xp = (double*x*)malloc (numEjectaxsizeof (doublex));

495 Yp = (doubles**)malloc (numEjectaxsizeof (doublex));

496 Zp = (double**)malloc (numEjectaxsizeof (doublex));

497 char orbName[15];

498 for (int i = 0; i < numEjecta; ++i)

499 {

500 printf("\rLoading files %d/%d",i,numEjecta—1);

501 fflush (stdout );

502 sprintf (orbName, "Ejecta Orbits/orb %d.txt" ,i);

503 fpEjecta|[i] = fopen (orbName,"r");

504 if (fpEjecta[i] = NULL)

505

506 printf("\nError while reading file. Exiting...\n");
507 exit (EXIT FAILURE);

508

509 rowsInFile[i] = FileRows(fpEjecta[i]);

510 Xp|[i] = (doublex)malloc(rowsInFile[i]|*sizeof(double));
511 Yp[i] = (doublex)malloc(rowsInFile[i]*sizeof(double));
512 Zp|[i] = (doublex)malloc(rowsInFile[i]*sizeof(double));
513 InputEjectaOrbit (fpEjecta|i],i);

514

515 printf("\n");

516

517 glutInit(&arge,argv);

518 glutInitDisplayMode (GLUT RGB|GLUT DOUBLE|GLUT DEPTH);

519 glutInitWindowPosition ((int ) ((glutGet (GLUT_SCREEN WIDTH) — (int)winWidth)/2.0f),
520 (int ) ((glutGet (GLUT _SCREEN HEIGHT) — (int)winHeight)/2.0f));
521 glutInitWindowSize (winWidth , winHeight );

522 glutCreateWindow ("Ejecta orbits");

523 glutDisplayFunc (display );

524 glutReshapeFunc(reshape);

525 glutKeyboardFunc (keyboard);

526 glutIdleFunc (idle);

527 setupGL ();

528 glutMainLoop ();

530 free (x);
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int i = 0; i < N2; i++)

i = 0; i < numEjecta; ++i)

free (Xp[i]);
free (Yp[i]);
free(Zp[i]);

free (Xp);
free (Yp);
free (Zp);

fclose (fpl);

fclose (fp2);

fclose (fp3);

fclose (fp4);

for (int i = 0; i < numEjecta; ++i)
fclose (fpEjecta[i]);

free (fpEjecta);

free (rowsInFile);

return 0;

codes/EjectaOpenGL.c
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Appendix I

Ejecta Orbits Plots (Source Code)

#This script picks a sample of ejected particles in random
Hrom the directory ’Ejecta Orbits’ and plots their functions
#r(t) and v(t) with respect to the global inertial frame.

import numpy as np
import matplotlib.pyplot as plt

totalParticles = 4000
sample = 21 #21 r(t) and 21 v(t) functions are to be plotted

orbIndex = np.random.randint (totalParticles, size = sample)
print (’Particles selected:’,orbIndex)

strl = 'Ejecta Orbits/orb ~’

str2 = .txt’

str3 = 'r(t) ’

strd = 'v(t) ~’

str5 = ’.png’

figCounter = 0
for i in range(sample):
strIndex = str (orbIndex|[i])
fileName = strl + strlndex + str2
orb = np.loadtxt (fileName)
r = np.zeros ((len(orb),1), dtype = float)
v = np.zeros ((len(orb),1), dtype = float)
for j in range(len(orb)):
#calculate distance and velocity from the x,y,z,vx,vy,vz components
r[j] = np.sqrt( orb[j]|[1]**2 + orb[j][2]**2 + orb[j][3]**2 )
v[j] = np.sqrt( orb[j][4]**2 + orb[j]|[5]*%2 + orb[j][6]*%2 )
#plot the function r(t)
plt.figure (i + figCounter)
plt.plot (orb[:,0],r)
plt.xlabel (’time (TU)’)
plt.ylabel (’distance r (km)’)
plt.title(str3 + strIndex)
figName = str3 + strlndex + strb
plt.savefig (figName)

figCounter = figCounter + 1

#plot the function v(t)
plt.figure(i + figCounter)
plt.plot(orb[:,0],v)

plt.xlabel (’time (TU) )
plt.ylabel(’velocity v (km / TU)’)
plt.title (str4 + strlndex)

figName = str4d + strlndex + strb
plt.savefig (figName)

plt .show ()

codes/EjectaSamplePlots.py
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Appendix J

Ejecta Population (Source Code)

#This code calculates the population of the ejecta

near Didymos binary

#as a function of time. The algorithm collects all the final moments
#t final of calculations done at each of the 4000 particles and uses it
e 1 still exists (hasn’t escaped or

#in order to decide whether the particl
#crashed) at time t or not.

import numpy as np
import matplotlib.pyplot as plt

totalParticles = 4000

tmax = 486.47

dt = 0.025

deathTime = [| #last time t of particle

fp = open(’population.txt’,’w’) #it shall

print (' Collecting death times...’)

for i in range(totalParticles): #loop t
orb = np.loadtxt(’Ejecta Orbits/orb
lastLineTime = orb[len(orb[:,0]) —
deathTime . append (lastLineTime)

print (’Calculating the population N(t)’
deathTime = np.asarray (deathTime)
for t in np.arange (0,tmax,dt):
population = 0
for i in range(len(deathTime)):

#if the last calculation time >

if deathTime[i] >= t:
population = population + 1
fp.write ("%f %d\n %(t, population))

fp.close ()

i

hrough all 4000 files
7 4 ostr (i) + .txt?)

1, 0] #last line,

)

t, then particle i exists

contain the data (t,N(t))

first column

at time ¢t

codes/Population.py
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Appendix K
Mersenne Twister RNG (Source Code)

1 #ifndef  MTWISTER H
#define _ MIWISTER H

#define STATE VECTOR_LENGTH 624
#define STATE_VECTOR M 397
6 #define UPPER_MASK  0x80000000
7 #define LOWER MASK ~ OxT7fffffff
s #define TEMPERING MASK B 0x9d2c5680
9 #define TEMPERING MASK C 0xefc60000

2
3

1
5

11 typedef struct mtRand

13 unsigned long mt[STATE VECTOR LENGTH];

14 int index;

15 } mtRand;

16

7 void m_seedRNG(mtRand *rand, unsigned long seed)

18 {

19 rand —> mt[0] = seed & Oxffffffff;

20 for (rand—>index = 1; rand—>index < STATE VECTOR_LENGTH; rand—>index-++)
21 {

22 rand—mt |[rand—>index| = (6069*rand—mt|[rand—>index — 1]|) & Oxffffffff;
23 }

24}

25

26 mtRand seedRNG (unsigned long seed)

27 {

28 mtRand rand;

29 m_seedRNG(&rand , seed );

30 return rand;

31}

33 unsigned long genRandLong(mtRand *rand)

314 {

35 unsigned long y;

36 static unsigned long mag|[2] = {0x0, 0x9908b0df}; /+ mag|x]| x % 0x9908b0df for x
37 if (rand—>index >= STATE VECTOR LENGTH || rand—>index < 0)

38 {

39 /* generate STATE VECTOR LENGTH words at a time =/

10 int kk;

41 if (rand—>index >= STATE VECTOR ILENGTH + 1 || rand—>index < 0)

12 {

13 m_seedRNG (rand, 4357);

44 }

15 for (kk = 0; kk < STATE VECTOR LENGTH — STATE VECTOR M; kk++)

46 {

17 y = (rand—>mt[kk]| & UPPER MASK) | (rand—>mt|[kk+1] & LOWER MASK);

18 rand—>mt [kk] = rand-—>mt|[kk + STATE VECTOR M| ~ (y >> 1) ~ magl|y & 0x1];

50 for (; kk < STATE VECTOR_LENGTH — 1; kk-++)
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—~

y = (rand—>mt[kk| & UPPER MASK) | (rand—>mt|kk + 1] & LOWER MASK);
rand—>mt [kk] = rand—>mt[kk + (STATE VECTOR M — STATE VECTOR LENGTH)| ~ (y >> 1) "~ magl|y & Ox1];

[S B e

SUos W

}
y = (rand—mt[STATE VECTOR LENGTH — 1] & UPPER MASK) | (rand—mt[0] & LOWER MASK);

6 rand—>mt [STATE_VECTOR_LENGTH — 1] = rand—>mt[STATE VECTOR M — 1] ~ (y >> 1) " mag[y & O0x1];
rand—>index = O0;

SIS G |

0

58 }

59 y = rand—mt|[rand—>index++];

60 y "= (y > 11);

61 y "= (y << 7) & TEMPERING MASK B;
62 y °= (y << 15) & TEMPERING MASK C;
63 y "= (y >> 18);

64 return y;

65 }

66

67 //Returns a pseudorandom number in (0,1) from the uniform distro
68 double RNG(mtRand xrand)

69 {

70 return ((double)genRandLong(rand) / (unsigned long)0xffffffff);

7
7

1
2
73 #endif /x #ifndef = MTWISTER H x/

codes/mtwister.h
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