ARISTOTLE UNIVERSITY OF THESSALONIKI

MSC COMPUTATIONAL PHYSICS MASTER THESIS

Orbital Dynamics of Impact Ejecta around 65803 Didymos Binary (AIDA Mission)

Author
Michalis Gaitanas

Supervisors
George VOYATZIS
Kleomenis TSIGANIS

Contents

1	Intr	oduction	7
	1.1	Asteroids	7
	1.2	Position Distribution	8
	1.3	Mass Distribution	8
	1.4	Origin	8
	1.5	Discovery of Asteroids	9
	1.6	Binary Asteroids	10
	1.7	Collision with Earth	11
	1.8	Defense against a Collision	11
	1.9	65803 Didymos Binary	11
	1.10	AIDA Mission	13
2	Δst	eroid Modeling	15
_	2.1	Computational Space	
	2.2	Didymain Model	
	2.3	v	
_	7 01	·	
3		Binary in Orbit	23
	3.1	Coordinate Systems	23
	3.2	Translation and Rotation	
	3.3		28
	3.4	Units of Measurement	31
	3.5	Initial Conditions and Parameters	32
	3.6	Simulation Results	34
4	Imp	eact Ejecta	41
	4.1	Equations of Motion of the Ejecta	41
	4.2	Escape, Chaos and Collision Detection	44
	4.3	Initial Conditions of the Ejecta	46
	4.4	Simulation Results	48
Aı	pen	dices	63
\mathbf{A}	Did	ymain Model (Source Code)	65
В	Did	ymoon Model (Source Code)	71

4 CC	ONTENTS
--------	---------

\mathbf{C}	Visualisation of the Models (Source Code)	73
D	The Binary in Orbit (Source Code)	83
\mathbf{E}	Visualisation of the Binary's Orbit (Source Code)	91
F	Orbital Elements of the Binary Plots (Source Code)	99
G	Ejecta Cloud (Source Code)	101
Н	Visualisation of the Ejecta Cloud (Source Code)	111
Ι	Ejecta Orbits Plots (Source Code)	121
J	Ejecta Population (Source Code)	123
K	Mersenne Twister RNG (Source Code)	125

Abstract

In this thesis, we use the observations of 65803 Didymos binary asteroid in order to create a mechanical model, composed of point masses. The surface geometry of the binary's secondary component is currently not known to us, thus we assume it is a tri-axial ellipsoid. We provide the binary with a set of initial conditions that match the observations, then we integrate the equations of motion of the two asteroids using a Runge-Kutta numerical scheme and then we study the time varying orbital elements of the secondary for two months. After that, we incorporate the impact ejecta as an N-body cloud which is expected to be produced when NASA's space probe DART crashes on the surface of the secondary. We initialise the ejecta with a set of initial positions and velocities and then we integrate their equations of motion in space, again using a Runge-Kutta numerical scheme. Ultimately we study the dynamical evolution of the ejecta cloud near the binary's domain for one month.

6 CONTENTS

Chapter 1

Introduction

1.1 Asteroids

Asteroids are the small bodies of our Solar system and could be briefly described as giant rocks that are in orbit around the Sun. Their size varies from a few tens of meters to hundreds of kilometers. Smaller bodies than asteroids are called meteoroids. Asteroids usually have irregular shape that reminds of a potato, but the bigger they grow, the more spherical tend to become due to their self gravity. According to the Internationl Astronomical Union, asteroids that are almost spherical and have not cleared their neighborhood of other material orbiting them, are from now on called dwarf planets. The majority of asteroids is concentrated in two circumstellar discs called belts: The Main belt and the Kuiper belt. Asteroids are probably remnants from the formation of the Solar System and it is estimated that there exist millions. Asteroids that belong to the Main belt are mainly composed of silicon rocks and metals. 1 Ceres is an exception, because a big part of it is iced water. On the other hand, the asteroids of the Kuiper belt are mainly composed of ice. As of October 2017, the Minor Planet Center had data on almost 745,000 objects in the inner and outer Solar System, of which almost 504,000 had enough information to be given numbered designations.

Figure 1.1: On the left we can see the asteroid 25143 Itokawa as seen by the Japanese Hayabusa space probe. On the right we can see the asteroid 4 Vesta as seen by NASA's Dawn space probe.

1.2 Position Distribution

The majority of the asteroids of the Main belt is concentrated in the asteroid belt, that is, a region between the orbits of Mars and Jupiter and in average distance ≈ 3 AU from the Sun. There exist other regions as well, in which we meet asteroids, like the Lagrange points of Mars and Jupiter, the motion of which the follow. These asteroids are called *Trojan bodies*. Some asteroids have themselves one or many orbiting satellites, making a double, triple or multiple asteroid system. Kuiper belt asteroids are farther Neptune's orbit and that is why they are known as *Transneptunian Objects* (TNOs). Lastly, we have a group of asteroids called *centaurs*, the orbit of which is between Jupiter and Neptune.

Figure 1.2: Main asteroid belt (left) and Kuiper belt (right). The size of the bodies and the distances are not scaled.

1.3 Mass Distribution

The total mass of the bodies that belong to the Main belt is not large enough. 1 Ceres (dwarf planet) is the biggest and the first body that was discovered in the Main belt and has approximately a diameter of 1000 km, whereas its mass is more or less equal to 40% of the whole mass of all the bodies of the Main belt which is estimated to be around 3-4% of the Moon's mass. The mass of the seven biggest bodies of the Main belt is equal to 70% of its total. On the contrary, the total mass of the Kuiper belt is much larger and the biggest of asteroid of the belt has more mass and longer diameter than the biggest bodies of the Main belt. The biggest and most well known bodies of the Kuiper belt are: Eris (2003 UB₃₁₃) and the dwarf planet Pluto.

1.4 Origin

During the past years, we believed that the asteroids of the Main belt were debris of a planet which was crushed by a huge body. Today, the point of view that prevails is that the Main belt was the structural element of a small planet the size of Mars, but it was never formed due to Jupiter's gravitational perturbation. As far as the origin of the Kuiper belt is concerned, the belief is almost the same; fragments from the original protoplanetary disc around the Sun failed to fully coalesce into planets and instead formed into smaller bodies (asteroids).

Figure 1.3: Dwarf planet Pluto (left) as seen from New Horizons space probe, dwarf planet Ceres (right) as seen from Dawn space probe and asteroid Bennu (bottom) as seen from OSIRIS-REx spacecraft.

1.5 Discovery of Asteroids

The first (and the biggest) asteroid that was discovered was 1 Ceres (currently a dwarf planet). Its discovery occurred incidentally during the New Year's Eve (1801) from Giuseppe Piazzi, a monk who thought at the beginning that he had discovered a new star. The distance between Earth and that body was calculated by Gauss to be between Mars's and Jupiter's. During the next six years, three more asteroids were discovered: 2 Pallas, 3 Juno and 4 Vesta. Due to their small size and their nonsymmetric mass distribution, their discovery was pretty tough and so, after some years of failed attempts, the general search for asteroids was abandoned. 38 years later, Karl Ludwig Hencke who kept the search, discovered 5 Astraea and two years later, 6 Hebe. Therefore, the interest came up on the surface again. It is worth noting that the only year during which there were no new asteroid discoveries, was 1945. Until the end of the twentieth century, there were officially thousands of asteroid discoveries. After 1990, the interest for asteroids grew even stronger because of the concern of probable collision with Earth, which would be devastating. Therefore, a

new effort began for detailed tracking of their orbit. This happened using both ground telescopes and tracking devices placed in orbit around Earth. Research has currently mapped hundreds of thousands of asteroids. 600 of them have diameter more than 1 km and 3,353 of them are at such orbits that may approach Earth sometime.

Every asteroid, the existance of which is confirmed, receives a serial number. Until that, it is given a temporary number which consists of the year of discovery, a two-character code that denotes the week of the discovery year and finally one or two numbers if more asteroids were discovered the same week. After the confirmation, its code consists of the serial number in parenthesis, followed by the temporary number, e.g. (3360) 1981 VA, which was the first asteroid without a name. The serial number is usually used along with the asteroid's name, if that exists.

1.6 Binary Asteroids

A binary asteroid is a system of two asteroids orbiting around the center of mass of their system. 243 Ida was the first binary that was discovered in 1993 and since then numerous binary and even triple asteroid systems have been detected. Several theories have been posited to explain their formation. Many systems have significant macro porosity (a rubble-pile interior). The satellites orbiting large asteroids of the Main belt such as 22 Kalliope, 45 Eugenia or 87 Sylvia may have formed by disruption of a parent body after impact or fission after an oblique impact. Trans-Neptunian binaries may have formed during the formation of the Solar system by mutual capture or three-body interaction. NEAs most likely formed by spin-up and mass shedding, likely as a result of the YORP effect. Numercial simulations suggest that when solar energy spins a rubble-pile asteroid to a sufficiently fast rate by the YORP effect, material is thrown from the asteroid's equator. This process also exposes fresh material at the poles of the asteroid.

Figure 1.4: Left: Binary asteroid 243 Ida with its small minor-planet moon, Dactyl, as seen by Galileo. Right: (486958) 2014 MU₆₉, nicknamed Ultima Thule, composed of two planetesimals that are joined along their major axes.

1.7 Collision with Earth

The most accepted theory for dinosaurs extinction is an asteroid collision with Earth around 66 million years ago. This theory seems to be confirmed with the discovery of a huge crater that is located in the Gulf of Mexico. Such collisions seem to be rare according to human time, but they are actually very often in astronomical scale and the latter holds true not only for Earth, but for all the planets. Catastrophic collisions can occur every tenths of thousands of years, or millions of years. When meteorites reach Earth (which happens every day), they are burned during their descent due to the atmosphere's aerodynamic friction and they end up being dust in the air. Asteroids on the other hand are relative big in size and thus if one of them reached Earth, the atmosphere would barely touch it and thus it would collide with the surface. What would happen to Earth if such a collision occurred? If the asteroid hit dry ground, then the shock wave would destroy everything in a radius of hundreds of kilometers and would trigger fires and unprecedented (Earth) quakes. The dust and the cinder which would be produced during the collision, would spread into the entire atmosphere, shading the Sunlight and creating a phenomenon similar to nuclear winter which would last for ages. Probably, all life on Earth would vanish... If on the other hand the asteroid hit an ocean, then the tsunami caused, would have a height of hundreds of meters and would entirely destroy all cities and villages at distance tenths of kilometers from the shores. In addition, the heat would boil the seawater, terminating all life near the impact place and releasing huge quantities of vapor in the atmosphere, perturbing the global climate.

1.8 Defense against a Collision

Collision between an asteroid and the Earth was seriously considered in the middle 1980s, along with some defense schemes. One of them would be to launch rockets armed with nuclear warheads meant to crash on the asteroid, not to smash it into dust, but to alter its orbit and therefore avoid collision. Another proposal is to paint one side of the asteroid with some bright color, so that the radiation pressure difference between the two sides would alter its obit. Another scenario would be to set a huge mass in orbit around the asteroid, so that the gravitational perturbation would drag the asteroid from Earth's path. Modern technology made possible to officially confirm hundreds of thousands asteroid orbits, 3,352 of which happen to be near Earth (Near Earth Asteroids (NEAs)). Those celestial bodies are constantly being observed by specialists that occupy themselves with the calculation of probability of collision. Luckily, until today (Summer 2019), none of these bodies have a high collision probability. The highest probability is given to the body (29075) 1950 DA and is $\approx 0.33\%$

1.9 65803 Didymos Binary

65803 Didymos is a sub-kilometer binary asteroid system and is the target of the proposed AIDA asteroid mission (see next section). Due to its binary nature, it was then named "Didymos", the Greek word for twin. The primary asteroid was discovered on 11 April 1996, by the University of Arizona Steward Observatory's Spacewatch survey using its 0.9-meter telescope at Kitt Peak National Observatory in Arizona, United States. The binary nature of the asteroid was discovered by others. Suspicions of binarity first arose in Goldstone delay-Doppler echoes, and these were

confirmed with an optical lightcurve analysis, along with Arecibo radar imaging on 23 November 2003. Didymos orbits the Sun at a distance of 1.0-2.3 AU once every 2 years and 1 month (770 days). Its orbit has an eccentricity of ≈ 0.38 and an inclination of $\approx 3^{\circ}$ with respect to the ecliptic. Its approach to Earth in November 2003, was especially close with a distance of 7.18 million km. It will not come that near until November 2123, with a distance of 5.9 million km. It will also make a close approach to Mars: 4.69 million km in 2144. Didymos is classified as an S-type (figure 1.5) based on observations by DeLeon et al. and taxonomic classification scheme by Bus and DeMeo (2009), even though it was originally classified as an Xk-type (Binzel et al. 2004) due to limited wavelength coverage. The spectrum looks similar to that of Itokawa, which has a composition close to LL chondrites based on the analysis of the returned samples. The primary asteroid rotates rapidly, with a period of 2.26 hours and a brightness variation of 0.08 magnitude (U=3/3), which indicates that the body has a nearly spheroidal shape. The secondary asteroid, moves in a mostly circular retrograde orbit with an orbital period of 11.9 hours. It measures approximately 0.163 kilometers in diameter compared to 0.775 kilometers of its primary (a mean-diameter-ratio of 0.21). Table 1.1 summarizes some important parameters of the binary that will help our study in the next chapters.

Figure 1.5: Spectrum of Didymos (de Leon et al.) compared with that of Eros (Binzel et al.) and Itokawa (Binzel et al.).

1.10. AIDA MISSION

Parameter	Value	
Primary's indicative size	0.775 km + / - 10%	
Secondary's indicative size	0.163 km + / - 0.018 km	
Primary's bulk density	$2146 \text{ kg} \cdot m^{-3} + / -30\%$	
Secondary's (ellipsoid) axes	$a_S = 103 \text{ m } b_S = 79 \text{ m } c_S = 66 \text{ m}$	
Distance between the center	1.18 km + 0.04 / - 0.02 km	
of primary and secondary	, , ,	
Total mass of the system	$5.278 \cdot 10^{11} \text{ kg } +/-0.54 \cdot 10^{11} \text{ kg}$	
Geometric albedo	0.15 + / - 0.04	
Radar albedo	0.27 + / - 25%	
Primary's rotation period	2.2600 h + / - 0.0001 h	
Heliocentric eccentricity	$0.383752501 + / -7.7 \cdot 10^{-9}$	
Heliocentric semi-major axis	$1.6444327821 + / - 9.8 \cdot 10^{-9} \text{ AU}$	
Heliocentric inclination to the ecliptic	$3.4076499^{o} + / - 2.4 \cdot 10^{-6}o$	
Mean absolute magnitude (whole system)	18.16 + / - 0.04	
Obliquity to heliocentric orbit	$171^o + / - 9^o$	
Diameter ratio	0.21 + / - 0.01	
Secondary's orbital period	11.920 h + 0.004 / -0.006	
Secondary's orbital eccentricity	Upper limit: 0.03	
Secondary's orbital inclination (assumed)	0^o	
Obliquity of the primary principal axis with	0°	
respect to the mutual orbital plane (assumed)	0	
Obliquity of the secondary principal axis with	0^o	
respect to the mutual orbital plane (assumed)		

Table 1.1: Synopsis of some physical and orbital characteristics of Didymos binary.

It is worth noting that the only directly measured dynamical parameters by the observations are the orbital period of the secondary around the primary, their orbital separation, the rotation period of the primary and the size ratio of the secondary to the primary. All the other quantities (e.g. system's mass, etc) are derived from these measured parameters. A shape model of the primary is also derived from radar observations combined with optical lightcurve data (see chapter 2).

1.10 AIDA Mission

The Asteroid Impact and Deflection Assessment (AIDA) mission is a proposed pair of space probes which will study and demonstrate the kinetic effects of crashing an impactor spacecraft into an asteroid moon. The mission's main purpose is to test whether a spacecraft could successfully deflect an asteroid on a collision course with Earth. The concept proposes two spacecraft: Hera, built by ESA will orbit the binary and make multiple observations, and Double Asteroid Redirection Test (DART), built by NASA will impact the moon. Besides the observation of the change of orbital parameters of the asteroid moon, the observation of the plume, the crater, and the freshly exposed material will provide unique information for asteroid deflection, science and mining communities. Initially, Hera's role was to be realized by a much larger spacecraft called Asteroid Impact Mission (AIM), but In December 2016 the European Space Agency cancelled the development of the AIM

spacecraft after Germany decided to fund the ExoMars project only. NASA has continued on with the development of the DART spacecraft, replacing AIM's role of monitoring the effects of the impact with ground-based telescopes. As DART is currently planned to launch in 2021, Hera is currently intended to arrive at Didymos a few years after DART's impact. To maximize scientific outcome, the AIDA team proposes to delay DART's launch so that Hera will arrive at the asteroid first, enabling it to witness DART's impact. While most of the initial objectives of AIDA would still be met if Hera arrives after DART, as a drawback, data from direct observation of the impact and ejecta formation will not be obtained. The AIDA mission is a joint international collaboration of the European Space Agency (ESA), the German Aerospace Center (DLR), Observatoire de la Cote d'Azur (OCA), NASA, and Johns Hopkins University Applied Physics Laboratory (JHU/APL). The project was formed by joining two separate studies, DART, an asteroid impactor developed by NASA, and a monitoring spacecraft - ESA's Hera (formerly AIM). The μ Lidar instrument on board Hera will be provided by a consortium of teams from Portugal, Poland, and Ireland. Two CubeSats will be deployed by Hera while at Didymos. The APEX (Asteroid Prospection Explorer) CubeSat was developed by Sweden, Finland, Czech Republic and Germany. The Juventas Cube-Sat is developed by GomSpace and GMV's Romanian division. Along with monitoring DART's impact, Hera itself may also carry an impactor. As proposed by the Japanese Space Agency, this instrument will be a replica of the Small Carry-on Impactor (SCI), an explosively formed penetrator on board the Hayabusa2 asteroid sample return mission. The SCI will hit the asteroid's moon at a speed lower than that of DART. By performing a secondary impact, a comparison of the effects posed by two collisions of different nature on the same asteroid can be realized, helping validate numerical impact algorithms and scaling laws.

Figure 1.6: On the left we can see the kinetic impactor DART which is meant to crash on Didymoon. On the right we can see Hera spacecraft which is meant to perform numerous scientific observations when it arrives at the asteroids.

Chapter 2

Asteroid Modeling

In order to calculate the force being acted on a test particle in space provided its gravitational interaction with N bodies, one could apply Newton's laws of motion. In case we are dealing with point masses, Newton's second law is quite simple because we know the analytic form of the gravitational potential V(x, y, z) of a point mass. Unfortunately, asteroids appear to be asymmetric rigids bodies and thus it is impossible to obtain an analytic function V(x, y, z) (with finite number of terms) of their gravitational potential. So how could someone determine the force being acted on a test particle outside such a body? We could define a rigid body of finite volume as a collection of N point masses. The more point masses, the more precise the model will be. In such a case, one could directly find the potential energy of a test particle as the sum of N pontenials that are generated by those N point masses. After that, Newton's laws can be applied to obtain the differential equations of motion. So our first step is to make use of available surface data in order to create a numerical model of the binary so that we can proceed to our study. From now on, we will refer to the primary asteroid as Didymain and to the secondary asteroid as Didymoon.

2.1 Computational Space

In order to create a model of an asteroid, we have to define a geometric computational space inside of which the modeling calculations will take place. The latter will be a rectangular parallelepiped (box) as shown in figure 2.1, the sides of which will be determined by the asteroid's natural size:

$$\Delta x = \Delta x' + 2h = x_{max} - x_{min} + 2h$$

$$\Delta y = \Delta y' + 2h = y_{max} - y_{min} + 2h$$

$$\Delta z = \Delta z' + 2h = z_{max} - z_{min} + 2h$$

$$(2.1)$$

where $x_{max} - x_{min}$, $y_{max} - y_{min}$, $z_{max} - z_{min}$ are the maximum distances between the asteroid's surface along the x, y and z directions respectively and h is a small positive number which we will call computational step and will be used for the modeling procedure. In other words, through equations (2.1), we have defined a computational space of size $\Delta x', \Delta y', \Delta z'$ and then we have increased each side by 2h (one direction by h and the oppsite direction by h).

Figure 2.1: Computational space

2.2 Didymain Model

We have at our disposal two txt files that contain surface mapping data. The first one contains 1148 sampled surface vertices (points) of Didymain in Cartesian coordintes. The second file originates from the first and contains 2292 triads of unsigned integers that correspond to triads of vertices that form triangles (planes) on Didymain's surface. As far the asteroid's interior is concerned, it is not yet known to us, so we need an algorithm that will fill it with vertices (point masses). In the end we will end up with a full model. Below follows a graphical representation of Didymain's surface.

Figure 2.2: Didymain's surface model. On the left we have 1148 vertices, each enclosed with a voxel for better visualisation. On the right we have 2292 planes that form a smooth approximation of the surface.

The algorithm that creates our model could be as follows:

- Calculate the quantities x_{min} , x_{max} , y_{min} , y_{max} , z_{min} , z_{max} from Didymain's vertices file.
- Determine a Cartesian step h with which you will move in the computational space along the directions x, y, z. The shorter h is, the preciser the final model will be (the more points it will consist of).
- Increase the computational space (i.e. each side of the box) by 2h.
- Loop through all the computational space with step h.
 - \triangleright For your current (x, y, z) position, determine if you are inside the asteroid's surface or not. If yes, mark your current (x, y, z) position as an interior point and print it to a file. Else proceed to the next point.

The process of determining whether a point lies inside or outside the surface is not as easy as it sounds. As we saw earlier, Didymain's surface is not given to us in an analytic form f(x, y, z) = 0, nor we can determine any symmetries from figure 2.2. In order to achieve our goal, we will develop a ray casting algorithm in the 3D space. We will briefly present the algorithm for the 2D space and then generalise it for the 3D one.

Figure 2.3: Ray casting algorithm representation.

Consider a simple polygon¹ in the 2D space (figure 2.3). One way of finding whether a point is inside or outside the polygon is to count how many times a ray, starting from the point and going in any fixed direction, intersects the edges of the polygon. If the point is outside the polygon, the ray will intersect its edges an even number of times. If the point is inside the polygon, the ray will intersect its edges an odd number of times. This method won't work if the point is on one of the edges of the polygon. The algorithm is based on the simple observation that if a point moves along a ray from infinity to a destination point and if it crosses the boundary of the polygon, possibly

¹In geometry a simple polygon is a flat shape consisting of straight, non-self-intersecting line segments that are joined pair-wise to form a closed path.

several times, then it alternately goes from the outside to inside, then from the inside to outside, etc. As a result, provided that initially the point lies outside the polygon, then after every two border crossings, the moving point goes outside. Or provided that initially the point lies inside the polygon, then after two border crossings, the moving point goes inside. This observation can be mathematically proved using the Jordan curve theorem. The latter can be generalised for the 3D space. In such a case, instead of a simple polygon, we could have a polyhedron (figure 2.2 on the right), the planes of which are tested for intersection with a ray. So the problem ends up in the calculation of the intersection between a line (ray) and a plane in the 3D space.

Consider a Cartesian coordinate system Oxyz. Let $\vec{r_0}$ be the position vector of some known point $P_0(x_0, y_0, z_0)$ and let $\vec{n} = n_x \hat{x} + n_y \hat{y} + n_z \hat{z}$ be a nonzero vector. The plane determined by the point P_0 and the vector \vec{n} consists of the points P(x, y, z) with position vectors \vec{r} , such that the vector drawn from P_0 to P is perpendicular to \vec{n} . Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the desired plane can be described as the set of all points P such that

$$\vec{n} \cdot (\vec{r} - \vec{r_0}) = 0 \Rightarrow$$

$$(n_x \hat{x} + n_y \hat{y} + n_z \hat{z}) \left[(x - x_0) \hat{x} + (y - y_0) \hat{y} + (z - z_0) \hat{z} \right] = 0 \Rightarrow$$

$$(x - x_0) n_x + (y - y_0) n_y + (z - z_0) n_z = 0 \Rightarrow$$

$$x n_x + y n_y + z n_z - (x_0 n_x + y_0 n_y + z_0 n_z) = 0$$
(2.2)

which reminds our familiar plane equation ax + by + cz + d = 0

Now let $\vec{r_1}$ and $\vec{r_2}$ be the position vectors of two known points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$. The line determined by P_1 and P_2 consists of the points P(x, y, z) with position vectors \vec{r} , such that the vector drawn from P_1 to P is parallel to the one drawn from P_1 to P_2 . Thus

$$\vec{r} - \vec{r}_1 = \lambda(\vec{r}_2 - \vec{r}_1) \Rightarrow \vec{r} = \vec{r}_1 + \lambda(\vec{r}_2 - \vec{r}_1) \Rightarrow$$

$$\begin{cases} x = x_1 + \lambda(x_2 - x_1) \\ y = y_1 + \lambda(y_2 - y_1) \\ z = z_1 + \lambda(z_2 - z_1) \end{cases}$$
(2.3)

which is the parametric equation of a straight line. The locus of points that is defined by the intersection of a plane and a line can be found by substituting equations (2.3) to (2.2) and in general is one of the following cases: 1) A point, 2) A line, 3) Void

Figure 2.4: Gemoetrical representation of a line and a plane in the 3D space.

$$(2.3) \& (2.2) \Rightarrow [x_1 + \lambda(x_2 - x_1)]n_x + [y_1 + \lambda(y_2 - y_1)]n_y + [z_1 + \lambda(z_2 - z_1)]n_z - (x_0 n_x + y_0 n_y + z_0 n_z) = 0 \Rightarrow$$

$$x_1 n_x + \lambda n_x (x_2 - x_1) + y_1 n_y + \lambda n_y (y_2 - y_1) + z_1 n_z + \lambda n_z (z_2 - z_1) - (x_0 n_x + y_0 n_y + z_0 n_z) = 0 \Rightarrow$$

$$\lambda \left[n_x (x_2 - x_1) + n_y (y_2 - y_1) + n_z (z_2 - z_1) \right] = (x_0 n_x + y_0 n_y + z_0 n_z) - (x_1 n_x + y_1 n_y + z_1 n_z) \Rightarrow$$

$$\lambda = \frac{(x_0 - x_1)n_x + (y_0 - y_1)n_y + (z_0 - z_1)n_z}{(x_2 - x_1)n_x + (y_2 - y_1)n_y + (z_2 - z_1)n_z}$$

By substituting the parameter λ in the line equation, we receive the coordinates of the intersection point.

$$x_{i} = x_{1} + \left[\frac{(x_{0} - x_{1})n_{x} + (y_{0} - y_{1})n_{y} + (z_{0} - z_{1})n_{z}}{(x_{2} - x_{1})n_{x} + (y_{2} - y_{1})n_{y} + (z_{2} - z_{1})n_{z}} \right] (x_{2} - x_{1})$$

$$y_{i} = y_{1} + \left[\frac{(x_{0} - x_{1})n_{x} + (y_{0} - y_{1})n_{y} + (z_{0} - z_{1})n_{z}}{(x_{2} - x_{1})n_{x} + (y_{2} - y_{1})n_{y} + (z_{2} - z_{1})n_{z}} \right] (y_{2} - y_{1})$$

$$z_{i} = z_{1} + \left[\frac{(x_{0} - x_{1})n_{x} + (y_{0} - y_{1})n_{y} + (z_{0} - z_{1})n_{z}}{(x_{2} - x_{1})n_{x} + (y_{2} - y_{1})n_{y} + (z_{2} - z_{1})n_{z}} \right] (z_{2} - z_{1})$$

Returning to the case of Didymain's surface, we have to check 2292 planes for possible intersection with each ray we form. The equations of the planes shall be defined from the coordinates of their 3 vertices and the ray shall be a line segment that starts from the computational space point P(x, y, z) and ends at the destination point $P_{dest}(x_{max} + h, y, z)$. One can use a destination point at any direction (provided the point is on or out of the computational box), thus for simplicity we choose the direction of the +x axis for all the rays.

There is still one more issue to solve. Calculating the intersection point between a ray and all the planes of the asteroid's surface will not yield desirable results. We must make sure that the intersection point is strictly limited on the triangle's surface that is defined by the 3 vertices and not on the extension of the triangle in the whole 3D space, otherwise all the rays casted will intersect with all the planes of Didymain's surface somewhere in the 3D space because non of the planes will be exactly parallel to any ray (we are dealing with floating point arithmetic). But how can we decide if a point is part of a 3D triangle's surface or not? Consider the following picture.

Figure 2.5: Deciding whether a point lies on the syrface of a triangle or not through the summation of the areas formed by 3 sub-triangles. P_i lies on the surface, while P_{ii} does not.

Let P_0, P_1, P_2 be the vertices of a triangle in the 3D space with area A and let P_i be an arbitrary point. Now form the triangles $(P_iP_0P_1), (P_iP_1P_2), (P_iP_2P_0)$ with corresponding areas $A_{i01}, A_{i12}, A_{i20}$. If $A_{i01} + A_{i12} + A_{i20} = A$, then P_i lies on the surface, otherwise not (e.g. point P_{ii} in figure 2.5). The area of an arbitrary triangle $(P_1P_2P_3)$ in the 3D space can easily be calculated as:

$$A_P = \frac{1}{2} |\overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3}|$$

Finally, the complete algorithm to create Didymain model is the following:

- Calculate the quantities x_{min} , x_{max} , y_{min} , y_{max} , z_{min} , z_{max} from Dydimain's vertices file.
- Determine a Cartesian step h with which you will move in the computational space. The shorter h is, the preciser the final model will be (the more points it will consist of).
- Increase the computational space (i.e. each side of the box) by h.
- Loop through all the computational space with step h.
 - ⊳ Set the counter of intersection points to zero.
 - \triangleright Form the line segment that connects your current position P(x, y, z) with the point $P_{dest}(x_{max} + h, y, z)$
 - ▷ Loop through all the surface planes in search for intersection with the line segment.
 - \square Calculate the intersection point $P_i(x_i, y_i, z_i)$ between the current plane and the line segment formed.
 - \square Check if P_i sits on the triangle's surface. If yes, then count P_i as an intersection point.
 - \triangleright Check whether the counter of intersection points is odd or even. If it is odd, then mark your current (x, y, z) position as an interior point and print it to a file. Else proceed to the next point.

When the above algorithm is executed, we receive the model of figure (2.6).

Figure 2.6: Complete model of Didymain. The gray voxels represent the asteroid's surface (the left half of the surface has been removed so that the interior can be visible), while the red ones represent its interior, that is, all the voxels that were produced from the previous algorithm. They are 17647 voxels in total (surface + interior), produced with a Cartesian step h = 0.025 km.

2.3 Didymoon Model

As far as Didymoon is concerned, we don't have any specific radar observations or detailed surface optical lightcurves available. Keep in mind that it is a body with an approximate size of only 160 m that is located millions of kilometers away from Earth. So we have decided to consider Didymoon a tri-axial ellipsoid with semi axes a, b, c. Although it is possible to obtain an analytic form of the gravitational potential of an ellipsoid, we choose again to create a model that consists of point masses, such that their macroscopic form match an ellipsoid. Rendering such a model is pretty easy beacause now we do know the analytic form of the equation of an ellipsoid:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

So the algorithm that will create Didymoon model could be as follows:

- Input the semi axes a, b, c of the ellipsoid.
- Determine the computational box from the quantites $x_{min} = -a$, $x_{max} = a$, $y_{min} = -b$, $y_{max} = b$, $z_{min} = -c$, $z_{max} = c$.
- Determine a Cartesian step h with which you will move in the computational box. The shorter h is, the preciser the final model will be (the more points it will consist of).
- Increase each side of the computational box by 2h.
- Loop through all the computational box with step h.
 - Check if your current space position (x, y, z) satisfies the inequality $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ If yes, then mark your current (x, y, z) position as an interior or surface point and print it to a file. Else proceed to the next point.

When the above algorithm is executed, we receive the model of figure (2.7).

Figure 2.7: Complete model of Didymoon. On the left we can see the model voxel by voxel and on the right we can see the very same model using a smooth surface. Totally 2323 voxels were produced with Cartesian step h = 0.01 km.

Chapter 3

The Binary in Orbit

Now that we have both asteroids modeled, we may proceed to the next step: Set the binary in orbit in the 3D space. To achieve that, we will make some assumptions. These concern the coordinate systems we will use, the way the asteroids translate and rotate in space, the numerical method we will use in order to solve the differential equations of motion, the units of measurement and and the initial conditions and parameters that we will incorporate in the system.

3.1 Coordinate Systems

We consider the three coordinate systems (F_0,F_1,F_2) of figure 3.1. The first one is a global inertial frame F_0 , fixed at O(0,0,0) and corresponds to the center of mass of the two asteroids. The second one is a non-inertial frame F_1 , the origin of which always coincides with Didymain's center of mass and the frame's axes always coincide with Didymain's principal axes of inertia. So while Didymain moves through space, the origin of F_1 moves at the same path and while Didymain rotates, the axes of F_1 also rotate the same way. The third one is also a non-inertial frame F_2 , the origin of which always coincides with Didymoon's center of mass and the frame's axes always coincide with Didymoon's principal axes of inertia. F_2 now follows Didymoon at its path and rotates the same way as Didymoon's principal axes do.

3.2 Translation and Rotation

In order to calculate the motion of the asteroids in space, we have to define how the two asteroids interact gravitationally. Both asteroids are considered to be rigid bodies, so each body would require 6 degrees of freedom in order for its configuration to be fully defined: 3 translational (position in space) and 3 rotational (orientation in space). Each degree of freedom would be calculated through the solution of a corresponding ordinary differential equation, which means that we would need 6 ODEs for each asteroid. However we choose to reduce our calculations by making use of table 1.1 and the fact that **observations show that Didymoon is tidally locked on Didymain.** The latter permits us to get away with the ODEs that describe the rotation of the

asteroids and instead, approximate Didymoon's rotation manually (we will explain how) without significant computational errors. Didymain's rotation ODEs can also be approximated assuming a constant angular velocity vector $\vec{\omega}_1$ towards the +z direction of the F_1 coordinate system. So the "heavy" calculations end up being 3 ODEs that concern the translation of Didymain and 3 ODEs that concern the translation of Didymoon.

Figure 3.1: Two rigid bodies, each consisting of N_1 and N_2 point masses respectively, placed in space. The red and blue vectors are used to formulate their gravitational interaction.

Consider figure 3.1 which depicts two rigid bodies in space. Suppose Body 1 consists of N_1 point masses, while Body 2 consists of N_2 point masses. Let M_1 and M_2 be the total masses of the two bodies respectively. Assuming constant bulk density for each body, we can write:

$$m_{1i} = m_1$$
, for $i = 1, 2, \dots, N_1$

$$m_{2j} = m_2$$
, for $j = 1, 2, \dots, N_2$

Also the total mass of each body is the sum of its point masses:

$$M_1 = \sum_{i=1}^{N_1} m_{1i}$$
 and $M_2 = \sum_{j=1}^{N_2} m_{2j}$

Let \vec{R}_1 be the position vector of the center of mass of Body 1 (Didymain in our case) with respect to F_0 and \vec{R}_2 the position vector of the center of mass of Body 2 (Didymoon in our case) with respect to F_0 . Let \vec{r}_{1i} be the position vector of the *i*-point mass of Body 1 with respect to F_1 and

 \vec{r}_{2j} be the position vector of the *j*-point mass of Body 2 with respect to F_1 . Finally we define the vector \vec{d}_{12j} that connects the center of mass of Body 1 with an arbitrary point of Body 2 and the vector \vec{d}_{21i} that connects the center of mass of Body 2 with an arbitrary point of Body 1. The latter is mathematically expressed as:

$$\vec{R}_1 + \vec{d}_{12j} = \vec{R}_2 + \vec{r}_{2j} \Rightarrow \vec{d}_{12j} = \vec{R}_2 - \vec{R}_1 + \vec{r}_{2j}$$

$$\vec{R}_2 + \vec{d}_{21i} = \vec{R}_1 + \vec{r}_{1i} \Rightarrow \vec{d}_{21i} = \vec{R}_1 - \vec{R}_2 + \vec{r}_{1i}$$

Provided the two bodies interact gravitationally, we want to write down the equations of their motion. As far as the translational part of their motion is concerned, we only need to know the motions of the two centers of mass. Application of Newton's second law, yields:

$$\mathcal{M}_{1}\ddot{\vec{R}}_{1} = \frac{G\mathcal{M}_{1}m_{2}}{d_{121}^{3}}\vec{d}_{121} + \frac{G\mathcal{M}_{1}m_{2}}{d_{122}^{3}}\vec{d}_{122} + \dots + \frac{G\mathcal{M}_{1}m_{2}}{d_{12N_{2}}^{3}}\vec{d}_{12N_{2}} \Rightarrow$$

$$\ddot{\vec{R}}_1 = Gm_2 \sum_{j=1}^{N_2} \frac{\vec{d}_{12j}}{d_{12j}^3} \Rightarrow \ddot{\vec{R}}_1 = Gm_2 \sum_{j=1}^{N_2} \frac{\vec{R}_2 - \vec{R}_1 + \vec{r}_{2j}}{d_{12j}^3} \Rightarrow$$

$$\begin{cases} \ddot{X}_1 = Gm_2 \sum_{j=1}^{N_2} \frac{X_2 - X_1 + x_{2j}}{d_{12j}^3} \\ \ddot{Y}_1 = Gm_2 \sum_{j=1}^{N_2} \frac{Y_2 - Y_1 + y_{2j}}{d_{12j}^3} \\ \ddot{Z}_1 = Gm_2 \sum_{j=1}^{N_2} \frac{Z_2 - Z_1 + z_{2j}}{d_{12j}^3} \end{cases}$$

where
$$d_{12j} = \sqrt{(X_2 - X_1 + x_{2j})^2 + (Y_2 - Y_1 + y_{2j})^2 + (Z_2 - Z_1 + z_{2j})^2}$$

In a similar way, we can extract the equations of motion for the center of mass of Body 2:

$$\mathcal{M}_{2}\ddot{\vec{R}}_{2} = \frac{G\mathcal{M}_{2}m_{1}}{d_{211}^{3}}\vec{d}_{211} + \frac{G\mathcal{M}_{2}m_{1}}{d_{212}^{3}}\vec{d}_{212} + \dots + \frac{G\mathcal{M}_{2}m_{1}}{d_{21N_{1}}^{3}}\vec{d}_{21N_{1}} \Rightarrow$$

$$\ddot{\vec{R}}_2 = Gm_1 \sum_{i=1}^{N_1} \frac{\vec{d}_{21i}}{d_{21i}^3} \Rightarrow \ddot{\vec{R}}_2 = Gm_1 \sum_{i=1}^{N_1} \frac{\vec{R}_1 - \vec{R}_2 + \vec{r}_{1i}}{d_{21i}^3} \Rightarrow$$

$$\begin{cases}
\ddot{X}_{2} = Gm_{1} \sum_{i=1}^{N_{1}} \frac{X_{1} - X_{2} + x_{1i}}{d_{21i}^{3}} \\
\ddot{Y}_{2} = Gm_{1} \sum_{i=1}^{N_{1}} \frac{Y_{1} - Y_{2} + y_{1i}}{d_{21i}^{3}} \\
\ddot{Z}_{2} = Gm_{1} \sum_{i=1}^{N_{1}} \frac{Z_{1} - Z_{2} + z_{1i}}{d_{21i}^{3}}
\end{cases} (3.1)$$

where
$$d_{21i} = \sqrt{(X_1 - X_2 + x_{1i})^2 + (Y_1 - Y_2 + y_{1i})^2 + (Z_1 - Z_2 + z_{1i})^2}$$

One could use a numerical scheme to solve the two systems of the ODEs (as we will see later). However we can skip some calculations by using Newton's third law. Applying the latter to the system of the centers of mass of the two bodies, we get:

$$\vec{F}_{1} = -\vec{F}_{2} \Rightarrow \vec{F}_{1} + \vec{F}_{2} = \vec{0} \Rightarrow M_{1}\vec{R}_{1} + M_{2}\vec{R}_{2} = \vec{0} \Rightarrow$$

$$M_{1}\vec{R}_{1} + M_{2}\dot{\vec{R}}_{2} = \vec{c}_{1} \Rightarrow M_{1}\vec{R}_{1} + M_{2}\vec{R}_{2} = \vec{c}_{1}t + \vec{c}_{2} \Rightarrow$$

$$\frac{M_{1}\vec{R}_{1} + M_{2}\vec{R}_{2}}{M_{1} + M_{2}} = \frac{\vec{c}_{1}t + \vec{c}_{2}}{M_{1} + M_{2}}$$

The last expression states that the center of mass of the two centers of mass of the two bodies shall move on a straight line with constant velocity. We set $\vec{c}_1 = \vec{c}_2 = \vec{0}$

$$M_{1}\vec{R}_{1} + M_{2}\vec{R}_{2} = \vec{0} \Rightarrow \vec{R}_{1} = -\frac{M_{2}\vec{R}_{2}}{M_{1}} \Rightarrow \begin{cases} X_{1} = -\frac{M_{2}X_{2}}{M_{1}} \\ Y_{1} = -\frac{M_{2}Y_{2}}{M_{1}} \\ Z_{1} = -\frac{M_{2}Z_{2}}{M_{1}} \end{cases}$$
(3.2)

That way, we have fixed the center of mass of the two centers of mass at in the origin of F_0 and instead of solving the ODEs for both bodies, we only need to solve for one of them (e.g equations (3.1) for Body 2) and then we can use equations (3.2) to find the motion of the other.

As far as the rotational motion of the asteroids is concerned, we set it manually in order to reduce our calculations. Specifically, we assume that Didymain rotates around the +z axis with constant angular velocity $\omega_1 = \frac{2\pi}{T_1}$, where (according to table 1.1) $T_1 \approx 2.26$ h is the self rotation period. Didymain consists of N_1 point masses, each at posistion (x_{1i}, y_{1i}, z_{1i}) with respect to the frame F_1 at t = 0. The rotation is achieved by multiplying all Didymain's vertices with the rotation matrix R_z around the z axis.

$$\begin{bmatrix} x'_{1i} \\ y'_{1i} \\ z'_{1i} \end{bmatrix} = \underbrace{\begin{bmatrix} \cos \omega t & -\sin \omega t & 0 \\ \sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{R_z} \begin{bmatrix} x_{1i} \\ y_{1i} \\ z_{1i} \end{bmatrix}$$

where $(x'_{1i}, y'_{1i}, z'_{1i})$ is the position of the *i*-vertex with respect to F_1 after the rotation.

The (manual) rotation of Didymoon is slightly more complex. As we stated previously, Didymoon is assumed to be tidally locked on Didymain. In the case where the orbital eccentricity and the obliquity are nearly zero, tidal locking results in one side of Didymoon constantly facing its partner, an effect known as synchronous rotation. The last statement is sufficiently true in our case although there should be some libration because the Didymoon's orbit isn't perfectly circular. Consider the following figure:

Figure 3.2: Representation of Didymoon's self rotation. The red dot depicts Didymain's center of mass at the moments t_0 and t_1 (P_{01} and P_{11} respectively). The blue stick depicts Didymoon's largest axis, again at the moments t_0 and t_1 (P_{02} and P_{12} respectively).

The red dot represents the center of mass of Didymain. The blue stick represents Didymoon's largest axis and its orientation in the 3D space During the time $\Delta t = t_1 - t_0$ Didymain's center of mass moves from P_{01} to P_{11} , while Didymoon's center of mass moves from P_{02} to P_{12} . Now form the vectors $\vec{a} = P_{01} \vec{P}_{02}$ and $\vec{b} = P_{11} \vec{P}_{12}$. The unit vector $\hat{u} = (\vec{a} \times \vec{b})/|\vec{a} \times \vec{b}|$ is perpendicular to the plane that the angle φ scans. In order for Didymoon to constantly face Didymain, Didymoon has to rotate at an angle φ around the vector \vec{u} . The angle φ can be calculated from the dot product of the vectors \vec{a} and \vec{b}

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\varphi \Rightarrow \cos\varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

One can decompose the rotation in two sub-rotations (one azimuthal and one polar), but it can also be done in one rotation. We can use Rodrigues rotation formula to construct the rotation matrix that rotates by an angle φ around the predefined unit vector $\hat{u} = (u_x, u_y, u_z)$. Letting

$$W = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 1 \end{bmatrix}$$

the Rodrigues rotation matrix is constructed as

$$R_u = I + (\sin \varphi)W + (1 - \cos \varphi)W^2$$

where I is the 3×3 identity matrix. After that we can perform Didymoon's rotation, pretty much like we did with Didymain's case. Didymoon consists of N_2 point masses, each at posistion (x_{2i}, y_{2i}, z_{2i}) with respect to the frame F_2 at t = 0. The rotation is achieved by multiplying all Didymoon's vertices with the rotation matrix R_u

$$\begin{bmatrix} x'_{2i} \\ y'_{2i} \\ z'_{2i} \end{bmatrix} = \underbrace{\begin{bmatrix} R_{u11} & R_{u12} & R_{u13} \\ R_{u21} & R_{u22} & R_{u23} \\ R_{u31} & R_{u32} & R_{u33} \end{bmatrix}}_{R_{u31}} \begin{bmatrix} x_{2i} \\ y_{2i} \\ z_{2i} \end{bmatrix}$$

where $(x'_{2i}, y'_{2i}, z'_{2i})$ is the position of the *i*-vertex with respect to F_2 after the rotation.

3.3 Numerical Method for the ODEs

The differential equations (3.1) cannot be solved analytically and therefore we have to implement a numerical method to serve our purpose. Runge-Kutta 4_{th} order method (RK4) combines sufficient accuracy and computational speed, hence we will use it for the solution of the differential equations. Below we present the RK4 method for the case of one differential equation with one independant variable. Afterwards, we adapt the method to our differential equations (3.1).

Let an initial value problem (IVP) be specified as follows:

$$\dot{x} = f(t, x), \quad x(t_0) = x_0$$

Here x is an unknown function (scalar or vector) of time t, which we would like to approximate. The function f and the numbers t_0 and x_0 are known. Provided a sufficiently short step h > 0, the sequence (t_{ν}, x_{ν}) that approximates the function x(t) is given as:

$$x(t_{\nu+1}) \equiv x_{\nu+1} = x_{\nu} + \frac{1}{6}(k+2l+2m+n)$$
$$t_{\nu+1} = t_{\nu} + h$$

for $\nu = 0, 1, 2, ...$, where

$$k = hf(t_{\nu}, x_{\nu})$$

$$l = hf(t_{\nu} + \frac{h}{2}, x_{\nu} + \frac{k}{2})$$

$$m = hf(t_{\nu} + \frac{h}{2}, x_{\nu} + \frac{l}{2})$$

$$n = hf(t_{\nu} + h, x_{\nu} + m)$$

Now reconsider equations (3.1). It is a system of 3 ODEs of second order. In order to directly apply RK4 method we would like to reduce the order from 2 to 1. Thus we do the following substitution: $\dot{X}_1 = V_{X_1}$, $\dot{Y}_1 = V_{Y_1}$, $\dot{Z}_1 = V_{Z_1}$. So now we have the following system of 6 ODEs of first order:

$$\dot{X}_{2} = V_{X_{2}}
\dot{Y}_{2} = V_{Y_{2}}
\dot{Z}_{2} = V_{Z_{2}}
\dot{V}_{X_{2}} = Gm_{1} \sum_{i=1}^{N_{1}} \frac{X_{1} - X_{2} + x_{1i}}{d_{21i}^{3}}
\dot{V}_{Y_{2}} = Gm_{1} \sum_{i=1}^{N_{1}} \frac{Y_{1} - Y_{2} + y_{1i}}{d_{21i}^{3}}
\dot{V}_{Z_{2}} = Gm_{1} \sum_{i=1}^{N_{1}} \frac{Z_{1} - Z_{2} + z_{1i}}{d_{21i}^{3}}$$
(3.3)

We will write down the RK4 method for a general system of 6 ODEs of first order and then we will apply it to the equations (3.3). Consider the following initial value problem:

$$\dot{x}_1 = f_1(t, x_1, x_2, \dots, x_6), \quad x_1(t_0) = x_{10}
\dot{x}_2 = f_2(t, x_1, x_2, \dots, x_6), \quad x_2(t_0) = x_{20}
\vdots
\dot{x}_6 = f_6(t, x_1, x_2, \dots, x_6), \quad x_6(t_0) = x_{60}$$

Here x_1, x_2, \ldots, x_6 are unknown functions of time t, which we would like to approximate. The functions f_1, f_2, \ldots, f_6 and the numbers t_0 and $x_{10}, x_{20}, \ldots, x_{60}$ are known. Provided a sufficiently

short step h > 0, the sequences $(t_{\nu}, x_{1,\nu}), (t_{\nu}, x_{2,\nu}), \dots, (t_{\nu}, x_{6,\nu})$ that approximate the functions x_1, x_2, \dots, x_6 are given as:

$$x_1(t_{\nu+1}) \equiv x_{1,\nu+1} = x_{1,\nu} + \frac{1}{6}(k_1 + 2l_1 + 2m_1 + n_1)$$

$$x_2(t_{\nu+1}) \equiv x_{2,\nu+1} = x_{2,\nu} + \frac{1}{6}(k_2 + 2l_2 + 2m_2 + n_2)$$

$$\vdots$$

$$x_6(t_{\nu+1}) \equiv x_{6,\nu+1} = x_{6,\nu} + \frac{1}{6}(k_6 + 2l_6 + 2m_6 + n_6)$$

$$t_{\nu+1} = t_{\nu} + h$$

for $\nu = 0, 1, 2, ..., 6$, where

$$k_{1} = h f_{1}(t_{\nu}, x_{1,\nu}, x_{2,\nu}, \dots, x_{6,\nu})$$

$$k_{2} = h f_{2}(t_{\nu}, x_{1,\nu}, x_{2,\nu}, \dots, x_{6,\nu})$$

$$\vdots$$

$$k_{6} = h f_{6}(t_{\nu}, x_{1,\nu}, x_{2,\nu}, \dots, x_{6,\nu})$$

 $l_{1} = h f_{1}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + \frac{k_{1}}{2}, x_{2,\nu} + \frac{k_{2}}{2}, \dots, x_{6,\nu} + \frac{k_{6}}{2})$ $l_{2} = h f_{2}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + \frac{k_{1}}{2}, x_{2,\nu} + \frac{k_{2}}{2}, \dots, x_{6,\nu} + \frac{k_{6}}{2})$ \vdots $l_{6} = h f_{6}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + \frac{k_{1}}{2}, x_{2,\nu} + \frac{k_{2}}{2}, \dots, x_{6,\nu} + \frac{k_{6}}{2})$

$$m_{1} = h f_{1}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + \frac{l_{1}}{2}, x_{2,\nu} + \frac{l_{2}}{2}, \dots, x_{6,\nu} + \frac{l_{6}}{2})$$

$$m_{2} = h f_{2}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + \frac{l_{1}}{2}, x_{2,\nu} + \frac{l_{2}}{2}, \dots, x_{6,\nu} + \frac{l_{6}}{2})$$

$$\vdots$$

$$m_{6} = h f_{6}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + \frac{l_{1}}{2}, x_{2,\nu} + \frac{l_{2}}{2}, \dots, x_{6,\nu} + \frac{l_{6}}{2})$$

$$n_{1} = hf_{1}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + m_{1}, x_{2,\nu} + m_{2}, \dots, x_{6,\nu} + m_{6})$$

$$n_{2} = hf_{2}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + m_{1}, x_{2,\nu} + m_{2}, \dots, x_{6,\nu} + m_{6})$$

$$\vdots$$

$$n_{6} = hf_{6}(t_{\nu} + \frac{h}{2}, x_{1,\nu} + m_{1}, x_{2,\nu} + m_{2}, \dots, x_{6,\nu} + m_{6})$$

By substituting the theoretical functions $x_1, x_2, x_3, x_4, x_5, x_6$ with the functions of the position (X_2, Y_2, Z_2) and the velocity $(V_{X_2}, V_{Y_2}, V_{Z_2})$ of our problem, we solve the equations.

3.4 Units of Measurement

Instead of measuring our quantities in the SI, we define a new system of measurement, named TU. In the new system we assume G = M = 1, where G is the gravitational constant and $M = M_1 + M_2$ is the total mass of Didymos binary (M_1 is the mass of Didymoin and M_2 is the mass of Didymoon). We also choose kilometers to be our unit of length because the size of the asteroids and the distances we will deal with are of the order of kilometer. Assuming the previous means that the time t_{TU} in the TU system is different than the one of the SI (t_{sec}). We want to find the relationship between t_{TU} and t_{sec} . We use the scalar form of Newton's gravitational law:

$$\mathcal{H}\frac{d^2r}{dt_{TU}^2} = \frac{G\mathcal{H}M}{r^2} \Rightarrow r^2 \frac{d^2r}{dt_{TU}^2} = GM \tag{3.4}$$

We choose G = M = 1 and km as a unit of length, thus equation (3.4) yields

$$([km]^2 \cdot 10^6) \frac{[km] \cdot 10^{-3}}{t_{TU}^2} = 1 \Rightarrow \frac{[km]^3}{t_{TU}^2} = 10^9$$
(3.5)

In the SI, equation (3.5) takes the form

$$[m]^{2} \frac{[m]}{t_{sec}^{2}} = 6.67408 \cdot 10^{-11} \frac{[m]^{3}}{[kg][sec]^{2}} \cdot 5.278 \cdot 10^{11}[kg] \Rightarrow$$

$$\frac{[m]^{3}}{t_{sec}^{2}} = 35.22579424 \frac{[m]^{3}}{[sec]^{2}} \Rightarrow \frac{[km]^{3}}{t_{sec}^{2}} = 35.22579424 \frac{[km]^{3}}{[sec]^{2}}$$

$$(3.5)\&(3.6) \Rightarrow \frac{[km]^{3}/t_{TU}^{2}}{[km]^{3}/t_{sec}^{2}} = \frac{10^{9}}{35.22579424} \Rightarrow$$

$$(3.6)$$

$$\frac{t_{sec}}{t_{TU}} = +\sqrt{\frac{10^9}{35.22579424}} \Rightarrow t_{sec} \approx 5328.066 t_{TU}$$
(3.7)

Equation (3.7) can be used to convert the time from the TU to the SI and the opposite. For example 1 TU = 5328.066 sec.

3.5 Initial Conditions and Parameters

We have to set some appropriate initial conditions for the binary to evolve. Table (1.1) informs us of some orbital elements of the system (though some error), which we will use to set the initial conditions in Cartesian form. The center of mass of the system will be at O(0,0,0) with respect to F_0 . We know that the distance between the center of the primary and the secondary is 1.18 km +0.04/-0.02 km and that the orbital eccentricity is $e \le 0.03$. Also we assume the following: 1) The orbital inclination of the secondary is $i = 0^o$ 2) The obliquity of both the primary and the secondary principal axes with respect to the mutual orbital plane is zero. Assuming the previous, the initial conditions of the center of mass of Didymoon can be written the following form:

$$\vec{R}_2 = (X_2, 0, 0)$$
 and $\vec{V}_{R_2} = (0, V_{Y_2}, 0)$

where $X_2 = 1.18$ km with respect to F_0 and V_{Y_2} has such a value that the orbital eccentricity of Didymoon that is calculated from the previous Cartesian coordiantes is $e \le 0.03$. The simplest case we can think of, is e = 0 which corresponds to circular orbit. Theory suggests that the velocity of the circular orbit is calculated as $|V_{Y_2}| = |\sqrt{GM/X_2}| \approx 0.921$ km/TU. Didymoon is at a retrograde orbit, thus $V_{Y_2} \approx -0.921$ km/TU with respect to F_0 . Provided Didymoon's aforementioned initial conditions and provided that the center of mass of the system is at O(0,0,0), we can find Didymain's center of mass initial conditions from equations (3.2). Also the initial orientations of the two asteroids must be set. Those will be such that all x-axes (consequently all y-axes and all z-axes) of the frames F_0 , F_1 , F_2 are parallel. Luckily, we don't need to incorporate new angle initial parameters to achieve that, because the asteroids are at those orientations from the modeling procedure. Didymain's rotational period is $T_1 = 2.26 \pm 0.0001$ h. In the SI it is $T_{1,sec} = 2.26 \cdot 3600 \approx 8136$ sec and in the TU it is $T_{1,TU} = T_{1,sec}/5328.066 = 1.5270081$ TU. Thus the angular velocity $\vec{\omega}_1 = -\omega_1 \hat{z}$ which we will use in order to rotate Didymain is:

$$\omega_1 = \frac{2\pi}{T_{1,TU}} = \frac{2\pi}{1.5270081} = 4.1147 \frac{\text{rad}}{\text{TU}}$$

Under the assumption that the two asteroids have the same bulk density, the mass ratio of Didymoon (M_2) and Didymain (M_1) can be calculated as:

$$\frac{M_2}{M_1} = \frac{\rho V_2}{\rho V_1} = \frac{\frac{4\pi D_2^3}{3}}{\frac{4\pi D_1^3}{3}} = \frac{D_2^3}{D_1^3} \approx 0.0093$$

where D_1 and D_2 are the formal diameters of the two asteroids. We also assumed that $M_1 + M_2 = 1$. Thus solving the system, we receive $M_1 = 0.9907$ and $M_2 = 0.0093$.

We perform three simulations. All simulate the system for a physical time $t_{max}=2$ months (in terms of TU, this means $t_{max}=972.96$ TU). The difference lies in the time step being used in the numerical integrations. The first simulation uses a relatively short time step $\Delta t=2.66$ sec (in terms of TU, this means $\Delta t=0.0005$ TU). The second simulation uses a longer time step $\Delta t=26.64$ sec (in terms of TU, this means $\Delta t=0.005$ TU). The third simulation uses a much longer time step $\Delta t=266.40$ sec / 4.44 min (in terms of TU, this means $\Delta t=0.05$ TU).

3.6 Simulation Results

Case: Short step

Figure (3.3) depicts the binary at the end of the simulation ($\Delta t = 2.66$ seconds and $t = t_{max} = 2$ months) from three different perspectives. Also, in figure (3.4) we present the plots of Didymoon's semi-major axis, eccentricity and inclination as functions of time. It seems that after two months, Didymoon's orbit remains quite stable. The functions e(t) and i(t) oscillate quite steadily, just as someone would expect in reality (remember that no matter how short the integration time step is, one should not expect absolutely constant eccentricity and inclination because we are not dealing with the classic two body problem, but instead two assymetric rigid bodies. Thus, the orbital elements are variables due to the nature of the problem). However the function a(t) seems to suffer drag as well. This (which is not expected to happen in reality) is an error incorporated by the Runge-Kutta 4th order method.

Figure 3.3: Orbit evolution of the binary at $t = t_{max} = 2$ months with step $\Delta t = 2.66$ sec.

Figure 3.4: Semi-major axis a, eccentricity e and inclination i of Didymoon as functions of time for step $\Delta t = 2.66$ sec. The left panels show the evolution of the orbital elements for all the run time (2 months). The right panels show the evolution of the very same elements, but for a short amount of time (≈ 2.07 days).

Case: Middle step

Figure (3.5) depicts the binary at the end of the simulation ($\Delta t = 26.64$ seconds and $t = t_{max} = 2$ months) from three different perspectives. Also, in figure (3.6) we present the plots of Didymoon's semi-major axis, eccentricity and inclination as functions of time. Even though we have increased the method's time step by one order of magnitude, the orbit still remains quite stable. The functions e(t) and i(t) are almost the same with the ones of the previous case. The semi-major axis a(t) has the same morphology with the corresponding one of the previous case, but now the drag is more obvious.

Figure 3.5: Orbit evolution of the binary at $t = t_{max} = 2$ months with step $\Delta t = 26.64$ sec.

Figure 3.6: Semi-major axis a, eccentricity e and inclination i of Didymoon as functions of time for step $\Delta t = 26.64$ sec. The left panels show the evolution of the orbital elements for all the run time (2 months). The right panels show the evolution of the very same elements, but for a short amount of time (≈ 2.07 days).

Case: Long step

Figure (3.7) depicts the binary at the end of the simulation ($\Delta t = 266.4$ seconds and $t = t_{max} = 2$ months) from three different perspectives. Also, in figure (3.8) we present the plots of Didymoon's semi-major axis, eccentricity and inclination as functions of time. Again the functions e(t) and i(t) oscillate almost around the same values as in the previous two cases, but now we observe a significant drag of the semi-major axis a(t).

Figure 3.7: Orbit evolution of the binary at $t = t_{max} = 2$ months with step $\Delta t = 266.4$ sec.

Figure 3.8: Semi-major axis a, eccentricity e and inclination i of Didymoon as functions of time for step $\Delta t = 266.4$ sec. The left panels show the evolution of the orbital elements for all the run time (2 months). The right panels show the evolution of the very same elements, but for a short amount of time (≈ 2.07 days).

Chapter 4

Impact Ejecta

Our final step is to incorporate in our simulation the impact ejecta that will be produced from Didymoon's surface due to DART's collsion. In our study we focus on the mechanical environment near the binary (up to 20 km radius from the center of mass of the system) after DART's collision. That is, we don't include DART's collision itself in our simulation, but only what happens after the collision. Besides, even if we did include in our simulation the collision, although there would be a slight change in the orbital elements of the system, it would barely affect the ejecta orbits. As soon as the collision occurs, we expect an ejecta cloud to be produced and spread in space. In our simulation, the cloud is assumed to consist of N point masses. Also we note that we are interested in the study of the low velocity ejecta, that is, the particles of which their ejection velocity is up to the escape velocity of Didymos binary (we explain further details about that in section (4.3)). Each ejected particle will be subjected to the combined gravity of Didymoon and Didymain and will follow its own trajectory in space. It is worth noting that in reality, not only the gravity of the two asteroids is applied to the ejecta, but also the gravity of other celestial bodies like the Sun and the other planets, as well as the radiation pressure of the Sun. In this thesis however, we reduce our study to the gravity of the two asteroids which is the dominant force. In this chapter we formulate the equations of motions of the ejecta, we implement collision and escape criterions and we set some initial conditions and parameters. Our goal is to observe the evolution of the ejecta cloud for some time and eventually conclude its fate.

4.1 Equations of Motion of the Ejecta

We assume that all ejected bodies are point masses that do not affect the motion of the binary. Each point mass undergoes the gravitational force of all the particles that make up Didymain plus the gravitational force of all the particles that make up Didymoon. Figure (4.1) illustrates the latter.

Figure 4.1: Representation of an ejected particle p, being attracted by the two asteroids.

Figure (4.1) is almost the same with figure (3.1), slightly changed to depict the mechanical environment of an ejected particle. The vectors \vec{R}_1 , \vec{R}_2 , \vec{r}_{1i} , \vec{r}_{2j} , represent the same with the ones of figure (3.1). Now let \vec{R}_p be the position vector of an ejected particle with respect to F_0 . We also define the vector \vec{d}_{1i} that connects the ejected particle with an arbitrary point of Body 1 and the vector \vec{d}_{2j} that connects the ejected particle with an arbitrary point of Body 2. The latter can be mathematically expressed as:

$$\vec{R}_p + \vec{d}_{1i} = \vec{R}_1 + \vec{r}_{1i} \Rightarrow \vec{d}_{1i} = \vec{R}_1 - \vec{R}_p + \vec{r}_{1i}$$

$$\vec{R}_{p} + \vec{d}_{2i} = \vec{R}_{2} + \vec{r}_{2i} \Rightarrow \vec{d}_{2i} = \vec{R}_{2} - \vec{R}_{p} + \vec{r}_{2i}$$

The equation of motion of an ejected particle (with negligible mass m) is:

$$\mathcal{M}\ddot{\vec{R}}_{p} = \sum_{i=1}^{N_{1}} \frac{G\mathcal{M}m_{1}}{d_{1i}^{3}} \vec{d}_{1i} + \sum_{j=1}^{N_{2}} \frac{G\mathcal{M}m_{2}}{d_{2j}^{3}} \vec{d}_{2j} \Rightarrow$$

$$\ddot{\vec{R}}_p = G\left(m_1 \sum_{i=1}^{N_1} \frac{\vec{d}_{1i}}{d_{1i}^3} + m_2 \sum_{j=1}^{N_2} \frac{\vec{d}_{2j}}{d_{2j}^3}\right) \Rightarrow$$

$$\begin{cases} \ddot{X}_p = G\left(m_1 \sum_{i=1}^{N_1} \frac{X_1 - X_p + x_{1i}}{d_{1i}^3} + m_2 \sum_{j=1}^{N_2} \frac{X_2 - X_p + x_{2j}}{d_{2j}^3}\right) \\ \ddot{Y}_p = G\left(m_1 \sum_{i=1}^{N_1} \frac{Y_1 - Y_p + y_{1i}}{d_{1i}^3} + m_2 \sum_{j=1}^{N_2} \frac{Y_2 - Y_p + y_{2j}}{d_{2j}^3}\right) \\ \ddot{Z}_p = G\left(m_1 \sum_{i=1}^{N_1} \frac{Z_1 - Z_p + z_{1i}}{d_{1i}^3} + m_2 \sum_{j=1}^{N_2} \frac{Z_2 - Z_p + z_{2j}}{d_{2j}^3}\right) \end{cases}$$

where
$$d_{1i} = \sqrt{(X_1 - X_p + x_{1i})^2 + (Y_1 - Y_p + y_{1i})^2 + (Z_1 - Z_p + z_{1i})^2}$$

and $d_{2j} = \sqrt{(X_2 - X_p + x_{2j})^2 + (Y_2 - Y_p + y_{2j})^2 + (Z_2 - Z_p + z_{2j})^2}$

We reduce the order of the ODEs from 2 to 1 in order to directly apply RK4 method by substituting: $\dot{X}_p = V_{X_p}$, $\dot{Y}_p = V_{Y_p}$ $\dot{Z}_p = V_{Z_p}$. Thus, for one ejected particle p, we have the following system of 6 ODEs of first order:

$$\begin{split} \dot{X}_p &= V_{X_p} \\ \dot{Y}_p &= V_{Y_p} \\ \dot{Z}_p &= V_{Z_p} \\ \\ \dot{V}_{X_p} &= G \left(m_1 \sum_{i=1}^{N_1} \frac{X_1 - X_p + x_{1i}}{d_{1i}^3} + m_2 \sum_{j=1}^{N_2} \frac{X_2 - X_p + x_{2j}}{d_{2j}^3} \right) \\ \dot{V}_{Y_p} &= G \left(m_1 \sum_{i=1}^{N_1} \frac{Y_1 - Y_p + y_{1i}}{d_{1i}^3} + m_2 \sum_{j=1}^{N_2} \frac{Y_2 - Y_p + y_{2j}}{d_{2j}^3} \right) \\ \dot{V}_{Z_p} &= G \left(m_1 \sum_{i=1}^{N_1} \frac{Z_1 - Z_p + z_{1i}}{d_{1i}^3} + m_2 \sum_{j=1}^{N_2} \frac{Z_2 - Z_p + z_{2j}}{d_{2j}^3} \right) \end{split}$$

In our simulation we solve the differential equations of motion of the binary and at the same time we solve the differential equations of motion of the impact ejecta. Both systems will are solved with the Runge-Kutta 4th order method with the same time step Δt . The previous equations are integrated for N ejected particles. Think of it like we are integrating the motion of a cloud that consists of N bodies.

4.2 Escape, Chaos and Collision Detection

Suppose that a particle is ejected from Didymoon's surface. The particle will follow a trajectory based on its initial conditions. What happens to that particle afterwards? We enumerate 3 possible cases:

1) Escape from the binary

This case occurs either when a particle is ejected with very high initial velocity or when a particle's orbit evolves in such a way that its velocity becomes high enough to satisfy the criterion:

$$v_p \ge \sqrt{\frac{2G(M_1 + M_2)}{r}}$$
 for $r \gg 1$

Specifically, we decided that $r_{max} = 20$ km from the center of mass of the binary. Thus, if a particle gains velocity $v_p \ge v_{\rm esc}$ and at the same time $r \ge r_{max}$, then we consider that the particle escaped. Our algorithm constantly checks the previous criterion during each time step in order to decide whether a particle escaped from the binary or not.

2) Chaotic orbit near the binary's domain

This scenario is expected to happen when a particle is ejected with such initial conditions, that don't provide them with enough kinetic energy to escape the binary. These particles are expected to be trapped in chaotic orbits near the binary's domain of gravitational influence for who knows how long, until probably, either they collide with one of the two asteroids or escape the binary due to gravity assist. It is very important to know the long term behavior of the particles in such a case so that Hera space probe can be prepared for what it is going to meet there (whether the collision event happens before or after Hera's arrival).

3) Collision with Didymain or Didymoon

For an ejected particle orbiting the binary, it possible that after a finite amount of time, it will crash, either on Didymain's or on Didymoon's surface. We assume that after a collision between an ejected particle and an asteroid, the orbit of the particle ends at the exact point at which the collision took place. Realistically speaking, the last sentence is not true, because of possible ricochet and cloud regeneration. If for example an ejected body (a rock) has realatively big mass and velocity and it happens to crash on one of the asteroids almost tangentively, then a new ejecta cloud will rise. However, we do not include such details in our study. What we want are two collision detection criterions; one between the ejecta and Didymain and one between the ejecta Didymoon.

For Didymain, we assume a circumscribed sphere on its surface (i.e. a sphere centered at the center of mass of Didymain and radius equal to the longest distance between the center of mass of Didymain and its surface vertices). If an ejected particle crosses that (virtual) sphere, then we assume a collision with Didymain. The mathematical criterion for the last sentence is written as:

$$\sqrt{(X_1(t) - X_p(t))^2 + (Y_1(t) - Y_p(t))^2 + (Z_1(t) - Z_p(t))^2} \le d_{max}$$

where $\vec{R}_1(t) = (X_1(t), Y_1(t), Z_1(t))$ is the position of the center of mass of Didymain at time t with respect to the global inertial frame F_0 (see figure (4.1)), $\vec{R}_p(t) = (X_p(t), Y_p(t), Z_p(t))$ is the position of an ejected particle at time t, again with respect to the global inertial frame F_0 and d_{max} is the longest distance between the center of mass of Didymain an its surface vertices.

For Didymoon, we can take advantage of the analytical expression of its surface (tri-axial ellipsoid) in order to write down a precise collision detection criterion. The equation of a tri-axial ellipsoid, centered at O(0,0,0) with semi axes a,b,c is:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

The equation of a self-translated tri-axial ellipsoid, centered at $P_0(x_0, y_0, z_0)$ with semi axes a, b, c is:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} + \frac{(z-z_0)^2}{c^2} = 1$$

The equation of a self-translated and self-rotated tri-axial ellipsoid, centered at $P_0(x_0, y_0, z_0)$, rotated at an angle φ around a vector \vec{u} , with semi axes a, b, c is:

$$\frac{(x'-x_0)^2}{a^2} + \frac{(y'-y_0)^2}{b^2} + \frac{(z'-z_0)^2}{c^2} = 1$$

where

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \underbrace{\begin{bmatrix} R_{u11} & R_{u12} & R_{u13} \\ R_{u21} & R_{u22} & R_{u23} \\ R_{u31} & R_{u32} & R_{u33} \end{bmatrix}}_{R_u} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Thus, a collision between Didymoon and an ejected particle p, occurs when the following criterion is satisfied

$$\frac{(X_p' - X_2)^2}{a^2} + \frac{(Y_p' - Y_2)^2}{b^2} + \frac{(Z_p' - Z_2)^2}{c^2} \le 1$$

where

$$\begin{bmatrix} X_p' \\ Y_p' \\ Z_p' \end{bmatrix} = \underbrace{\begin{bmatrix} R_{u11} & R_{u12} & R_{u13} \\ R_{u21} & R_{u22} & R_{u23} \\ R_{u31} & R_{u32} & R_{u33} \end{bmatrix}}_{R_{uu}} \begin{bmatrix} X_p \\ Y_p \\ Z_p \end{bmatrix}$$

and $\vec{R}_2 = (X_2, Y_2, Z_2)$ is the position vector of the center of mass of Didymoon at time t with respect to the global inertial frame F_0 .

4.3 Initial Conditions of the Ejecta

We mentioned previously that we simulate the ejecta motions after the collision between DART and Didymoon. We also mentioned that we are interested in the particles that are ejected with relatively low velocities. If we were near Didymoon during the collision event, we would observe most of the ejected particles being catapulted in space with hypervelocities (depending on momentum gain parameter β) due to the violent exchange of momentum bewteen the spacecraft and Didymoon. However, there will be particles ejected in space with relatively low velocities; less than the escape velocity of the binary at the collision point. These are the ones we are interested in. Our algorithm provides the ejected particles with a set of initial conditions (positions and velocities), such that they don't escape the binary due to the initial ejection. Keep in mind that a particle can escape from the binary, not only due to an initial hypervelocity, but also due to chaotic evolution of its orbit near the binary.

We decided that all of the ejected particles shall have the same initial position. This position shall be at the impact point of Didymoon's surface and more specifically we decided that point to be at (0, -b, 0) with respect to Didymoon's local coordinate system (frame F_2 of figure (4.1)). In our simulation, the initial position is not be placed exactly on Didymoon's surface, but slightly further (1 meter). We do this in order to avoid infinities. If we do set the initial position of the ejected particles exactly on Didymoon's surface, it will result almost zero distance with some of Didymoon's model points which will lead to infinite forces. As far as the initial velocities are concerned, we make use of available experimental data (Johns Hopkins University / Applied Physics Laboratory) to see what happens when a hypervelocity aluminium projectile impacts a pumice target (figure (4.2)). We observe that the geometric distribution of the ejecta cloud right after the collision (left snapshot) is approximately a bunch of cone layers with different apex angles. After very few video frames, the cloud seems to occupy a wider region, due to the particles that are ejected with lower velocities and larger angles (right snapshot). The same principal we follow for the determination of the initial velocities in our simulation. First of all we assume that the ejecta cloud is generated in such a way that the velocity vectors of Didymoon and the impactor right before the impact, point to opposite directions. We also assume that the initial velocity vector components of all the ejecta are random numbers from the uniform distribution, but bounded in direction and magnitude so that the geometry of the ejecta approximates the right snapshot of figure (4.2). This way we achieve to cover a wide range of possible initial velocities. Figure (4.3) represents a sample of 100 initial velocity vectors calculated as predescribed. As far as the magnitudes of the initial velocities are concerned, we perform a search algorithm to calculate the initial critical velocity $v_{\rm crit}$ for which an ejected particle almost escapes the binary. This value is found to be $v_{\rm crit} \approx 1.4$ km/TU = 0.262 m/sec. The initial conditions of the binary are exactly the same with the ones described in section 3.5. We decided to simulate the system for a physical time $t_{max} = 1$ month with an integration time step $\Delta t = 26.64$ seconds (in terms of TU, this means $t_{max} = 486.48$ TU and $\Delta t = 0.005$ TU), which corresponds to the middle step case of section 3.6. We assume 4000 ejected particles totally.

Figure 4.2: A pumice target of mass 297 gm being impacted by a $1/8^{\rm th}$ inch aluminium projectile of mass 0.0459 gm and speed 3.92 km/s. On the left picture we can see the ejecta cloud distribution right after the collision and on the right we can see the same cloud a few video frames later.

Figure 4.3: Simulated geometric distribution of 100 initial velocity vectors that correspond to low velocity ejecta. All the initial vectors are considered to be bounded in direction an magnitude in order to approximate the cloud distribution of figure (4.2). The ellipsoid represents Didymoon.

4.4 Simulation Results

Below follows the evolution of the ejecta cloud at various times. Afterwards, we present the functions r(t) and v(t) for 21 randomly sampled ejected particles of all the 4000 that were simulated.

Figure 4.4: Orbital evolution of the low initial velocity ejecta for 1 month.

Figure 4.5: Evolution of the distance r(t) and the velocity v(t) of 21/4000 randomly sampled ejected particles.

Figure 4.6: The orbit in space as a function of time (x(t), y(t), z(t)). The same 21/4000 particles were chosen as in figure (4.5). the red dot represents the center of mass of the system of the two asteroids.

Figure 4.7: Number ejected particles that remain in orbit around the binary, as a function of time.

Figure (4.4) depicts the time evolution of the low velocity ejecta cloud for 1 month. Screenshots are taken at times: 44 min, 2 h 24 min, 3 h 2 min, 4 h 35 min, 7 h 17 min, 23 h 23 min, 2 days 8 min, 15 days 31 min and 29 days 23 h 15 min, showing the representative configurations of the cloud. We observe that the cloud spreads smoothly in space while time passes. Initially, the cloud surrounds Didymoon and many of its particles directly fall back and reaccumulate on Didymoon's surface due to their very low ejection velocity. After 3-4 hours, the cloud begins to surround Didymain, the same time at which many particles accrete on its surface. 2 days after, the cloud seems to have spread uniformly in the vicinity of the binary, until, after 15 days, it begins to dilute. After that, the rate at which the ejecta population reduces slows down. The latter can be observed from figure (4.7). Until 1 month, 11.75\% of the ejected particles crash on Didymain's surface, 66.1% crash on Didymoon's surface and 3.75% escape the binary. In such a dynamical environment (low velocity particles), an escape occurs due to gravity assist from the asteroids. The remaining 18.4% is left in chaotic orbits around the binary. Apart from studying the ejecta cloud as a whole, one could study the behaviour of the ejected particles of the cloud as individuals. Figure (4.5) illustrates the distances r(t) and the velocities v(t) of 21/4000 randomly sampled ejected particles. Figure (4.6) illustrates the orbits (x(t), y(t), z(t)) of the same 21/4000particles in space. One can observe the possible fates described in section (4.2). For example, the body 42, orbits the binary at a relatively short distance and at some point, due a gravity assist, it gains velocity greater than the corresponding escape one and ultimately flies away from the binary. Another case is the body 3683 which crashes on Didymain's surface after some time.

Appendices

Appendix A

Didymain Model (Source Code)

```
This code uses the observed surface data of Didymain and fills its interior
  with points. Ultimately a solid filled model is obtained.
  Files used as input:
       1) main surf vertices.txt
       2) main_surf_indices.txt
  Files \ produced \ as \ output:
10
       1) main_interior.txt
11
       2) main_complete_model.txt
12
13
14 */
15
16 #include < stdio.h>
17 #include < stdlib.h>
18 \#include < math.h >
19 #include < time . h>
21 #define FILE_NAME_1 "main_surf_vertices.txt" 22 #define FILE_NAME_2 "main_surf_indices.txt"
23 #define FILE_NAME_3 "main_interior.txt"
24 #define FILE NAME 4 "main complete model.txt"
  {\color{red} \textbf{const double}} \ h = \ 0.025; \ //\text{3D grid step in km}
27 int totalVertices = 0; //number of points that will form the asteroid
  //Counts the number of rows of a file.
  int FileRows(FILE *fp)
31
       int rows = 0;
32
33
       char c;
       34
35
            if (c = ' \setminus n')
36
37
                rows++;
38
39
       rows++;
40
       rewind (fp);
       return rows;
41
42 }
43
44 //Reads the observed vertices x,y,z of the asteroid from the file.
   void InputVertices (FILE *fp, double *x, double *y, double *z)
46
       double tempx, tempy, tempz;
47
       int i = 0;
48
       while (fscanf(fp, "%lf %lf %lf", &tempx, &tempy, &tempz) != EOF)
49
```

```
x[i] = tempx;
51
52
            y[i] = tempy;
53
            z[i] = tempz;
54
            i++;
55
        }
56 }
57
   //Reads the observed indices of the asteroid from the file, that is,
59 //triads of points p1,p2,p3 that form triangles.
60 //Index i corresponds to the i-th row of the vertices file.
61 void InputIndices (FILE *fp, int *p[3])
62
63
        int p1, p2, p3;
64
        int i = 0;
65
        while (fscanf(fp, "%d %d %d",&p1,&p2,&p3) != EOF)
66
             //subtract 1 from all indices because the official file
67
              starts counting from 1, while I start from 0
68
69
            p[i][0] = p1 - 1;
70
            p[i][1] = p2 - 1;
            p[i][2] = p3 - 1;
71
72
             i++;
        }
73
74 }
75
76
   //Calculates the length of a vector.
   double Len (double x, double y, double z)
78
        return sqrt(x*x + y*y + z*z);
79
80 }
81
   //Calculates the cross product components of two vectors that
82
83 //are formed by 3 points. Last argument is used to determine
84 //the component of the cross product that will be returned.
   //Possible values of 'coordinate': 0 \longrightarrow x, 1 \longrightarrow y, 2 \longrightarrow z
   \begin{array}{c} \text{double CrossProduct(double } x1\,, \ \text{double } y1\,, \ \text{double } z1\,, \\ \text{double } x2\,, \ \text{double } y2\,, \ \text{double } z2\,, \end{array}
87
                           double x3, double y3, double z3, double coordinate)
88
89
90
         if (coordinate == 0) return (y2-y1)*(z3-z2) - (z2-z1)*(y3-y2);
            (coordinate = 1) return (z2-z1)*(x3-x2) - (x2-x1)*(z3-z2);
91
         if (coordinate = 2) return (x2-x1)*(y3-y2) - (y2-y1)*(x3-x2);
92
93
         //else
94
         printf("Error while calculating the normal vectors. Exiting...\n");
95
         exit (EXIT_FAILURE);
96
   }
97
98 //(nx[i],ny[i],nz[i]) -> coordinates of the i-th normal vector, that is,
99 //the vector which is perpendicular to the triangle formed from
100 //the i-th triad of the indices file.
   void CalculateNormalVectors(double *x,
                                                 double *y, double *z,
                                    double *nx, double *ny, double *nz,
                                    int *p[3], int N2)
104
105
        for (int i = 0; i < N2; i++)
106
            nx[\,i\,] \,=\, CrossProduct \big( x[\,p[\,i\,][\,0\,]] \;,\;\; y[\,p[\,i\,][\,0\,]] \;,\;\; z[\,p[\,i\,][\,0\,]] \;,
                                     x[p[i][1]], y[p[i][1]], z[p[i][1]],
108
                                     x[p[i][2]], y[p[i][2]], z[p[i][2]], 0);
110
             ny[i] = CrossProduct(x[p[i][0]], y[p[i][0]], z[p[i][0]],
111
112
                                     x[p[i][1]], y[p[i][1]], z[p[i][1]],
                                     x[p[i][2]], y[p[i][2]], z[p[i][2]], 1);
113
114
             nz[i] = CrossProduct(x[p[i][0]], y[p[i][0]], z[p[i][0]],
115
                                     x[p[i][1]], y[p[i][1]], z[p[i][1]],
116
                                     x[p[i][2]], y[p[i][2]], z[p[i][2]], 2);
117
118
        }
119 }
```

```
120
    //Calculates the min value of a 1D array.
121
122
    double Min(double *array, int N1)
123
124
         double min = array[0];
         for (int i = 1; i < N1; i++)
126
              if (array[i] < min)
127
                   min = array[i];
128
129
         }
130
         return min;
131
    //Calculates the max value of a 1D array.
133
134
    double Max(double *array, int N1)
135
         double max = array[0];
136
         for (int i = 1; i < N1; i++)
138
              if (array[i] > max)
139
                   \max = \operatorname{array}[i];
140
142
         return max:
143
144
    //Creates a solid filled 3D model of the asteroid
145
    void ComputationalSpace(FILE *fp3, FILE *fp4,
147
                                  double *x, double *y,
                                                                 double *z.
                                   double *nx, double *ny, double *nz,
148
149
                                  int *p[3], int N1, int N2)
150
         //calculate the borders of the grid (box)
         double x min = Min(x, N1);
152
         double x \max = \max(x, N1);
         \begin{array}{ll} \textbf{double} & \textbf{y}\_\textbf{min} \ = \ \textbf{Min} \left( \textbf{y} \, , \textbf{N1} \, \right); \end{array}
154
         \frac{\text{double y\_max}}{\text{max}} = \text{Max(y, N1)};
156
         double z_{min} = Min(z, N1);
         double z \max = Max(z, N1);
157
158
         //increase the box's size a little bit
        x\_{min} \ -\!\!= \ h \, ;
159
        x max += h;
160
161
        y \min -= h;
        y_max += h;
162
163
         z_{\min} = h;
        z_{max} + h;
164
         //calculate the size of the box
165
         double Dx = x_max - x_min;
166
         double Dy = y_max - y_min;
167
168
         double Dz = z_{max} - z_{min};
169
170
         printf("Computational space (box) size :\n");
         printf("\tx_min = \%lf\n",x_min);
171
         printf("\tx_max = \%lf\n",x_max);
172
         printf("\t\t\tDx = \%lf\n",Dx);
173
         printf("\ty_min = %lf\n",y_min);
printf("\ty_max = %lf\n",y_max);
printf("\t\tDy = %lf\n",Dy);
174
175
176
         printf("\tz\_min = \%lf\n",z\_min);
177
         printf("\tz_{max} = \%lf\n",z_{max});
178
         179
         printf("Creating model. Please wait...\n");
180
181
         //loop through all the points of the 3D grid with step h
         for (double xx = x \min; xx \le x \max; xx += h)
182
183
              for (double yy = y_min; yy \le y_max; yy += h)
184
185
                   \label{eq:control_control_control} \text{for } (\text{double } zz = z\_\min; \ zz \mathrel{<=} z\_\max; \ zz \mathrel{+=} h)
186
187
                        int intersections = 0; //counter
188
```

```
//loop through all the triangles in search for intersection
189
                      for (int i = 0; i < N2; i++)
190
191
                           //define the triangle i from its 3 points
192
194
                           //point p0
                           double x0 = x[p[i][0]];
195
196
                           double y0 = y[p[i][0]];
                           double z0 = z[p[i][0]];
197
198
                           //point p1
199
                           double x1 = x[p[i][1]];
200
                           double y1 = y[p[i][1]];
201
                           double z1 = z[p[i][1]];
202
203
                           //point p2
204
                           double x2 = x[p[i][2]];
205
                           double y2 = y[p[i][2]];
206
                           double z2 = z[p[i][2]];
207
208
                           //intersection point pi
209
                           double xi = x0 + (y0*ny[i] + z0*nz[i] - yy*ny[i] - zz*nz[i])/nx[i];
210
                           double yi = yy;
211
212
                           double zi = zz;
213
                           //Form the following 3 triangles and calculate their area:
214
215
                            (/1) pi p0 p1
                           //2) pi p1 p2
216
                           //3) pi p2 p0
217
218
                           double A_{i01} = 0.5 * Len(CrossProduct(xi, yi, zi, x0, y0, z0, x1, y1, z1, 0),
219
                                                      CrossProduct(xi, yi, zi, x0, y0, z0, x1, y1, z1, 1),
220
                                                      CrossProduct(xi,yi,zi, x0,y0,z0, x1,y1,z1, 2));
221
                           double A_{i12} = 0.5 * Len(CrossProduct(xi, yi, zi, x1, y1, z1, x2, y2, z2, 0))
222
                                                      CrossProduct(xi,yi,zi, x1,y1,z1, x2,y2,z2, 1),\\
223
224
                                                      CrossProduct(xi,yi,zi, x1,y1,z1, x2,y2,z2, 2));\\
225
                           226
                                                      CrossProduct\,(\,xi\,\,,yi\,\,,zi\,\,,\  \  x2\,\,,y2\,\,,z2\,\,,\  \  x0\,\,,y0\,\,,z0\,\,,\  \  1)\,\,,
227
                                                      CrossProduct\,(\,xi\,\,,yi\,\,,zi\,\,,\  \, x2\,\,,y2\,\,,z2\,\,,\  \, x0\,\,,y0\,\,,z0\,\,,\  \, 2\,)\,)\,;
228
229
                           double A
                                         = 0.5*Len(CrossProduct(x0,y0,z0,x1,y1,z1,x2,y2,z2,0)),
230
                                                      CrossProduct\left(\,x0\,,y0\,,z0\,,\ x1\,,y1\,,z1\,,\ x2\,,y2\,,z2\,,\ 1\,\right),
231
232
                                                      CrossProduct(x0, y0, z0, x1, y1, z1, x2, y2, z2, 2));
233
                           //if the sum of the 3 areas is equal to the area of the main triangle,
234
                             then (xi, yi, zi) is indeed bounded from the triangle p0 p1 p2
235
                           if ((float)(A_i01 + A_i12 + A_i20) = (float)A & xi > xx)
236
237
                                intersections++;
238
239
                      //odd \longrightarrow (xx, yy, zz) is inside the surface
                      //\text{even} \longrightarrow (xx, yy, zz) is outside the surface
240
241
                      if (intersections%2 == 1)
242
                           \texttt{fprintf(fp3,"%lf \%lf \%lf n",xx,yy,zz);}
243
                           fprintf(fp4, "%lf %lf %lf\n", xx, yy, zz);
244
                           totalVertices++;
245
246
                 }
247
248
             }
249
250
        //append the initial surface vertices to obtain the complete model
        for (int i = 0; i < N1; i++)
251
        {
             fprintf(fp4, "%lf %lf %lf \n", x[i], y[i], z[i]);
253
254
             totalVertices++;
        }
255
256 }
257
```

```
258 int main()
259
        FILE *fp1 = fopen(FILE_NAME_1, "r"); // vertices file
260
        if (fp1 == NULL)
261
262
            printf("Error while reading file. \ Exiting... \backslash n");\\
263
            exit(EXIT FAILURE);
264
265
        int N1 = FileRows(fp1); //number of rows of the vertices file
266
267
        //surface vertices coordinates
        double *x = (double*) malloc(N1*sizeof(double));
268
        double *y = (double*) malloc(N1*sizeof(double));
269
        double *z = (double*) malloc(N1*sizeof(double));
270
271
        Input Vertices (fp1,x,y,z);
272
        FILE *fp2 = fopen(FILE_NAME_2, "r"); //indices file
273
        if (fp2 == NULL)
274
            printf("Error while reading file. Exiting...\n");
276
            exit(EXIT FAILURE);
277
278
279
        int N2 = FileRows(fp2); //number of rows of the indices file (number of triangles)
        int **p = (int **) malloc(N2*sizeof(int *)); //p[][]: triads of indices that form triangles
280
        for (int i = 0; i < N2; i++)
281
282
            p[i] = (int*) malloc(3*sizeof(int));
283
        InputIndices (fp2,p);
284
        //coordinates of the normal vectors (perpendicular to each triangle)
285
        double *nx = (double*) malloc(N2*sizeof(double));
286
287
        double *ny = (double*) malloc(N2*sizeof(double));
        double *nz = (double*) malloc (N2*sizeof (double));
288
289
        CalculateNormalVectors(x,y,z,nx,ny,nz,p,N2);
290
        FILE * fp3 = fopen(FILE\_NAME\_3, "w"); //interior points
291
        FILE *fp4 = fopen(FILE_NAME_4, "w"); //surface AND interior points
293
        clock t t1, t2;
294
        t1 = clock();
        ComputationalSpace(fp3, fp4, x, y, z, nx, ny, nz, p, N1, N2);
295
296
        t2 = clock();
        double cpuTime = (t2-t1)/(double)CLOCKS_PER_SEC;
        printf("Model created successfully.\n");
298
        printf("Total vertices: %d\n", totalVertices);
299
        printf("Estimated completion time: %lf sec\n",cpuTime);
300
301
302
        free(x);
        free(y);
303
        free(z);
304
        for (int i = 0; i < N2; i++)
305
306
            free (p[i]);
        free(p);
307
308
        free (nx);
        free (ny);
309
310
        free (nz);
311
        fclose (fp1);
312
        fclose (fp2);
313
        fclose (fp3);
        fclose (fp4);
314
        return 0;
315
316
```

Appendix B

Didymoon Model (Source Code)

```
2 This code uses the analytic equation of a tri-axial ellipsoid
 3 in order to create solid filled 3D model of Didymoon.
 5
   Files produced as output:
         1) moon complete model.txt
10 #include < stdio.h>
11 #include < stdlib.h>
12 \#include < math.h >
13 #include < time.h>
15 #define FILE_NAME "moon_complete_model.txt"
17 //ellipsoid semi-axes in km
18 const double a = 0.100;
19 const double b = 0.080;
20 const double c = 0.070;
22 const double h=0.01;\ //3D grid step in km
23 int totalVertices = 0; //number of points that will form the asteroid
   //Creates a solid filled model of the asteroid
   void ComputationalSpace(FILE *fp)
         //define the borders of the grid (box)
         \begin{array}{ll} \textbf{double} & \textbf{x}\_\textbf{min} \, = \, -\textbf{a} \, ; \end{array}
29
         \begin{array}{lll} \mbox{double} & \mbox{x\_max} = & \mbox{a}; \\ \mbox{double} & \mbox{y\_min} = - \mbox{b}; \end{array}
31
         double y_max = b;
32
33
         double z_{min} = -c;
         \begin{array}{lll} \textbf{double} & \textbf{z}\_\textbf{max} = & \textbf{c} \,; \end{array}
34
35
         //increase the box's size a little bit
        x_{\min} = h;
36
        x_max += h;
37
38
        y_{\min} = h;
        y_max += h;
39
40
        z_{\min} = h;
        z \max += h;
41
         //calculate the size of the box
42
43
         double Dx = x_max - x_min;
44
         45
         \begin{array}{lll} \textbf{double} & \textbf{Dz} \, = \, \textbf{z} \_ \text{max} \, - \, \textbf{z} \_ \text{min} \, ; \end{array}
46
         printf("Computational space (box) size :\n");
47
         printf("\tx\_min = \%lf\n",x\_min);
48
         printf("\tx_max = \%lf\n",x_max);
49
         printf("\t\t\t\Dx = \%lf\n",Dx);
```

```
printf("\ty_min = %lf\n",y_min);
printf("\ty_max = %lf\n",y_max);
printf("\t\tDy = %lf\n",Dy);
51
52
53
        printf("\tz_min = \%lf\n",z_min);
54
        printf("\tz max = \%lf\n",z max);
55
        printf("\t\t\tDz = \%lf\n",Dz);
56
        printf("Creating model. Please wait...\n");
57
        //loop through the computational space with step h
58
        for (double x = x_min; x \le x_max; x += h)
59
60
             \quad \text{for (double } y = y\_\min; \ y \mathrel{<=} y\_\max; \ y \mathrel{+=} h)
61
62
                  for (double z = z_min; z \le z_max; z += h)
63
64
65
                       //check if you are inside or on the ellipsoid surface
                       if ((x*x)/(a*a) + (y*y)/(b*b) + (z*z)/(c*c) \le 1.0
66
67
                            {\tt fprintf(fp, "\%.31f~\%.31f~\%.31f \ \%.31f \ n", x, y, z);}
68
                            totalVertices++;
69
70
71
                  }
             }
72
        }
73
74 }
75
76
   int main()
77
   {
        FILE * fp = fopen(FILE NAME, "w");
78
79
        clock t t1, t2;
        t1 = clock();
80
        ComputationalSpace(fp);
81
82
        t2 = clock();
        double cpuTime = (t2-t1)/(double)CLOCKS PER SEC;
83
84
        printf("Model created successfully.\n");
        printf("Total vertices: %d\n", totalVertices);
85
86
        printf("Estimated completion time: %lf sec\n",cpuTime);
87
        fclose (fp);
88
        return 0;
89 }
```

codes/MoonCompSpace.c

Appendix C

Visualisation of the Models (Source Code)

```
This code imports the two asteroid models and renders 3D visualisation.
4 Use the buttons '1', '2', '3', '4', '5', '6' to jump between models.
8 #include < stdio.h>
9 #include < stdlib.h>
10 #include < math.h>
11 #include < stdbool.h>
12 \#include < GL/gl.h>
13 \#include <GL/glu.h>
14 #include <GL/freeglut.h>
16 #define FILE_NAME_1 "main_surf_vertices.txt"
17 #define FILE_NAME_2 "main_surf_indices.txt"
18 #define FILE_NAME_3 "main_interior.txt"
19 #define FILE_NAME_4 "main_complete_model.txt"
20 #define FILE_NAME_5 "moon_complete_model.txt"
21 #define FILE_NAME_6 "main_surf_interpolated_vertices.txt"
23 #define ESCAPE 27 //corresponding ASCII character
  #define SPACEBAR 32 //corresponding ASCII character
24
   //what you are going to see according to the button you press ('1',...,'6')
27 bool mainSurface = true; //\text{didymain surface model}
28 bool mainInterpSurface = false; //didymain's interpolated surface vertices
  bool mainComplete = false; //didymain complete model
  bool\ mainSurface And Interior\ =\ false\ ;\ //\ didymain\ surface\ and\ interior\ vertices \\ bool\ moonComplete\ =\ false\ ;\ //\ didymoon\ 's\ vertices
  bool mainAndMoon = false; //didymain and didymoon surfaces
33
  bool pause = false; //press SPACEBAR to pause/unpause
34
  const\ float\ hMainSurf=0.04;\ //didymain's\ surface\ voxel\ size
37 const float hMainInterpSurface = 0.024; //didymain's interpolated surface voxel size
38 const float hMainComplete = 0.024; //didymain's complete model voxel size
  const float hMoonComplete = 0.01; //didymoon's complete model voxel size
39
41 const float axeDistance = 0.6 f;
43 int N1, N2, N3, N4, N5, N6; //corresponding file rows
44
   //didymain surface vertices
46 float *xx1 = NULL;
47 float *yy1 = NULL;
48 float *zz1 = NULL;
50 //didymain surface indices
```

```
51 int **p = NULL; //p[i][j]
52
53 //unit normal vector components (used for shading didymain)
54 float *ux = NULL;
55 float *uy = NULL;
56 float *uz = NULL;
   //didymain interior
59 float *x3 = NULL;
60 float *y3 = NULL;
61 float *z3 = NULL;
63 //didymain complete model
64 \text{ float } *x4 = \text{NULL};
65 float *y4 = NULL;
66 float *z4 = NULL;
   //didymoon complete model
68
69 float *x5 = NULL;
70 float *y5 = NULL;
71 float *z5 = NULL;
73 //didymain interpolated surface vertices
74 float *x6 = NULL;
75 float *y6 = NULL;
76 float *z6 = NULL;
78 //ellipsoid (didymoon) semi-axes in km
79 const float a = 0.103;
80 const float b = 0.079;
81 const float c = 0.066;
83 //graphics window size
84 GLsizei width = 1000;
85 GLsizei height = 900;
   //Counts the number of rows of a file.
87
88 int FileRows (FILE *fp)
89
       int rows = 0;
90
91
        char c;
        while ((c = fgetc(fp)) != EOF)
92
93
        {
            if (c = ' \setminus n')
94
95
                rows++;
        }
96
       rows++;
97
       rewind (fp);
98
99
       return rows;
100 }
101
102 //Reads the x,y,z data from the file.
103 void InputVertices(FILE *fp, float *x, float *y, float *z)
104 {
105
        float tempx, tempy, tempz;
106
       int i = 0;
        while (fscanf(fp, "%f %f %f", &tempx, &tempy, &tempz) != EOF)
108
            x[i] = tempx;
            y[i] = tempy;
110
            z[i] = tempz;
            i++;
112
113
        }
114 }
115
116 //Reads the observed indices of didymain from the file, that is,
117 //triads of points p1,p2,p3 that form triangles
^{118} //index i corresponds to the i-th row of the vertices file.
119 void InputIndices(FILE *fp)
```

```
120 {
121
         int p1, p2, p3;
         int i = 0;
         while (fscanf(fp, "%d %d %d",&p1,&p2,&p3) != EOF)
123
124
              //subtract 1 from all indices because the official file
              //starts counting from 1, while I start from 0
126
127
              p[i][0] = p1 - 1;
              p[i][1] = p2 - 1;
128
              p[i][2] = p3 - 1;
129
130
              i++;
131
132
133
    //Calculates the cross product components of two vectors that
    //are formed by 3 points. Last argument is used to determine
135
    //the component of the cross product that will be returned.
     /Possible values of 'coordinate': 0 \longrightarrow x, 1 \longrightarrow y, 2 \longrightarrow z
    float \;\; CrossProduct (\; float \;\; x1 \;, \;\; float \;\; y1 \;, \;\; float \;\; z1 \;,
138
                            float x2, float y2, float z2,
139
                            float x3, float y3, float z3, float coordinate)
140
141
          if (coordinate == 0) return (y2-y1)*(z3-z2) - (z2-z1)*(y3-y2);
142
          if (coordinate == 1) return (z2-z1)*(x3-x2) - (x2-x1)*(z3-z2);
143
          if (coordinate = 2) return (x2-x1)*(y3-y2) - (y2-y1)*(x3-x2);
144
145
          //else
          printf("Error while calculating the normal vectors. Exiting...\n");
146
          exit (EXIT_FAILURE);
147
148 }
149
150 //(nx[i],ny[i],nz[i]) --> coordinates of the i-th normal vector, that is,
     the vector which is perpendicular to the triangle formed from
   //the i-th triad of the indices file.
153 void CalculateNormalVectors()
154
         float nx, ny, nz; //i-th normal vector
         for (int i = 0; i < N2; ++i)
156
157
              nx = CrossProduct(xx1[p[i][0]], yy1[p[i][0]], zz1[p[i][0]],
158
                                    xx1[p[i][1]], yy1[p[i][1]], zz1[p[i][1]], xx1[p[i][2]], yy1[p[i][2]], zz1[p[i][2]], 0);
159
160
161
              ny \, = \, CrossProduct \, (\, xx1 \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, , \  \, yy1 \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, , \  \, zz1 \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, ,
162
163
                                     xx1[p[i][1]], yy1[p[i][1]], zz1[p[i][1]],
                                     xx1[p[i][2]], yy1[p[i][2]], zz1[p[i][2]], 1);
164
165
              nz \, = \, CrossProduct \, (\, xx1 \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, , \  \, yy1 \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, , \  \, zz1 \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ]
166
                                     xx1[p[i][1]], yy1[p[i][1]], zz1[p[i][1]],
167
168
                                     xx1[p[i][2]], yy1[p[i][2]], zz1[p[i][2]], 2);
169
170
              //i-th unit normal vector
              ux[i] = nx/sqrt(nx*nx + ny*ny + nz*nz);
171
172
              uy[i] = ny/sqrt(nx*nx + ny*ny + nz*nz);
173
              uz[i] = nz/sqrt(nx*nx + ny*ny + nz*nz);
174
         }
175
176
177 void setup()
178
         glEnable (GL DEPTH TEST);
179
         glEnable(GL\_LIGHT\overline{0});
180
181
         glEnable(GL LIGHTING);
         glEnable (GL COLOR MATERIAL);
182
         glEnable(GL_NORMALIZE);
183
         glClearColor (1.0,1.0,1.0,0.0);
184
185 }
186
187 void reshape (GLsizei w, GLsizei h)
188 {
```

```
if (h = 0) h = 1;
189
        glViewport(0,0,w,h);
190
        glMatrixMode(GL_PROJECTION);
191
        glLoadIdentity();
192
193
        float AspectRatio = (float)w/(float)h;
        gluPerspective (60.0, AspectRatio, 0.1, 100.0);
194
        glMatrixMode(GL MODELVIEW);
195
196
        glLoadIdentity();
197
        gluLookAt(0,-1.9,0.75,0,0,0,0,1,0);
198
199
   void display()
200
201
        \verb|glClear| (GL\_COLOR\_BUFFER\_BIT | GL\_DEPTH\_BUFFER\_BIT);
202
203
        glPushMatrix();
204
            float light Position [] = \{1.0, -1.0, 0.0, 0.0\};
205
            glLightfv(GL_LIGHTO,GL_POSITION, lightPosition);
206
207
        glPopMatrix();
208
        static float angle = 0.0 f;
209
210
        glColor3f(0.5f,0.5f,0.5f);
211
        if (mainSurface) //plot didymain's surface models (voxels and triangles)
212
213
214
              /voxels
215
            glPushMatrix();
                 glTranslatef(-axeDistance,0.0f,0.0f);
216
                 glRotatef(angle, 0, 0, 1);
217
218
                 for (int i = 0; i < N1; ++i)
219
                 {
220
                     glPushMatrix();
                          glTranslated (xx1[i], yy1[i], zz1[i]);
221
                          glutSolidCube(hMainSurf);
                     glPopMatrix();
224
            glPopMatrix();
225
            //triangles
227
            glPushMatrix();
228
                 glTranslatef(axeDistance, 0.0f, 0.0f);
                 glRotatef (angle, 0, 0, 1);
230
                 glBegin (GL_TRIANGLES);
231
232
                     for (int i = 0; i < N2; ++i)
233
                     {
                          glNormal3f(ux[i],uy[i],uz[i]); //for the shading
234
                               glVertex3f(xx1[p[i][0]], yy1[p[i][0]], zz1[p[i][0]]);
                              glVertex3f(xx1[p[i][1]]\;,\;\;yy1[p[i][1]]\;,\;\;zz1[p[i][1]]);
236
                               glVertex3f(xx1[p[i][2]], yy1[p[i][2]], zz1[p[i][2]]);
238
                 glEnd();
239
            glPopMatrix();
240
241
        else if (mainInterpSurface) //plot didymain (surface + interpolated)
242
243
244
          //non interpolated
            glPushMatrix();
245
                 glTranslatef(-axeDistance,0.0f,0.0f);
246
                 glRotatef(angle, 0, 0, 1);
247
                 for (int i = 0; i < N1; ++i)
248
249
                     glPushMatrix();
250
                          glTranslated (xx1[i], yy1[i], zz1[i]);
251
                          glutSolidCube(hMainSurf);
                     glPopMatrix();
253
                 }
254
            glPopMatrix();
255
256
          //interpolated
257
```

```
glPushMatrix();
258
259
          glTranslatef(axeDistance, 0.0f, 0.0f);
260
                 glRotatef(angle, 0, 0, 1);
                 for (int i = 0; i < N6; ++i)
261
                 {
                      glPushMatrix();
263
                           glTranslated (x6[i],y6[i],z6[i]);
264
265
                           glutSolidCube(hMainInterpSurface);
                      glPopMatrix();
266
267
             glPopMatrix();
268
269
        else if (mainComplete) //plot complete model of didymain
271
272
             glPushMatrix();
                 glRotatef(angle, 0, 0, 1);
273
                 for (int i = 0; i < N4; ++i)
                 {
276
                      glPushMatrix();
                           glTranslated (x4[i],y4[i],z4[i]);
277
                           glutSolidCube(hMainComplete);
278
279
                      glPopMatrix();
280
             glPopMatrix();
281
282
283
        else if (mainSurfaceAndInterior) //demonstrate how the interior fits the surface
284
              /surface
285
             glPushMatrix();
286
287
                 glRotatef(angle, 0, 0, 1);
                 for (int i = 0; i < N1; ++i)
288
280
                      if (xx1[i] > 0)
290
291
                      {
                           glPushMatrix();
293
                               glTranslated(xx1[i],yy1[i],zz1[i]);
294
                               glutSolidCube(hMainSurf);
                           glPopMatrix();
295
296
             glPopMatrix();
298
299
             //interior
300
301
             glColor3f(0.7f,0.0f,0.0f);
             glPushMatrix();
302
                 glRotatef (angle, 0, 0, 1);
303
304
                 for (int i = 0; i < N3; ++i)
305
                 {
306
                      glPushMatrix();
                           {\tt glTranslated}\,(\,x3\,[\,i\,]\,\,,y3\,[\,i\,]\,\,,z3\,[\,i\,]\,)\,;
307
308
                           glutSolidCube(hMainComplete);
                      glPopMatrix();
309
310
             glPopMatrix();
311
312
313
        else if (moonComplete) //plot didymoon
314
315
             glPushMatrix();
                 glTranslatef(-axeDistance/3,0.0f,0.0f);
316
317
                 glRotatef(angle, 0, 0, 1);
318
                 for (int i = 0; i < N5; ++i)
                 {
319
                      glPushMatrix();
                           glTranslated (x5[i], y5[i], z5[i]);
321
                           glutSolidCube(hMoonComplete);
322
323
                      glPopMatrix();
                 }
             glPopMatrix();
325
326
```

```
glPushMatrix();
327
                 glTranslatef(axeDistance/3,0.0f,0.0f);
328
329
                 glRotatef(angle, 0, 0, 1);
                 glScaled(a,b,c);
330
331
                 glutSolidSphere (1.0,20,20);
             glPopMatrix();
332
333
        else if (mainAndMoon) //plot didymain and didymoon
334
336
             //didymain triangles
             glPushMatrix();
337
338
                 glTranslatef(-1.18/2,0.0f,0.0f);
                 glRotatef (angle, 0, 0, 1);
339
                 glBegin (GL_TRIANGLES);
340
341
                      \quad \text{for (int $i = 0$; $i < N2$; $+\!\!+\!\!i$)}
                      {
                          glNormal3f(ux[i],uy[i],uz[i]); //for the shading
343
                               glVertex3f(xx1[p[i][0]], yy1[p[i][0]], zz1[p[i][0]]);
344
                               glVertex3f(xx1[p[i][1]], yy1[p[i][1]], zz1[p[i][1]]);\\
345
346
                               glVertex3f(xx1[p[i][2]], yy1[p[i][2]], zz1[p[i][2]]);
347
                 glEnd();
348
             glPopMatrix();
349
350
351
             //didymoon
             glPushMatrix();
352
                 glTranslatef(1.18/2,0.0f,0.0f);
353
                 glRotatef(angle,0,0,1);
354
                 glScaled(a,b,c);
355
356
                 glutSolidSphere(1.0,20,20);
357
             glPopMatrix();
358
        }
359
360
        angle += 1.0 f;
        if~(angle >= 360.0\,f)
361
362
             angle = 0.0 f;
363
        glutSwapBuffers();
364
365
366
367
   void keyboard (unsigned char key, int x, int y)
368
        if (\text{key} = '1')
369
370
        {
             mainSurface = true;
371
             mainInterpSurface = false;
372
             mainComplete = false;
373
             mainSurfaceAndInterior = false;
374
375
             moonComplete = false;
            mainAndMoon = false;
376
377
        else if (key == '2')
378
379
380
             mainSurface = false;
381
             mainInterpSurface = true;
382
             mainComplete = false;
             mainSurfaceAndInterior = false;
383
384
             moonComplete = false;
            mainAndMoon = false;
385
386
        else if (\text{key} = '3')
387
388
389
             mainSurface = false;
             mainInterpSurface = false;
390
             mainComplete = true;
391
             {\tt mainSurfaceAndInterior} \ = \ false \ ;
392
             moonComplete = false;
393
394
            mainAndMoon = false;
395
        }
```

```
else if (\text{key} = '4')
396
397
398
            mainSurface = false;
            mainInterpSurface = false;
399
400
            mainComplete = false;
            mainSurfaceAndInterior = true;
401
            moonComplete = false;
402
            mainAndMoon = false;
403
        }
404
        else if (key == '5')
405
406
            mainSurface = false;
407
            mainInterpSurface = false;
408
            mainComplete = false;
409
410
            mainSurfaceAndInterior = false;
            moonComplete = true;
411
            mainAndMoon = false;
412
        }
413
        else if (\text{key} = '6')
414
415
            mainSurface = false;
416
417
            mainInterpSurface = false;
            mainComplete = false;
418
            mainSurfaceAndInterior = false;
419
420
            moonComplete = false;
421
            mainAndMoon = true;
422
        else if (key == ESCAPE)
423
            glutLeaveMainLoop();
424
425
        else if (key == SPACEBAR)
426
            pause = !pause;
427 }
428
   void idle()
429
430
431
        if (!pause)
432
            glutPostRedisplay();
   }
433
434
   int main(int argc, char *argv[])
435
436
        FILE *fp1 = fopen(FILE NAME 1, "r"); //didymain surface vertices
437
438
        if (fp1 == NULL)
439
        {
            printf("Error while reading file. Exiting...\n");
440
            exit (EXIT_FAILURE);
441
442
       N1 = FileRows(fp1);
443
        xx1 = (float*) malloc(N1*sizeof(float));
444
        yy1 = (float*) malloc(N1*sizeof(float));
445
446
        zz1 = (float*) malloc(N1*sizeof(float));
        Input Vertices (fp1, xx1, yy1, zz1);
447
448
        FILE \ *fp2 = fopen(FILE\_NAMe\_2, "r"); \ //didymain \ surface \ indices
449
450
        if (fp2 = NULL)
451
        {
            printf("Error while reading file. Exiting...\n");
452
453
            exit (EXIT_FAILURE);
454
       N2 = FileRows(fp2);
455
        p = (int**) malloc(N2*sizeof(int*));
456
457
        for (int i = 0; i < N2; i++)
            p[i] = (int*) malloc(3*sizeof(int));
458
        InputIndices (fp2);
459
460
        //unit normal vectors. Used for the shading of didymain.
461
        ux = (float*)malloc(N2*sizeof(float));
462
463
        uy = (float*) malloc(N2*sizeof(float));
        uz = (float*)malloc(N2*sizeof(float));
464
```

```
CalculateNormalVectors();
465
466
       FILE *fp3 = fopen(FILE_NAME_3, "r"); //didymain surface vertices
467
        if (fp3 == NULL)
468
469
        {
            printf("Error while reading file. Exiting...\n");
470
            exit(EXIT FAILURE);
471
472
       N3 = FileRows(fp3);
473
        x3 = (float*) malloc(N3*sizeof(float));
474
       y3 = (float*) malloc(N3*sizeof(float));
475
        z3 = (float*)malloc(N3*sizeof(float));
476
477
        Input Vertices (fp3, x3, y3, z3);
478
479
       FILE *fp4 = fopen(FILE_NAME_4, "r"); //didymain surface vertices
        if (fp4 == NULL)
480
481
        {
            printf("Error while reading file. Exiting...\n");
482
            exit (EXIT_FAILURE);
483
484
       N4 = FileRows(fp4);
485
        x4 = (float*) malloc(N4*sizeof(float));
486
       y4 = (float*) malloc(N4*sizeof(float));
487
        z4 = (float*) malloc (N4*sizeof(float));
488
489
        Input Vertices (fp4, x4, y4, z4);
490
       FILE *fp5 = fopen(FILE_NAME_5, "r"); //didymoon surface vertices
491
       if (fp5 == NULL)
492
493
        {
494
            printf("Error while reading file. Exiting...\n");
495
            exit (EXIT FAILURE);
496
497
       N5 = FileRows(fp5);
       x5 = (float*)malloc(N5*sizeof(float));
498
        y5 = (float*) malloc (N5*sizeof(float));
499
500
        z5 = (float*) malloc(N5*sizeof(float));
501
        Input Vertices (fp5, x5, y5, z5);
       FILE *fp6 = fopen(FILE_NAME_6, "r"); //didymain interpolated surface vertices
503
        if (fp6 = NULL)
504
505
            printf("Error while reading file. Exiting...\n");
506
507
            exit (EXIT_FAILURE);
508
       N6 = FileRows(fp6);
509
       x6 = (float*)malloc(N6*sizeof(float));
       y6 = (float*)malloc(N6*sizeof(float));
511
        z6 = (float*) malloc(N6*sizeof(float));
512
        Input Vertices (fp6, x6, y6, z6);
514
        glutInit(&argc, argv);
        glutInitWindowSize(width, height);
517
        glutInitWindowPosition(2000,50);
        \verb|glutInitDisplayMode| (GLUT\_RGB| GLUT\_DOUBLE | GLUT\_DEPTH);\\
518
519
        glutCreateWindow("Asteroid Models");
520
        glutDisplayFunc(display);
        glutReshapeFunc (reshape);
521
        glutKeyboardFunc(keyboard);
        glutIdleFunc(idle);
524
        setup();
        glutMainLoop();
        free (xx1);
527
        free(yy1);
528
529
        free (zz1);
530
        for (int i = 0; i < N2; ++i)
532
            free (p[i]);
        free(p);
```

```
534
535
          free(x3);
          free (y3);
536
537
          free(z3);
         free(x4);
539
          free (y4);
540
         free(z4);
541
542
          free(x5);
543
         free (y5);
free (z5);
544
545
546
547
          \mathtt{fclose}\,(\,\mathtt{fp1}\,)\,;
548
         fclose (fp2);
          fclose(fp3);
549
550
          fclose (fp4);
          fclose (fp5);
551
552
          return 0;
553 }
```

codes/Aster Model Open GL.c

Appendix D

The Binary in Orbit (Source Code)

```
3 This code sets the two asteroids in orbits and calculates their evolution.
 4 The primary (Didymain) is rotating with constant angular velocity around its z-axis,
   while the secondary (Didymoon) is tidally locked to the primary.
   Both asteroids are considered to consist of N1 and N2 particles respectively.
   All N1 particles have mass (m1), while all N2 particles have
  mass (m2). Runge-Kutta 4th order method is being used to solve the ODEs.
  Case: Short time step (dt = 0.0005 \text{ TU} = 2.66 \text{ sec})
10
11
   Files used as input:
12
       1) main complete model.txt
13
       2) \ moon\_complete\_model.\,txt
14
15
   Files produced as output:
       1) main_orbit.txt
17
18
       2) moon_orbit.txt
       3) orbital_elements.txt
19
20
21 */
23 #include < stdio.h>
24 #include < stdlib.h>
25 #include <math.h>
26 #include < time . h>
28 #define FILE NAME 1 "main complete model.txt"
29 #define FILE_NAME_2 "moon_complete_model.txt"
30 #define FILE_NAME_3 "main_orbit.txt"
31 #define FILE_NAME_4 "moon_orbit.txt"
32 #define FILE NAME 5 "orbital elements.txt"
_{
m 34} //system's parameters
                                   2 months
                                                    2.66 sec | 0.04 min
35 const double t0 = 0.0, tmax = 972.96, dt = 0.0005; //t sec = 5328.066*t u
36 const double G \,=\,1.0\,;\, //gravitational constant
37 const double M1 = 0.9907; //total mass of Didymain
38 const double M2 = 0.0093; // \, \text{total} mass of Didymoon
39 const double w1=-4.1147; //angular velocity of Didymain (w\_u=2*pi/T\_u) 40 int N1,N2; //Didymain's and Didymoon's number of particles respectively
41 double m1,m2; //mass of each particle of Didymain and Didymoon
43 //decide how often are the data printed to the files
44 int printCounter = 0;
45 const int timeSkip = 50;
47 //Counts the number of rows of a file.
48 int FileRows (FILE *fp)
49 {
       int rows = 0;
```

```
51
       char c;
       while ((c = fgetc(fp)) != EOF)
52
53
            if (c == '\n')
54
                rows++:
       }
56
57
       rows++;
58
       rewind (fp);
59
       return rows;
60
61
   //Reads the x,y,z vertices of the asteroid from the file.
62
63 void InputVertices(FILE *fp, double *x, double *y, double *z)
64 {
65
       double tempx, tempy, tempz;
       int i = 0;
66
       while (fscanf(fp, "%lf %lf %lf", &tempx, &tempy, &tempz) != EOF)
67
68
            x[i] = tempx;
69
70
           y[i] = tempy;
71
           z[i] = tempz;
72
            i++;
       }
73
74 }
75
   //Shifts all the x,y,z vertices of Didymain, so that its COM coincides
76
   //with O(0,0,0). This happens only once, before the calculation of the orbits.
   void ShiftCOM(double *x, double *y, double *z, double m, double M, int N)
78
79
80
        //calculate the COM
       double X = 0.0, Y = 0.0, Z = 0.0;
81
82
       for (int i = 0; i < N; i++)
83
       {
84
           X += m*x[i];
           Y += m*y[i];
85
86
           Z += m*z[i];
87
       X /= M;
88
       Y /= M;
89
90
       Z /= M;
91
       // shift the COM to O(0,0,0)
       for (int i = 0; i < N; i++)
92
93
94
            x[i] -= X;
           y[i] -= Y;
95
            z[i] -= Z;
96
       }
97
98
99
   //Calculates the length of a vector.
100
   double Len(double x, double y, double z)
102
103
       return sqrt(x*x + y*y + z*z);
104 }
   //Calculates the distance between 2 points.
106
   double Distance(double x1, double y1, double z1, double x2, double y2, double z2)
107
       return sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) + (z2-z1)*(z2-z1));
109
110 }
111
112 //Calculates the maximum distance between the COM of an asteroid and all its
113 //other vertices. Both COMs are located at O(0,0,0) with respect to their frame.
114 double MaxDistance(double *x, double *y, double *z, int N)
115
       double \max = \text{Len}(x[0], y[0], z[0]);
116
117
       for (int i = 1; i < N; i++)
118
            if \quad (Len(x[i],y[i],z[i]) > max)
119
```

```
\max = \text{Len}(x[i], y[i], z[i]);
120
121
122
        return max;
123 }
   //Rotates Didymain to an angle w*dt around the z-axis (retrograde).
125
   void RotateDidymain(double *x, double *y)
126
127
        for (int i = 0; i < N1; i++)
128
129
130
            double xx = x[i];
            double yy = y[i];
131
            x[i] = xx*cos(w1*dt) - yy*sin(w1*dt);
132
            y[i] = xx*sin(w1*dt) + yy*cos(w1*dt);
133
134
        }
135
136
   //\operatorname{Rotates} Didymoon so that it remains tidally locked to Didymain.
137
   void RotateDidymoon(double *x,
                                        double *y,
                                                     double *z,
138
                                                      double Z1,
139
                          double X1,
                                        double Y1,
                          double X2,
                                        double Y2,
                                                      double Z2,
140
                          double X01, double Y01, double Z01
141
                          double X02, double Y02, double Z02)
142
143
144
        double ax, ay, az, a_len; //vector a
        ax = X02-X01;
145
        ay = Y02-Y01;
146
        az = Z02-Z01;
147
        a len = sqrt(ax*ax + ay*ay + az*az);
148
149
        double bx, by, bz, b_len; //vector b
        bx = X2-X1;
        by = Y2-Y1;
        bz = Z2-Z1;
152
        b len = sqrt(bx*bx + by*by + bz*bz);
        double nx,ny,nz,n_len; //vector n (perpendicular to a and b)
154
        nx = ay*bz - az*by;
        ny = az*bx - ax*bz;
156
        nz = ax*by - ay*bx;
157
158
        n len = sqrt(nx*nx + ny*ny + nz*nz);
        double ux, uy, uz; // unit vector u <-- rotate Didymoon around this vector
159
        ux = nx/n len;
160
        uy = ny/n len;
161
        uz = nz/n_len;
162
163
        //f -> angle between vectors a and b (angle of rotation)
164
        double cosf = (ax*bx + ay*by + az*bz)/(a_len*b_len);
165
        double sinf = sqrt(1 - cosf*cosf);
166
167
168
        double I[3][3] = \{ \{1,0,0\}, \{0,1,0\}, \{0,0,1\} \};
        \begin{array}{lll} \textbf{double} \ W[\,3\,][\,3\,] &= \, \{ \ \{0,-uz\,,uy\,\}\,, \ \{uz\,,0,-ux\,\}\,, \ \{-uy\,,ux\,,0\,\} \ \}; \end{array}
169
170
        double W2[3][3] = \{ \{-uz*uz - uy*uy, uy*ux, uz*ux\}, \}
                               \{ux*uy, -uz*uz - ux*ux, uz*uy\},
171
172
                               \{ux*uz, uy*uz, -uy*uy - ux*ux\}\};
        double R[3][3]; //rotation matrix
173
174
        //calculate rotation matrix through Rodrigues formula
175
        for (int i = 0; i < 3; i++)
            for (int j = 0; j < 3; j++)
176
                 R[i][j] = I[i][j] + sinf*W[i][j] + (1-cosf)*W2[i][j];
177
178
        //perform the rotation
179
        for (int i = 0; i < N2; i++)
180
181
        {
            double xx = x[i];
182
183
            double yy = y[i];
184
            double zz = z[i];
            x[i] = R[0][0]*xx + R[0][1]*yy + R[0][2]*zz;
185
            y[i] = R[1][0]*xx + R[1][1]*yy + R[1][2]*zz;
186
187
            z[i] = R[2][0]*xx + R[2][1]*yy + R[2][2]*zz;
        }
188
```

```
189 }
190
191 double fX2 (double vX2)
192
193
       return vX2;
194
195
   double fY2 (double vY2)
196
197
       return vY2;
199
200
201 double fZ2 (double vZ2)
202
203
       return vZ2;
204 }
205
206
207
   double fvX2(double *x1, double *y1, double *z1,
208
               double X1, double X2, double Y1, double Y2, double Z1, double Z2)
209
210 {
       double sum = 0.0;
211
       for (int i = 0; i < N1; i++)
212
           sum \ += \ (X1-X2+x1\ [\ i\ ]\ )\ /\ pow\,(\ (X1-X2+x1\ [\ i\ ]\ )*(\ X1-X2+x1\ [\ i\ ]\ )\ +
213
214
                                        (Y1-Y2+y1[i])*(Y1-Y2+y1[i]) +
                                        (Z1-Z2+z1[i])*(Z1-Z2+z1[i]),3.0/2.0);
215
       return G*m1*sum;
216
217 }
218
   219
220
221 {
       double sum = 0.0;
222
       \quad \text{for (int $i = 0$; $i < N1$; $i++)} \\
223
224
           sum += (Y1-Y2+y1[i])/pow((X1-X2+x1[i])*(X1-X2+x1[i]) +
                                        (Y1-Y2+y1[i])*(Y1-Y2+y1[i]) +
225
                                        (Z1-Z2+z1[i])*(Z1-Z2+z1[i]),3.0/2.0);
226
       return G*m1*sum;
227
228 }
229
   double fvZ2(double *x1, double *y1, double *z1,
230
               double X1, double X2, double Y1, double Y2, double Z1, double Z2)
231
232
       double sum = 0.0;
233
       for (int i = 0; i < N1; i++)
234
           sum \ += \ (Z1-Z2+z1\left[\ i\ \right]) \ / \ pow\left(\ (X1-X2+x1\left[\ i\ \right]\ )*(X1-X2+x1\left[\ i\ \right]\ ) \ +
235
                                        (Y1-Y2+y1[i])*(Y1-Y2+y1[i]) +
236
237
                                        (Z1-Z2+z1[i])*(Z1-Z2+z1[i]),3.0/2.0);
       return G*m1*sum;
238
239
240
241
   void RK4(double *x1,
                         double *y1,
                                       double *z1,
                         double *X2,
                                       double Y1, double *Y2, double Z1, double *Z2,
242
            double X1,
243
            double *vX2, double *vY2, double *vZ2)
244
       double kX2 = fX2(*vX2);
245
       double kY2 = fY2(*vY2);
246
       double kZ2 = fZ2(*vZ2);
247
248
       249
       250
       double kvZ2 = fvZ2(x1,y1,z1, X1, *X2, Y1, *Y2, Z1, *Z2);
251
252
253
254
       double 1X2 = fX2(*vX2+(dt/2)*kvX2);
255
256
       double 1Y2 = fY2(*vY2+(dt/2)*kvY2);
257
       double 1Z2 = fZ2(*vZ2+(dt/2)*kvZ2);
```

```
258
      259
260
      261
262
263
264
      double mX2 = fX2(*vX2+(dt/2)*lvX2);
265
      double mY2 = fY2(*vY2+(dt/2)*lvY2);
266
      double mZ2 = fZ2(*vZ2+(dt/2)*lvZ2);
267
268
      269
      double mvY2 = fvY2(x1,y1,z1,X1,*X2+(dt/2)*IX2,Y1,*Y2+(dt/2)*IY2,Z1,*Z2+(dt/2)*IZ2);
      271
272
273
274
      double nX2 = fX2(*vX2+dt*mvX2);
275
      double nY2 = fY2(*vY2+dt*mvY2);
276
      double nZ2 = fZ2(*vZ2+dt*mvZ2);
277
278
      279
      double \ nvY2 = fvY2(x1,y1,z1,\ X1,\ *X2+dt*mX2,\ Y1,\ *Y2+dt*mY2,\ Z1,\ *Z2+dt*mZ2);
280
      double nvZ2 = fvZ2(x1,y1,z1, X1, *X2+dt*mX2, Y1, *Y2+dt*mY2, Z1, *Z2+dt*mZ2);
281
282
283
284
      *X2 = *X2 + (dt/6.0)*(kX2 + 2*lX2 + 2*mX2 + nX2);
285
      *Y2 = *Y2 + (dt/6.0)*(kY2 + 2*IY2 + 2*mY2 + nY2);
286
287
      *Z2 = *Z2 + (dt/6.0)*(kZ2 + 2*lZ2 + 2*mZ2 + nZ2);
288
289
      *vX2 = *vX2 + (dt/6.0)*(kvX2 + 2*lvX2 + 2*mvX2 + nvX2);
      *vY2 = *vY2 + (dt/6.0)*(kvY2 + 2*lvY2 + 2*mvY2 + nvY2);
290
      vZ2 = vZ2 + (dt/6.0)*(kvZ2 + 2*lvZ2 + 2*mvZ2 + nvZ2);
291
292 }
293
  int main()
294
295
      FILE *fp1 = fopen(FILE NAME 1, "r"); //Didymain vertices
296
      if (fp1 == NULL)
297
298
          printf("Error while reading file. Exiting...\n");
299
          exit (EXIT_FAILURE);
300
301
      N1 = FileRows(fp1);
302
      double *x1 = (double*) malloc(N1*sizeof(double));
303
      double *y1 = (double*) malloc(N1*sizeof(double));
304
      double *z1 = (double*) malloc(N1*sizeof(double));
305
306
      Input Vertices (fp1, x1, y1, z1);
307
308
      FILE *fp2 = fopen(FILE_NAME_2, "r"); //Didymoon vertices
      if (fp2 = NULL)
309
310
      {
          printf("Error while reading file. Exiting...\n");
311
312
          exit(EXIT FAILURE);
313
      N2 = FileRows(fp2);
314
      double *x2 = (double*) malloc(N2*sizeof(double));
315
      double *y2 = (double*) malloc(N2*sizeof(double));
316
      double *z2 = (double*) malloc (N2*sizeof (double));
317
      Input Vertices (fp2, x2, y2, z2);
318
319
      m1 = M1/N1; //Didymain's particles mass
320
321
      ShiftCOM(x1, y1, z1, m1, M1, N1);
322
      m2 = M2/N2; //Didymoon's particles mass
323
      //no need to shift the COM of Didymoon because by construction, the COM is
324
325
      //located at O(0,0,0) at its coordinate system.
326
```

```
//Place the COM of the 2 asteroids at O(0,0,0) and set it to zero velocity
327
328
                  double X,Y,Z;
                 double vX, vY, vZ;
329
                 X = Y = Z = 0.0;
330
                 vX = vY = vZ = 0.0;
331
332
                  //initial conditions for the center of mass of Didymoon
333
                  double X2, Y2, Z2, X02, Y02, Z02;
334
                 double vX2, vY2, vZ2;
335
                 X2 = 1.18; Y2 = 0.0; Z2 = 0.0;
336
                 vX2 = 0.0; vY2 = -0.921; vZ2 = 0.0;
337
                 X02 = X2; Y02 = Y2; Z02 = Z2; //auxiliary variables
338
339
                  //initial conditions for the center of mass of Didymain
340
341
                  double X1, Y1, Z1, X01, Y01, Z01;
                  double vX1, vY1, vZ1;
342
                 X1 = -M2*X2/M1; vX1 = -M2*vX2/M1;
343
                 Y1 = -M2*Y2/M1; vY1 = -M2*vY2/M1;
344
                 Z1 = -M2*Z2/M1; vZ1 = -M2*vZ2/M1;
345
346
                  double R2, V2, h2, hx2, hy2, hz2;
347
                  double a2, e2, i2; //semi major axis, eccentricity, plane inclination
348
349
                  //calculate the minimum allowed distance for the 2 center
350
351
                  //of masses to approach (collision detection)
                  const double maxDist1 = MaxDistance(x1, y1, z1, N1);
352
353
                  const double maxDist2 = MaxDistance(x2, y2, z2, N2);
                 const double minDist = maxDist1 + maxDist2;
354
355
                 FILE \ *fp3 = fopen(FILE\_NAME\_3, "w"); \ //Didymain \ orbit
356
                 357
358
                  printf("Calculating orbits. Please wait...\n");
359
                  clock_t t1, t2;
360
                 t1 = clock();
361
362
                  for (double t = t0; t \le tmax; t += dt)
363
                           364
                           fflush (stdout);
365
366
                           R2 = Len(X2, Y2, Z2);
367
                           V2 = Len(vX2, vY2, vZ2);
368
                           hx2 = Y2*vZ2 - Z2*vY2;
369
370
                           hy2 = Z2*vX2 - X2*vZ2;
                           hz2 = X2*vY2 - Y2*vX2;
371
                           h2 = Len(hx2, hy2, hz2);
372
373
                           a2 = 1.0/(2.0/R2 - V2*V2 /(G*(M1+M2)));
374
                           e2 = sqrt(1.0 - h2*h2/(G*(M1+M2)*a2));
375
                           i2 = a\cos(hz2/h2)*180.0/M PI;
376
377
                           if (printCounter%timeSkip == 0) //print to the files for every timeSkip time steps
378
379
                           {
                                      \begin{array}{l} {\rm fprintf}({\rm fp3}\,,{\rm ||% lf}\,\,{\rm |% lf}\,\,{\rm |% lf}\,\,{\rm || f}\,\,{\rm 
380
381
                                     fprintf(fp5, "%lf %lf %lf %lf \n", t, a2, e2, i2);
382
                           }
383
                           printCounter++;
384
385
386
                           //collision detection criterion
                           if (Distance(X1,Y1,Z1, X2,Y2,Z2) < minDist)
387
                           {
388
                                     printf("Collision detection at COM positions :\n");
389
                                     390
391
                                     printf("\tt = \%lf\n",t);
392
                                     break:
393
394
                           }
395
```

```
// {\tt update \ the \ COM \ coordinates \ of \ Didymoon \ through \ Runge-Kutta \ 4 \ method}
396
            RK4(x1,y1,z1, X1,&X2,Y1,&Y2,Z1,&Z2, &vX2,&vY2,&vZ2);
397
             //\mathrm{update} the COM coordinates of Didymain through the COM of the 2 asteroids
398
            X1 \, = \, -M2{*}X2/M1\,; \  \, vX1 \, = \, -M2{*}vX2/M1\,;
399
400
            Y1 = -M2*Y2/M1; vY1 = -M2*vY2/M1;
            Z1 = -M2*Z2/M1; vZ1 = -M2*vZ2/M1;
401
             //rotate Didymain to an angle w*dt around the z-axis
402
403
             RotateDidymain(x1,y1);
             //rotate Didymoon to an angle, so that it remains tidally locked
404
405
             Rotate Didymoon (x2, y2, z2, X1, Y1, Z1, X2, Y2, Z2, X01, Y01, Z01, X02, Y02, Z02);
406
407
             //reset auxiliary variables for the next calculation
            X01 = X1;
408
             Y01 = Y1;
409
410
            Z01 = Z1;
411
412
            X02 = X2;
            Y02 = Y2;
413
            Z02 = Z2;
414
        }
415
        printf("\nOrbits calculated.\n");
416
417
        t2 = clock();
        double cpuTime = (t2-t1)/(double)CLOCKS PER SEC;
418
        printf("Estimated completion time: %lf sec | %lf hrs\n",cpuTime,cpuTime/3600.0);
419
420
        free(x1);
421
        free (y1);
422
        free(z1);
        free(x2);
423
424
        free (y2);
425
        free(z2);
        fclose(fp1);
426
427
        fclose (fp2);
        fclose (fp3);
428
429
        fclose (fp4);
        fclose (fp5);
430
431
        return 0;
432 }
```

codes/MainMoonData.c

Appendix E

Visualisation of the Binary's Orbit (Source Code)

```
3 This code creates a graphical 3D simulation of Didymos binary orbit.
4 Rotate the camera view by left clicking and moving the mouse.
6 Files used as input:
      1) main_surf_vertices.txt
      2) main_surf_indices.txt
3) main_orbit.txt
10
      4) moon orbit.txt
11
12 */
14 #include < stdio.h>
15 #include < stdlib.h>
16 \#include <math.h>
17 #include < stdbool.h>
18 \# include < GL/gl.h >
19 #include <GL/glu.h>
20 #include <GL/freeglut.h>
21
22 #define FILE_NAME_1 "main_surf_vertices.txt"
23 #define FILE_NAME_2 "main_surf_indices.txt"
24 #define FILE NAME 3 "main orbit.txt"
25 #define FILE NAME 4 "moon orbit.txt"
27 #define ESCAPE 27 //escape ASCII character
  #define SPACEBAR 32 //spacebar ASCII character
  //mouse left click variables
int mousePreX = 0, mouseAftX;
  int mousePreY = 0, mouseAftY;
34
  bool pause = false;
35
  38 int N1 = 0; //number of rows of the main_surf_vertices file
39 double *x = NULL;
40 double *y = NULL;
41
  double *z = NULL;
43 int N2 = 0; //number of rows of the main_surf_indices file (number of triangles)
44 int **p = NULL;
46 //didymain COM
47 \text{ double } *X1 = \text{NULL};
```

```
48 double *Y1 = NULL;
49 double *Z1 = NULL;
50 //unit normal vector components (used for shading Didymain)
51 double *ux = NULL;
52 double *uy = NULL;
53 double *uz = NULL;
58
59 //ellipsoid (didymoon) semi-axes in km
60 const double a = 0.100;
61 const double b = 0.080;
62 const double c = 0.070;
63 //didymoon COM
64 double *X2 = NULL;
65 double *Y2 = NULL;
66 double *Z2 = NULL;
67
68
70 int Norb; //number of rows of the files 3,4
71 int j = 0; //current row of the files 3,4
73
   //t \sec = 5328.066*t u
74 double t = 0.0;
75 const double dt = 0.0005;
76 const double w = -4.1147; //angular velocity of didymain (w u = 2*pi/T u)
77 const int timeSkip = 50;
79
   //graphics window size
80 GLsizei width = 1000;
81 GLsizei height = 900;
82
83
   //returns the angle in [0,2*pi]
   double atan2pi(double b, double a)
84
85
86
       double angle;
87
       if (a > 0)
88
           angle = atan(b/a);
       else if (b >= 0 \&\& a < 0)
89
           angle = M_PI + atan(b/a);
90
91
       else if (b < 0 \&\& a < 0)
           angle = -M_PI + atan(b/a);
92
93
       else if (b > 0 \&\& a == 0)
           angle = M PI/2;
94
       else if (b < 0 \&\& a == 0)
95
96
           angle = -M PI/2;
97
98
       if (angle < 0)
           angle += 2*M PI;
99
100
       return angle;
102 }
103
104
   //Counts the number of rows of a file.
   int FileRows(FILE *fp)
106
107
108
       int rows = 0;
109
       char c;
110
       while ((c = fgetc(fp)) != EOF)
           if (c = ' \setminus n')
112
               rows++;
       }
114
115
       rows++;
116
       rewind (fp);
```

```
117
        return rows;
118 }
119
120 //Reads the (x,y,z) vertices of didymain from the file.
121 void InputVertices (FILE *fp)
122 {
        double tempx, tempy, tempz;
123
124
        int i = 0;
        while (fscanf(fp, "%lf %lf %lf", &tempx, &tempy, &tempz) != EOF)
126
             x\,[\;i\;]\;=\;tempx\,;
             y[i] = tempy;
128
             z[i] = tempz;
129
             i++;
130
131
        }
132
133
134 //Reads the observed indices of didymain from the file, that is,
^{135} //triads of points p1, p2, p3 that form triangles
136 //index i corresponds to the i-th row of the vertices file.
137 void InputIndices (FILE *fp)
138
        int p1, p2, p3;
139
        int i = 0;
140
        while (fscanf(fp, "%d %d %d",&p1,&p2,&p3) != EOF)
141
142
        {
143
             //subtract 1 from all indices because the official file
             //starts counting from 1, while I start from 0
144
             p[i][0] = p1 - 1;
145
146
             p[i][1] = p2 - 1;
147
             p[i][2] = p3 - 1;
148
             i +\!\!+;
        }
149
150 }
152
    void InputDidymainOrbit(FILE *fp)
153
        {\color{red}\textbf{double}} \quad t \,\,, x \,, y \,, z \,, vx \,, vy \,, vz \,;
154
155
        int i = 0;
        while (fscanf(fp, "%lf %lf %lf %lf %lf %lf %lf ",&t,&x,&y,&z,&vx,&vy,&vz) != EOF)
156
157
             X1[i] = x;
158
             Y1[i] = y;
159
160
             Z1[i] = z;
161
             i++;
        }
162
163
   }
164
165
   void InputDidymoonOrbit(FILE *fp)
166
167
        double t, x, y, z, vx, vy, vz;
        int i = 0:
169
        while (fscanf(fp, "%lf %lf %lf %lf %lf %lf %lf, &t,&x,&y,&z,&vx,&vy,&vz) != EOF)
170
             X2\,[\,\,i\,\,] \,\,=\,\, x\,;
171
             Y2[i] = y;
172
             Z2[i] = z;
173
174
             i++;
        }
176 }
177
178 //Calculates the cross product components of two vectors that
   //are formed by 3 points. Last argument is used to determine
_{\rm 180} //the component of the cross product that will be returned.
     /Possible values of 'coordinate': 0 \longrightarrow x, 1 \longrightarrow y, 2 \longrightarrow z
182 double CrossProduct(double x1, double y1, double z1,
                           double x2, double y2, double z2,
183
184
                           double x3, double y3, double z3, double coordinate)
185 {
```

```
if (coordinate == 0) return (y2-y1)*(z3-z2) - (z2-z1)*(y3-y2);
186
         if (coordinate == 1) return (z2-z1)*(x3-x2) - (x2-x1)*(z3-z2);
187
         if (coordinate == 2) return (x2-x1)*(y3-y2) - (y2-y1)*(x3-x2);
188
         //else
189
190
         printf("Error while calculating the normal vectors. Exiting...\n");
         exit (EXIT_FAILURE);
191
192
193
   //(nx[i],ny[i],nz[i]) —> coordinates of the i-th normal vector, that is,
194
   //the vector which is perpendicular to the triangle formed from
   //the i-th triad of the indices file.
196
   void CalculateNormalVectors()
198
199
        double nx, ny, nz; //i-th normal vector
200
        for (int i = 0; i < N2; i++)
201
            nx = CrossProduct(x[p[i][0]], y[p[i][0]], z[p[i][0]],
202
                                x[p[i][1]], y[p[i][1]], z[p[i][1]],
203
                                 x[p[i][2]], y[p[i][2]], z[p[i][2]], 0);
204
205
            ny = CrossProduct(x[p[i][0]], y[p[i][0]], z[p[i][0]]
206
                                x[p[i][1]], y[p[i][1]], z[p[i][1]], x[p[i][2]], y[p[i][2]], z[p[i][2]], 1);
207
208
209
210
            nz = CrossProduct(x[p[i][0]], y[p[i][0]], z[p[i][0]],
211
                                x[p[i][1]], y[p[i][1]], z[p[i][1]],
212
                                x[p[i][2]], y[p[i][2]], z[p[i][2]],
213
            //i-th unit normal vector
214
215
            ux[i] = nx/sqrt(nx*nx + ny*ny + nz*nz);
216
            uy[i] = ny/sqrt(nx*nx + ny*ny + nz*nz);
217
            uz[i] = nz/sqrt(nx*nx + ny*ny + nz*nz);
        }
218
219 }
220
221
   void setup()
222
        glEnable (GL DEPTH TEST);
223
224
        glEnable(GL_LIGHT0);
        glEnable (GL_LIGHTING):
225
        glEnable (GL COLOR MATERIAL);
226
        glShadeModel(GL SMOOTH);
227
        glEnable(GL NORMALIZE);
228
229
        glClearColor (0.0,0.0,0.0,0.0);
230 }
231
   void reshape (GLsizei w, GLsizei h)
232
233
234
        if (h == 0) h = 1;
        glViewport(0,0,w,h);
235
236
        glMatrixMode(GL_PROJECTION);
        glLoadIdentity();
237
238
        float AspectRatio = (float)w/(float)h;
239
        gluPerspective (80.0, AspectRatio, 0.1, 100.0);
240
        glMatrixMode(GL MODELVIEW);
241
        glLoadIdentity();
        gluLookAt(1.5,1.5,1.0,0,0,0,0,0,1);
242
243 }
244
245 void Light()
246
247
        glPushMatrix();
            float lightPosition [] = \{1.0, 0.0, 0.0, 0.0\};
248
            {\tt glLightfv} \, ({\tt GL\_LIGHT0}, {\tt GL\_POSITION}, \, {\tt lightPosition} \,) \, ;
249
        glPopMatrix();
250
251 }
252
253 void Didymain()
254 {
```

```
glColor3f(0.4f,0.4f,0.4f); //Didymain and Didymoon color
255
256
        //draw didymain
257
        glPushMatrix();
            glTranslated (X1[j], Y1[j], Z1[j]);
258
259
            glRotated(w*t*180/M PI, 0, 0, 1);
            glBegin (GL_TRIANGLES);
260
                for (int i = 0; i < N2; i++)
261
262
                {
                     glNormal3d(ux[i],uy[i],uz[i]); //for the shading
263
                         glVertex3d(x[p[i][0]], y[p[i][0]], z[p[i][0]]);
264
                         glVertex3d(x[p[i][1]],\ y[p[i][1]],\ z[p[i][1]]);
265
266
                         glVertex3d(x[p[i][2]], y[p[i][2]], z[p[i][2]]);
267
            glEnd();
268
269
        glPopMatrix();
270
271
   void Didymoon()
272
273
        //draw didymoon
274
        glPushMatrix();
275
276
            glTranslated (X2[j], Y2[j], Z2[j]);
            glRotated(atan2pi(Y2[j],X2[j])*180/M_PI,\ 0,0,1);\ //around\ z-axis
277
            glRotated(acos(Z2[j]/sqrt(X2[j]*X2[j] + Y2[j]*Y2[j] + Z2[j]*Z2[j]))*180/M_PI + 90.0, 0,1,0);
278
279
            glScaled(a,b,c);
280
            glutSolidSphere (1.0,30,30);
281
        glPopMatrix();
282
        //draw didymoon's orbit
283
284
        glColor3f(0.0f,0.8f,0.0f);
285
        glPushMatrix();
286
            glBegin(GL_LINE_STRIP);
                for (int i = 0; i < j; i++)
287
288
                {
                     glVertex3d(X2[i],Y2[i],Z2[i]);
289
290
                     glVertex3d(X2[i+1],Y2[i+1],Z2[i+1]);
291
            glEnd();
292
        glPopMatrix();
293
294
295
   void RenderScene()
296
297
298
        glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
299
        Light();
300
        Didymain();
301
       Didymoon();
302
303
        t += timeSkip*dt;
304
305
        if (j >= Norb)
306
307
            glutLeaveMainLoop();
        glutSwapBuffers();
308
309
310
   void keyboard (unsigned char key, int x, int y)
311
312
   {
        if (key == ESCAPE)
313
314
            glutLeaveMainLoop();
        315
            pause = !pause;
316
317 }
318
   void motion(int x, int y)
319
320
        mouseAftX = x;
        if (mouseAftX - mousePreX > 0)
322
            mousePreX = mouseAftX - 1;
323
```

```
else if (mouseAftX - mousePreX < 0)</pre>
324
325
            mousePreX = mouseAftX + 1;
        glRotatef(3*(mouseAftX - mousePreX), 0,0,1);
326
        mousePreX = mouseAftX;
327
328 }
329
   void idle()
330
331
        if (!pause)
333
            glutPostRedisplay();
334
335
   int main(int argc, char *argv[])
336
337
338
        FILE *fp1 = fopen(FILE NAME 1, "r"); //didymain vertices
        if (fp1 == NULL)
339
340
        {
            printf("Error while reading file. Exiting...\n");
341
            exit (EXIT_FAILURE);
342
343
       N1 = FileRows(fp1);
344
        x = (double*) malloc(N1*sizeof(double));
345
       y = (double*) malloc(N1*sizeof(double));
346
        z = (double*) malloc(N1*sizeof(double));
347
348
        Input Vertices (fp1);
349
        FILE *fp2 = fopen(FILE_NAME_2, "r"); //didymain indices
350
        if (fp2 == NULL)
351
352
        {
353
            printf("Error while reading file. Exiting...\n");
354
            exit (EXIT FAILURE);
355
356
       N2 = FileRows(fp2);
        p = (int**) malloc(N2*sizeof(int*));
357
        for (int i = 0; i < N2; i++)
358
359
            p[i] = (int*) malloc(3* sizeof(int));
360
        InputIndices (fp2);
361
362
        //unit normal vectors. Used for the shading of didymain.
        ux = (double*) malloc(N2*sizeof(double));
363
364
        uy = (double*) malloc(N2*sizeof(double));
        uz = (double*) malloc(N2*sizeof(double));
365
        CalculateNormalVectors();
366
367
        FILE *fp3 = fopen(FILE_NAME_3, "r"); //didymain orbit
368
        if (fp3 == NULL)
369
370
            printf("Error while reading file. Exiting...\n");
371
372
            exit(EXIT FAILURE);
373
374
        Norb = FileRows(fp3);
       X1 = (double*) malloc(Norb*sizeof(double));
375
376
        Y1 = (double*) malloc(Norb*sizeof(double));
377
        Z1 = (double*) malloc (Norb*sizeof (double));
378
        InputDidymainOrbit (fp3);
379
        FILE *fp4 = fopen(FILE NAME 4, "r"); //didymoon orbit
380
381
        if (fp4 == NULL)
382
            printf("Error while reading file. Exiting...\n");
383
            exit (EXIT_FAILURE);
384
385
       X2 = (double*) malloc(Norb*sizeof(double));
386
        Y2 = (double*) malloc(Norb*sizeof(double));
387
        Z2 = (double*) malloc(Norb*sizeof(double));
388
389
        InputDidymoonOrbit (fp4);
390
391
        glutInit(&argc, argv);
        glutInitWindowSize(width, height);
392
```

```
glutInitWindowPosition(100,50);
393
        {\tt glutInitDisplayMode} ({\tt GLUT\_RGB|GLUT\_DOUBLE|GLUT\_DEPTH});\\
394
        glutCreateWindow("Didymain - Didymoon orbit");
395
        glutDisplayFunc(RenderScene);
396
        glutReshapeFunc(reshape);
397
        glutKeyboardFunc(keyboard);
398
399
        glutMotionFunc(motion);
        glutIdleFunc(idle);
400
        setup();
401
        glutMainLoop();
402
403
404
        free(x);
        free(y);
405
        free(z);
406
        for (int i = 0; i < N2; i++)
407
             free (p[i]);
408
409
        free(p);
        free(ux);
410
411
        free (uy);
        free (uz);
412
413
        free (X1);
        free (Y1);
414
        free (Z1);
415
416
        free (X2);
        free(Y2);
417
        free (Z2);
418
        fclose (fp1);
419
        fclose (fp2);
420
421
        fclose (fp3);
422
        fclose (fp4);
423
        return 0;
424 }
```

codes/MainMoonOpenGL.c

Appendix F

Orbital Elements of the Binary Plots (Source Code)

```
1 #This script gathers the data of Didymain and Didymoon orbits
_2\ \# for\ all\ integration\ cases\ (short\,,\ middle\ and\ long\ time\ step)
 3 #and creates 2 pairs of plots of the orbital elements a,e,i as functions of time.
 4 #The first pair depicts the evolution of the orbital elements for all the integration
5 #time. The second pair depicts exactly the same, but for little time. This
6 #enables us to observe the short time evolution of the functions a(t), e(t), i(t).
   import numpy as np
   import matplotlib.pyplot as plt
11 #path to directories for each time step case
path = ['Main_Moon_Short/', 'Main_Moon_Middle/', 'Main_Moon_Long/']
strType = ['short', 'middle', 'long']
14 critLines = np.array([1350,338,170])
16 figCounter = 0
  for i in range(len(path)):
    fileName = path[i] + 'orbital_elements.txt'
17
18
       orbElem = np.loadtxt(fileName)
19
       str1 = strType[i]
20
21
       plt.figure(i + figCounter)
22
       plt.plot(orbElem[:,0],orbElem[:,1])
23
       plt.xlabel('time (TU)')
24
       plt.ylabel('semi-major axis a (km)')
25
       plt.title(strType[i])
26
       str2 = '\_at\_1.png'
figName = str1 + str2
28
       plt.savefig(figName)
29
30
31
       figCounter += 1
32
       plt.figure(i + figCounter)
33
       plt.plot(orbElem[:,0],orbElem[:,2])
34
35
       plt.xlabel('time (TU)')
       plt.ylabel('eccentricity e')
36
37
       plt.title(strType[i])
       str2 = '_et_1.png'
figName = str1 + str2
38
39
       plt.savefig(figName)
40
41
42
       figCounter += 1
43
       plt.figure(i + figCounter)
       {\tt plt.plot}\,(\,{\tt orbElem}\,[\,:\,,0\,]\,\,,{\tt orbElem}\,[\,:\,,3\,]\,)
45
       plt.xlabel('time (TU)')
46
       plt.ylabel('inclination (deg)')
```

```
plt.title(strType[i])
48
       str2 = '_it_1.png'
figName = str1 + str2
49
50
51
        plt.savefig(figName)
52
        figCounter += 1
53
54
        plt.figure(i + figCounter)
55
        plt.plot(orbElem[0:critLines[i],0],orbElem[0:critLines[i],1])
56
57
        plt.xlabel('time (TU)')
       plt.ylabel('semi-major axis a (km)')
58
       plt.title(strType[i])
59
       str2 = '_at_2.png'
figName = str1 + str2
60
61
62
        plt.savefig(figName)
63
64
        figCounter += 1
65
        plt.figure(i + figCounter)
66
        plt.plot(orbElem[0:critLines[i],0],orbElem[0:critLines[i],2])
67
       plt.xlabel('time (TU)')
plt.ylabel('eccentricity e')
68
69
        plt.title(strType[i])
70
71
        str2 = '\_et\_2.png
        figName \, = \, str1 \, + \, str2
72
        plt.savefig(figName)
73
74
75
        figCounter += 1
76
77
        plt.figure(i + figCounter)
        plt.plot(orbElem[0:critLines[i],0],orbElem[0:critLines[i],3])
78
       plt.xlabel('time (TU)')
79
       plt.ylabel('inclination (deg)')
80
81
        plt.title(strType[i])
       str2 = '_it_2.png'
figName = str1 + str2
82
83
84
        plt.savefig(figName)
85
   plt.show()
```

codes/MainMoonPlots.py

Appendix G

Ejecta Cloud (Source Code)

```
3 This code sets the two asteroids in orbit, calculates their orbital evolution and at the
  same time calculates the orbits of 100 ejected particles from Didymoon's surface.
  The code is meant to run in many processors, each calculating 100 orbits. To execute
  the code, an argument (for the main() function) must be provided from the terminal. The
7 argument must be an unsigned integer which corresponds to the initial particle's
                      './EjectaData 400' will calculate 100 orbits: From particle 400
8 serial number. E.g.
9 up to particle 499.
11 Three possible fates for each ejected particle: 1) The particle is trapped in orbit around
12 the binary for who knows how long. 2) The particle escapes the binary due to chaotic diffusion.
13 3) The particle crashes either on Didymain or Didymoon. Runge-Kutta 4th order method is being
14 used to solve all the ODEs.
16
  Files used as input:
      1) main complete model.txt
17
18
      2) moon_complete_model.txt
19
20
  Files produced as output:
21
      1) main orbit.txt
      2) moon orbit.txt
22
      100 .txt files that contain the orbits of 100 ejetced particles
24
25 */
27 #include < stdio.h>
28 #include < stdlib.h>
29 #include < stdbool.h>
30 \#include < math.h >
31 #include < time . h >
32 #include"mtwister.h" //meresenne twister RNG
34 #define FILE_NAME_1 "main_complete_model.txt"
35 #define FILE_NAME_2 "moon_complete_model.txt"
36 #define FILE_NAME_3 "main_orbit.txt"
37 #define FILE NAME 4 "moon orbit.txt"
  //system's parameters
                                 1 month
                                             26.64 \text{ sec}
  41 const double G \,=\,1.0\,;\, //gravitational constant
42 const double M1 = 0.9907; //total mass of Didymain
43 const double M2 = 0.0093; //total mass of Didymoon
44 const double w1 = -4.1147; //angular velocity of Didymain (w_u = 2*pi/T_u)
45 int N1,N2; //Didymain's and Didymoon's number of particles respectively
46 double m1,m2; //mass o each particle of Didymain and Didymoon respectively
47 const double vEscInitial = 1.4; //initial escape velocity from the binary \sim 26 cm/s
48 const int numEjecta = 100; //number of ejected particles that will be calculated
49 const double escDistance = 20.0; //escape distance from the binary (in km)
50 const double ejectaConeAngle1 = M_PI/20.0;
```

```
51 const double ejectaConeAngle2 = M_PI/12.0;
52
   //decide how often are the data printed to the files
53
54 int printCounter = 0;
55 const int timeSkip = 5;
56
   //Didymoon's semi-axes (in km)
57
58 const double a = 0.100;
59 const double b = 0.080, phantom_b = 0.001;
60 const double c = 0.070;
61
   //Didymoon's rotation matrix (initial state)
   double R[3][3] = \{ \{1.0, 0.0, 0.0\}, \}
63
                        \{0.0, 1.0, 0.0\},\
64
65
                        \{0.0, 0.0, 1.0\}\};
66
   //Returns a random double in (a,b) from the uniform distribution.
67
68 double doubleRNG(double a, double b, mtRand *r)
69
      double scale = RNG(r); //random number in (0,1)
70
71
      return a + scale*(b-a);
72
73
74 //Counts the number of rows of a file.
75 int FileRows (FILE *fp)
76 {
77
       int rows = 0;
       char c;
78
       while ((c = fgetc(fp)) != EOF)
79
80
            if (c = ' \setminus n')
81
82
                rows++;
83
       }
84
       rows++;
       rewind (fp);
85
86
       return rows;
87
   }
88
   //\operatorname{Reads} the x,y,z vertices of the asteroid from the file.
89
90 void InputVertices(FILE *fp, double *x, double *y, double *z)
91
       double tempx, tempy, tempz;
92
93
       int i = 0;
       while (fscanf(fp, "%lf %lf %lf", &tempx, &tempy, &tempz) != EOF)
94
95
            x[i] = tempx;
96
            y[i] = tempy;
97
            z[i] = tempz;
98
99
            i++;
100
       }
101
103 // Shifts all the x,y,z vertices of Didymain, so that its COM coincides with O(0,0,0).
_{104} //This happens only once, before the calculation of the orbits.
105 void ShiftCOM(double *x, double *y, double *z, double m, double M, int N)
106
        //calculate the COM
108
       double X = 0.0, Y = 0.0, Z = 0.0;
       for (int i = 0; i < N; i++)
110
       {
            X += m*x[i];
111
112
            Y += m*y[i];
            Z += m*z[i];
113
114
       X /= M;
115
       Y /= M;
116
       Z /= M;
117
       // shift the COM to O(0,0,0)
118
       for (int i = 0; i < N; i++)
119
```

```
120
            x[i] -= X;
121
            y[i] -= Y;
            z[i] -= Z;
123
124
125
126
   //Calculates the length of a vector.
127
   double Len(double x, double y, double z)
128
129
130
        return sqrt(x*x + y*y + z*z);
131
   //Calculates the distance between 2 points.
133
134
   double Distance(double x1, double y1, double z1, double x2, double y2, double z2)
135
        return sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) + (z2-z1)*(z2-z1));
136
137
138
   // Calculates the maximum distance between the COM of an asteroid and
139
   // all its other vertices. Both COMs are located at O(0,0,0) in their frame.
140
   double MaxDistance(double *x, double *y, double *z, int N)
142
        double \max = \operatorname{Len}(x[0], y[0], z[0]);
143
144
        for (int i = 1; i < N; i++)
145
        {
146
            if (Len(x[i],y[i],z[i]) > max)
                \max = Len(x[i], y[i], z[i]);
147
148
        }
149
        return max;
150
   //Rotates all the vertices of Didymain to an angle w*dt around the z-axis.
   void RotateDidymain(double *x, double *y)
154
155
        for (int i = 0; i < N1; i++)
156
            double xx = x[i];
157
158
            double yy = y[i];
            x[i] = xx*cos(w1*dt) - yy*sin(w1*dt);
159
            y[i] = xx*sin(w1*dt) + yy*cos(w1*dt);
160
        }
161
162 }
163
   //Rotates Didymoon so that it remains tidally locked to Didymain.
164
   void RotateDidymoon(double *x,
                                      double *y,
                                                    double *z,
165
                                      double Y1,
                                                    double Z1,
166
                         double X1.
                                      double Y2,
                                                   double Z2,
167
                         double X2,
168
                         double X01, double Y01, double Z01,
                         double X02, double Y02, double Z02)
169
170
        double ax, ay, az, a len; //vector a
171
172
        ax = X02-X01;
        ay = Y02-Y01;
173
174
        az = Z02-Z01;
175
        a_len = sqrt(ax*ax + ay*ay + az*az);
176
        double bx, by, bz, b_len; //vector b
177
        bx = X2-X1;
        by = Y2-Y1;
178
        bz = Z2-Z1;
179
        b_len = sqrt(bx*bx + by*by + bz*bz);
180
181
        double nx,ny,nz,n len; //vector n (perpendicular to a and b)
        nx = ay*bz - az*by;
182
        ny = az*bx - ax*bz;
183
        nz = ax*by - ay*bx;
184
        n_len = sqrt(nx*nx + ny*ny + nz*nz);
185
        double ux, uy, uz; //unit vector u
186
187
        ux = nx/n_len;
        uy \, = \, ny/n\_len\,;
188
```

```
uz = nz/n_len;
189
190
191
          //f --> angle between vectors a and b
          \frac{double cosf}{double cosf} = (ax*bx + ay*by + az*bz)/(a_len*b_len);
192
193
          double sinf = sqrt(1 - cosf*cosf);
194
          \begin{array}{lll} \textbf{double} & I\,[\,3\,]\,[\,3\,] \,=\, \{ & \{\,1\,,0\,,0\,\}\,, & \{\,0\,,1\,,0\,\}\,, & \{\,0\,,0\,,1\,\}\, & \}\,; \\ \textbf{double} & W\,[\,3\,]\,[\,3\,] \,=\, \{ & \{\,0\,,-\,\text{uz}\,,\,\text{uy}\,\}\,, & \{\,\text{uz}\,,0\,,-\,\text{ux}\,\}\,, & \{\,-\,\text{uy}\,,\,\text{ux}\,,0\,\}\, & \}\,; \end{array}
195
196
          double W2[3][3] = \{ \{-uz*uz - uy*uy, uy*ux, uz*ux\}, \}
                                     \{ux*uy, -uz*uz - ux*ux, uz*uy\},
198
                                     \{ux*uz, uy*uz, -uy*uy - ux*ux\} \};
199
200
          //calculate rotation matrix through Rodrigues formula
201
          for (int i = 0; i < 3; i++)
202
203
               for (int j = 0; j < 3; j++)
                    R[i][j] = I[i][j] + sinf*W[i][j] + (1-cosf)*W2[i][j];
204
205
          //perform the rotation
206
          for (int i = 0; i < N2; i++)
207
208
               double xx = x[i];
209
               double yy = y[i];
210
               double zz = z[i];
211
               x[i] = R[0][0]*xx + R[0][1]*yy + R[0][2]*zz;
212
213
               y[i] = R[1][0]*xx + R[1][1]*yy + R[1][2]*zz;
214
               z[i] = R[2][0]*xx + R[2][1]*yy + R[2][2]*zz;
215
216 }
217
218 double fX2 (double vX2)
219
220
          return vX2;
221 }
222
    double fY2 (double vY2)
223
224
225
          return vY2;
226 }
228 double fZ2 (double vZ2)
229
    {
230
          return vZ2;
231 }
232
233
234
    double\ fvX2(double\ *x1\,,\ double\ *y1\,,\ double\ *z1\,,
235
                    double X1, double X2, double Y1, double Y2, double Z1, double Z2)
236
237
238
          double sum = 0.0;
239
          for (int i = 0; i < N1; i++)
               sum \ += \ (X1-X2+x1\left[ \ i \ \right]) \ / \ pow \left( \ (X1-X2+x1\left[ \ i \ \right]) * (X1-X2+x1\left[ \ i \ \right]) \ +
240
241
                                                     (Y1-Y2+y1[i])*(Y1-Y2+y1[i]) +
                                                     (Z1-Z2+z1[i])*(Z1-Z2+z1[i]),3.0/2.0);
242
243
         return G*m1*sum;
244
245
    double fvY2(double *x1, double *y1, double *z1,
                    double X1, double X2, double Y1, double Y2, double Z1, double Z2)
247
248 {
249
          double sum = 0.0;
          for (int i = 0; i < N1; i++)
250
               sum += (Y1-Y2+y1[i])/pow((X1-X2+x1[i])*(X1-X2+x1[i]) +
251
                                                     (Y1\!\!-\!\!Y2\!\!+\!\!y1\,[\;i\;]\,)*(Y1\!\!-\!\!Y2\!\!+\!\!y1\,[\;i\;]\,)\;\;+\;
252
                                                     (Z1-Z2+z1[i])*(Z1-Z2+z1[i]),3.0/2.0);
253
254
          return G*m1*sum;
255 }
257 double fvZ2(double *x1, double *y1, double *z1,
```

```
double X1, double X2, double Y1, double Y2, double Z1, double Z2)
258
259 {
260
      double sum = 0.0;
      for (int i = 0; i < N1; i++)
261
262
         sum += (Z1-Z2+z1[i])/pow((X1-X2+x1[i])*(X1-X2+x1[i]) +
                                 (Y1-Y2+y1[i])*(Y1-Y2+y1[i]) +
263
                                 (Z1-Z2+z1[i])*(Z1-Z2+z1[i]),3.0/2.0);
264
265
      return G*m1*sum;
266 }
267
  double *z1, double *Y2, double Z1, double *Z2,
                         double *y1,
268
                         double *X2,
269
              double *vX2, double *vY2, double *vZ2)
270
271 {
272
      double kX2 = fX2(*vX2);
      double kY2 = fY2(*vY2);
273
      double kZ2 = fZ2(*vZ2);
274
275
276
      double kvX2 = fvX2(x1,y1,z1, X1, *X2, Y1, *Y2, Z1, *Z2);
277
      double kvY2 = fvY2(x1,y1,z1, X1, *X2, Y1, *Y2, Z1, *Z2);
      278
279
280
281
      double 1X2 = fX2(*vX2+(dt/2)*kvX2);
282
      double 1Y2 = fY2(*vY2+(dt/2)*kvY2);
283
284
      double 1Z2 = fZ2 (*vZ2+(dt/2)*kvZ2);
285
      286
      287
288
289
290
291
      double mX2 = fX2(*vX2+(dt/2)*lvX2);
293
      double mY2 = fY2(*vY2+(dt/2)*lvY2);
      double mZ2 = fZ2(*vZ2+(dt/2)*lvZ2);
294
295
      296
      297
298
299
300
301
      double nX2 = fX2(*vX2+dt*mvX2);
302
      double nY2 = fY2(*vY2+dt*mvY2);
303
      \begin{array}{lll} \textbf{double} & nZ2 \ = \ fZ2 \left( *vZ2 + dt *mvZ2 \right); \end{array}
304
305
      double nvX2 = fvX2(x1,y1,z1, X1, *X2+dt*mX2, Y1, *Y2+dt*mY2, Z1, *Z2+dt*mZ2);
306
      307
308
309
310
311
312
         = *X2 + (dt/6.0)*(kX2 + 2*lX2 + 2*mX2 + nX2);
         = *Y2 + (dt/6.0)*(kY2 + 2*lY2 + 2*mY2 + nY2);
313
      *Y2
      *Z2 = *Z2 + (dt/6.0)*(kZ2 + 2*lZ2 + 2*mZ2 + nZ2);
314
315
      *vX2 = *vX2 + (dt/6.0)*(kvX2 + 2*lvX2 + 2*mvX2 + nvX2);
316
      *vY2 = *vY2 + (dt/6.0)*(kvY2 + 2*lvY2 + 2*mvY2 + nvY2);
317
      *vZ2 = *vZ2 + (dt/6.0)*(kvZ2 + 2*lvZ2 + 2*mvZ2 + nvZ2);
318
319 }
320
321
322
323
  double fXp(double vXp)
324
  {
325
      return vXp;
326 }
```

```
327
      double fYp(double vYp)
328
329
330
               return vYp;
331 }
332
      double fZp(double vZp)
333
334
               return vZp;
335
336
337
338
339
      double \ \ fvXp(double \ *x1\ , \ double \ *x2\ , \ double \ *y1\ , \ double \ *y2\ , \ double \ *z1\ , \ double \ *z2\ ,
340
341
                               double X1, double X2, double Y1, double Y2, double Z1, double Z2,
                               double Xp, double Yp, double Zp)
343
               double sum1 = 0.0; //force from Didymain
344
               for (int i = 0; i < N1; i++)
345
                      sum1 += (X1-Xp+x1[i])/pow((X1-Xp+x1[i])*(X1-Xp+x1[i]) +
346
                                                                            (Y1-Yp+y1[i])*(Y1-Yp+y1[i]) +
347
                                                                            \left(\,Z1{-}Zp{+}z\,1\,\left[\,\,i\,\,\right]\,\right)*\left(\,Z1{-}Zp{+}z\,1\,\left[\,\,i\,\,\right]\,\right)\;,3\;.\;0\;/\;2\;.\;0\,\right);
348
               double sum2 = 0.0; //force from Didymoon
349
               for (int i = 0; i < N2; i++)
350
                      sum2 += (X2-Xp+x2[i])/pow((X2-Xp+x2[i])*(X2-Xp+x2[i]) +
351
352
                                                                            (Y2-Yp+y2[i])*(Y2-Yp+y2[i]) +
353
                                                                            (Z2-Zp+z2[i])*(Z2-Zp+z2[i]),3.0/2.0);
               return G*(m1*sum1 + m2*sum2);
354
355
      }
356
      357
358
                               double Xp, double Yp, double
359
                                                                                               Zp)
360
               double sum1 = 0.0; //force from Didymain
361
362
               for (int i = 0; i < N1; i++)
363
                      sum1 += (Y1-Yp+y1[i])/pow((X1-Xp+x1[i])*(X1-Xp+x1[i]) +
                                                                            (Y1-Yp+y1[i])*(Y1-Yp+y1[i]) +
364
                                                                            (Z1-Zp+z1[i])*(Z1-Zp+z1[i]),3.0/2.0);
365
               double sum2 = 0.0; //force from Didymoon
366
               for (int i = 0; i < N2; i++)
367
                      sum2 += (Y2-Yp+y2[i])/pow((X2-Xp+x2[i])*(X2-Xp+x2[i]) +
368
                                                                            (Y2-Yp+y2[i])*(Y2-Yp+y2[i]) +
369
370
                                                                            (Z2-Zp+z2[i])*(Z2-Zp+z2[i]),3.0/2.0);
               return G*(m1*sum1 + m2*sum2);
371
372
      }
373
       \label{eq:double_fvzp} \mbox{double } *x1 \;, \; \; \mbox{double } *x2 \;, \; \; \mbox{double } *y1 \;, \; \; \mbox{double } *y2 \;, \; \; \mbox{double } *z1 \;, \; \; \mbox{double } *z2 \;, \; \mbox{double } *z1 \;, \; \mbox{double } *z2 
374
375
                               double X1, double X2, double Y1, double Y2, double Z1, double Z2,
                               double Xp, double Yp, double Zp)
376
377
      {
               double sum1 = 0.0; //force from Didymain
378
379
               for (int i = 0; i < N1; i++)
                      sum1 += (Z1-Zp+z1[i])/pow((X1-Xp+x1[i])*(X1-Xp+x1[i]) +
380
381
                                                                            (Y1-Yp+y1[i])*(Y1-Yp+y1[i]) +
382
                                                                            (Z1-Zp+z1[i])*(Z1-Zp+z1[i]),3.0/2.0);
               double sum2 = 0.0; //force from Didymoon
383
               for (int i = 0; i < N2; i++)
384
                      sum2 += (Z2-Zp+z2[i])/pow((X2-Xp+x2[i])*(X2-Xp+x2[i]) +
385
                                                                            (Y2-Yp+y2[i])*(Y2-Yp+y2[i]) +
386
                                                                            (Z2-Zp+z2[i])*(Z2-Zp+z2[i]),3.0/2.0);
387
388
               return G*(m1*sum1 + m2*sum2);
389 }
390
      391
392
                                           double *x1, double *x2, double *y1, double *y2, double *z1,
                                                                                                                                                                         double *z2)
393
394 {
               double kXp = fXp(*vXp);
395
```

```
double kYp = fYp(*vYp);
396
397
           double kZp = fZp(*vZp);
398
           \begin{array}{lll} \textbf{double} & kvXp & = & fvXp\left(x1\,,x2\,,y1\,,y2\,,z1\,,z2\,,& X1\,,X2\,,Y1\,,Y2\,,Z1\,,Z2\,,& *Xp,*Yp,*Zp\right); \end{array}
399
400
           \begin{array}{lll} \textbf{double} & kvYp & = & fvYp\left(x1\,,x2\,,y1\,,y2\,,z1\,,z2\,, & X1\,,X2\,,Y1\,,Y2\,,Z1\,,Z2\,, & *Xp\,,*Yp\,,*Zp\,\right); \end{array}
           double kvZp = fvZp(x1, x2, y1, y2, z1, z2, X1, X2, Y1, Y2, Z1, Z2, *Xp, *Yp, *Zp);
401
402
403
404
           double lXp = fXp(*vXp+(dt/2)*kvXp);
405
           double IYp = fYp(*vYp+(dt/2)*kvYp);
406
           double IZp = fZp(*vZp+(dt/2)*kvZp);
407
408
           \begin{array}{lll} \textbf{double} & lvXp \, = \, fvXp \, (x1\,, x2\,, y1\,, y2\,, z1\,, z2\,, & X1\,, X2\,, Y1\,, Y2\,, Z1\,, Z2\,, & *Xp + (\,dt\,/\,2\,) \,*\,kXp\,, & *Yp + (\,dt\,/\,2\,) \,*\,kYp\,, & *Zp + (\,dt\,/\,2\,) \,*\,kZp\,) \,; \end{array}
409
410
            \begin{array}{lll} \textbf{double} & lvYp = fvYp(x1, x2, y1, y2, z1, z2, & X1, X2, Y1, Y2, Z1, Z2, & *Xp + (dt/2)*kXp, & *Yp + (dt/2)*kYp, & *Zp + (dt/2)*kZp); \\ \end{array} 
            \begin{array}{lll} \textbf{double} & lvZp = fvZp \, (x1\,, x2\,, y1\,, y2\,, z1\,, z2\,, & X1\,, X2\,, Y1\,, Y2\,, Z1\,, Z2\,, & *Xp + (dt\,/2)*kXp\,, & *Yp + (dt\,/2)*kYp\,, & *Zp + (dt\,/2)*kZp\,); \end{array} 
411
412
413
414
           double mXp = fXp(*vXp+(dt/2)*lvXp);
415
           double mYp = fYp(*vYp+(dt/2)*lvYp);
416
           double mZp = fZp(*vZp+(dt/2)*lvZp);
417
418
            \begin{array}{lll} \textbf{double} & mvXp = fvXp(x1, x2, y1, y2, z1, z2, & X1, X2, Y1, Y2, Z1, Z2, & *Xp + (dt/2)*lXp, & *Yp + (dt/2)*lYp, & *Zp + (dt/2)*lZp); \end{array} 
419
           \begin{array}{lll} \textbf{double} \ \ mvYp = fvYp \, (x1\,, x2\,, y1\,, y2\,, z1\,, z2\,, & X1\,, X2\,, Y1\,, Y2\,, Z1\,, Z2\,, & *Xp+(dt/2)*lXp\,, & *Yp+(dt/2)*lYp\,, & *Zp+(dt/2)*lZp\,); \\ \textbf{double} \ \ mvZp = fvZp \, (x1\,, x2\,, y1\,, y2\,, z1\,, z2\,, & X1\,, X2\,, Y1\,, Y2\,, Z1\,, Z2\,, & *Xp+(dt/2)*lXp\,, & *Yp+(dt/2)*lYp\,, & *Zp+(dt/2)*lZp\,); \\ \end{array}
420
421
422
423
424
           \begin{array}{ll} \textbf{double} & nXp \, = \, fXp \, (*vXp + (\, dt \, / \, 2) * mvXp \,) \, ; \end{array}
425
426
           double nYp = fYp(*vYp+(dt/2)*mvYp);
427
           double nZp = fZp(*vZp+(dt/2)*mvZp);
428
           429
           \begin{array}{lll} \textbf{double} & nvYp = fvYp\,(x1\,,x2\,,y1\,,y2\,,z1\,,z2\,, & X1\,,X2\,,Y1\,,Y2\,,Z1\,,Z2\,, & *Xp+(dt\,/2)*mXp, & *Yp+(dt\,/2)*mYp, & *Zp+(dt\,/2)*mZp)\,; \\ \textbf{double} & nvZp = fvZp\,(x1\,,x2\,,y1\,,y2\,,z1\,,z2\,, & X1\,,X2\,,Y1\,,Y2\,,Z1\,,Z2\,, & *Xp+(dt\,/2)*mXp, & *Yp+(dt\,/2)*mYp, & *Zp+(dt\,/2)*mZp)\,; \\ \end{array}
430
431
432
433
434
           *Xp = *Xp + (dt/6.0)*(kXp + 2*lXp + 2*mXp + nXp);
435
           *Yp = *Yp + (dt/6.0)*(kYp + 2*lYp + 2*mYp + nYp);
436
           *Zp = *Zp + (dt/6.0)*(kZp + 2*lZp + 2*mZp + nZp);
437
438
           *vXp = *vXp + (dt/6.0)*(kvXp + 2*lvXp + 2*mvXp + nvXp);
439
           *vYp = *vYp + (dt/6.0)*(kvYp + 2*lvYp + 2*mvYp + nvYp);
440
           *vZp = *vZp + (dt/6.0)*(kvZp + 2*lvZp + 2*mvZp + nvZp);
441
442 }
443
444 int main(int argc, char *argv[])
445 {
446
           FILE *fp1 = fopen(FILE_NAME_1, "r"); //Didymain vertices
           if (fp1 = NULL)
447
448
           {
                 printf("Error while reading file. Exiting...\n");
449
450
                 exit(EXIT FAILURE);
451
          N1 = FileRows(fp1);
452
           double *x1 = (double*) malloc(N1*sizeof(double));
453
           double *y1 = (double*) malloc(N1*sizeof(double));
454
455
           double *z1 = (double*) malloc(N1*sizeof(double));
456
           Input Vertices (fp1, x1, y1, z1);
457
           FILE *fp2 = fopen(FILE NAME 2, "r"); //Didymoon vertices
458
           if (fp2 == NULL)
459
460
           {
                 printf("Error while reading file. Exiting...\n");
461
                 exit (EXIT_FAILURE);
462
463
          N2 = FileRows(fp2);
464
```

```
double *x2 = (double*) malloc(N2*sizeof(double));
465
        double *y2 = (double*) malloc(N2*sizeof(double));
466
        double *z2 = (double*) malloc (N2*sizeof (double));
467
        InputVertices (fp2,x2,y2,z2);
468
469
       m1 = M1/N1; //Didymain's point masses
470
       ShiftCOM(x1, y1, z1, m1, M1, N1);
471
472
       m2 = M2/N2; //Didymoon's point masses
473
        //no need to shift the COM of Didymoon because by construction, the COM is
474
475
        //located at O(0,0,0) at its coordinate system.
476
        //Place the COM of the 2 asteroids at O(0,0,0) and set it to zero velocity
477
        double X,Y,Z;
478
        double vX, vY, vZ;
479
       X = Y = Z = 0.0;
480
       vX = vY = vZ = 0.0;
481
482
483
        //initial conditions for the center of mass of Didymoon
484
        double X2, Y2, Z2, X02, Y02, Z02;
        double vX2, vY2, vZ2;
485
       X2 = 1.18; Y2 = 0.0; Z2 = 0.0;
486
       vX2 = 0.0; vY2 = -0.921; vZ2 = 0.0;
487
       X02 = X2; Y02 = Y2; Z02 = Z2; //auxiliary variables
488
489
490
        //initial conditions for the center of mass of Didymain
        double X1, Y1, Z1, X01, Y01, Z01;
491
        double vX1, vY1, vZ1;
492
       X1 = -M2*X2/M1; vX1 = -M2*vX2/M1;
493
494
        Y1 = -M2*Y2/M1; vY1 = -M2*vY2/M1;
        Z1 = -M2*Z2/M1; vZ1 = -M2*vZ2/M1;
495
496
        //ejecta coordinates and velocitites
497
        double *Xp = (double*) malloc(numEjecta*sizeof(double));
498
        double *Yp = (double*) malloc (numEjecta*sizeof (double));
499
500
        double *Zp = (double*) malloc(numEjecta*sizeof(double));
501
        double *vXp = (double*) malloc(numEjecta*sizeof(double));
        double *vYp = (double*) malloc(numEjecta*sizeof(double));
502
        double *vZp = (double*) malloc(numEjecta*sizeof(double));
503
504
        //decides if ejecta i crashed
505
        bool *crashed = (bool*)malloc(numEjecta*sizeof(bool));
506
        //decides if ejecta i escaped
507
508
        bool *escaped = (bool*) malloc(numEjecta*sizeof(bool));
509
        double coneR1 = vEscInitial*tan(ejectaConeAngle1);
        \begin{array}{lll} \textbf{double} & coneR2 = vEscInitial*tan(ejectaConeAngle2); \end{array}
511
        FILE *fp3 = fopen(FILE NAME 3, "w");
        FILE * fp4 = fopen (FILE NAME 4, "w");
513
        FILE **fpEjecta = (FILE**) malloc(numEjecta*sizeof(FILE*));
514
        char orbName[50]; //string buffer
       mtRand r = seedRNG((unsigned int)time(NULL)); //seed the mersenne twister RNG
517
        //\operatorname{initial\ conditions\ for\ the\ ejecta\ }(Xp[i],Yp[i],Zp[i])\ \ \operatorname{and\ }(vXp[i],vYp[i],vZp[i])
518
        for (int i = 0; i < numEjecta; ++i)
519
        {
             all ejecta particles have the same initial position
520
            Xp[i] = X2;
521
            Yp[i] = -b - phantom_b;
            Zp[i] = Z2;
            for (;;) //validate that the initial velocity vector is be bounded by the 2 cones
524
                //Monte Carlo the vx and vz components
                vXp[i] = doubleRNG(-coneR2, coneR2, &r);
                vZp[i] = doubleRNG(-coneR2, coneR2, &r);
528
                530
                if (d > coneR1 \&\& d < coneR2)
                    break;
            //Monte Carlo the vy component
533
```

```
vYp[i] = -doubleRNG(1.0, vEscInitial, &r);
534
535
               crashed[i] = false; //assume no crashes initially
               escaped[i] = false; //assume no escapes initially
536
               sprintf(orbName, "orb_%d.txt", i + atoi(argv[1]));
               fpEjecta[i] = fopen(\overline{o}rbName, "w");
538
          }
540
541
          //calculate the minimum allowed distance between
          //ejecta and Didymain (for collision detection)
          const double maxDist1 = MaxDistance(x1,y1,z1, N1);
543
544
          //counters
545
          int crashOnMain, crashOnMoon, escapes;
546
          crashOnMain = crashOnMoon = escapes = 0;
547
548
          printf("Calculating orbits. Please wait...\n");
549
          clock_t t1, t2;
         t1 = clock();
551
          for (double t = t0; t \ll t = dt)
               printf("\rdot r\%.5lf \%\%", t/tmax*100);
554
               fflush (stdout);
556
               //print to the files for every timeSkip time steps
557
558
               if (printCounter\%timeSkip == 0)
559
                     fprintf(fp3, "%lf %lf %lf %lf %lf %lf \n",t,X1,Y1,Z1,vX1,vY1,vZ1);
560
                     fprintf(fp4, "%lf %lf %lf %lf %lf %lf %lf \n",t,X2,Y2,Z2,vX2,vY2,vZ2);
561
562
               }
563
564
               //loop through all the particles and update their status
565
               for (int i = 0; i < numEjecta; ++i)
               {
566
                     if (crashed[i] || escaped[i])
568
                          continue;
569
                     if (printCounter%timeSkip == 0) //print to the file for every timeSkip time steps
                          fprintf(fpEjecta[i], "%lf %lf %lf %lf %lf %lf %lf \n",t,Xp[i],Yp[i],Vp[i],vXp[i],vYp[i],vZp[i])
                     \label{eq:double_XXp} \begin{array}{lll} \mbox{double} \  \, XXp = \, R[\,0\,][\,0\,] * \, Xp[\,i\,] \, + \, R[\,0\,][\,1\,] * \, Yp[\,i\,] \, + \, R[\,0\,][\,2\,] * \, Zp[\,i\,] \, ; \end{array}
                     double YYp = R[1][0] * Xp[i] + R[1][1] * Yp[i] + R[1][2] * Zp[i];
574
                    double ZZp = R[2][0] * Xp[i] + R[2][1] * Yp[i] + R[2][2] * Zp[i];
                     //collision detection between ejecta i and Didymain
                     if (Distance(Xp[i], Yp[i], Zp[i], X1, Y1, Z1) < maxDist1)
578
                    {
                          crashed[i] = true;
580
581
                          crashOnMain++;
582
                          fclose (fpEjecta[i]);
                          continue;
583
584
                     //collision detection between ejecta i and Didymoon
585
586
                     \text{else if } ((XXp-X2)*(XXp-X2)/(a*a) + (YYp-Y2)*(YYp-Y2)/(b*b) + (ZZp-Z2)*(ZZp-Z2)/(c*c) <= 1.0 ) \\ 
587
                          crashed[i] = true;
588
                          crashOnMoon++;
589
                          fclose(fpEjecta[i]);
590
                          continue;
                     //escape detection of ejecta i from the binary
593
                     else if ( Len(Xp[i], Yp[i], Zp[i]) > escDistance &&
                                  \mathrm{Len}\left(v\mathrm{Xp}\left[\begin{smallmatrix}i\end{smallmatrix}\right],v\mathrm{Yp}\left[\begin{smallmatrix}i\end{smallmatrix}\right],v\mathrm{Zp}\left[\begin{smallmatrix}i\end{smallmatrix}\right]\right) \ > \ \mathrm{sqrt}\left(2.0*\mathrm{G*}\left(\mathrm{M1}\!+\!\mathrm{M2}\right)/\mathrm{Len}\left(\mathrm{Xp}\left[\begin{smallmatrix}i\end{smallmatrix}\right],\mathrm{Yp}\left[\begin{smallmatrix}i\end{smallmatrix}\right],\mathrm{Zp}\left[\begin{smallmatrix}i\end{smallmatrix}\right]\right)\right) \ )
                          escaped[i] = true;
598
                          escapes++;
                          fclose(fpEjecta[i]);
                          continue:
600
                     //update the ejecta i coordinates through Runge-Kutta 4 method
602
```

```
RK4\_Particle(\&Xp[i],\&Yp[i],\&Zp[i],\&VXp[i],\&vXp[i],\&vXp[i],\&vZp[i],X1,X2,Y1,Y2,Z1,Z2, x1,x2,y1,y2,z1,z2)
603
604
            }
605
             /update the COM coordinates of Didymoon through Runge-Kutta 4 method
606
607
            RK4 Moon(x1, y1, z1, X1, &X2, Y1, &Y2, Z1, &Z2, &vX2, &vY2, &vZ2);
            //\mathrm{update} the COM coordinates of Didymain through the COM of the 2 asteroids
            X1 = -M2*X2/M1; vX1 = -M2*vX2/M1;
609
            Y1 = -M2*Y2/M1; vY1 = -M2*vY2/M1;
610
            Z1 = -M2*Z2/M1; vZ1 = -M2*vZ2/M1;
611
            //rotate Didymain to an angle w*dt around the z-axis
612
            RotateDidymain(x1,y1);
613
            //rotate Didymoon to an angle, so that it remains tidally locked to Didymain
614
            RotateDidymoon(x2,y2,z2, X1,Y1,Z1,X2,Y2,Z2, X01,Y01,Z01,X02,Y02,Z02);
615
            //reset auxiliary variables for the next calculation
616
            X01\ =\ X1\,;
617
            Y01 = Y1;
618
            Z01 = Z1;
619
            X02 = X2;
621
            Y02 = Y2;
            Z02 = Z2;
624
            printCounter++;
        }
626
        printf("\nOrbits calculated.\n");
627
628
        t2 = clock();
        double cpuTime = (t2-t1)/(double)CLOCKS_PER SEC;
629
        printf("Estimated completion time: %lf sec | %lf hrs\n",cpuTime,cpuTime/3600);
630
631
632
        char ejecStatName[30];
        sprintf(ejecStatName, "stat %d %d.txt", atoi(argv[1]), atoi(argv[1]) + numEjecta);
633
634
       FILE *fp5 = fopen(ejecStatName, "w");
        fprintf(fp5, "%d %d %d", crashOnMain, crashOnMoon, escapes);
636
        free(x1);
638
        free (y1);
639
        free(z1);
        free(x2);
640
641
        free (y2);
        free(z2);
        free (Xp);
643
        free (Yp);
644
        free (Zp);
645
646
        free (vXp);
        free (vYp);
647
        free (vZp);
648
        fclose(fp1);
649
        fclose (fp2);
650
651
        fclose (fp3);
        fclose(fp4);
653
        fclose (fp5);
        for (int i = 0; i < numEjecta; ++i)
654
655
        {
656
            if ((!crashed[i]) && (!escaped[i]))
657
                 fclose (fpEjecta[i]);
658
            //else the file was safely fclosed in the i-ejecta for loop
659
660
        free (crashed);
        free (escaped);
661
662
        free (fpEjecta);
663
        return 0;
664 }
```

Appendix H

Visualisation of the Ejecta Cloud (Source Code)

```
3 This code imports the orbits of Didymain and Didymoon along with the
4 orbits of 4000 impact ejecta and creates a 3D simulation.
6 Files used as input:

    main_surf_vertices.txt
    main_surf_indices.txt
    main_orbit.txt

      4) moon orbit.txt
11
      and 4000 .txt files (ejecta orbits)
12
13 */
15 #include < stdio.h>
16 #include < stdlib.h>
17 #include < stdbool.h>
18 \#include <math.h>
19 \#include <GL/gl.h>
20 \#include < GL/glu.h >
21 #include <GL/ freeglut.h>
23 #define FILE_NAME_1 "main_surf_vertices.txt"
24 #define FILE_NAME_2 "main_surf_indices.txt"
25 #define FILE NAME 3 "main orbit.txt"
26 #define FILE_NAME_4 "moon_orbit.txt"
28 \#define ESCAPE 27 //escape ASCII character
29 #define SPACEBAR 32 //spacebar ASCII character
31
  bool pause = false;
  //camera viewing positions
33
34 bool cam_xyz = true;
35 bool cam_xz = false;
36 bool cam_xy = false;
_{38} //graphics window size
39 GLsizei winWidth = 1200;
40 GLsizei winHeight = 900;
  float aspectRatio; // winWidth/winHeight
  45 int N1 = 0; //number of rows of the main surf vertices files
46 double *x = NULL;
47 double *y = NULL;
```

```
48 double *z = NULL;
49
50 int N2 = 0; //number of rows of the main_surf_indices file (number of triangles)
int **p = NULL;
53 // Didymain COM;
54 double *X1 = NULL;
55 double *Y1 = NULL;
56 \text{ double } *Z1 = \text{NULL};
57 // unit normal vector components (used for shading Didymain)
58 \text{ double } *ux = NULL;
59 double *uy = NULL;
60 double *uz = NULL;
61
63
  64
65
66 //ellipsoid (Didymoon) semi-axes in km
67 const double a = 0.100;
68 const double b = 0.080;
69 const double c = 0.070;
70 //Didymoon COM
71 double *X2 = NULL;
72 double *Y2 = NULL;
73 double *Z2 = NULL;
74
77
  78
79 //ejecta coordinates
80 double **Xp = NULL;
81 double **Yp = NULL;
82 double **Zp = NULL;
83 int *rowsInFile = NULL;
84 const int numEjecta = 4000;
85
87
  int Norb; //number of rows of the files 3,4
  int k = 0; //current row of the files 3,4
89
90
91 //t sec = 5328.066*t u
92 double t = 0.0;
93 const double dt = 0.005;
94 const double w = -4.1147; //angular velocity of Didymain (w_u = 2*pi/T_u)
95 const int timeSkip = 5;
96 int days = 0, hours = 0, minutes = 0; //physical time rendered on screen
97
   //Returns the angle in [0,2*pi]
99 double atan2pi(double b, double a)
100 {
      double angle;
102
      if (a > 0)
103
         angle = atan(b/a);
      else if (b >= 0 \&\& a < 0)
104
         angle = M_PI + atan(b/a);
      else if (b < 0 \&\& a < 0)
106
         angle = -M PI + atan(b/a);
107
      else if (b > 0 \&\& a == 0)
108
         angle = M PI/2;
109
      else if (b < 0 \&\& a == 0)
         angle = -M_PI/2;
112
      if (angle < 0)
         angle += 2*M_PI;
114
115
116
      return angle;
```

```
117 }
118
    //Counts the number of rows of a file.
119
120 int FileRows (FILE *fp)
         int rows = 0;
123
         char c;
         124
126
             if (c = ' \setminus n')
                  rows++;
128
129
        rows++;
         rewind (fp);
130
131
         return rows;
132 }
133
   //\mathrm{Reads} the observed vertices x,y,z of the asteroid from the file.
134
   void InputVertices(FILE *fp)
135
136
137
         double tempx, tempy, tempz;
138
        int i = 0;
         while (fscanf(fp, "%lf %lf %lf", &tempx, &tempy, &tempz) != EOF)
139
140
141
             x[i] = tempx;
142
             y[i] = tempy;
143
             z[i] = tempz;
144
             i++;
         }
145
146 }
147
   //\operatorname{Reads} the observed indices of Didymain from the file, that is,
148
149 //triads of points p1,p2,p3 that form triangles
150 //index i corresponds to the i-th row of the vertices file.
151 void InputIndices(FILE *fp)
152
         \verb"int" p1, p2, p3;
153
         int i = 0;
154
         while (fscanf(fp, "%d %d %d",&p1,&p2,&p3) != EOF)
155
156
             //subtract 1 from all indices because the official file
157
               starts counting from 1, while I start from 0
158
             p[i][0] = p1 - 1;
159
160
             p[i][1] = p2 - 1;
             p[i][2] = p3 - 1;
161
162
             i++;
         }
163
164 }
165
   void InputDidymainOrbit(FILE *fp)
166
167
         \textcolor{red}{\textbf{double}} \hspace{0.2cm} t \hspace{0.1cm}, x \hspace{0.1cm}, y \hspace{0.1cm}, z \hspace{0.1cm}, vx \hspace{0.1cm}, vy \hspace{0.1cm}, vz \hspace{0.1cm};
169
         int i = 0;
         while (fscanf(fp, "%lf %lf %lf %lf %lf %lf %lf ",&t,&x,&y,&z,&vx,&vy,&vz) != EOF)
170
171
172
             Y1[i] = y;
173
174
             Z1[i] = z;
             i++;
176
         }
177
178
179
    void InputDidymoonOrbit(FILE *fp)
180
181
         double t, x, y, z, vx, vy, vz;
182
         int i = 0;
         while (fscanf(fp, "%lf %lf %lf %lf %lf %lf %lf ",&t,&x,&y,&z,&vx,&vy,&vz) != EOF)
183
184
             X2[i] = x;
185
```

```
Y2[i] = y;
186
187
              Z2[i] = z;
188
               i++;
         }
189
190 }
191
    void InputEjectaOrbit(FILE *fp , int i)
192
193
         \textcolor{red}{\textbf{double}} \hspace{0.2cm} t \hspace{0.1cm}, x \hspace{0.1cm}, y \hspace{0.1cm}, z \hspace{0.1cm}, vx \hspace{0.1cm}, vy \hspace{0.1cm}, vz \hspace{0.1cm};
194
         int j = 0;
195
         while (fscanf(fp, "%lf %lf %lf %lf %lf %lf %lf ",&t,&x,&y,&z,&vx,&vy,&vz) != EOF)
196
198
              Xp[i][j] = x;
              Yp[i][j] = y;
199
200
              Zp[i][j] = z;
201
               j++;
         }
202
203
204
205 // Calculates the cross product components of two vectors that are formed by 3 points.
206 //Last argument is used to determine the component of the cross product that will be returned.
     //Possible values of 'coordinate': 0 \longrightarrow x, 1 \longrightarrow y, 2 \longrightarrow z
208 double CrossProduct(double x1, double y1, double z1,
                              double x2, double y2, double z2,
209
210
                              double x3, double y3, double z3, double coordinate)
211
            if \ (coordinate == 0) \ return \ (y2-y1)*(z3-z2) \ - \ (z2-z1)*(y3-y2); \\
212
           if (coordinate = 1) return (z2-z1)*(x3-x2) - (x2-x1)*(z3-z2);
213
           if (coordinate == 2) return (x2-x1)*(y3-y2) - (y2-y1)*(x3-x2);
215
           //else
           printf("Error while calculating the normal vectors. Exiting...\n");
216
217
           exit (EXIT_FAILURE);
218 }
    //(ux[i],uy[i],uz[i]) -> coordinates of the i-th unit normal vector, that is
220
221 //the vector which is perpendicular to the triangle formed from the i-th triad of
    //the indices file.
222
223 void CalculateNormalVectors()
224
225
         double nx, ny, nz; //i-th normal vector
         for (int i = 0; i < N2; i++)
226
227
              nx \, = \, CrossProduct \, (\, x \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, , \  \, y \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, , \  \, z \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, ,
228
229
                                      x[p[i][1]], y[p[i][1]], z[p[i][1]],
                                      x[p[i][2]], y[p[i][2]], z[p[i][2]], 0);
230
231
              ny \, = \, CrossProduct \, (\, x \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, , \  \, y \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ] \, \, , \  \, z \, [\, p \, [\, i\, ] \, [\, 0\, ]\, ]
232
                                      x[p[i][1]], y[p[i][1]], z[p[i][1]],
233
234
                                      x[p[i][2]], y[p[i][2]], z[p[i][2]], 1);
235
236
               nz = CrossProduct(x[p[i][0]], y[p[i][0]], z[p[i][0]],
                                      x[p[i][1]], y[p[i][1]], z[p[i][1]],
237
238
                                      x[p[i][2]], y[p[i][2]], z[p[i][2]], 2);
239
240
               //i-th unit normal vector
241
               ux[i] = nx/sqrt(nx*nx + ny*ny + nz*nz);
              uy[i] = ny/sqrt(nx*nx + ny*ny + nz*nz);
242
               uz[i] = nz/sqrt(nx*nx + ny*ny + nz*nz);
243
         }
244
245 }
246
247 void setupGL()
248 {
         {\tt glEnable}\left({\tt GL\_DEPTH\_TEST}\right);
249
         glEnable (GL LIGHTO);
250
         glEnable (GL_LIGHTING);
251
         glEnable(GL_COLOR_MATERIAL);
252
253
         glEnable(GL_NORMALIZE);
         glPointSize(3.0f);
254
```

```
glClearColor (0.0,0.0,0.0,0.0);
255
256 }
257
   void reshape (GLsizei w, GLsizei h)
258
259
         if (h = 0) h = 1;
260
         winWidth = w;
261
262
         winHeight = h;
         glViewport(0,0,w,h);
263
        glMatrixMode\left(GL\_PROJECTION\right);
264
         glLoadIdentity();
265
         aspectRatio = (float)w/h;
266
         gluPerspective (60.0, aspectRatio, 0.1, 100.0);
267
        glMatrixMode(GL_MODELVIEW);
268
269
         glLoadIdentity();
270 }
271
   //Places the camera in the 3D world (3 possible positions)
272
   void Camera()
273
274
         glLoadIdentity();
275
276
         if (cam_xyz)
              gluLookAt(2,2,2,0,0,0,0,0,1);
277
         else if (cam_xy)
278
             gluLookAt \left( 0\;,0\;,4\;,\;\;0\;,0\;,0\;,\;\;0\;,1\;,0 \right);
279
         else if (cam xz)
280
281
              gluLookAt(0, -4, 0, 0, 0, 0, 0, 0, 1);
   }
282
283
284
    //Renders the light
   void Light()
285
286
         glPushMatrix();
287
              float lightPosition [] = \{1.0, 0.0, 0.0, 0.0\};
288
              glLightfv (GL_LIGHT0,GL_POSITION, lightPosition);
289
290
         glPopMatrix();
291
292
293
   //Renders Didymain
294 void Didymain()
295
         glColor3f(0.4f,0.4f,0.4f);
296
297
         glPushMatrix();
298
              glTranslated(X1[k],Y1[k],Z1[k]);
              glRotated (w*t*180/M_PI,0,0,1);
299
              glBegin(GL_TRIANGLES);
300
301
                   for (int i = 0; i < N2; i++)
302
                   {
                        glNormal3d(ux[i],uy[i],uz[i]); //for the shading
303
                             \begin{array}{lll} & \text{glVertex3d} \left( x[p[i][0]] \;,\; y[p[i][0]] \;,\; z[p[i][0]] \right); \\ & \text{glVertex3d} \left( x[p[i][1]] \;,\; y[p[i][1]] \;,\; z[p[i][1]] \right); \end{array}
304
305
                             glVertex3d(x[p[i][2]], y[p[i][2]], z[p[i][2]]);
306
307
              glEnd();
308
309
         glPopMatrix();
310
   //Renders Didymoon
   void Didymoon()
313
314
         glColor3f(0.4f,0.4f,0.4f);
315
316
         glPushMatrix();
              glTranslated(X2[k], Y2[k], Z2[k]);
317
              glRotated(atan2pi(Y2[k],X2[k])*180/M_PI, 0,0,1);
318
              glRotated(acos(Z2[k]/sqrt(X2[k]*X2[k]+
319
320
                                              Y2[k]*Y2[k] +
                                              Z2[k]*Z2[k]))*180/M_PI + 90.0, 0,1,0);
              glScaled(a,b,c);
              glutSolidSphere (1.0,20,20);
323
```

```
glPopMatrix();
324
325
326
   //Renders the ejecta
327
328
   void Ejecta()
329
        glColor3f(0.8f,0.8f,0.8f);
330
331
        for (int i = 0; i < numEjecta; ++i)
            if (k < rowsInFile[i])</pre>
333
334
                 //in case the program crashes, comment the commands: glPushMatrix() up to glPopMatrix()
335
                  and uncomment the commands: glBegin(GL POINTS) up to glEnd()
336
                 glPushMatrix();
                     glTranslated (Xp[i][k], Yp[i][k], Zp[i][k]);
338
                     glutSolidSphere(0.01,5,5);
339
                 glPopMatrix();
340
                 /*glBegin(GL_POINTS);
341
342
                     glVertex3d(Xp[i][k],Yp[i][k],Zp[i][k]);
                 glEnd();*/
343
            }
344
        }
345
346 }
347
348
   //Displays the physical time of the system's evolution on the window
349
   void Timer()
350
   {
        glDisable(GL_LIGHTING); //disable light calculations
351
        //switch to 2D orthographic view
352
353
        {\tt glMatrixMode}({\tt GL\_PROJECTION})\,;
354
        glLoadIdentity();
355
        if (winWidth >= winHeight)
            gluOrtho2D(-winWidth*aspectRatio, winWidth*aspectRatio, -winHeight, winHeight);
356
357
            gluOrtho2D(-winWidth, winWidth, -winHeight * aspectRatio, winHeight * aspectRatio);
358
359
        glMatrixMode(GL MODELVIEW);
360
        glLoadIdentity();
361
        //elapsed time
362
        days = (5328.066*t/(24.0*3600));
363
        hours = (5328.066*t/3600.0);
364
        minutes = (5328.066*t/60.0);
365
        char tm[50]; //time string
366
367
        sprintf(tm, "day %d | hr %d | min %d", days, hours %24, minutes %60);
        glColor3f(1.0f,1.0f,0.0f);
368
         /place the time on the top left of the window
369
        if (winWidth >= winHeight)
370
            glRasterPos2f((-winWidth+100)*aspectRatio, winHeight-100);
371
372
        else
            glRasterPos2f(-winWidth+100, (winHeight-100)*aspectRatio);
373
374
        glutBitmapString(GLUT_BITMAP_HELVETICA_18,tm);
376
        //switch back to perspective view
377
        glViewport (0,0,winWidth,winHeight);
378
        glMatrixMode(GL PROJECTION);
379
        glLoadIdentity();
        gluPerspective (60.0, aspectRatio, 0.1, 100.0);
380
        glMatrixMode(GL_MODELVIEW);
381
382
        glLoadIdentity();
        glEnable(GL LIGHTING); //restore light calculations
383
384
385
   void display()
386
387
        glClear(GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT);
388
389
        Camera();
390
391
        Light();
        Didymain();
392
```

```
{\rm Didymoon}\,(\,)\,;
393
        Ejecta();
394
395
        Timer();
396
397
        t += timeSkip*dt;
398
        k++;
399
        if (k >= Norb)
             glutLeaveMainLoop();
400
        glutSwapBuffers();
401
402
403
404
   void keyboard (unsigned char key, int x, int y)
405
        if (\text{key} = '1')
406
407
            cam\_xyz \; = \; t\, r\, u\, e \; ;
408
409
            cam_xy = false;
            cam_xz = false;
410
411
        }
        else if (key == '2')
412
413
414
            cam_xyz = false;
            cam_xy = true;
415
            cam_xz = false;
416
417
418
        else if (\text{key} = '3')
419
            cam_xyz = false;
420
            cam xy = false;
421
422
            cam\_xz \ = \ true \, ;
423
424
        else if (key == ESCAPE)
            glutLeaveMainLoop();
425
426
        else if (key == SPACEBAR)
            pause = !pause;
427
428
429
   //Refresh the frame only if not paused
430
431
   void idle()
432
433
        if (!pause)
             glutPostRedisplay();
434
435 }
436
437
   int main(int argc, char *argv[])
438
        FILE *fp1 = fopen(FILE_NAME_1, "r"); //Didymain vertices
439
        if (fp1 == NULL)
440
441
             printf("Error while reading file. Exiting...\n");
442
443
             exit (EXIT_FAILURE);
444
445
        N1 = FileRows(fp1);
        x = (double*) malloc(N1*sizeof(double));
446
447
        y = (double*) malloc (N1*sizeof (double));
448
        z = (double*) malloc (N1*sizeof (double));
        Input Vertices (fp1);
449
450
        FILE *fp2 = fopen(FILE_NAME_2, "r"); //Didymain indices
451
        if (fp2 = NULL)
452
453
             printf("Error while reading file. Exiting...\n");
454
455
             exit(EXIT FAILURE);
456
457
        N2 = FileRows(fp2);
        p = (int**) malloc(N2*sizeof(int*));
458
        for (int i = 0; i < N2; i++)
459
460
            p[i] = (int*) malloc(3*sizeof(int));
        InputIndices (fp2);
461
```

```
462
       //unit normal vectors. Used for the shading of Didymain.
463
       ux = (double*) malloc(N2*sizeof(double));
464
       uy = (double*) malloc(N2*sizeof(double));
465
466
       uz = (double*) malloc(N2*sizeof(double));
       CalculateNormalVectors();
467
468
       FILE *fp3 = fopen(FILE NAME 3, "r"); //Didymain orbit
469
       if (fp3 = NULL)
470
471
            printf("Error while reading file. Exiting...\n");
472
            exit (EXIT FAILURE);
473
474
       Norb = FileRows(fp3);
475
       X1 = (double*) malloc(Norb*sizeof(double));
476
       Y1 = (double*) malloc(Norb*sizeof(double));
477
       Z1 = (double*) malloc(Norb*sizeof(double));
478
       InputDidymainOrbit (fp3);
479
480
       FILE *fp4 = fopen(FILE NAME 4, "r"); //Didymoon orbit
481
       if (fp4 = NULL)
482
483
       {
            printf("Error while reading file. Exiting...\n");
484
            exit (EXIT_FAILURE);
485
486
487
       X2 = (double*) malloc(Norb*sizeof(double));
       Y2 = (double*) malloc(Norb*sizeof(double));
488
       Z2 = (double*) malloc(Norb*sizeof(double));
489
       InputDidymoonOrbit (fp4);
490
491
       FILE **fpEjecta = (FILE**) malloc(numEjecta*sizeof(FILE*)); //ejecta orbits
492
493
       rowsInFile = (int*) malloc(numEjecta*sizeof(int));
       Xp = (double **) malloc (numEjecta*sizeof (double *));
494
       Yp = (double **) malloc (numEjecta * size of (double *));
495
       Zp = (double**) malloc (numEjecta*sizeof (double*));
496
497
       char orbName[15];
498
       for (int i = 0; i < numEjecta; ++i)
499
            printf("\rLoading files %d/%d",i,numEjecta-1);
500
            fflush (stdout);
501
            sprintf(orbName, "Ejecta Orbits/orb %d.txt", i);
502
            fpEjecta[i] = fopen(orbName, "r");
503
            if (fpEjecta[i] == NULL)
504
505
                printf("\nError while reading file. Exiting...\n");
506
                exit (EXIT_FAILURE);
507
508
            }
            rowsInFile[i] = FileRows(fpEjecta[i]);
509
           Xp[i] = (double*)malloc(rowsInFile[i]*sizeof(double));
           Yp[i] = (double*) malloc(rowsInFile[i]* sizeof(double));
            Zp[i] = (double*)malloc(rowsInFile[i]*sizeof(double));
            InputEjectaOrbit(fpEjecta[i],i);
514
       printf("\n");
516
       glutInit(&argc, argv);
517
       glutInitDisplayMode(GLUT RGB|GLUT DOUBLE|GLUT DEPTH);
518
       glutInitWindowPosition((int)((glutGet(GLUT_SCREEN_WIDTH) - (int)winWidth)/2.0f),
519
                                 (int)((glutGet(GLUT_SCREEN_HEIGHT) - (int)winHeight)/2.0f));
       glutInitWindowSize(winWidth, winHeight);
521
       glutCreateWindow("Ejecta orbits");
       glutDisplayFunc(display);
523
       glutReshapeFunc(reshape);
524
       glutKeyboardFunc(keyboard);
       glutIdleFunc(idle);
       setupGL();
       glutMainLoop();
528
529
       free(x);
530
```

```
free(y);
531
532
          free(z);
          for (int i = 0; i < N2; i++)
533
534
                free(p[i]);
          free(p);
535
          free(ux);
536
537
          free(uy);
          free(uz);
538
          free (X1);
539
          free (Y1);
540
          free(Z1);
free(X2);
541
542
          free (Y2);
543
          free(Z2);

for (int i = 0; i < numEjecta; ++i)
544
545
546
547
                free(Xp[i]);
                free (Yp[i]);
548
549
                free\left( \mathrm{Zp}\left[ \ i\ \right] \right);
550
          free(Xp);
free(Yp);
free(Zp);
551
552
553
554
          \mathtt{fclose}\,(\,\mathtt{fp1}\,)\,;
555
          fclose (fp2);
fclose (fp3);
556
557
          fclose (fp4);
558
          for (int i = 0; i < numEjecta; ++i)
559
                fclose(fpEjecta[i]);
560
561
          free (fpEjecta);
          free(rowsInFile);
562
          return 0;
563
564 }
```

codes/EjectaOpenGL.c

Appendix I

Ejecta Orbits Plots (Source Code)

```
1 #This script picks a sample of ejected particles in random
2 #from the directory 'Ejecta Orbits' and plots their functions
3 \# r(t) and v(t) with respect to the global inertial frame.
  import numpy as np
  import matplotlib.pyplot as plt
8 \text{ totalParticles} = 4000
9 sample = 21 \#21 r(t) and 21 v(t) functions are to be plotted
10 orbIndex = np.random.randint(totalParticles, size = sample)
print('Particles selected:',orbIndex)
12 str1 = 'Ejecta_Orbits/orb_
13 \text{ str} 2 = \text{'.txt'}
15 str4 = \text{'v(t)}_{16}

16 str5 = \text{'.png}
17 \text{ figCounter} = 0
18 for i in range(sample):
19
       strIndex = str(orbIndex[i])
       fileName = str1 + strIndex + str2
20
21
       orb = np.loadtxt(fileName)
       r = np.zeros((len(orb),1), dtype = float)
23
       v = np.zeros((len(orb),1), dtype = float)
24
       for j in range(len(orb)):
           #calculate distance and velocity from the x,y,z,vx,vy,vz components
25
           r[j] = np.sqrt(orb[j][1]**2 + orb[j][2]**2 + orb[j][3]**2)
26
27
           v[j] = np.sqrt(orb[j][4]**2 + orb[j][5]**2 + orb[j][6]**2)
       \#plot the function r(t)
28
       plt.figure(i + figCounter)
       plt.plot(orb[:,0],r)
30
       plt.xlabel('time (TU)')
31
       plt.ylabel('distance r (km)')
32
33
       plt.title(str3 + strIndex)
34
       figName = str3 + strIndex + str5
       plt.savefig(figName)
35
36
       figCounter = figCounter + 1
37
38
39
       \#plot the function v(t)
       plt.figure(i + figCounter)
40
       plt.plot(orb[:,0],v)
       plt.xlabel('time (TU)')
42
       plt.ylabel('velocity v (km / TU)')
43
44
       plt.title(str4 + strIndex)
       figName = str4 + strIndex + str5
45
46
       plt.savefig(figName)
47
  plt.show()
```

Appendix J

Ejecta Population (Source Code)

```
1 #This code calculates the population of the ejecta near Didymos binary
2 #as a function of time. The algorithm collects all the final moments
_3 \#t final of calculations done at each of the 4000 particles and uses it
4 #in order to decide whether the particle i still exists (hasn't escaped or
5 #crashed) at time t or not.
7 import numpy as np
  import matplotlib.pyplot as plt
10 total Particles = 4000
11 \text{ tmax} = 486.47
12 dt = 0.025
13 deathTime = [] #last time t of particle i
14 fp = open('population.txt', 'w') #it shall contain the data (t, N(t))
  print('Collecting death times...')
   for i in range (totalParticles): #loop through all 4000 files
       orb = np.loadtxt('Ejecta_Orbits/orb_' + str(i) + '.txt')
18
19
       lastLineTime = orb [len(orb[:,0]) - 1, 0] #last line, first column
       deathTime.append(lastLineTime)
20
22 print ('Calculating the population N(t)')
23 deathTime = np.asarray(deathTime)
   for t in np.arange(0,tmax,dt):
24
       population \, = \, 0
25
       for i in range(len(deathTime)):
26
           #if the last calculation time > t, then particle i exists at time t
27
           if deathTime[i] >= t:
28
               population = population + 1
       fp.write(\frac{\%f}{M} \frac{%d}{n} \frac{\%(t, population)}{m}
30
32 fp.close()
```

codes/Population.py

Appendix K

Mersenne Twister RNG (Source Code)

```
1 #ifndef _
               MTWISTER H
2 #define __MTWISTER_H
 4 #define STATE_VECTOR_LENGTH 624
5 #define STATE_VECTOR_M
6 #define UPPER MASK
                              0x80000000
 7 #define LOWER MASK
                              0 \times 7 f f f f f f f
8 #define TEMPERING MASK B 0x9d2c5680
9 #define TEMPERING_MASK_C 0xefc60000
11 typedef struct mtRand
12
        unsigned long mt[STATE_VECTOR_LENGTH];
13
14
        int index;
  } mtRand;
15
   void m seedRNG(mtRand *rand, unsigned long seed)
17
18
        rand \rightarrow mt[0] = seed & 0xffffffff;
19
20
        for (rand->index = 1; rand->index < STATE VECTOR LENGTH; rand->index++)
21
             rand \rightarrow mt[rand \rightarrow index] = (6069*rand \rightarrow mt[rand \rightarrow index - 1]) & 0 xfffffffff;
22
24 }
25
26 mtRand seedRNG(unsigned long seed)
        mtRand rand;
        m seedRNG(\&rand, seed);
29
30
        return rand;
31 }
32
33 unsigned long genRandLong(mtRand *rand)
34
35
        unsigned long y;
        static unsigned long mag[2] = \{0x0, 0x9908b0df\}; /* mag[x] = x * 0x9908b0df for x = 0,1 */
36
        \label{eq:if_cond}  \mbox{if} \; (\mbox{rand->} \mbox{index} \; >= \; \mbox{STATE\_VECTOR\_LENGTH} \; \; | \; | \; \; \mbox{rand->} \mbox{index} \; < \; 0) 
37
38
             /* generate STATE_VECTOR_LENGTH words at a time */
39
40
             int kk;
             if(rand \rightarrow index >= STATE\_VECTOR\_LENGTH + 1 \mid \mid rand \rightarrow index < 0)
41
42
                 m seedRNG(rand, 4357);
43
44
             for (kk = 0; kk < STATE_VECTOR_LENGTH - STATE_VECTOR_M; kk++)
46
                  y = (rand->mt[kk] \& UPPER\_MASK) | (rand->mt[kk+1] \& LOWER\_MASK);
47
                  rand \rightarrow mt[kk] = rand \rightarrow mt[k\overline{k} + STATE\_VECTOR\_M] ^ (y >> 1) ^ mag[y \& 0x1];
48
49
             for (; kk < STATE_VECTOR_LENGTH - 1; kk++)
```

```
{
51
52
             y = (rand \rightarrow mt[kk] \& UPPER MASK) | (rand \rightarrow mt[kk + 1] \& LOWER MASK);
             53
54
         y = (rand->mt[STATE VECTOR LENGTH - 1] & UPPER MASK) | (rand->mt[0] & LOWER MASK);
         56
57
         rand \rightarrow index = 0;
58
     \dot{y} = rand \rightarrow mt[rand \rightarrow index ++];
59
     y = (y >> 11);
60
     y \stackrel{\hat{}}{=} (y \ll 7) \& TEMPERING_MASK_B;
61
     y = (y \ll 15) \& TEMPERING MASK C;
62
     y = (y >> 18);
63
      return y;
64
65 }
66
67
  //\operatorname{Returns} a pseudorandom number in (0,1) from the uniform distro
68 double RNG(mtRand *rand)
69 {
      return((double)genRandLong(rand) / (unsigned long)0xffffffff);
70
71 }
72
73 \#endif /* \#ifndef __MTWISTER_H */
```

codes/mtwister.h

Bibliography

- [1] Yang Yu, Patrick Michel, Stephen R. Schwartz, Shantanu P. Naidu, Lance A. M. Benner. Ejecta Cloud from a Kinetic Impact on the Secondary of a Binary Asteroid: I. Mechanical Environment and Dynamic Model. Laboratoire Lagrange, Universite Cote d'Azur, Observatoire de la Cote d'Azur, CNRS, 06304 Nice, France, Jet Propulsion Laboratory, California Institute of Technology, 91109 Pasadena, CA, United States. March 24, 2016.
- [2] J. Larson¹ and G. Sarid². ONE BODY, TWO BODY, SMALL BODY, N-BODY: EJECTA DY-NAMICS IN THE ENVIRONMENT OF SINGLE AND BINARY ASTEROIDS. ¹Department of Physics, University of Central Florida, ²Florida Space Institute, University of Central Florida. 2018.
- [3] Patrick Michel et al. European component of the AIDA mission to a binary asteroid: Characterization and interpretation of the impact of the DART mission. 12 December 2017.
- [4] DR. PATRICK MICHEL (OCA, FRANCE), LEAD. ASTEROID IMPACT MISSION: DIDY-MOS REFERENCE MODEL. VERSION 10, OCTOBER 22, 2015.
- [5] G. J Flynn¹, D. D. Durda², E. B. Patmore³, A. N. Clayton³, S. J. Jack³, M. D. Lipman³ and M. M. Strait³. MOMENTUM TRANSFER IN IMPACT CRATERING OF A POROUS TARGET, 2014.
- $[6] \ www.nasa.gov/planetarydefense/dart$
- [7] http://dart.jhuapl.edu
- [8] www.esa.int/Our_Activities/Space_Safety/Hera
- [9] C.D. Murray and S.F. Dermott. Solar System Dynamics. 1999.
- [10] The Khronos OpenGL ARB Working Group. OpenGL Programming Guide, Seventh Edition. 2009.
- [11] www.wikipedia.org