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Preface 

In a .sense, trigonometry sits at the center of high school mathematics. It 
originates in the study of geometry when we investigate the ratios of sides 
in similar right triangles, or when we look at the relationship between a 
chord of a circle and its arc. It leads to a much deeper study of periodic 
functions, and of the so-called transcendental functions, which cannot be 
described using finite algebraic processes. It also has many applications to 
physics, astronomy, and other branches of science. 

It is a very old subject. Many of the geometric results that we now 
state in trigonometric terms were given a purely geometric exposition by 
Euclid. Ptolemy, an early astronomer, began to go beyond Euclid, using 
th~ geometry of the time to construct what we now call tables of values of 
trigonometric functions. 

Trigonometry is an important introduction to calculus, where one stud­
ies what mathematicians call analytic properties of functions. One of the 
goals of this book is to prepare you for a course in calculus by directing 
your attention away from particular values of a function to a study of the 
function as an object in itself. This way of thinking is useful not just in 
calculus, but in many mathematical situations. So trigonometry is a part of 
pre-calculus, and is related to other pre-calculus topics, such as exponential 
and logarithmic functions, and complex numbers. The interaction of these 
topics with trigonometry opens a whole new landscape of mathematical 
results. But each of these results is also important in its own right, without 
being "pre-" anything. 

We have tried to explain the beautiful results of trigonometry as simply 
and systematically as possible. In many cases we have found that simple 
problems have connections with profound and advanced ideas. Sometimes 
we have indicated these connections. In other cases we have left them for 
you to discover as you learn more about mathematics. 



X Preface 

About the exercises: We have tried to include a few problems of each 
"routine" type. If you need to work more such problems, they are easy to 
find. Most of our problems, however, are more challenging, or exhibit a 
new aspect of the technique or object under discussion. We have tried to 
make each exercise tell a little story about the mathematics, and have the 
stories build to a deep understanding. 

We will be happy if you enjoy this book and learn something from it. 
We enjoyed writing it, and learned a lot too. 
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Chapter 0 

Trigonometry 
f. Gr. r p[ y wvo- v triangle + - {tH p[a measurement. 

- Oxford English Dictionary 

In this chapter we will look at some results in geometry that set the stage 
for a study of trigonometry. 

1 What is new about trigonometry? 

Two of the most basic figures studied in geometry are the triangle and the 
circle. Tngonometry will tell us more than we learned in geometry about 
each of these figures. 

For example, in geometry we learn that if we know the lengths of the 
three sides of a triangle, then the measures of its angles are completely 
determined1 (and, in fact, almost everything else about the triangle is de­
termined). But, except for a few very special triangles, geometry does not 
tell us how to compute the measures of the angles, given the measures of 
the sides. 

Example 1 The measures of the sides of a triangle are 6, 6, and 6 cen­
timeters. What are the measures of its angles? 

1 It is sometimes said that the lengths of three sides determine a triangle, but one must 
be careful in thinking this way. Given three arbitrary lengths, one may or may not be able 
to form a triangle (they form a triangle if and only if the sum of any two of them is greater 
than the third). But if one can form a triangle, then the angles of that triangle are indeed 
determined. 
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Solution. The triangle has three equal sides, so its three angles are also 
equal. Since the sum of the angles is 180", the degree-measure of each 
angle is 180/3 = 60°. Geometry allows us to know this without actually 
measuring the angles, or even drawing the triangle. o 

Example 2 The measures of the sides of a triangle are 5, 6, and 7 cen­
timeters. What are the measures of its angles? 

Solution. We cannot find these angle measures using geometry. The 
best we can do is to draw the triangle, and measure the angles with a pro­
tractor. But how will we know how accurately we have measured? We will 
answer this question in Chapter 3. o 

Example 3 Two sides of a triangle have length 3 and 4 centimeters, and 
the angle between them is 90°. What are the measures of the third side, and 
of the other two angles? 

Solution. Geometry tells us that if we know two sides and an included 
angle of a triangle, then we ought to be able to find the rest of its measure­
ments. In this case, we can use the Pythagorean Theorem (see page 7) to 
tell us that the third side of the triangle has measure 5. But geometry will 
not tell us the measures of the angles. We will learn how to find them in 
Chapter2. o 

Exercise Using a protractor, measure the angles of the triangle below as · 
accurately as you can. Do your measurements add up to 180°? 

Let us now turn our attention to circles. 

Example 4 In a certain circle, a central angle of 20° cuts off an arc that 
is 5 inches long. In the same circle, how long is the arc cut off by a central 
angle of 40°? 
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Solution. We can divide the 40°angle into two angles of 20°. Each of 
these angles cuts off an arc of length 5", so the arc cut off by the 40°angle 
is 5 + 5 = 10 inches long. 

? 
5" 

That is, if we double the central angle, we also double the length of the arc 
it intercepts. 0 

Example 5 In a certain circle, a central angle of 20° determines a chord 
that is 7 inches long. In the same circle, how long is the chord determined 
by a central angle of 40°? 

Solution. As with Example 4, we can try to divide the 40° angle into 
two 20° angles: 

? 
7" 

However, it is not so easy to relate the length of the chord determined by 
the 40° angle to the lengths of the chords of the 20° angles. Having doubled 
the angle, we certainly have not doubled the chord. o 

Exercises 

1. In a circle, suppose we draw any central angle at all, then draw a 
second central angle which is larger than the first. Will the arc of the 
second central angle always be longer than the arc of the first? Will 
the chord of the second central angle also be larger than the chord of 
the first? 

2. What theorem in geometry guarantees us that the chord of a 40° 
angle is less than double the chord of a 20° angle? 
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3. Suppose we draw any central angle, then double it. Will the chord of 
the double angle always be less than twice the chord of the original 
central angle? 

Trigonometry and geometry tell us that any two equal arcs in the same 
circle have equal chords; that is, if we know the measurement of the arc, 
then the length of the chord is determined. But, except in special circum­
stances, geometry does not give us enough tools to calculate the length of 
the chord knowing the measure of the arc. 

Example 6 In a circle of radius 7, how long is the chord of an arc of 90°? 

Solution. If we draw radii to the endpoints of the chord we need, we 
will have an isosceles right triangle: 

Then we can use the Pythagorean Theorem to find the length of the chord. 
If this length is x, then 72 + 72 = x 2

, so that x = .J98 = 7 ../i. o · 

Example 7 In a circle of radius 7, how long is the chord of an arc of 38°? 

Solution. Geometry does not give us the tools to solve this problem. 
We can draw a triangle, as we did in Example 6: 

But we cannot find the third side of this triangle using only geometry. How­
ever, this example does illustrate the close connection between mea~ure­
ments in a triangle and measurements in a circle. o 
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Exercises 

1. What theorem from geometry guarantees us that the triangle in the 
diagram for Example 7 is completely determined? 

2. Note that the triangle in Example 7 is isosceles. Calculate the mea­
sure of the two missing angles. 

Trigonometry will help us solve all these kinds of problems. However, 
trigonometry is more than just an extension of geometry. Applications of 
trigonometry abound in many branches of science. 

Example 8 Look at any pendulum as it swings. If you look closely, you 
will see that the weight travels very slowly at either end of its path, and 
picks up speed as it gets towards the middle. It travels fastest during the 
middle of its journey. o 

Example 9 The graph below shows the time of sunrise (corrected for 
daylight savings) at a certain latitude for Wednesdays in the year 1995. 
The data points have been joined by a smooth curve to make a continuous 
graph over the entire year. 

'<.) . 

7.001 

i 
5.00-1 

. § T 
..... I 3.oo T 
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0 50 100 150 200 250 300 350 
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We expect this curve to be essentially the same year after year. How­
ever, neither geometry nor algebra can give us a formula for this curve. In 
Chapter 8 we will show how trigonometry allows us to describe it mathe­
matically. Trigonometry allows us to investigate any periodic phenomenon 
- any physical motion or change that repeats itself. o 
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2 Right triangles 

We will start our study of trigonometry with triangles, and for a while we 
will consider only right triangles. Once we have understood right triangles, 
we will know a lot about other triangles as well. 

Suppose you wanted to use e-mail to describe a triangle to your friend 
in another city. You know from geometry that this usually requires three 
pieces of information (three sides; two sides and the included angle; and so 
on). For a right triangle, we need only two pieces of information, since we 
already know that one angle measures 90°. 

In choosing our two pieces of information, we must include at least one 
side, so there are four cases to discuss: 

a) the lengths of the two legs; 

b) the lengths of one leg and the hypotenuse; 

c) the length of one leg and the measure of one acute angle; 

d) the length of the hypotel}use and the measure of one acute angl~. 

(a) (b) 

___________ _d 
(d) 

Suppose we want to know the lengths of all the sides of the triangle. For 
cases (a) and (b) we need only algebra and geometry. For cases (c) and (d), 
however, algebraic expressions do not (usually) suffice. These cases will 
introduce us to trigonometry, in Chapter 1. 
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3 The Pythagorean theorem 

We look first at the chief geometric tool which allows us to solve cases 
(a) and (b) above. This tool is the famous Pythagorean Theorem. We can 
separate the Pythagorean theorem into two statements: 

Statement 1: If a and b are the lengths of the legs of a right triangle, and c 
is the length of its hypotenuse, then a2 + b2 = c2. 

Statement II: If the positive numbers a, b, and c satisfy a2 + b2 = c2, then 
a triangle with these side lengths has a right angle opposite the side with 
length c.2 

These two statements are converses of each other. They look similar, 
but a careful reading will show that they say completely different things 
about triangles. In the first statement, we know something about an angle 
of a triangle (that it is a right angle) and can conclude that a certain relation­
ship holds among the sides. In the second statement, we know something 
about the sides of the triangle, and conclude something about the angles 
(that one of them is a right angle). 

The Pythagorean theorem will allow us to reconstruct a triangle, given 
two legs or a leg and the hypotenuse. This is because we can find, using 
this information, the lengths of all three sides of the triangle. As we know 
from geometry, this completely determines the triangle. 

Example 10 In the English university town of Oxford, there are some­
times lawns occupying rectangular lots near the intersection of two roads 
(see diagram). 

B 

9 meters 

A 12 meters c 
2In fact, we can make a stronger statement than statement II: 

Statement n': If the positive numbers a, b, and c satisfy a 2 + b2 = c2 , then there exists 
a triangle with sides a, b, and c, and this triangle has a right angle opposite the side with 
length c. 

This statement includes, for example, the fact that if a2 + b2 = c2, then a+ b >c. 
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In such cases, professors (as well as small animals) are allowed to cut 
across the lawn, while students must walk around it. If the dimensions of 
the lawn are as shown in the diagram, how much further must the students 
walk than the professors in going from point A to point B? 

Solution. Triangle ABC is a right triangle, so statement I of the Pythag­
orean theorem applies: 

AB2 = AC2 + BC2 

= 122 + 92 
= 144 + 81 = 225 . 

So AB = 15 meters, which is how far the professor walks. 
On the other hand, the students must walk the distance A(; + C B = 

12 + 9 = 21. This is 6 meters longer than the professor's walk, or 40% 
longer. o 

Example 11 Show that a triangle with sides 3, 4, and 5 is a right tnangle 

Solution. We can apply statement II to see if it is a right triangle. In 
fact, 52 = 25 = 32 + 42, so the angle opposite the side of length 5 is a right 
angle. Notice that we cannot use statement I of the Pythagorean theorem 
to solve this problem. o 

Exercises The following exercises concern the Pythagorean theorem. In 
solving each problem, be sure you understand which of the two statements 
of this theorem you are using. 

1. Two legs of a right triangle measure 10 and 24 units. Find the length 
of the hypotenuse in the same units. 

2. The hypotenuse of a right triangle has length 41 units, and one leg 
measures 9 units. Find the measure of the other leg. 

3. Show that a triangle with sides 5, 12, and 13 is a right triangle. 

4. One leg of a right triangle has length 1 unit, and the hypotenuse has 
length 3 units. What is the length of the other leg of the triangle? 

5. The hypotenuse of an isosceles right triangle has length 1. Find the 
length of one of the legs of this triangle. 
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6. In a right triangle with a 30oangle, the hypotenuse has length 1. Find 
the lengths of the other two legs. 

Hint: Look at the diagram in the footnote on page 11. 

7. Two points, A and B, are given in the plane. Describe the set of 
points X such that AX2 + BX2 = AB2 . 

(Answer: A circle with its center at the midpoint of AB.) 

8. Two points, A and B, are given in the plane. Describe the set of 
points for which AX2 - BX2 is constant. 

4 Our best friends (among right triangles) 

There are a few right triangles which have a very pleasant property: their 
sides are all integers. We have already met the nicest of all (because its 
sides are small integers): the triangle with sides 3 units, 4 units and 5 units. 
But there are others. 

Exercises 

1. Show that a triangle with sides 6, 8, and 10 units is a right triangle. 

2. Look at the exercises to section 3. These exercises use three more 
right triangles, all of whose sides are integers. Make a list of them. 
(Later, in Chapter 7, we will discover a way to find many more such 
right triangles.) 

3. The legs of a right triangle are 8 and 15 units. Find the length of the 
hypotenuse. 

4. We have used right triangles with the following sides: 

II Leg I Leg I Hypotenuse II 
3 4 5 
6 8 10 
9 12 15 

By continuing this pattern, find three more right triangles with inte­
ger sides. 



10 'J'rigonomet1y 

5. We have seen that a triangle with sides 5, 12, and 13 is a right tri­
angle. Can you find a right triangle, with integer sides, whose short­
est side has length 10? length 15? 

6. Exercises 4 and 5 suggest that we can construct one integer-side right 
triangle from another by multiplying each side by the same number 
(since the new triangle is similar to the old, it is still a right tri­
angle). We can also reverse the process, dividing each side by the 
same number. Although we won't always get integers, we will al­
ways get rational numbers. Show that a triangle with sides 3/5, 4/5, 
and 1 is a right triangle. 

7. Using the technique from Exercise 6, start with a 3-4-5 triangle and 
find a right triangle with rational sides whose shorter leg' is 1. Then 
find a right triangle whose longer leg is 1. 

8. Start with a 5-12-13 right triangle, and find a right triangle with ra­
tional sides whose hypotenuse is 1. Then find one whose shorter leg 
is 1. Finally, find a right triangle whose longer leg is 1. 

9. Note that the right triangles with sides equal to 5, 12, 13 and 9, 12, 
15 both have a leg equal to 12. Using this fact, find the area of a 
triangle with sides 13, 14, and 15. 

10. (a) Find the area of a triangle with sides 25, 39, 56 

(b) Find the area of a triangle with sides 25, 39, 16. 

5 Our next best friends (among right triangles) 

In the previous section, we explored right triangles with nice sides. We 
will now look at some triangles which have nice angles. For example, the 
two acute angles of the right triangle might be equal. Then the triangle is 
isosceles, and its acute angles are each 45o. 

Or, we could take one acute angle to be double the other. Then the 
triangle has acute angles of 30 and 60°. 

But nobody is perfect. It turns out that the triangles with nice angles 
never have nice sides. For example, in the case of the 45° right triangle, we 
have two equal legs, and a hypotenuse that is longer: 
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1 

If we suppose the legs are each 1 unit long, then the hypotenuse, measured 
in the same units, is about 1.414213562373 units long, not a very nice 
number. 

For a 30°right triangle, if the shorter leg is 1, the hypotenuse is a nice 
length3: it is 2. But the longer leg is not a nice length. It is approximately 
1.732 (you can remember this number because its digits form the year in 
which George Washington was born- and the composer Joseph Haydn). 

It also turns out that triangles with nice sides never have nice angles. 

If we want an example of some theorem or definition, we will look at 
how the statement applies to our friendly triangles. 

Exercises 

1. Find the length of each leg of an isosceles right triangle whose hy­
potenuse has length 1. Challenge: Find the length, correct to nine 
decimal places without using your calculator (but using information 
contained. in the text above!). 

2. Using the Pythagorean theorem, find the hypotenuse of an isosceles 
right triangle whose legs are each three units long. 

3If you don't remember the proof, just take two copies of such a triangle, and place 
them back-to-back: 

You will find that they form an equilateral triangle. The side opposite the 30°angle is 
half of one side of this equilateral triangle, and therefore half of the hypotenuse. 
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3. The shorter leg of a 30-60-90°triangle is 5 units. Using the Pythago­
rean theorem (and the facts about a 30°-60°-90° triangle referred to 
above), find the lengths of the other two sides of the triangle. 

4. In each of the diagrams below, find the value of x and y: 

X 

(c) 

1 1 X 

X y 

A X 
X 

4 X 

(e) (f) 

c y B p s 
AC==BC PQRS is a square 

6 Some standard notation 

A triangle has six elements ("parts"): three sides and three angles. We will 
agree to use capital letters, or small Greek letters, to denote the measures 
of the angles of the triangle (the same letters with which we denote the 
vertices of the angles). To denote the lengths of the sides of the triangle, 
we will use the small letter corresponding to the name of the angle opposite 
this side. 

Some examples are given below: 
A A 

B 

b 

y 

B a c c 
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Appendix 

I. Classifying triangles 

Because the angles of any triangle add up to 180°, a triangle can be classi­
fied as acute (having three acute angles), right (having one right angle), or 
obtuse (having one obtuse angle). We know from geometry that the lengths 
of the sides of a triangle determine its angles. How can we tell from these 
side lengths whether the triangle is acute, right, or obtuse? 

Statement II of the Pythagorean theorem gives us a partial answer: If 
the side lengths a, b, c satisfy the relationship a2 + b2 = c2 , then the 
triangle is a right triangle. But what if this relationship is not satisfied? 

We can tell a bit more if we think of a right triangle that is "hinged" 
at its right angle, and whose hypotenuse can stretch (as if made of rubber). 
The diagrams below show such a triangle. Sides a and b are of fixed length, 
and the angle between them is "hinged." 

B 
B 

a ~ 
C b A 

c b A 

As you can see, if we start with a right triangle, and "close down" the 
hinge, then the right angle becomes acute. When this happens, the third 
side (labeled c) gets smaller. In the right triangle, c2 = a2 + b2

, so we can 
see that: 

Statement III: If angle C of !:::,.ABC is acute, then c2 < a2 + b2. 

In the same way, if we open the hinge up, angle C becomes obtuse, and 
the third side gets longer: 

B 

a 

c 
Sowe see that 

b A 

B 

c b A 

Statement IV: If angle C of !:::,.ABC is obtuse, then c2 > a2 + b2• 
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Exercise Write the converse of statements III and IV above. 

While the converses of most statements require a separate proof, for 
these particular cases, the converses follow from the original statements. 
For example, if, in .6ABC, c2 < a2 +b2, then angle C cannot be right (this 
would contradict statement II of the Pythagorean Theorem) and cannot be . 
obtuse (this would contradict statement IV above). So angle C must be 
acute, which is what the converse of statement III says. 

Statements III and IV, together with their converses, allow us to decide 
whether a triangle is acute, right, or obtuse, just by knowing the lengths of 
its sides. 

Some examples follow: 

1. Is a triangle with side lengths 2, 3, and 4 acute, right or obtuse'? 

Solution. Since 42 = 16 > 22 + 32 = 4 + 9 = 13, the triangle is 
obtuse, with the obtuse angle opposite the side of length 4. 

Question: Why didn't we need to compare 32 with 22 + 42 , o~: 22 

with 32 + 42? 

2. Is a triangle with sides 4, 5, 6 acute, right, or obtuse? 

Solution. We need only check the relationship between 62 and 
42 +52

. Since 62 = 36 < 42 +52 = 41, the triangle is acute. 

3. Is the triangle with side lengths 1, 2, and 3 acute, right, or obtuse? 

Solution. We see that 32 = 9 > 22 + 12 = 5, so it looks like the 
triangle is obtuse. 

Question: This conclusion is incorrect. Why? 

Exercise 
If a triangle is constructed with the side lengths given below, tell wheth­

er it will be acute, right, or obtuse. 

a) {6, 7, 8} 
e) {5, 12, 12} 

b) {6, 8, 10} 
f) {5, 12, 14} 

II. Proof of the Pythagorean theorem 

c) {6,8,9} d) {6, 8, 11} 
g) {5, 12, 17} 

There are many proofs of this classic theorem. Our proof follows the Greek 
tradition, in which the squares of lengths are interpreted as areas. We first 
recall statement I from the text: 
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If a and b are the lengths of the legs of a right triangle, and c is the length 
of its hypotenuse, then a2 + b2 = c2• 

Let us start with any right triangle. The lengths of its legs are a and b, and 
the length of its hypotenuse is c: 

b 

We draw a square (outside the triangle), on each side of the triangle: 

c2 

We must show that the sum of the areas of the smaller squares equals the 
area of the larger square: 

[]+ = 

Or: 



16 Trigonometry 

I 

The diagram below gives the essence of the proof. If we cut off two 
copies of the original triangle from the first figure, and paste them in the 
correct niches, we get a square with side c: 

We fill in some details of the proof below. 

We started with an oddly shaped hexagon, created by placing two 
squares together. To get the shaded triangle, we lay off a line segment equal 
to b, starting on the lower left-hand comer. Then we draw a diagonal line. 
This will leave us with a copy of the original triangle in the comer of the 
hexagon: 

a 

(Notice that the piece remaining along the bottom side of the hexagon has 
length a, since the whole bottom side had length a+ b.) 

Triangle ABC is congruent to the one we started with, because it has 
the same two legs, and the same right angle. Therefore hypotenuse A B will 
have length c. 

Next we cut out the copy of our original triangle, and fit it into the niche 
created in our diagram: 



Appendix II. Proof of tlw J>ytlwgorcun t11corcm 17 

B D 

/ A 

A 

The right angle inside the triangle fits onto the right angle outside the 
hexagon (at D), and the leg of length a fits onto segment BD, which also 
has length a. 

Connecting A to E, we form another triangle congruent to the original 
(we have already seen that AF =a, and EF = b because each was a side 
of one of the original squares). 

B B 

A F A 

This new copy of the triangle will fit nicely in the niche created at the top 
of the diagram: 

Why will it fit? The longer leg, of length b, is certainly equal to the upper 
side of the original hexagon. And the right angles at G must fit together. 
But why does G H fit with the other leg of the triangle, which is of length a? 
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Let us look again at the first copy of our original triangle. If we had placed 
it alongside the square of side b, it would have looked like this: 

r-------- --
' I 
I 
I 
I 

a• I 
I 
I 
I 
I 

b 

But in fact we draw it sitting on top of the smaller square, so it was pushed 
up vertically by an amount equal to the side of this square, which is a: 

a 

H 

(1 ----------------, 
I 
I 
I 
I 
I 
I 
I 

ib 
I 
I 
I 
I 
I 
I 
I .__ __ _.. _________________ , 

So the amount that it protrudes above point G must be equal to a. This is 
the length of G H, which must then fit with the smaller leg of the second 
copy of our triangle. 

One final piece remains: why is the final figure a square? Certainly, it 
has four sides, all equal to length c. But why are its angles all right angles? 

Bk------'v 

c 
Let us look, for example, at vertex B. Angle C B D was originally a right 
angle (it was an angle of the smaller square). We took a piece of it away 
when we cut off our triangle, and put the same piece back when we pasted 
the triangle back in a different position. So the new angle, which is one 
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in our new figure, is still a right angle. Similar arguments hold for other 
vertices in our figure, so it must be a square. 

In fact all the pieces of our puzzle fit together, and we have transformed 
the figure consisting of squares with sides a and b into a square with side c. 
Since we have not changed the area of the figure, it must be true that a 
az+bz=cz. 

Finally, we prove statement II of the text: 

If the positive numbers a, b, and c satisfy a 2 + b2 = c2 , then a 
triangle with these side lengths has a right angle opposite the 
side with length c. 

We prove this statement in two parts. First we show that the numbers a, 
b, and care sides of some triangle, then we show that the triangle we've 
created is a right triangle. 

Geometry tells us that three numbers can be the sides of a triangle if and 
only if the sum of the smallest two of them is greater than the largest. But 
can we tell which of our numbers is the largest? We can, if we remember 
that for positive numbers, p 2 > q2 implies that p > q. Since c2 = a 2 + b2, 

and b2 > 0, we see that c2 > a 2, so c > a. In the same way, we see that 
c >b. 

Now we must show that a+ b >c. Again, we examine the squares of 
our numbers. We find that (a+ b )2 = a 2 + 2ab + b2 > a 2 + b2 = c2 (since 
2ab is a positive number). So a + b > c and segments of lengths a, b, and 
c form a triangle. 

What kind of triangle is it? Let us draw a picture: 

a~ 
b 

Does this triangle contain a right angle? We can test to see if it does by 
copying parts of it into a new triangle. Let us draw a new triangle with 
sides a and b, and a right angle between them: 
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a~ 
b 

How long is the hypotenuse of this new triangle? If its length is x, then 
statement I of the Pythagorean theorem (which we have already proved) 
tells us that x 2 = a2 + b2 • But this means that x 2 = c2

, or x = c. It remains 
to note that this new triangle, which has the same three sides as the original 
one, is congruent to it. Therefore the sides of length a and b in our original 
triangle must contain a right angle, which is what we wanted to prove. 



Chapter 1 

Trigonometric Ratios 
in a Triangle 

1 Definition of sin a 

Definition: For any acute angle a, we draw a right triangle that includes et. 

The sine of a, abbreviated sin a, is the ratio of the length of the leg opposite 
this angle to the length of the hypotenuse of the triangle. 

B 
~~e, 

0 '/...e,~ 
0 "0 

~'1~ c "0 
0 

"' a ::::.: 
(1) 

~ 
opposite leg (lq a a sin a= 

c hypotenuse 
A b c 

adjacent leg 

For example, in the right triangle ABC (diagram above), sin a= ajc. 
We can see immediately that this definition has a weak point: it does not 
tell us exactly which right triangle to draw. There are many right triangles, 
large ones and small ones that include a given angle a. 

Let us try to answer the following questions. 

Example 12 Find sin 30°. 

"Solution" 1. Formally, we are not obliged to solve the problem, since 
we are given only the measure of the angle, without a right triangle that 
includes it. o 



22 Trigonometric Ra(ios 

Solution 2. Draw some right triangle with a 30° angle: 

B 

c=20 
a=lO 

A b c 
For example, we might let the length of the hypotenuse be 20. Then the 

length of the side opposite the 30° angle measures 10 units. So 

10 1 
sin 30° = - = - = 0.5 . 

20 2 

We know, from geometry, that whatever the value of the hypotenuse, the 
side opposite the 30° angle will be half this value, I so sin 30° will always 
be 1/2. This value depends only on the measure of the angle, and not on 
the lengths of the sides of the particular triangle we used. o 

Example 13 An American student is writing by e-mail to her friend 
in France, and they are doing homework together. The American student 
writes to the French student: "Look at page 22 of the Gelfand-Saul Trigo­
nometry book. Let's get the sine of angle D." 

E 

D F 

The French student measured E F with his ruler, then measured ED, 
then took the ratio E F jED and sent the answer to his American friend. A 

I A theorem in geometry tells us that in a right triangle with a 30° angle the side opposite 
this angle is half the hypotenuse (see Chapter 0, page II). 
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few days later, he woke up in the middle of the night and realized, "Sacre 
bleu! I forgot that Americans use inches to measure lengths, while we use 
centimeters. I will have to tell my friend that I gave her the wrong answer!" 
What must the French student do to correct his answer? 

Solution. He does not have to do anything - the answer is correct. The 
sine of an angle is a ratio of two lengths, which does not depend on any unit 
of measurement. For example, if one segment is double another when mea­
sured in centimeters, it is also double the other when measured in inches. o 

In general, for any angle of ao (for 0 < a < 90), the value of sin a 
depends only on a, and not on the right triangle containing the angle. 2 This 
is true because any two triangles containing acute angle a are similar, so 
the ratios of corresponding sides are equal. Sin a is merely a name for one 
of these ratios. 

Exercises 

1. In each diagram below, what is the value of sin ot? 
A 

a) b) c) 

B B 

~5 3~ 12 

A 12 c c 4 A 

B 5 

2Example 12 shows that the value of sino: does not depend on the particular triangle 
which contains a. Example 13 shows that the value of sin a does not depend on the unit 
of measurement for the sides of the triangle. In fact, we can examine Example 12 more 
closely. To determine the value of sin 30°, we need three pieces of information: (a) the 
angle; (b) the right triangle containing the angle; (c) the unit of measurement for the sides 
of the triangle. We have just shown that the value of sin a does not in fact depend on the 
last two pieces of information. 



24 'JI·igonomctric Rut.ios 

d) e) t) 

B 6 c 

B B 

8 ~3 5~ 
~ A 4 c c 12 A 

A 

g) h) A 

B 

~ 

4 7 

A 

c B 

2. In each of the diagrams above, find sin f3. 

3. In the following list, cross off each number which is less than the 
sine of 60°. Then check your work .with a calculator. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Hint: Remember the relationships among the sides of a 30-60-90 
triangle. 

2 Find the hidden sine 

Sometimes the sine of an angle lurks in a diagram where it is not easy to 
spot. The following exercises provide practice in finding ratios equal to the 
sine of an angle, and lead to some interesting formulas. 
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Exercises 

1. The diagram below shows a right triangle with an altitude drawn to 
the hypotenuse. The small letters stand for the lengths of certain line 
segments. 

p q 

c 

a) Find a ratio of the lengths of two segments equal to sin a. 

b) Find another ratio of the lengths of two segments equal to sin a. 

c) Find a third ratio of the lengths of two segments equal to sin a. 

2. The three angles of triangle ABC below are acute (in particular, none 
of them is a right angle), and CD is the altitude to side A B. We let 
CD= h, and CA =b. 

c 

b 

a 
A D B 

c 

a) Find a ratio equal to sin a. 

b) Express h in terms of sin a and b. 

c) We know that the area of triangle ABC is hcj2. Express this 
area in terms of b, c, and sin a. 

d) Express the area oftriangle ABC in terms of a, c, and sin {3. 

e) Express the length of the altitude from A to B C in terms of c 
and sin {3. (You may want to draw a new diagram, showing the 
altitude to side B C.) 
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3. a) Using the diagram above, write two expressions for h: one us-
ing side b and sin a and one using side a and sin f3. 

b) Using the result to part (a), show that a sin f3 = b sin a. 

c) Using the result of part (e) in problem 2 above, show that 
c sin f3 = b sin y. 

a b c . 
1 
.. ., 

d) Prove that -- = -- = --. Thts re atwn ts true tor any 
sin a sin f3 sin y 

acute triang,!e (and, as we will see, even for any obtuse tri-
angle). It is called the Law of Sines. 

3 The cosine ratio 

Definition: In a right triangle with acute angle a, the ratio of the leg adja­
cent to angle a to the hypotenuse is called the cosine of angle a, abbrevi­
ated cos a. 

A b 
adjacent leg 

B 

0 
"0 

'8 
"' a ~· 

c 
b adjacent leg 

cos a=-c= hypotenuse 

Notice that the value of cos a, like that of sin a, depends only on a and 
not on the right triangle that includes a. Any two such triangles will be 
similar, and the ratio cos a will thus be the same in each. 

Exercises 

1. Find the cosines of angles a and f3 in each of the triangle figures in 
Exercise 1 beginning on page 23. 
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2. Find the cosines of angles a and f3 in each triangle below. 

d) 20./~/::-J 
~ 

A C 

L
B 

) 

0 

A C 

B 

~3 
A 4 C 
~ 

A C 

3. The diagram below shows a right triangle with an altitude drawn to 
the hypotenuse. The small letters stand for the lengths of certain line 
segments. 

p q 

c 

a) Find a ratio of the lengths of two segments equal to cos a. 

b) Find another ratio of the lengths of two segments equal to cos a. 

c) Find a third ratio of the lengths of two segments equal to cos a. 
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4 A relation between the sine and the cosine 

Example 14 In the following diagram, cos a= 5/7. What is the numeri­
cal value of sin fi? 

B 

7 

a 
A 5 c 

Solution. By the definition of the sine ratio 

. AC 
smfi = AB. 

The value of this ratio is 5 j7, which is the same as cos a. 0 

Is this a coincidence? Certainly not. If a and fi are acute angles of the 
same right triangle, sin a = cos fi, no matter what lengths the sides of the 
triangle may have. We state this as a 

Theorem If a + fi = 90°, then sin a = cos fi and cos a = sin fi. 

Exercises 

1. Show that sin 29° = cos 61 o. 

2. If sin 35° = cosx, what could the numerical value of x be? 

3. Show that we can rewrite the theorem of the above section as: sin a = 
cos (90- a). 

5 A bit of notation 

If we are not careful, ambiguity arises in certain notation. What does sin x 2 

mean? Do we square the angle, then take its sine? Or do we take sin x first, 
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then square this number? The first case is very rare: why should we want 
to square an angle? What units could we use to measure such a quantity? 

The second case happens very often. Let us agree to write sin2 x for 
(sin x )2, which is the case where we take the sine of an angle, then square 
the result. For example, sin2 30° = 1/4. 

Exercise 

In the diagram below, find the numerical value of the following expres­
sions: 

4 

3 

1. sin2 a 

3. cos2 a 
5. sin2 a+ cos2 a 
7. cos2 a + sin2 {3 

2. sin2 {3 
4. cos2 {3 

6. sin2 a + cos2 {3 

6 Another relation between the sine and the cosine 

If you look carefully among the exercises of the previous section, you will 
see examples of the following result: 

Theorem For any acute angle a, sin2 a + cos2 a = 1. 

Proof As usual, we draw a right triangle that includes the angle a: 

B 

c 

a 
A b 

Suppose the legs have lengths a and b, and the hypotenuse has length c. 
Then sin2 a+ cos2 a = (ajc) 2 + (b/c)2 = (a 2 + b2 )jc2

• But the Pythag­
orean theorem tells us that a 2 + b2 = c2, so the last fraction is equal to 1; 
that is, sin2 a + cos2 a = 1. o 
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Exercises 

1. Verify that sin2 a + cos2 a = 1, where a is the angle in the following 
diagram: 

5 
4 

a 
3 

2. Did you notice that no right angle is indicated in the diagram above? 
Is that an error? 

3. Verify that sin2 p + cos2 p = 1, where p is the other angle in the 
diagram. 

4. Find the value of cos a if a is an acute angle and sin a = 5 I 13. 

5. Find the value of cos a if a is an acute angle and sin a = 5/7. 

6. If a and P are acute angles in the same right triangle, show that 
sin2 a + sin2 p = 1. 

7. If a and p are acute angles in the same right triangle, show that 
cos2 a + cos2 P = 1. 

7 Our next best friends (and the sine ratio) 

It is usually not very easy to find the sine of an angle, given its measure. 
But for some special angles, it is not so difficult. We have already seen that 
sin 30° = 1/2. 

Example 15 Find cos 30°. 

Solution. To use our definition of the cosine of an angle, we must draw 
a right triangle with a 30° angle, a triangle with which we are already 
friendly. 
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We know that the value of cos 30° depends only on the shape of this tri­
angle, and not on its sides. So we can assume that the smaller leg has 
length 1. Then the lengths of the other sides are as shown in the diagram, 
and we see that cos 30° = ../3/2. o 

Example 16 Show that cos 60° = sin 30°. 

Solution. In the 30-60-90 triangle we've drawn above, one acute angle 
is 30°, and the other is 60°. Standing on the vertex of the 30° angle, we 
see that the opposite leg has length 1, and the hypotenuse has length 2. 
Thus sin 30° = 1/2. But if we walk over to the vertex of the 60° angle, the 
opposite leg becomes the adjacent leg, and we see that the ratio that was 
sin 30° earlier is also cos 60°. o 

Exercises 

1. Fill in the following table. You may want to use the model triangles 
given in the diagram below. 

1 

1 
a 

5 
3 

4 

(The angles a and f3 are angles in a 3-4-5 right triangle.) 



J2 

IJ angle x I sinx I cosx 

30° 

2. Verify that sin 60° = cos 30°. 

3. Verify that sin2 30° + cos2 30° = 1. 

Trigonometric l~lltios 

4. Let the measure of the smaller acute angle in a 3-4-5 triangle be a. 
Looking at the values for sin a and cos a, how large would you guess 
a is? Is it larger or smaller than 30°? Than 45°? Than 60°? 

8 What is the value of sin 90°? 

So far we have no answer to this question: We defined sin a only for an 
acute angle. But there is a reasonable way to define sin 90°. The picture be­
low shows a series of triangles with the same hypotenuse, but with different 
acute angles a: 

As the angle a gets larger, the ratio of the opposite side to the hypotenuse 
approaches 1. So we make the following definition. 

Definition sin 90° = 1. 

The diagram above also suggests something else about sin a. Remem­
ber that the hypotenuse of a right triangle is longer than either leg. Since 
sin a is the ratio of a leg of a right triangle to its hypotenuse, sin a can 
never be larger than 1. So if someone tells you that, for a certain angle 
a, sin a = 1.2 or even 1.01, you can immediately tell him or her that a 
mistake has been made. 
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The same series of triangles lets us make a definition for cos 90°. As 
the angle a gets closer and closer to 90°, the hypotenuse remains the same 
length, but the adjacent leg gets shorter and shorter. This same diagram 
leads us to the following definition. 

Definition cos 90° = 0. 

Exercises 

1. How does the diagram above lead us to make the definition that 
sinoo = 0? 

2. What definition does the diagram in this section suggest for cos 0°? 

Answer: cos oo = 1. 

3. Check, using our new definitions, that sin2 oo + cos2 oo = 1. 

4. Check, using our new definitions, that sin2 90° + cos2 90° = 1. 

5. Your friend tells you that he has calculated the cosine of a certain 
angle, and his answer is 1.02. What should you tell your friend? 

9 An exploration: How large can the sum be? 

We have seen that the value of the expression sin2 a + cos2 a is always 1. 
Let us now look at the expression sin a + cos a. What values can this ex­
pression take on? This question is not a simple one, but we can start think­
ing about it now. 

Exercises 

1. We can ask our best friends for some information. Fill in the blank 
spaces in the following table, using a calculator when necessary . 
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sin oa + cos oo O+l I 
sin 30° + cos 30° 
sin 45° + cos 45° 

sin 60° + cos 60° 
--/31 -+-2 2 

1.366 (approximately) 

sin 90° + cos 90° 
sina + cosa, where a 3 4 
is the smaller acute angle -+- 1.4 
in a 3-4-5 right triangle 

5 5 

sin a+ cos a, where a is 
the larger acute angle in 
a 3-4-5 right triangle 

2. Prove that sin a + cos a is always less than 2. 

Hint: Geometry tells us that sin a ~ 1 and cos a ~ 1. Can they both 
be equal to 1 for the same angle? 

3. Show that sin a + cos a ::: 1 for any acute angle a. 

Hint: Notice that (sin a+cos a)2 = 1 +2 sin a cos a, and think about 
how this shows what we wanted. 

4. For what value of a is sin a + cos a = -/2? 

5. We can see, from the table above, that sin a + cos a can take on the 
value 1.4. Can it take the value 1.5? We will return to this problem 
a bit later. For now, use your calculator to see how large a value you 
can get for the expression sin a + cos a. 

10 More exploration: How large can the product be? 

Now let us consider the product (sin a)(cos a). How large can this be? 

Fill in the table below: 
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-·---
(sin O")(cos 0") 0. 1 0 

(sin 30°)(cos 30") 
(sin 45°) (cos 45°) 
(sin 60°)(cos 60°) 0.43301 (approximately) 
(sin 90°)(cos 90°) 

(sina)(cosa), where a 3 4 
is the smaller acute angle -.- 0.48 
in a 3-4-5 right triangle 

5 5 

(sina)(cosa), where a 

is the larger acute angle 
in a 3-4-5 right triangle 

How large do you think the product (sina)(cosa) can get? We will 
return to this problem later on. 

11 More names for ratios 

In a right triangle, 

B 

a 

A b c 
adjacent leg 

we have a total of six different ratios of sides. Each of these ratios has been 
given a special name. 

We have already given a name to two of these ratios: 

. a 
sma =-, 

c 

b 
cos a=-. 

c 

Below we give names for the remaining four ratios. The first two are very 
important. 

The ratio 

leg opposite angle a a 
= 

leg adjacent to angle a b 

opposite leg 
tan a = --=--='----_.::;. 

adjacent leg 
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is called the tangent of a, abbreviated tan a. 

The ratio 

leg adjacent to angle a b 
= 

leg opposite angle a a 

adjacent leg 
cota = ~~----~ 

opposite leg 

is called the cotangent of a, abbreviated cot a. 
Two more ratios are used in some textbooks, but are not so important 

mathematically. We list them here for completeness, but will not be work­
ing with them: 

The ratio 

hypotenuse c 
= 

leg adjacent to angle a b 

hypotenuse 
sec a = ~-=-----­

adjacent leg 

is called the secant of a, abbreviated sec a. 

The ratio 

hypotenuse c 
=-

leg opposite angle a a 

hypotenuse 
esc a = ~-=----­

opposite leg 

is called the cosecant of a, abbreviated esc a. 

For practice, let's take the example of a 3-4-5 right triangle: 

5 
4 

a. 
3 

We have six ratios and six names: 

4 3 4 
sina =- COSCi = S tana =-

5 3 
3 5 5 

cota = - seca = "3 CSCCi =-
4 4 
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To sum up, given the triangle 

A 

we have: 

sin a 

COSO! 

tan a 

cot a 

sec a 

csca 

b 
adjacent leg 

B 

c 

opposite leg/hypotenuse 
adjacent leg/hypotenuse 
opposite leg/adjacent leg 
adjacent leg/opposite leg 
hypotenuse/adjacent leg 
hypotenuse/opposite leg 

37 

afc 
bfc 
afb 
bfa 
c/b 
cfa 

As before, these ratios depend only on the size of the angle a, and not on 
the lengths of the sides of the particular triangle we are using, or on how 
we measure the sides. The following theorem generalizes our statement of 
this fact for sin a. 

Theorem The values of the trigonometric ratios of an acute angle depend 
only on the size of the angle itself, and not on the particular right triangle 
containing the angle. 

Proof Any two triangles containing a given acute angle are similar, so 
ratios of corresponding sides are equal. The trigonometric ratios are just 
names for these ratios. o 

Exercises 

1. For the angles in the figure below, find cos a, cos {3, sin a, sin {3, 
tan a, tan {3, cot a and cot {3. 

5 
4 

a 
3 
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2. Did you assume that the triangle in the figure above is a right tri­
angle? Why is this assumption correct? 

3. Given the figure below, express the quantities cos a, cos {3, sin a, 
sin {3, tan a, tan {3, cot a and cot f3 in terms of a, b, and c: 

b 

a 
c 

a 

4. In the diagram below, find the numerical value of cos a, cos f3, cot a 
and cotf3. 

B 

~5 
A 12 c 

5. In the diagram below, find the numerical value of cos a, cos f3, cot a 
and cotf3. 

25 

A 
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6. Find two names for each ratio given. The first example is already 
filled in. 

a . R - = sm a = cos~-' B c -- --

b 

c 
a 

b 
b 

a 

= 

= 

= 

a 
= 

- c 

c 

b A 

7. The sine of an angle is 3/5. What is its cosine? What is its cotangent? 

8. If tan a = 1, what is cos a? What is cot a? 

9. What is the numerical value oftan45°? 

10. What is the numerical value of tan 30°? Express this number us­
ing radicals. Then use a calculator to get an approximate numerical 
value. 

11. What is the numerical value of tan45° + sin30°? Why don't you 
need a calculator to compute this? 
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Chapter 2 

Relations among 
Trigonometric Ratios 

1 The sine and its relatives 

We have studied four different trigonometric ratios: sine, cosine, tangent, 
and cotangent. These four are closely related, and it will be helpful to ex­
plore their relationships. We have already seen that sin2 a + cos2 a = 1, 
for any acute angle a. The following examples introduce us to a number of 
other relationships. 

Example 17 If sin a = 3/5, find the numerical value of cos a, tan a, and 
cot a. 

Solution. The fraction 3/5 reminds us of our best friend, the 3-4-5 tri­
angle: 

5 
3 

a 
4 

In fact, a is the measure of one of the angles in such a triangle: the one 
opposite the side of length 3 (see the diagram above). Having drawn this 
triangle, we easily see that cos a= 4/5, tan a= 3/4, and cot a= 4/3. o 
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Example 18 If sin a = 2/5, find the numerical value of cos a, tan a, and 
cot a. 

Solution. We can again draw a right triangle with angle a: 

A 

We know only two sides of the triangle. To find cos a, we need the third 
side. The Pythagorean theorem will give this to us. Because a2 + b2 = c2, 

we have b2 + 22 = 52, so b2 = 21 and b = -J2f. Now we know all the 
sides of this triangle, and it is clear that 

V2l 
cosa = --, 

5 
2 

tan a= ffi, hi 
cota = --. 

2 

0 

Example 19 We can find an answer to the question in Example 18 in a 
different way. For the same angle a, we have the right to draw a different 
right triangle, with hypotenuse 1, and leg 2/5. Do the calculation in this 
case for yourself. It will produce the same result. o 

Example 20 If sin a = a, where 0 < a < 1, express in terms of a the 
value of cos a, tan a, and cot a. 

Solution. As before, we choose a right triangle with an acute angle 
equal to a: 

a 

a 

...Jt-a2 

The simplest is one in which the hypotenuse has length 1 and the leg oppo­
site a is a. Let the other leg be x. Then x 2 + a2 = 1, sox = ~- Now 
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we know all the sides of this triangle, and we can write everything down 
easily: 

COSet=~, 

Exercises 

a 
tan et = r;---:; , 

vl - a 2 

v'l-(l2 
cotet = o 

a 

1. Suppose sinet = 8/17. Find the numerical value of coset, tanet, and 
cotet. 

2. Suppose cos et = 3/7. Find the numerical value of sin et, tan et, and 
cotet. 

3. Suppose coset = b. In terms of b, express sin et, tan et, and cot et. 

4. Suppose tan et = d. In terms of d, express sin et, coset, and cot et. 

5. Fill in the following table. In each row, the value of one trigonomet­
ric function is assigned a variable. Express each of the other trigono­
metric functions in terms of that variable. The work for one of the 
rows is already done. 

II II sinet I COSet tanet cotet 

sin et a .Jl -·a2 a v'l-(l2 
v'l-(l2 a 

COSet a 

tanet a 

cotet a 

Please do not try to memorize this table. Its first row can be filled 
with the help of the triangle 

1 
a 
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whose sides can be found from the Pythagorean theorem. For the 
other rows, you can use use the triangles 

1 
a 

a a 
a a 

This is all you'll ever need. 

Remark. We have Implicitly assumed that for every number a between 0 
and 1, there exists a right triangle that contains an angle whose sine is a. 
But this is clear from geometry: we can construct such a triangle by taking 
the hypotenuse to be 1, and one leg to be a. 1 

2 Algebra or geometry? 

Example 21 Suppose sin a = 1/2. Find the numerical value of cos a, 
tan a, and cota. 

Solution. We can do this geometrically, by drawing a triangle (as in 
Exercise 5 above). Or we can do this algebraically, using the results of 
Example 20. For instance, 

cos a = ~ = J 1 - (~r = J 1 - ~ = li = v;. 
Or did you notice right away that a is an angle in one of our friendly 
triangles? o 

1 You may have some objection to taking the hypotenuse of our triangle to have length 
1. If you insist, we can take some length c for this hypotenuse. We will then get the same 
results, but the calculations will be longer. For example, suppose sin a = x. Choose a right 
triangle that contains a, and that has hypotenuse of length c. Suppose the leg opposite a 
has length a. Then a I c = x, since sin a = x. So a = ex. If we are asked for cos a, we can 
suppose the length of the other leg is b. Then b2 = c2 - a 2 = c2 - c2 x 2, and 

cos a=~= Jc2-c2x2 =c~ =~. 
c c c 
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Exercises 

1. Find sin2 30°. 

Solution. Since sin 30° = 1/2, we see that 

• 2 0 ( 1 )
2 

1 
Stn 30 = 2 = 4. 0 

2. Find sin2 45°. Check the result with a calculator. 

3. Rewrite the table from Exercise 5 on page 43, but using the names 
of the trigonometric ratios. The first row below has been filled in as 
an example. 

II II sina I cos a tan a cot a 

sin a JI- sin2 a 
sin a sin a J1- sin2 a 

J1- sin2 a sma 

cos a 

tan a 

cot a 

3 A remark about names 

We have already seen that if a and f3 are complementary, then sin a = 
cos {3. Historically, the prefix "co-" stands for "complement," since two 
acute angles in the same right triangle are complementary. 

The following exercises extend this note. 

Exercises 

Using the diagram on the right, show that if a and f3 are complemen­
tary, then: 
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B 
1. tan a =cot /3. 
2. cot a= tan /3. c 

3. sec a =esc /3. 
4. esc a= sec /3. a 

A b 

4 An identity crisis? 

From the table on page 45 we see, for example, that cos a = J 1 - sin2 a. 
We have also seen that, for any angle a, sin2 a + cos2 a = 1. Such equa­
tions, which are true for every value of the variable, are called identities. 

From the identities we have, we can derive many more. But there is no 
need for anxiety. We will not have an identity crisis. If you forget all these 
identities, they are easily available from the three fundamental identities 
below: 

sin2 a + cos2 a = 1 

sin a 
tana = -­

cosa 
1 

cota = -­
tana 

From these simple identities we can derive many others involving the 
sine, cosine, tangent, and cotangent of a single angle. One way to derive a 
new identity is to draw a right triangle with an acute angle equal to a, and 
substitute a I c for sin a, b I c for cos a, and so on. 

sin a 
Example 22 Prove that tan a = --. 

cos a 
Solution. We can draw a right triangle with legs a, b, hypotenuse c, and 

acute angle a opposite the leg of length a. Then we have 

. (ale) 
smal cos a=--= (alc)(clb) =alb= tan a. 

(blc) 

0 
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Another way to prove a new identity is to show that it follows from 
other identities that we know already. 

Example 23 Prove the identity tan a cot a = 1. 

Solution. From our table, we see that tan a = sin a I cos a. We also see 
that cot a = cos a I sin a. Therefore, 

( 
sm a) (cos a) tanacota = -- -.- = 1. 
cos a sma 

D 

Example 24 Show that tan2 a + 1 = 11 cos2 a. 

or 

Solution. We know that sin2 a+ cos2 a= 1, so 

sin2 a cos2 a 1 
--+-----
cos2 a cos2 a - cos2 a ' 

2 1 
tan a+ 1 = --2-. 

cos a 
D 

You will have a chance to practice both these techniques in the exer­
cises below. 

Exercises 

1. Verify that sin2 a + cos2 a = 1 if a equals 30°, 45°, and 60°. 

2. The sine of an angle is v'5 I 4. Express in radical form the cosine of 
this angle. 

3. The cosine of an angle is 213. Express in radical form the sine of the 
angle. 

4. The tangent of an angle is 1 I v'3. Find the numerical value of the 
sine and cosine of this angle. 

5. Prove the following identities for an acute angle a: 

a) cotx sinx = cosx. 
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tan .x 
b)-=-

sm .x cos.x 

c) cos2 a- sin2 a = 2cos2 a- 1. 
sin a 1- cos a 

d) 
1 +cos a 
---------------sma 

e) (sin2 a + 2cos2 a -1)/cot2a = sin2 a. 

f) cos2 a = 1/(1 + tan2 a). 

g) sin2 a = 1/(cot2a + 1). 

1 - cos a ( sin a ) 2 

h) 1 + cos a - 1 + cos a · 

sin3 a - cos3 a 
i) = 1 +sin a cos a. 

sin a- cosa 

6. a) For which angles a is sin4 a - cos4 a > sin2 a - cos2 a? 

b) For which angles a is sin4 a - cos4 a ?:: sin2 a - cos2 a? 

7. If tan a = 2/5, find the numerical value of 2 sin a cos a. 

8. a) If tan a = 2/5, find the numerical value of cos2 a - sin2 a. 

b) If tan a = r, write an expression in terms of r that represents 
the value of cos2 a - sin2 a. 

sin a- 2cosa 
9. If tan a = 2/5, find the numerical value of . . 

cos a- 3 sma 

10. If tan a = 2/5, and a, b, c, dare arbitrary rational numbers, with 
a sin a+ bcosa 

5c + 2d =f. 0, show that . is a rational number. 
ccosa + d sma 

11. For what value of a is the value of the expression (sin a+ cos a )2 + 
(sin a- cosa)2 as large as possible? 

5 Identities with secant and cosecant 

While we do not often have to use the secant and cosecant, it is often 
convenient to express the fundamental identities above in terms of these 
two ratios. We can always restate the results as desired, using the fact that 
sec a = 1/ cos a and esc a = 1/ sin a. 
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Example 25 Show that sec2a = 1 + tan2 a for any acute angle a. 

Solution. We know that 

1 
seca = --, 

cos a 

so the given identity is equivalent to the statement that 

1 
-- = 1 +tan2 a. 
cos2 a 

This last identity was proven in Example 24, page 47. 

Exercises 

49 

0 

1. Rewrite each given identity using only sine, cosine, tangent or cotan­
gent. 

a) tan a csca =sec a. 

b) cota sec a= csca. 
1 

c) -- csca = cota. 
sec a 

d) tan2 a= (sec a+ 1)(seca- 1). 

e) csc2 a = 1 +cot2 a. 

2. Rewrite in terms of secant and cosecant, tangent or cotangent. Sim­
plify your answers so that they do not involve fractions. 

a) 
tan a 1 
--=--
sin a cos a 

b) 
1 

-.-cos a= cot a. 
sma 

1 
c) tan2 a + 1 = --

2
-. 

cos a 

d) 1 2 
-.-

2
- = 1 +cot a. 

sm a 



50 Uclutions llmong 'Ji·igonomctric J~utiqs 

6 A lemma 

We have already seen that if a = cos a and b = sin a for some acute angle 
a, then a2 + b2 = 1. We can also prove the converse of this statement: If a 
and b are some pair of positive numbers such that a2 + b2 = 1, then there 
exists an angle e such that a = cos e and b = sine. Indeed, if we draw 
a triangle with sides a, b, and 1, the Pythagorean theorem (statement II) 
guarantees us that this is a right triangle. Then the angle e that we are 
looking for appears in the triangle "automatically." 

a 

Exercises 

1. Suppose a is some angle less than 45a. If a = cos2 a - sin2 a and 
b = 2 sin a cos a, show that there is an angle e such that a = cos e 
and b =sinO. 

2. Suppose that a is some angle. If a = J (1 + cos a) /2 and b = 
J ( 1 - cos a) /2, show that there is an angle e such that a = cos e 
and b =sinO. 

3. Suppose that a is some angle. If a = 4 cos3 a - 3 cos a and b = 
3 sin a - 4 sin3 a, show that there is an angle e such that a = cos e 
and b =sinO. 

4. Suppose that t is a number between 0 and 1. If 

1 - t 2 2t 
a=-- and b=--

1 + t 2 1 + t 2 ' 

show that there is an angle e such that 

a = cos e and b = sin e . 

5. (A non-trigonometric identity) If p 2 + q2 = 1, show that (p2 -

q 2
)

2 + (2pq )2 = 1 also. Which trigonometric identity, of those in 
the exercises above, is this similar to? 
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7 Some inequalities 

You may remember from geometry that the hypotenuse is the largest side 
in a right triangle (since it is opposite the largest angle). So the ratio of 
any leg to the hypotenuse of a right triangle is less than 1. It follows that 
sin a < 1 and cos a < 1 for any acute angle a. 

That is all the background you need to do the following exercises. 

Exercises 

1. For any acute angle a, show that 1- sin a:::= 0. For what value(s) of 
a do we have equality? 

2. For any acute angle a, show that 1 -cos a :::= 0. For what value(s) of 
a do we have equality? 

3. Which of the following statements are true for all values of a? 

a) sin2 a + cos2 a = 1. 

b) sin2 a+ cos2 a :::= 1. 

c) sin2 a + cos2 a ::::; 1. 

Answer. They are all correct. Can you see why? 

4. There are 4 supermarkets having a sale. Which of these are offering 
the same terms for their merchandise? 

• In supermarket A, everything costs no more than $1. 

• In supermarket B, everything costs less than $1. 

• In supermarket C, everything costs $1 or less. 

• In supermarket D, everything costs more than $1. 

5. Which inequality is correct? 

a) For any angle a, sin a+ cos a < 2. 

b) For any angle a, sin a+ cos a ::::; 2. 

6. What is the largest possible value of sin a? Of cos a? 
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8 Calculators and tables 

It is, in general, very difficult to get the numerical value of the sine of an 
angle given its degree measure. For example, how can we calculate sin 19°? 

One way would be to draw a right triangle with a 19° angle, and mea­
sure its sides very accurately. Then the ratio of the side opposite the angle 
to the hypotenuse will be the sine of 19°. 

But this is not a method that mathematicians like. For one thing, it 
depends on the accuracy of our diagram, and of our rulers. We would like 
to find a way to calculate sin 19° using only arithmetic operations. Over the 
centuries, mathematicians have devised some very clever ways to calculate 
sines, cosines, and tangents of any angle without drawing triangles. 

We can benefit from their labors by using a calculator. Your scientific 
calculator probably has a button labeled "sin," another labeled "cos," and a 
third labeled "tan." These give approximate values of the sine, cosine, and 
tangent (respectively) of various angles. 

Warning: Most "nice" angles do not have nice values for sine, cosine, 
or tangent. The values of tan 61 o or sin 47° will not be rational, and will not 
even be a square root or cube root of a rational number. There are a very 
few angles with integer degree measures and "nice" values for sine, cosine, 
or tangent. 

Exercises 

1. Find a handheld scientific calculator, and get from it the values of 
sin 30°, sin 45o, and sin 60°. Compare these values with those we 
found in Chapter 1. 

2. Betty thinks that the tangent of 60° is ,J3. How would you check this 
using a scientific calculator? 

3. How would you use a calculator to get the cotangent of an angle of 
30°? of20°? 

Hint: Many calculators have a button labeled "1/x." If you press this, 
the display shows the reciprocal of the number previously displayed. 

4. Fill in the following tables: 
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in radical or rational form 
a sin a cos a tan a cot a 

30° 
45° 
60° 

in decimal form, from calculator 
a sma cos a tan a cot a 

30° 
45° 
60° 

9 Getting the degree measure of an angle from its sine 

Example 26 What is the degree measure of the smaller acute angle of a 
right triangle with sides 3, 4, and 5? 

Solution. We could draw a very accurate diagram, and use a very ac­
curate protractor to answer this question. But again, mathematicians have 
developed methods that do not depend on the accuracy of our instruments. 
Your calculator uses these methods, but you must know how the buttons 
work. 

The sine of the angle we want is 3/5 = .6. Enter the number .6, then 
look for the button marked "arcsin" or "sin-1" (for some calculators, you 
must press this button first, then enter .6). You will find that pushing this 
button gives a number close to 36°. This is the angle whose sine is .6. o 

On a calculator, you can read the symbol "arcsin" or "sin -I" as "the 
angle whose sine is ... " Similarly, "arccos" means "the angle whose co­
sine is ... "and "tan-1" means "the angle whose tangent is ... " 

Exercises 

1. In the text, we found an estimate for the degree-measure of the smaller 
acute angle in a 3-4-5 triangle. Using your calculator, find, to the 
nearest degree, the measure of the larger angle. Using your estimate, 
does the sum of the angles of such a triangle equal 180 degrees? 



54 l~clutions mnong Trigonometric: l~utios 

2. Using your calculator, find 

a) arcsin 1. 

b) arccos0.7071067811865. 

3. Using your calculator, find the angle whose cosine is .8. 

4. Using your calculator, find the angle whose sine is .6. 

5. We know that sin 30° = .5. Write down your estimate for sin 15°, 
then check your estimate with the value from a table or calculator. 

6. Suppose sinx = .3. Use your calculator to get the degree-measure 
of x. Now check your answer by taking the sine of the angle you 
found. 

7. Suppose arcsinx = 53°. Use your calculator to get an estimate for 
the value of x. Now check your answer by taking the arcsin of the 
number you found. 

8. If arcsin x = 60°, find x, without using a calculator. 

9. Using your calculator, find arcsin (sin 17°). 

10. Using your calculator, find sin (arcsin 0.4). 

11. Find arcsin (sin 30°) without using your calculator. Then find sin 
(arcsin 1/2), without using the calculator. Explain your results. 

12. With a calculator, check that cos2 A+ sin2 A = 1 if A equals 20° and 
if A equals 80°. 

13. With a calculator, check that tan A = sin A/ cos A if A equals 20° 
and if A equals 80°. 

14. Using a calculator to get numerical values, draw a graph of the value 
of sin x as x varies from oo to 90°. 
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10 Solving right triangles 

Many situations in life call for the solution of problems like the following. 

Example 27 The hypotenuse of a right triangle is 5, and one of its acute 
angles is 37 degrees. Find the other two sides. 

Solution. From a calculator, we obtain sin 37° ~ 0.6018 and cos 37° ~ 
0.7986. 

c 

[3 

5 
5sin a 

a=37 

A 5cosa. B 

Sincesina = BC/AC = BC/S,wehavethatBC = 5sin37° = 5 x 
0.6018 = 3.009. Similarly, AC = 5 cos 37° = 5 x 0.7986 = 3.993. Both 
values are correct to the nearest thousandth. 0 

Exercises 

1. Find the legs of a right triangle with hypotenuse 9 and an acute angle 
of 72 degrees. 

2. The two legs of a right triangle are 7 and 10. Find the hypotenuse 
and the two acute angles. 

3. A right triangle has a leg of length 12. If the acute angle opposite this 
leg measures 27 degrees, find the other leg, the other acute angle, and 
the hypotenuse. 

4. A right triangle has a leg of length 20. If the acute angle adjacent 
to this leg measures 73 degrees, find the other leg, the other acute 
angle, and the hypotenuse. 
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11 Shadows 

Because the sun is so far away from the earth, the rays of light that reach it 
from the earth are almost parallel. If we think of a small area of the earth 
as fiat (and we usually do!), then the sun's rays strike this small region at 
the same angle: 

tree's shadow 

So we can, for example, tell how long the shadow of an object will be, 
given its length. 

Example 28 If the rays of the sun make a 23 o angle with the ground, how 
long will the shadow be of a tree which is 20 feet high? 

Solution. In the diagram below, AC is the tree, and BC is the shadow: 

A 

20 

c f--------- X 

We have that 

o AC 20 20 
tan 23 = - = -, or x = --- . 

BC x tan23° 

From a calculator, tan23° ~ 0.4244, sox~ 20/0.4244 ~ 47.13 feet. D 

Exercises 

1. When the sun's rays make an angle with the ground of 46 degrees, 
how long is the shadow cast by a building 50 feet high? 
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2. At a certain moment, the sun's rays strike the earth at an angle of 32 
degrees. At that moment, a flagpole casts a shadow which is 35 feet 
long. How tall is the flagpole? 

3. Why are shadows longest in the morning and evening? When would 
you expect the length of a shadow to be the shortest? 

4. Can it happen that an object will not cast any shadow at all? When 
and where? You may need to know something about astronomy to 
investigate this question. 

12 Another approach to the sine ratio 

There is a simple connection between the sine of an angle and chords in a 
circle. 

Theorem If a is the angle subtended by a chord P B at a point on a circle 
of radius r (such as point A in the diagram below), then 

. PB 
sma=-. 

2r 

B 

Before we prove this theorem, let us resolve a problem in the way it 
is stated. We can pick different points on the circle (such as A' and A" in 
the figure below), and consider the different angles subtended by the same 
chord PB: 
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B 

A" 

Does it matter which point we pick? No, it does not. An important theorem 
of geometry asserts that all the angles subtended by a given chord in a 
circle are equal2, so that it makes no difference which point on (major) arc 
P B we choose. 

For this reason, we can prove our theorem by making a very special 
choice: for point A, we choose the point diametrically opposite to point B: 

A B 

The same geometric theorem about inscribed angles assures us that LAP B 
is a right angle, so sin ex = P B I A B = P B j2r. This completes the proof. 

We can give another proof of this theorem. Consider the diagram 

2See the theorem on inscribed angles in the appendix to this chapter. 
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A B 

We have shown here a perpendicular from the center of the circle 0 to the 
chord P B. Geometry tell us that the foot of this perpendicular H is the 
midpoint of P B. 

Then, as before, LAPB = 90°, which implies that AP and HOare 
parallel. Thus, L H 0 B = L P A B = a. Now in right triangle H 0 B, we 
have 

. HB 1 PB PB 
sma=-=-·-=-

OB 2 OB 2r ' 

as we know from the first proof. 

Exercises 

1. The diagram on the left below shows a chord AB and its central 
angle LAOB = 8: 

Suppose the diameter of the circle is 1. How is the length of AB 
related to e? 

Answer. AB = sin(B/2). 

2. Now, using the same diagram, suppose the radius of the circle is 1. 
How is the length of A B related to e now? 

. Answer. AB = 2sin(B/2). 
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3. The diagram below shows a circle of diameter 1, and two acute 
angles() and qJ: 

How does the diagram suggest that if(/) > (), then sin(/) > sin()? 

4. We know from geometry that a circle may be drawn through the three 
vertices of any triangle. Find the radius of such a circle if the sides 
of the triangle are 6, 8, and 10. 

5. Starting with an acute triangle, we can draw its circumscribed circle 
(the circle that passes through its three vertices). If a is any one of 
the angles of the triangle, show that the ratio a : sin a is equal to the 
diameter of the circle. 

6. Use Exercise 5 to show that if a, {3, y are three angles of an acute 
triangle, and a, b, and care the sides opposite them respectively, then 

a b c 
= -

sin a sin f3 sin y 

7. The diagram below shows a circle with center 0, and chords AB 
andAC: 
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Arc A C is double arc A B. Diameter B P, chord A P and chord C P 
are drawn in, and B P = 1 (the diameter of the circle has unit length). 
If angle A P B measures a degrees, use this diagram to show that 
sin 2a < 2 sin a. 

You may need the theorem known as the triangle inequality: The 
sum of the lengths of any two sides of a triangle is greater than the 
length of the third side. 

8. In a circle of diameter 10 units, how long is a chord intercepted by 
an inscribed angle of 60 degrees? 

9. In a circle of diameter 10 units, how long is a chord intercepted by a 
central angle of 60 degrees? 

10. Find the length of a side of a square inscribed in a circle of diameter 
10 units. 

11. If you knew the exact numerical value of sin 36°, how could you 
calculate the side of a regular pentagon inscribed in a circle of diam­
eter 10? 

Appendix - Review of Geometry 

I. Measuring arcs 

One natural way to measure an arc of a circle is to ask what portion of its 
circle the arc covers. We can look at the arc from the point of view of the 
center of the circle, and draw the central angle that cuts off the arc: 

A 

If central angle A 0 B measures a de­
grees, then we say that arc A B mea­
sures a degrees as well. 
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Exercises 

1. What is the degree measure of a semicircle? A quarter of a circle? 

2. What is the degree measure of the arc cut off by one side of a reg­
ular pentagon inscribed in a circle? A regular hexagon? A regular 
octagon? 

II. Inscribed angles and their arcs 

An important theorem of geometry relates the degree-measure of an arc not 
to its central angle, but to any inscribed angle which intercepts that arc: 

Theorem The degree measure of an inscribed angle is half the degree mea­
sure of its intercept arc. 

Proof We divide the proof into three cases. 

1: First we prove the statement for the case in which one side of the 
inscribed angle is a diameter. 

A B 

Take inscribed angle PAB, and draw PO (where 0 is the center of 
the circle). Since 0 P and 0 A are radii of the circle, they are equal, 
and triangle PAO is isosceles. Hence LAPO = LPAO = a. But 
L P 0 B is an exterior angle of this triangle, and so is equal to the 
sum of the remote interior angles, which is a + a = 2a. So the 
degree-measure of arc PB is also 2a, which proves the theorem for 
this case. 

2: Suppose the center of the circle is not on one side of the inscribed 
angle, but inside it. 
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A c 

If we draw diameter AC, then angles PAC, BAC are inscribed 
angles covered by Case 1, so L PAC = ~ ic and L CAB = ~ C B. 

Now LPAB = LPAC + LCAB = ~Pc + ~CB = ~PB, which is 
what we wanted to prove. 

3: Suppose the center of the circle is outside the inscribed angle. 

A c 

If we draw diameter AC, then angles PAC, BAC are inscribed 
angles covered by Case 1, so L PAC = ~ ic and L CAB = ~ C B. 

Now LPAB = LPAC- LCAB = ~p'c- ~CB = ~PB, which is 
what we had to prove. o 

As a corollary to the theorem above, we state Thales's theorem, one of 
the oldest mathematical results on record: 

Theorem An angle inscribed in a semicircle is a right angle. 

The proof is a simple application of the previous result, and is left for 
the reader as an exercise. 
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Exercises 

1. If two inscribed angles intercept the same arc, show that they must 
be equal. 

2. Find the degree-measure of an angle of a regular pentagon. 

Hint: Any regular pentagon can be inscribed in a circle. 

3. If a quadrilateral is inscribed in a circle, show that its opposite angles 
must be supplementary. 

III. . . . and conversely 

If we have a particular object, which we will represent as a line segment, 
we are sometimes not so much interested in how big it is, but how big 
it looks. We can measure this by seeing how much of our field of vision 
the object takes up. If we think of standing in one place and looking all 
around, our field of vision is 2rr. The object (AB in the diagram below) is 
seen at the angle A P B if you are standing at point P. We often say that 
A B sub tends angle A P B at point P. 

p 

For example, viewed from the earth, the angle subtended by a star is 
very, very small, although we know that the star is actually very large. And 
the angle subtended by the sun is much greater, although we know that the 
sun, itself a star, is not the largest one. 

Suppose the angle subtended by object AB at P measures 60°. Can 
we find other points at which AB subtends the same angle? From what 
positions does it subtend a larger angle? From what positions a smaller 
angle? 

The answer is interesting and important. If we draw a circle through 
points A, Band P, then AB will subtend a 60° angle at any point on the 
circle, to one side of line AB: 



Appendix - l~cvicw of ( icomct1y 65 

Also, A B will subtend an angle greater than 60° at any point inside the 
circle (to one side of line AB), and will subtend an angle less than 60° at 
any point outside the circle. 

All this follows from the converse theorem to the one in the previous 
section: 
Theorem Let A B subtend a given angle at some point P. Choose another 
point Q on the same side of the line AB as point P. Then 

• If A B subtends the same angle at point Q as at point P, then Q is 
on the circle through A, B and P. 

• If AB subtends a greater angle at Q, then Q is inside the circle 
through A, P and B. 

• If AB subtends a smaller angle at Q, then Q is outside the circle 
through A, P and B. 

(Remember that Q and P must be on the same side of line A B.) The 
proof of this converse will emerge from the exercises below. 

Exercises 

1. From what points will the object AB subtend an angle of 120°? 

2. From what points will the object AB subtend an angle of 90°? 

3. The diagrams below show an object AB, which subtends angle a at 
point P. Using these diagrams below, show that if point Q is outside 
the circle, then A B subtends an angle less than a at point Q, and if 
point R is inside the circle, A B sub tends an angle greater than a at 
point R. 
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A 

Q 

4. How does Exercise 3 prove that if an angle is half of a given arc, then 
it is inscribed in the circle of that arc? 

5. The set of points P at which object A B sub tends an angle equal to a 

is not the whole circle, but only the arc A P B. What angle does A B 
subtend from the other points on the circle? 



Chapter 3 

Relationships in a Triangle 

1 Geometry of the triangle 

We would like to develop some applications of the trigonometry we've 
learned to geometric situations involving a triangle. 

Let us work with the three sides and three angles of the triangle. 

c 

b 

A c B 

How many of these measurements do we need in order to reconstruct the 
triangle?1 

This question is the subject of various "congruence theorems" in geom­
etry. For example, if we know a, band c (the three sides), the "SSS theo­
rem" tells us that the three angles are determined. Any two triangles with 
the same three side-lengths are congruent. 

But can we use any three side-lengths we like to make up our triangle? 
The "triangle inequality" of geometry tells us no. We must be sure that the 

1 Remember that if points A, B, and C are the vertices of a triangle, then we will also 
call the measures of the angles of the triangle A, B, and C. Then the length of the sides 
opposite angles A, B, and Care called a, b, and c, respectively. There are also other "parts" 
of a triangle: its area, angle bisectors, altitudes, medians, and still more interesting lines and 
measurements. 
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sum of any two of our three lengths is greater than the third; otherwise, the 
sides don't make a triangle. With this restriction, we can say that the three 
side-lengths of a triangle determine the triangle. 

What other sets of measurements can determine a triangle? A little 
reflection will show that we will always need at least three parts (sides or 
angles), and various theorems from geometry will help us in answering this 
question. 

Exercise 

1. The table below gives several sets of data about a triangle. For 
example, "ABa" means that we are discussing two angles and the 
side opposite one of these angles. Some of the cases listed below are 
actually duplicates of others. 

II I Data I Determine a triangle? I Restrictions? II 
1 ABa 
2 ABb 
3 ABc 
4 AbC 
5 ABC 
6 Abc 
7 Bbc 
8 Cbc 

For each case, decide whether the given data determines a triangle. 
What restrictions must we place on the data so that a triangle can be 
formed? Some of these restrictions are a bit tricky. The case "abc" 
was discussed above. 

Please do not memorize this table! We just want you to recall what 
geometry tells us- and what it does not tell us- about a triangle. 

2 The congruence theorems and trigonometry 

Some of the sets of data described above determine a triangle. For example, 
"SAS" data (the lengths of two sides of a triangle and the measure of the 
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angle between them) always determines a triangle, and there is always a 
triangle which three such measurements specify. 

But suppose we are given the lengths of two sides and the included 
angle in a triangle. How can we compute the length of the third side, or the 
degree-measures of the other two angles? The SAS statement of geometry 
doesn't tell us this. The next series of results will allow us to find missing 
parts of a triangle in this situation, and also in many others. 

3 Sines and altitudes 

A triangle has six basic elements: the three sides and the three angles. We 
would like to explore the relationship between these six basic elements and 
other elements of a triangle. 

We begin with altitudes 

A 

B p c 
The diagram shows triangle ABC and the altitude to side B C. We use the 
symbol ha to denote the length of this altitude, since it is the height to side 
a in the triangle. Similarly, we use hb and he to denote the altitudes to sides 
b and c, respectively. · 

We can use the sine ratio to express ha in terms of our six basic el­
ements. In fact, we can do this in two different ways: from right triangle 
ABP, we have sinfi = hafc, so that 

ha = c sin fi. 

From right triangle A C P, we have sin y = ha I b, so 

ha = b sin y. 

We can get formulas for each of the other altitudes by replacing each 
side with another side and the corresponding angles. This replacement is 
made easier if we think of it as a "cyclic" substitution. That is, we replace: 

i) a with b, b with c, and c with a, and 
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ii) a with {3, f3 withy, andy with a. 

We obtain the following two new sets of relations: 

Exercises 

hb = c sm a = a sin y , 
he = b sin a - a sin f3 . 

1. By drawing diagrams showing hb and he, check that these last two 
sets of relations are correct. 

2. In triangle ABC, a= 70° and b = 12. Find he. 

3. Check to see that the expressions for the altitudes of a triangle are 
correct when the triangle is right-angled. (Remember how we de­
fined the sine of a right angle on page 32.) 

4. In triangle PQR, p = 10, q = 12 and LP RQ = 30°. Find its area. 

4 Obtuse triangles 

If a triangle contains an obtuse angle, two of its altitudes will fall outside 
the triangle. In the section above, we have not taken this possibility into 
account. Let us now correct this oversight. 

In triangle ABC below, angle f3 is obtuse. Let us again try to express 
its altitude ha in terms of its basic elements (sides and angles). (Note that 
ha lies outside the triangle.) 

A 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

: B Q __________ >..:.__ ___ ___,_ _ __;;:,., c 
p B 

As before, triangle APC is a right triangle, so we have 

A P = ha = b sin y . 
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By the result in lhc previous section, we would also expect that 

A P = ha = c sin P . 

But we have no definition for sin p, since pis an obtuse angle. 
We can remedy the situation by looking at right triangle A P B, in which 

AB =c. We find that AP = AB x sin (l.ABP), or 

ha = c sin (180°- {J). 

This formula is a little bit cumbersome, so we take a rather daring step. We 
define sin P to be the same as sin (180°- /J). 

In fact, we make the following general agreement: 

Definition The sine of an obtuse angle is equal to the sine of its supplement. 

Then we can write ha = c sin P even when p is an obtuse angle. The 
remaining relations in such a case will follow from our rule for cyclic sub­
stitution, which still holds. 

As we will see, this definition is convenient, not just to obtain this for­
mula, but for other applications of trigonometry as well. 

Exercise 

1. Check to see that our new definition allows us to write 

hb = c sin a = a sin y , 
he - b sin a = a sin p , 

as a cyclic substitution would produce. 

5 The Law of Sines 

In a triangle, we have two expressions for he: 

he = a sin P = b sin a . 

We obtain an interesting relationship if we divide the last two equal quan­
tities by the product sin a sin P: 

a sinp 

sin a sinP 

bsina 

sin a sinp' 
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or 
a b 

= 
sin a sin ,8 · 

And we can get corresponding proportions from the other pairs of sides by 
making the same cyclic substitution as before. We obtain 

a b c 
= 

sma sin ,8 sin y 

This is a very important relationship among the sides and angles of a tri­
angle. It is known as the Law of Sines. 

This formula has many interesting connections. For example, you may 
have learned in geometry that if two sides of a triangle are unequal, then 
the greater side lies opposite the greater angle: If ,8 < a then AC < BC'. 

c 

A 

But it is not true that if angle ,8 is double the angle a, then side BC is 
double the side AC. This is shown clearly in the figure below, with a 30-
60-90 triangle. As we know, there is a side double the smallest, but it's not 
the one opposite the 60 degree angle. It's the hypotenuse. 

1 

The Law of Sines generalizes correctly the fact that the greater side 
lies opposite the greater angle, because it tells us that the ratio of two sides 
of a triangle is the ratio of the sines of the opposite angles. And, as we 
have seen, the sines of two angles are not in the same ratio as their degree­
measures. 

The Law of Sines can help us in another way too, which we mentioned 
at the start of this chapter. We know from geometry that two triangles are 
congruent if two pairs of corresponding angles are equal, and a pair of cor­
responding sides are equal (in many textbooks, this is called ASA or SAA, 
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depending on whether the side is between or outside of the two angles). 
Another way to say this is to assert that the measure of two angles and one 
side determines the triangle. Geometry shows us one way to get the third 
angle (using the fact that the three angles of a triangle sum to 180°). But 
geometric methods do not let us compute the lengths of the other two sides. 
The law of sines allows us to do this. 

Exercises 

1. Verify that the cyclic substitutions give the equalities shown above. 

2. Check that the Law of Sines holds in a 30-60-90 triangle. 

3. Use the Law of Sines in the triangles below to determine the lengths 
of the missing sides. (Use your calculator for the computations.) 

12 
10 

4. We have defined the sine of an obtuse angle as equal to the sine of 
its supplement. With this definition, show that the law of sines is true 
for an obtuse triangle. 

5. Use the Law of Sines in the triangles below to determine the lengths 

o~5:~nllssi~ 14~ 
~~~ 

6. Use the Law of Sines to find the two missing angles in the triangle 
below: 
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8 

10 

7. Recall from geometry that SSA does not guarantee congruence. That 
is, if two triangles match in two sides and an angle not included 
between these two sides, then the triangles may not be congruent. 
Look back at Problem 6. Is the triangle determined uniquely? How 
many possible values are there for the degree measurements of the 
remaining angles? 

8. Suppose triangle ABC is inscribed in a circle of radius R. Prove the 
extended Law of Sines: 

a b c 
-- = -- = -- =2R. 
sin A sin B sin C 

6 The circumradius 

We can learn more about the Law of Sines another way if we give a geo­
metric interpretation of the ratio a j sin a in any triangle ABC. 

We construct the circle circumscribing the triangle:2 

B 

c 

Suppose the radius of this circle (the circumradius of the triangle) is R. We 
know from the result on page 57 that 

BC =a= 2R sin a. 
2Recall that the perpendicular bisectors of the three sides of a triangle coincide at a point 

equidistant from all three vertices. This point is the center of the triangle's circumscribed 
circle. 
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So the ratio a/ sin a is simply equal to 2R. 

Exercises 

1. Find the circumradius of a triangle in which a 30° angle lies oppo­
site a side of length 10 units. Note that this information does not 
determine the triangle. 

2. Find the circumradius of a 30-60-90 triangle with hypotenuse 8. Do 
you really need the result of this section to find this circumradius? 

7 Area of a triangle 

Our altitude formulas have given us one interesting result: the Law of 
Sines. We now show how they lead to a new formula for the area of a 
triangle. But in fact, the formula we present is not really new. It is just the 
usual formula from geometry, written in trigonometric form. 

If S denotes the area of a triangle, we know that 

But ha = b sin y, so we can write 

1 b . S = 2a smy. 

This is our "new" formula. As with our other formulas, we can use "cyclic 
substitutions" (see page 69) to get two more formulas: 

1 . 
S = 2bcsma 

1 . 
S = 2casmfi. 

Exercises 

1. Find the area of a triangle in which two sides of length 8 and 11 
include an angle of 40° between them. 
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2. Find the areas of the triangles shown: 

~ 
I~ ~ 

1300 7 
3~ 

9 7 
(a) (b) (c) 

Can you use our new formula for part (c)? Is it necessary to use this 
formula? 

3. The area of triangle ABC is 40. If side AB is 6 and angle A is 40 
degrees, find the length of side A C. 

4. In triangle P Q R, side P Q = 5, and side P R = 6. If the area of the 
triangle is 9, find the degree-measure of angle P. 

Hint: There are two possible answers. Can you find them both? 

5. Two sides of a triangle are a and b. What is the largest area the 
triangle can have? What is the shape of the triangle with largest area? 

Answer: The largest area is ab /2, achieved when the angle between 
the two sides is a right angle. 

Challenge: There is another right triangle with sides a and b. Find 
this triangle and its area. 

6. The length of a leg of an isosceles triangle is x. Express in terms of 
x the largest possible area the triangle can have. 

7. Show that the area of a parallelogram is ab sin C, where a and b are 
two adjacent sides and C is one of the angles. Does it matter which 
angle we use? 

8. We start with any quadrilateral whose diagonals are contained inside 
the figure. Show that the area of the quadrilateral is equal to half 
the product of the diagonals times the sine of the angle between the 
diagonals. Should we take the acute angle formed by the diagonals, 
or the obtuse angle? 

9. Show that we can use the same formula to get the area of a quadri­
lateral whose diagonals (when extended) intersect outside the figure. 
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10. In the figure, AD = 4, A E = 6, A B = 8, A C = 10. Find the ratio 
of the area of triangle AD E to that of triangle ABC. 

A 

D 
E 

B c 

11. In quadrilateral P Q R S, diagonals P R and Q S intersect at point T. 
The sum of the areas of triangles P Q T and R ST is equal to the sum 
of the areas of triangles PST and QRT. Show that Tis the midpoint 
of (at least) one of the quadrilateral's diagonals. 

R 

p 

Solution. The sines of angles PT Q, QT R, RT S, ST Pare all equal. 
If this sine is s, and using absolute value for area, we have I P Q T I + 
IRSTI = (1/2)PT X QT X s + (lj2)ST X RT X s = IQRTI + 
IPT Sl = (1/2)QT X RT X s + (l/2)PT X ST X s, so PT X QT + 
RT x ST = QT x RT + PT x ST, or PT x QT + RT x ST­
QT x RT- PT x ST = 0, or (PT- RT)(QT- ST) = 0. But this 
means that one of the factors must be zero, so that T is the midpoint 
of at least one of the diagonals. o 

12. In quadrilateral ABCD, diagonals AC and BD meet at point P. 
-Again using absolute value for area, show that lAP Bl x IC P Dl = 
I B PC I x I D P A 1. Is this true if the intersection point of the diagonals 
is outside the quadrilateral? 

13. In acute triangle ABC, show that c = a cos B + b cos A. 

Hint: Draw the altitude to side c. How must we change this result if 
angle A or angle B is obtuse? 
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8 Two remarks 

Remark 1: Note that these formulas express the area of a triangle in terms 
of two sides and an included angle. We knew from geometry that these 
three pieces of information determine the triangle (and therefore its area), 
but we need trigonometry to actually compute the area. We will see in the 
next section how trigonometry allows us to compute other elements of a 
triangle determined by two sides and their include angle. 

Remark 2: We now have three ways to think of sin a geometrically: 

1. In a right triangle with an acute angle a, sin a is the ratio of the leg 
opposite a to the hypotenuse: 

. opposite leg 
sm a = -=-=-----=-

hypotenuse 

2. In any triangle, sin a is the ratio of the side opposite a to the diameter 
of the circumscribed circle: 

. a 
sma = -. 

2R 

3. In any triangle, sin a is the ratio of twice the area to the product of 
the two sides which include a: 

2S 
sina =-. 

be 

We can use whichever fits the situation we are working in. Indeed, it turns 
out that any of these could actually function as the definition of sin a. 

9 Law of cosines 

The law of cosines is a very old theorem. It appears in Euclid's Elements, 
the very first textbook of geometry, although Euclid does not use the term 
cosine. It is a generalization of the Pythagorean theorem. 

In triangle ABC, if angle B is an acute angle, then 
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In fact, this is not dinicult to prove: 

c 

B p D q A 
c=p+q 

From right triangle B DC, we have p = a cos B. Using the Pythagorean 
theorem twice, in triangles AC D and BCD, we have b2 = h2 + q 2 = 
a2- p 2 + (c- p)2 = a2 + c2

- 2pc = a2 + c2 - 2ca cos B, which is what 
we wanted to prove. 

The Pythagorean theorem says that the square of a side of a triangle 
opposite a right angle is equal to the sum of the squares of the other two 
sides. 

One of the ways in which the law of cosines generalizes the Pythago­
rean theorem is by showing that the square of a side of a triangle opposite 
an acute angle is less than the sum of the squares of the other two sides. 

What if we take the side of a triangle opposite an obtuse angle? 

Exercise Show that if b is a side opposite an obtuse angle of a triangle, 
then b2 = a 2 + c2 + 2ac cos B', where B' is the measure of the supplement 
of obtuse angle B. 

(A hint is contained in the diagram below.) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

"""'-----------£ __________ _[] 

On the basis of this result, we make a second daring definition (to fol­
low our daring definition of the sine of an obtuse angle): 

Definition The cosine of an obtuse angle is the cosine of its supplement, 
multiplied by -1. 
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So we have three results: the Pythagorean theorem for a right unglc, and 
the two new results for an acute and an obtuse angle. Just as with the sine 
function, we can make all these results into a single formula, the so-called 
Law of Cosines: In triangle ABC, 

Exercises 

1. Check to see that this is correct, whether angle B is acute, right, or 
obtuse. 

2. In each of the triangles below, use the Law of Cosines to express the 
square of the indicated side in terms of the other two sides and their 
included angle: 

y 

A 
2 

a = 

z 

2 
X 

X = 

B A 

y 

X 

B A 

2 
X = 

2 
c = 

z 

B 

3. We know, from geometry, that a triangle is determined by SAS (the 
lengths of two sides and the angle between them). Explain how the 
Law of Cosines allows us to calculate the missing parts of a triangle, 
if we are given SAS. 

4. Find the side or angle marked x in each diagram below: 
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X X 

15 10 

~ 
9 12 

5. In triangle ABC, AB = 10, AC = 7, and BC = 6. Find the mea­
sures of each angle of the triangle. 

6. Peter's teacher gave the following problem: 

A parallelogram has sides 3 and 12. Find the sum of the 
squares of its diagonals. 

But Peter had trouble even drawing the diagram. He knew that 
opposite sides of a parallelogram are equal, so he knew where to put 
the numbers 3 and 12. But then he didn't know what kind of paral­
lelogram to draw. He drew a rectangle (which, he knew, is a kind of 
parallelogram). Then he drew a parallelogram with a 30° angle, and 
another parallelogram with a 60° angle. But he didn't know which 
one to use to do the computation. 

Can you help Peter out? 

7. Show that the sum of the squares of the sides of any parallelogram 
is equal to the sum of. the squares of the diagonals. 

8. If M is the midpoint of side BC in triangle ABC, then AM is called 
a median of triangle ABC. Show that for median AM, 4AM2 = 
2AB2 + 2AC2 - BC2 . 

Hint: The diagram for this problem is "half'' of the diagram for 
Exercise 7 above. 
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9. Show that the sum of the squares of the three medians of a triangle 
is 3/4 the sum of the squares of its sides. 

I 0. The diagonals of quadrilateral ABC D intersect inside the figure. 
Show that the sum of the squares of the sides of the quadrilateral is 
equal to the sum of the squares of its diagonals, plus four times the 
length of the line segment connecting the midpoints of the diagonals 
(notice that this generalizes problem 6). 

11. In triangle ABC, angle C measures 60 degrees, a = 1 and b = 4. 
Find the length of side c. 

12. In triangle ABC, angle C measures 60 degrees. Show that c2 = 
a2 + b2 - a b. What is the corresponding result for triangles in which 
angle C measures 120 degrees? 

13. Three riders on horseback start from a point X and travel along three 
different roads. The roads form three 120° angles at point X. The 
first rider travels at a speed of 60 MPH, the second at a speed of 
40 MPH, and the third at a speed of 20 MPH. How far apart is each 
pair of riders after 1 hour? After 2 hours? 

Appendix - Three big ideas and how we can use them 

I. Invariants: Motions in the plane 

We often talk about the congruence of triangles. Two triangles are congru­
ent if one can be moved so that it fits exactly on the other. So we can say 
that two congruent triangles are exactly the same, except for their position. 

The two triangles below cannot be considered congruent if we confine 
our motions to the plane. To move one of them onto the other, we must flip 
it around (reflect it in a line) before we can make it fit. These triangles are 
mirror images of each other. 
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Exercises 

1. Most triangles cannot be placed on their mirror images without 
reflecting them in a line. However, there are certain special triangles 
that can be placed onto their mirror images without using reflections 
at all. Draw one such triangle. 

2. Describe the set of all triangles that can be placed onto their mirror 
images without reflection in a line. 

3. Draw some quadrilaterals that can be placed onto their mirror 
images without reflection in a line. 

1.1 Triangle invariants 

A triangle invariant is a quantity associated with a triangle that is un­
affected by its position. Thus the value of a triangle invariant for any two 
congruent triangles will be equal. Some examples of triangle invariants are 
the lengths of the sides, the measures of the angles, and the area. While 
these seven invariants are basic, there are many others (such as the lengths 
9f the altitudes, or the radius of the circumscribed circle): 

When we work with the relationships among triangle invariants, we are 
connecting the geometry of the triangle with algebra and trigonometry. A 
mathematician would say that algebra and trigonometry are the analytical 
tools of geometry. 

1.2 The sine and triangle invariants 

We can give an alternative definition of the sine of an angle in terms of 
triangle invariants. Indeed, we have already seen how. 

We have seen (Chapter 3, section 7) that for any triangle, 

1 . 
S = 2absmy 

where y is the angle included between two sides of lengths a and b. So if 
we start with any angle y, draw a triangle (not necessarily a right triangle!) 
including it, and denote by a and b the measures of the sides surrounding 
y, then we can define sin y as equal to 2S I ab, where S is the area of the 
triangle. 
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A 

a. 

c b 

y 
B a c 

Whether you think of this statement as a consequence of our original devel­
opment, or as a definition of the sine of an angle, is your choice. In either 
case, we have the following: 

Exercises 

2S 
sina =-, 

be 

. 2S 
sm{J =-, 

ac 

. 2S 
smy =-. 

ab 

1. Note that if a is a right angle in the diagram above, then the area of 
6-ABC is bc/2. Show that in this case, the formulas for sin{J and 
sin y given above are just what were given in Chapter 1. 

2. Using the law of cosines, show that in any triangle ABC of areaS, 

II. Symmetry 

Let us look once more at the formula which expresses the area of a triangle 
s in terms of two sides and the sine of the included angle. We already know 
that there are three of these formulas: 

1 b . S = 2a sm y, 1 b . S= "2 csma, 
1 . 

S = 2ca sm{J. 

Each of them is obtained from the others by cyclic substitutions of a, b and 
c, anda, fJ andy, respectively. 

In general, when we have a formula for a triangle, we can expect this 
sort of symmetry. No one of the sides and angles plays a special role with 
respect to the others, so if in the formula we perform a cyclic substitution 
of them, we should get a valid formula as well. 
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We can also look at this process in reverse. We can consider the three 
equal quantities: 

ab sin y = be sin a = ca sin f3 . 

When we have three symmetric expressions that are equal, sometimes we 
can find a geometric reason why they are all equal. In this case, they are all 
equal to twice the area of the triangle. 

In applying cyclic substitutions, we must be sure that each variable in 
our formula can represent any side or angle in a triangle. For instance, the 
Pythagorean theorem says that if a and b are the legs of a right triangle, 
and c the hypotenuse, then a2 + b2 = c2 • We cannot subsitute a forb, b for 
c, and c for a, because c cannot be any side of the triangle: it must be the 
hypotenuse. (However we can substitute a forb and b for a.) 

Exercises 

1. The law of cosines says that 

Using cyclic substitutions, write down two more formulas like this 
one. 

2. The law of sines says that 

a b c 
--=--=--
sin a sin f3 sin y 

Can you find a geometric reason why these three quantities are equal? 
Hint: See page 74. 

III. The sine and its d.imension 

Physicists often deal with dimensions as well as numbers, since the num­
bers they use are often the result of some measurement. For example, sides 
of triangles are measured in units of length (such as centimeters), while 
their areas are measured in units of length squared (such as square cen­
timeters). We can borrow this idea from the physicist, by noting that in 
an algebraic or trigonometric identity, both sides should have the same di­
mension. For example, in the Pythagorean theorem, the dimension of both 
sides is length squared, the same dimension as areas. And in fact, our proof 
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of this theorem interpreted it as a statement about areas (as does the proof 
in Euclid's Elements). 

What is the dimension of sin a? As we originally defined it, sin ot is the 
ratio of two lengths, so in fact its dimension is 0. (This is another way of 
saying that the unit of length used to measure the sides of a triangle does 
not affect the value of the sines of its angles.) 

Let us check that the dimensions are correct in our new formulas. We 
have written sinot = 2Sjbc. Now S has dimension length squared, and the 
product be has the same dimension (length times length), so the dimensions 
cancel out, and sin ot has dimension 0. This agrees with our previous result. 

Exercise 

1. Check that the dimensions of each side are the same in the following 
formulas: 

a b 
a)-=--

sin ot sin f3 
a sin ot 

b)-=-. 
b sin f3 

c) S = ~ab sin y. 

d) c2 = a2 + b2 - 2abcosy. 

IV. Hero's formula 

We know that any two triangles with the same three side lengths are con­
gruent. This means that they will give the same value for any triangle in­
variant, such as the area. That is, the lengths of the sides of a triangle de­
termine its area. 

There is a wonderful formula, credited to Hero (or Heron) of Alexan­
dria, which expresses the area of a triangle in terms of the lengths of its 
sides. Ifthese lengths are a, band c, and if s =(a +b+c)/2, we have that 

S = Js(s- a)(s- b)(s- c). 

Let us prove this formula. 
We know that sin y = 2S I ab, so that 

. 2 4S2 
sm y = a2b2. 
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From the law of cosines, we have 

or 

Hence, 

a2 + b2- c2 
cosy = __ 2_a_b __ 

2 (az + b2 - c2)2 

cos y = 4a2b2 

Finally, we remember that sin2 y + cos2 y = 1, and now we have all that 
we need. If we substitute the results above for sin2 y + cos2 y, we will have 
a relationship that includes only S, a, b, and c, just what we want. 

Indeed, 

or 

or 
16S2 = 4a2b2 - (a 2 + b2 - c 2)

2
. 

This is the relationship we need, but it doesn't look very "nice." In partic­
ular, it doesn't look symmetric in a, band c. 

But in fact it is. We can show this by factoring the right-hand side as 
the difference of two squares: 

and so 

16S2 = 4a2b2 - (a 2 + b2 - c
2

)
2 

= (2ab + (a 2 + b2 - c2))(2ab- (a 2 + b2 - c2
)), 

16S2 = (2ab + (a 2 + b2 - c2))(2ab- (a 2 + b2 - c2
)) 

= (a 2 + 2ab + b2 - c2)(-a2 + 2ab- b2 + c2
). 

Each of the factors above on the right is again the difference of two squares: 
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so we can factor once more: 

16S2 = ((a+ b)+ c)((a +b)- c)(c +(a- b))(c- (a- b))" 
(a+ b + c)(a + b- c)(a - b +c)( -a + b +c), 

and we now see the beautiful symmetry of the expression. We can write 
this relationship as 

2 ~+b+~~+b-~~-a+~~+a-~ 
s = ' 16 

or 
J~+b+~~+b-~~-a+~~+a-~ 

S= . 
4 

This formula is nice, but it can be made even nicer if we sets = (a+ b + 
c)/2. Then we have: 

a+b-c 
c-a+b 
c+a-b 

= 
-
= 

2s- 2c, 
2s- 2a, 
2s-2b. 

Substituting these results into the formula above, we then obtain 

S = J(2s)2(s- a)2(s- b)2(s- c) = js(s _ a)(s _ b)(s _c). 
4 

Exercises 

1. Show that Hero's formula gives the correct value for the area of a 
triangle with sides 3, 4 and 5. 

2. Show that Hero's formula gives the correct value for the area of a 
triangle with sides 5, 12 and 13. 

3. Using Hero's formula, show that the area of an equilateral triangle 
with side of length z is given by 12 V3 14. 

4. Show that the formula S = ~ab sin y also leads to the formula in 
Problem 3 above. 

5. Use Hero's formula to solve Problems 9 and 10 on page 10. 
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V. A physicist's interpretation 

Hero's formula may seem strange. In most area formulas, you multiply just 
two quantities together, but here we multiply four quantities together. We 
make up for it by taking a square root, but this is also unusual for an area 
formula. 

To help us make a bit more sense of this formula, we can imagine 
Richard Feynman, a Nobel Laureate in Physics, who was very skilled at 
explaining subtle ideas simply. He might have explained Hero's formula in 
the following way: 

In high school! had a very good course in geometry, and I remember 
studying Hero'sformula, which relates the lengths of the side of a triangle 
to its area. But I've forgotten its exact form. Let's see what I can recall. I 
know it had a square root in it. 3 Now the dimension of the area is length 
squared, so under the square root we must have a polynomial of degree 
four. 4 We can get such a polynomial by multiplying together four factors, 
each of degree 1. 

What could these factors be? Well, if a + b = c, then our triangle is 
actually a line segment (as the triangle inequality tell us), which has area 
0. So when a + b - c = 0, the whole polynomial is zero. This means that 
a+ b- c is a factor of the polynomial. Similarly, a- b + c must be a factor, 
and so must be -a + b + c. 

a+b>c or a+b-c>O: 

a+b>c or a+b-c>O: 

a+b>c or a+b-c>O: 

a+b=c or a+b-c=O: 

~ C I 
I 

C I 
I 
I 

a !~ 
c I 

I 
I 

a I b I 

c 

3In fact, Feynman's mathematician friends could explain why there must be a square 
root in the formula. The explanation involves attaching a sign to the triangle's area, de­
pending on the orientation of the triangle. 

4For a polynomial of several variables, the degree of each term is the sum of the expo­
nents of all the variables that appear in it, and the degree of the polynomial is the highest 
of the degrees of its terms. 
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So we have three of the four factors of the polynomial under tlw square 
root. What can the fourth factor be? It must be linear in a, b and c, and 
it must be symmetric in these three variables. 5 This means that the fourth 
factor must be of the form k(a + b + c),for some constant k. 

So we must have 

S = C.j(a + b + c)(a + b- c)(a- b + c)(-a + b +c), 

for some constant C. We can determine this constant by examining one 
particular triangle, and I remember that a triangle with sides 3, 4 and 5 is 
a right triangle. The area of this triangle is 6, and the expression 

cJca + b + c)(a + b- c)(a- b + c)(-a + b +c) 

has the value C,J(12)(2)(4)(6) = C x 24 for this particular triangle. 
Therefore, C = 6/24 = 1/4. I also remember that we can clean this up 
algebraically by introducing s = (a+ b + c)/2, but I will leave this to my 
friends the mathematicians. And now that I've had fun figuring out what 
the formula must be, I also leave to them the actual proof They are good 
at that. 

5What Feynman would mean here is that if we interchange any two of the variables a, 
b and c, the value of the polynomial would be unaffected. 



Chapter4 

Angles and Rotations 

1 Measuring rotations 

In previous chapters we explored the meaning of expressions such as 
sin 30°, cos 45° and tan 60°. In this chapter and the next we show how we 
can use expressions such as sin 180°, tan 300° or even sin 1000°. 

But what might 1000° measure? Certainly it is not the measure of the 
angle of a triangle. These can only be between oo and 180° (acute, right or 
obtuse). Nor can it be the measure of an angle (or an arc) in a circle. These 
can only be between oo and 360°. 

If you have ever owned toy electric trains, you may have set up the 
tracks in a circle, and run the trains around the circle. The diagram below 
shows a circular track. If a train starts at point A, travels around the circle, 
and arrives back at point A, we say that it has made one full rotation around 
the circle. 

A 

Since we divide a circle into 360 degrees, it is natural to say that the train 
has rotated around the circle by 360 degrees. 

Now suppose the train continues past point A, and travels around the 
circle again. Then we can say that it has rotated through more than 360 
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degrees. If it travels around the circle twice, returning to point A, we say 
that it has rotated 360 + 360 = 720 degrees. 

A rotation of 720° 

And if it travels a bit further around the circle, along an arc measuring 280°, 
we say that it has rotated 720° + 280° = 1000°: 

A rotation of 1000° 

Here is another example. Look at the hour hand of a clock. In 12 hours 
it has made a full rotation, or rotated by 360°. 

But this time the rotation is clockwise (by definition!), while our train was 
rotating counterclockwise. In a plane, there are two different directions 
of rotation, and it turns out to be important to distinguish between them. 
Mathematicians call a counterclockwise rotation positive and a clockwise 
rotation negative. So we say that in 12 hours, the hour hand of a clock 
performs a rotation of -360°. 
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Exercise 

1. Draw diagrams showing the following rotations: 

a) 160° 

d) 600° 

g) -400° 

b) 190° 

e) 1200° 

h) 360° 

2 Rotation and angles 

c) 400° 

f) -70° 

i) -270° 

93 

Picture a circle of radius 1, with its center at the origin of a system of 
coordinates: 

y 

X 

We take an acute angle with one leg along the x-axis. The other leg will 
end up someplace in the first quadrant. If the measure of this acute angle 
is, say, 40°, then we can get from point Q to point P by rotating through 
40°. 

y 

--~-----r~--~Q­
x 
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So we can associate angles with rotations. Even if the rotation exceeds 
180", we sometimes talk about the "angle" instead of the "rotation." The 
figure below gives some examples. 

p y y y 

Q 
X 

3 Trigonometric functions for all angles 

Let us look again at what we mean by sin 40°. We will do so in such a 
way that it will help us understand what is meant by sin 300°, cos 1100°, or 
tan(-240°). 

We draw a circle of radius r centered at the origin of coordinates. To 
find sin 40°, we mark the point P in the first quadrant such that L P 0 R = 
40°, and drop the perpendicular P R to the x-axis: 

y 

--4---~~~-L~Q­
x 

From right triangle P 0 R, we see that 

• o PR PR 
sm40 =--=-. 

OP r 
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Similarly, we can write 

o OR 
cos40 = -. 

r 

95 

But if the coordinates of P are (x, y), we see that y = P R and x = 
0 R. So we can write 

. 40° y SID =-, 
r 

So far we have said nothing new. 
Or have we? 

cos40° = ~. 
r 

We can use this observation to extend our definitions of sine and cosine 
to our new angles, which measure rotations. Suppose a point P starts at 
position (r, 0), and rotates through an angle ot. 

(r,O) 

If P has coordinates (x, y), we define cos ot and sin ot by writing 

X 
COSot = 

r 

sin a 
y 

r 

Note that these new definitions give the same values as the old definitions 
when ot is an acute angle. 

Example 29 Find the numerical values of sin 130° and cos 130°. 

Note that by Chapter 3, page 71, we already know that sin 130° = 
sin (180° - 130°) = sin 50°, so in fact, this quantity had been defined al­
ready. But let us see if our new definition gives the same result. 

Solution. The diagram below shows L Q 0 P = 130°: 
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y 

--+---=-~~.__ _ _.Q_ 
X 

The circle in the diagram has radius r, and the point P has rotated 
through an angle of 130° from point Q. If the coordinates of P are (x, y), 
our new definition tells us that 

cos 130° -
X 

r 

sin 130° 
y 

= 
r 

Now we look at right triangle 0 P R, in which !. P 0 R = 50°, and note 
that 

y PR o 
- = -- = sin 50 . 
r OP 

So this is the value of sin 130°. 
Triangle 0 P R will also give us the numerical value of cos 130°, but 

we must be careful. Since the x-coordinate of point P is negative, we must 
write 

cos 130° = ::_ = - OR = - cos 50° . 
r OP 

Thus, cos 130° = -cos (180° - 130°) = -cos 50°. This value agrees 
with the one given by the definition on page 79. o 

It is important to note that the result above does not depend on the 
length of 0 P. We can choose a circle of any radius and draw the corre­
sponding diagram for a 130° angle. Triangle 0 P R will always have the 
same angles, and the computation will be the same. 

Example 30 What are the values of cos 210° and sin 210°? 

Solution. Since the radius of the circle will not matter, we are free to 
choose, for example, a circle of radius 1. Then our new definitions lead to 
the diagram below: 
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(1,0) 

P=(x,y)=(cos 210°, sin 210°) 

The geometry of a 30-60-90 triangle shows that the coordinates of point P 
are ( -v{, -~).Then 

0 J3 
cos210 = --

2 
and sin 210° = -~. 

Notice that both the sine and cosine of 210° are negative numbers. o 

Example 31 Find the values of cos 360° and sin 360°. 

Solution. We choose a circle of radius 1. For a rotation of 360°, the 
coordinates of point P are (1, 0). Therefore, cos 360° 1 and sin 360° 
=Q D 

Now that we have definitions for sine and cosine of any angle, we can 
make definitions for the other trigonometric functions of these angles. 

For any angle a, 
sin a 

tan a = cos a 
cos a 

cot a = sin a 
1 

sec a -
cos a 

1 
csca = sma 

Example 32 Find the numerical value of tan 21 oo. 

Solution. From the results of Example 30, we have that 

sin 210° -1/2 1 
tan 21 oo = = = - . 

cos210o -J3!2 J3 
Note that this value is positive. D 
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Our new definitions of sine and cosine give values for any angle ot. But 
this is not quite true for our new definitions of tangent, cotangent, secant 
and cosecant, because they involve division. We must be sure that we are 
not dividing by 0. 

Indeed, we will not define tan ot if cos ot = 0. Expressions such as 
tan 90°, tan 270°, and tan ( -90°) must remain undefined. 

For similar reasons, we cannot define cot oo, or esc 180°. 

Exercises 

1. Find the numerical value of the following expressions. Do this with­
out using your calculator, then check your answers with your calcu­
lator. 

a) sin 390° 

d) sin315o 

b) cos 3720° 

e) cot420° 

c) tan 1845° 

f) tan ( -30°) 

2. Find the numerical value of each expression below, or indicate if the 
given expression is undefined. 

a) tan 360° 

d) cot 90° 

b) sin 180° 

e) cot 360° 

4 Calculations with angles of rotations 

c) cos 180° 

f) tan (-270°) 

Let us look back at our original picture of an angle in a circle: 

y 

--4------*-L--~Q­
x 

Originally, we thought of this as an angle of 40°. But a diagram of a 400° 
angle would look exactly the same, as would a diagram for 760° or -320°. 
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The diagram will look the same for any two angles which differ by a full 
rotation. Therefore, sin a = sin (a + 360°). 

Similarly, cos a= cos (a+ 360°) for any angle a. 
These observations allow us to find the sine, cosine, tangent, or cotan­

gent of very large angles easily. 

Example 33 What is cos 1140°? 

Solution. If we divide 1140 by 360, the quotient is 3 and the remainder 
is 60, that is, 1140 = 3 · 360 + 60. So cos 1140° = cos (3 · 360 + 60°) = 
cos60o = 1/2. o 

Example 34 Is the sine of 100,000° positive or negative? 

Solution. If we divide 100,000 by 360, we get 277, with a remainder 
of 280. So the sine of 100,000° is the same as sin 280°. Since the position 
of point P is in the fourth quadrant, its y-coordinate is a negative number. 
The sine of 100,000° is therefore negative. o 

You can check the logic of these solutions using your calculator, which 
already "knows" if the sine of an angle is positive or negative. That is, 
the people who designed it did exercises like yours before they built the 
calculator. 

But it is also important to be able to "predict" certain values of the 
trigonometric functions, or at least tell whether their values will be positive 
or negative. It's not difficult to see that if point P ends up in quadrant I, all 
functions of the angles are positive. If point P lies in quadrant II, the sine 
and cosecant are positive, and all other functions are negative, and so on. 

Exercise Check to see that the diagrams below give the correct signs for 
the functions of angles in each quadrant. 

+ + + + + 
+ + + 

sine cosine tangent cotangent 

We can even, sometimes, predict a bit more about the values of the 
trigonometric functions. If you look at each of the diagrams below, you 
may see that sin () is equal, in absolute value, to the sine of the acute angle 
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made by one side of the angle and the x-axis (the angle marked y in each 
diagram below): 

Example 35 Find sin 300°. 

Solution. Point P, having rotated through 300°, will end up in quadrant 
IV. So sin 300° is negative. Furthermore, the angle made by one side and 
the x-axis is 60°. Hence sin 300° = -sin 60° = -,J3j2. o 

Exercises 

1. In what quadrant will the point P lie after a rotation of 400°? 3600°? 
1845°? -30°? -359°? 

2. Fill in the table below (you won't need a calculator). What is the 
relationship between sin a and sin (-a)? 

sin 30° sin ( -30°) 
sin 135° sin ( -135°) 
sin210o sin ( -210°) 
sin 300° sin ( -300°) 
sin 390° sin ( -390°) 
sin480° sin (-480°) 

3. Solve the following equations for a, where 0 < a < 360°: 

a) sin a= 0 b) COSet= 0 c) sina = 1 

d) COSet= 1 e) sina = -1 f) _I COSet- 2 

g) . I sma = - 2 h) sin2 
a = ! i) cos2 

a = -~ 

4. a) If sina = 5/13, in what quadrant can a lie? What are the 
possible values of cos a? 
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b) If sin a = -5/13, in what quadrant can a lie? What are the 
possible values of cos a? 

5. We have seen (Chapter 2, page 50) that if a and b are non-negative 
numbers such that a2 + b2 = 1, then there exists an angle (} such 
that sin(} = a and cos(} = b. Show that this is true, even if a orb is 
negative. 

5 Odd and even functions 

Consider the result of Exercise 2 on page 100. If you have filled in the table 
correctly, you will note that, for the angles given there, sin a and sin (-a) 
have opposite signs. This relationship holds in general: 

sin (-a)=- sin a for any angle a. 

Similarly, we find the following: 

tan (-a) - -tan a 

cot (-a) = - cot a . 

However, the cosine function is different. We have 

cos (-a) = cos a . 

In general, we can distinguish two type of functions. 

A function is called even if, for every x, f (-x) = f (x ). 

Afunctioniscalledoddif,foreveryx, f(-x) = -f(x). 

So, for example, the functions 

f (x) = cos x , f (x) = x 2 + 3 , 

are all even, while the functions 

f(x) = tanx, f(x) = x3 + 4x, 

1 
and f(x) =­

x6 

1 
and f(x) = 7 X 

are all odd. The following functions are neither even nor odd: 

f(x) = x 3 + x 2
, f(x) = sinx + cosx. 
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In summary: 

cosx is an even function, while sinx, tanx, and cotx are oddfunctions. 

This may be the reason that some mathematicians prefer to work with 
the cosine function, rather than the sine. 

Exercises 

1. Which of the following functions are even? Which are odd? Which 
are neither? 

a) f(x) = x 6 - x 2 + 7 

c) f(x) = xll 
e) j(x) = cscx 

g) f(x) = sin2 x 

i) f(x) = sin2 x + cos2 x 

2. Iff (x) is any function, show that 

b) j(x) = x 3 - sinx 

d) f(x) = secx 

f) f (x) = 2 sin x cos x 

h) j(x) = cos2 x 

g(x) = &<J(x) + f( -x)) 

is an even function, and that 

h(x) = &<J(x)- f(-x)) 

is an odd function. Use these results to show that every function can 
be written as the sum of an even and an odd function. 

3. Express the following functions as the sum of an even and odd func­
tion: 

a) f(x) = sinx + cosx 

b) f(x) = x 3 + x 2 + x + 1 

c) f(x) = 2x 
1- sinx 

d) f(x) = 
1 
+ . 

smx 
1 

e) j(x) = -­
x+2 



Chapter 5 

Radian Measure 

1 Radian measure for angles and rotations 

So far, our unit of measurement for angles and rotations is the degree. We 
measure an angle in degrees using a protractor: 

Why are there 360 degrees in a full rotation? The answer to this lies in 
history, not in mathematics. It turns out that there is a more convenient way 
to measure angles and rotations called radian measure. Mathematicians 
and scientists find it natural to use radian measure to express relationships. 
Unlike degree measure, radian measure does not depend on an arbitrary 
unit. 

To measure an angle in radians, we place its vertex at the center of 
any circle, and think about the length of arc A B, as measured in inches, 
centimeters, or some other unit of length: 



104 l~11cll1111 Mc•mwre 

B 

The length of this arc depends on the size of angle A 0 B: 

B 

But is also depends on the size of the radius of the circle: 

B 

So we cannot simply take the length of this arc as the measure of the 
angle. But the ratio of the length of the arc to the radius of the circle de­
pends only on the size of the angle: 
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Definition The radian measure of an angle is the ratio of the arc it cuts off 
to the radius of any circle whose center is the vertex of the angle. 1 

This definition reminds us of the definition of the sine of an angle, 
which is also a ratio, and which does not depend on the particular right 
triangle that the angle belongs to. 

Example 36 What is the radian measure of an angle of 60°? 

Answer. We place the vertex of our 60° angle at the center of a circle 
of radius r, and examine the arc it cuts off. Since 60/360 = 1/6, this arc is 
116 of the circumference of the circle. So its length is (lj6)(2rrr) = rrr/3 
units.2 By our definition, the radian measurement of our 60° is the ratio 

rr r /3 rr 
--=-

r 3 

Numerically, this is approximately 1.0471976, or a little more than 
1 radian. o 

Example 37 What is the radian measure of an angle of 360°? 

Answer. 2rr r I r = 2rr radians. 0 

Example 38 What is the degree measure of an angle of 1 radian? 

Answer. An angle of 2rr radians is 360 degrees (see Example 37). So 
an angle of 1 radian is 360/2rr = 180/rr degrees. o 

In Example 38, we have used the very important fact that radian mea­
sure is proportional to degree measure. In fact, it is not hard to see that 

1 There are two simple tests that this measurement passes. First, the bigger the angle, the 
bigger its radian measure. Second, if we place two angles next to each other (see figure), 

the measure of the larger angle they form together is the sum of the measures of the two 
original angles. 

2Recall that if r is the radius of a circle, the length of its circumference is given by the 
formula 2rrr. 
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the ratio of the radian measure of an angle to its degree measure is always 
rr I 180: 

radians 
= 

degrees 180 

In general, if we are measuring an angle in radians, we do not use any 
special symbol like the "degree" sign. 

Example 39 Find sin (rr /6). 

Solution. We first express the angle in degrees. If D is the required 
degree measure, we have 

radians rr I 6 rr 
=-=-, 

degrees D 180 

which leads to D = 30°, and we know that sin 30° = 1/2. D 

Example 40 In a circle of radius 1, what is the length of the arc cut off by 
a central angle of 2 radians? 

Solution 1 (the long and hard way). We saw above that the degree­
measure of this angle is about 114°. So the arc cut off by this angle is 
approximately 

units long. 

114 
- x 2rr ~ 1.989675347274 
360 

D 

Solution 2 (the neat and easy way). In a unit circle (whose radius is 1 
unit), the radian measure of a central angle is just the length of the arc it 
cuts off. This tells us that the required arc is exactly two units long (and 
gives us an idea of the error we made in using the approximate degree 
measure in Solution 1). o 

Example 41 A central angle in a circle of radius 2 units cuts off an arc 
5 units long. What is the radian measure of this angle? 

Solution. By definition, this radian measure is 5/2. o 
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Exercises 

1. What is the radian measure of an angle of 180°? 90°? 

2. What is the degree measure of an angle of 2 radians? 

3. What is the radian measure of 1/4 of a full rotation? 

4. What is the radian measure of a rotation through an angle of 45°? 

5. Fill in the following table: 

Degree measure Radian Measure 
90 
180 
270 
360 

rr/2 
Tr 

3rr/2 
2rr 

6. Fill in the following tables: 

Degree measure Radian measure 
0 
30 
72 
120 
135 

rr/6 
rr/5 
rr/4 
rr/3 

2rr/3 
7rr/10 
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Degree measure Radian measure 
198 
210 
216 
225 
240 

11Jr/10 
I Orr /9 
7rr /6 
6rr /5 
5rr /4 
4rr /3 

7. What is the radian measure of an angle of 1 degree? 

8. Using your calculator, find the sine of an angle of (a) 1 radian; 
(b) 1 degree. 

9. Without using your calculator, fill in the following table: 

a (in radian) sin a cos a 
.7T /6 
.7T /3 
.7T /2 

2rr/3 
7rr/6 
5rr /4 
3rr/2 
llrr /6 

10. In a circle of radius 1, what is the length of an arc cut off by a central 
angle of 2 radians? Of 3 radians? Of rr radians? 

11. In a circle of radius 3, what is the length of an arc cut off by a central 
angle of 2 radians? Of 3 radians? Of rr radians? 

12. If sin rr /9 = cos a and a is acute, what is the radian measure of a? 

13. If a is an angle between 0 and rr /2 (in radian measure), which is 
bigger: sin a or cos (rr /2 - a)? 
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14. Let us take an angle whose radian measure is 1. Using the picture 
below, prove that its degree-measure is less than 60°. (In fact, an 
angle of radian measure 1 is approximately 57 degrees.) 

2 Radian measure and distance 

Imagine a wheel whose radius is 1 foot. Let this wheel roll, without slip­
ping, along a straight road:3 

original 
position 

new position 
after a rotation 
by a radians 

Since the wheel does not slip as it rolls, the distance it rolls, in feet, is just 
the length of the arc that the angle a cuts off. 

Example 42 How far will a wheel of radius 1 foot travel after 1 rotation? 

Solution. Because it rotates without slipping, the wheel will travel ex­
actly the length of the circumference of the circle. But if the radius of the 
circle is r, then the circumference is 2rr r. Since r = 1, the answer is just 
2rr, or approximately 6.28 feet. o 

3 Sometimes a car wheel slips as it rolls. This is called a skid, and it happens when there 
is not enough friction between the wheel and the road (for example when the road is icy or 
wet). A car wheel can also tum without rolling: sometimes, a car stuck in deep snow will 
spin its wheels. We assume that neither of these things is happening to our wheel. 
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Example 43 A wheel of radius 1 foot rotates through 1/2 a rotation. How 
far will it travel? 

Answer. It will travel a distance of rr, or about 3.14 feet. o 

Example 44 How far does a wheel of radius 1 foot travel along a line, if 
it rotates through an angle of 2 radians? 

Answer. Two feet. 

Example 45 Through how many radians does a circle of radius 1 foot 
rotate, if it travels 5 feet down a road? 

Answer. Five radians. 

Example 46 How much does a wheel with radius 1 foot rotate if it travels 
1000 feet along a road? Give the answer in radians and also in degrees. 

Solution. In radians, this is easy: it has rotated through 1000 radians. 

In degrees, the answer is more difficult to find. Each full rotation covers 
2rr feet. So in traveling 1000 feet, our wheel has rotated through 1000/2rr ~ 
159.155 rotations. Since each rotation is 360°, the degree measure of a 
rotation of 1000 radians is 

159.155 X 360 ~ 57296° . D 

Example 47 What is the radian measure of an angle of 1000°? 

Solution. A rotation of 1000° is 1000/360 ~ 2.77 rotations, and each 
rotation is 2rr radians. So 1000° is 

2.77 x 2rr ~ 17.405 

in radian measure. D 

Example 48 Is sin 500 (in radian measure) a positive or a negative num­
ber? 

Solution. Since 500/2rr ~ 79.577, 500 radians is 79 full rotations, plus 
approximately 0.57 of one more rotation. Since 0.5 < 0.57 < 0.75, this is 
between 112 and 3/4 of one rotation. So a rotation of 500 radians will end 
up in the third quadrant, and its sine is a negative number. D 
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Exercises 

1. Through how many radians does a circle of radius 1 foot rotate, if it 
travels 5 feet down a road? 

2. Through how many degrees does a circle of radius 1 foot rotate, if it 
travels 5 feet down a road? 

3. How far does a circle of radius 1 foot travel, if it turns through an 
angle of 4 radians? 

4. How far does a circle of radius 1 foot travel, if it turns through an 
angle of 120°? 

5. In a circle of radius 1, what is the length of an arc cut off by an angle 
with radian measure 1/2? rr /2? a? 

6. What is the radian measure of an angle of 720 degrees? 1440 de­
grees? 3600 degrees? 15120 degrees? What is the degree measure of 
an angle whose radian measure is 12rr? 15rr? 100rr? 

7. In a circle of radius 3, what is the length of an arc cut off by an angle 
with radian measure 112? rr /2? a? 

8. In a circle of radius 3, how long is the arc cut off by an angle with 
radian measure 1.5? 

9. In a circle of radius 5, how long is the arc cut off by an angle of 
80 degrees? 

10. In a c1rcle of radius 2, what'is the radian measure of a central angle 
whose arc has length 3 units? 

11. In a circle of radius 6, what is the degree-measure of a central angle 
whose arc has length 2 units? 

12. A circle of radius 7 units rolls along a straight line. If it covers a 
distance of 20 units, what is the radian measure of the rotation it has 
made? 

13. A circle of radius 8 rolls along a straight line, through an angle of 
150 degrees. How far does it roll? 
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14. Through what angle does the hour hand of a watch rotate in one 
hour? Give your answer in radians. 

15. Through what angle does the minute hand of a watch rotate in one 
hour? The second hand? 

16. In answering problem 14, Joe Blugg gave the following solution: 
One hour on the face of a watch is 1/12 of the circle, so it is 2rr I 12 = 
rr /6 radians. In degrees, the answer is 360/12 = 30 degrees. But Joe 
is not correct, either in degrees or in radians. Find and correct his 
mistake. Did you make the same error here and in similar problems 
about a watch? 

Hint: Do the hands of a clock rotate? In which direction? 

17. Let us look at a pocket watch whose hour hand is exactly one inch 
long. Suppose the tip of this hour hand travels a distance of 1000 
inches as it goes around. How long does this trip take? 

18. Suppose the length of the hour hand of Big Ben is exactly one yard 
long. How long it will it take Big Ben's hour hand to turn through 
1 000 radians? 

19. A wheel with radius 1 meter is rolling along a straight line. One 
of its spokes is painted red. At the starting position this spoke is 
vertical, with its endpoint towards the ground. How many radians 
does the wheel turn before the spoke is again in this position? How 
many radians does the wheel turn before the spoke is vertical, with 
its endpoint towards the sky? 

20. A wheel whose radius is 1 meter rolls along a straight path. The path 
is marked out in 3-meter lengths, with red dots three meters apart. 
The wheel has a wet spot of blue paint on one point. When it starts 
rolling, that point is touching the ground. As the wheel rolls, it leaves 
a blue mark every time the initial point touches the ground again. 

a) How far apart are the blue marks? 

b) Through what angle has the wheel rolled between the time it 
makes a blue mark and the time it makes the next blue mark? 

c) Will a blue mark ever coincide with a red mark? 
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d) When the blue marks do not coincide with the red marks, how 
close do they come to the red marks? (If you know how to 
program a computer or calculator, you may need to write a 
program to answer this question.) 

e) Now suppose each interval between the red dots is divided 
into four equal sub-intervals, say by pink dots in between. A 
blue mark is created as the wheel completes its lOOth rotation. 
Between what two dots does this blue mark occur? 

3 Interlude: How to explain radian measure 
to your younger brother or sister 

When you drive with Mom or Dad in the car, did you ever notice the 
odometer? That's the little row of numbers in front of the steering wheel. 
It measures the distance covered by the car, in miles. 

But how does it know this? The odometer cannot read the road signs, 
telling us how far we've come. It must get the information from the car's 
wheels. But the car's wheels can only tell the odometer how much they 
have turned. The more the car's wheels tum, the more distance we cover. 
The odometer knows how to convert rotations to miles. In geometry, we 
learn that a circle of radius r has a circumference of 2JT r. This, and the 
radius of the wheel in feet, is all the odometer really needs to know. 

Suppose the wheel tells the odometer that it has rotated 50 times. Then 
the odometer knows that the wheel has traveled 50x2JTr feet, where r is the 
radius of the car's wheels in feet (it must convert this number to miles). And 
if the wheel has rolled only 114 of the way around, the odometer reports a 
distance of (1/4) x 2JTr feet, again with a conversion to miles. 

But suppose you want to know how much wear the tires have had. 
Then we must read the odometer, and figure out how many rotations the 
tires have made from the distance they traveled. So if the odometer says 
that the car has traveled 200 feet (we have to convert from miles, again), 
then 200 is 2JTr times the amount of rotation the wheels have made. So the 
wheels have made 200j2JTr rotations. 

And this is what we call the radian measure of this rotation. 
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4 Radian measure and calculators 

Most calculators, and all scientific calculators, know about radian measure. 
You can switch your calculator between "degree mode" and "radian mode" 
(and sometimes there are still other w"ays to measure angles). But each 
calculator does this in a different way. It is important that you know how 
to tell which mode your calculator is working in, and also how to switch 
from one mode to another. 

Exercises 

1. A student asked his calculator for the sin of 1. The answer was 
0.8414709848079. Was the calculator in radian mode or in degree 
mode? 

2. For small angles, sin x is approximately equal to x, when x is given 
in radian measure. Use your calculator to find out how big the differ­
ence is between x and sinx for angles of radian measure 0.2, 0.15, 
0.05. 

In each case, which is bigger, x or sin x? 

3. A better approximation to sinx (when measured in radians) is given 
by x - x 3 j6. Find the difference between this value and the actual 
value of sin x for the three angles above. 

4. In the old schools of artillery, the officers would use a version of the 
approximation sin x ~ x However, they had to measure x in degrees, 
so they used sinx = x/60. What is the error in this approximation, 
if X= 10°? 

5. a) Without your calculator, make a guess for the value of sin 0.1 
(in radian measure). Then use a calculator to check your guess. 

b) Now perform the same experiment for sin 0.1 (in degree mea­
sure). 

6. a) Find the sine of an angle whose degree measure is 1000. 

b) Find the sine of an angle whose radian measure is 1000. 

7. a) Find sin (sin 1000), where radian measure is used for the angle. 

b) Find sin 3 .14, where radian measure is used for the angle. 
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8. Without looking up this number on your calculator, prove that 
cos 1.5707 is less than 0.0001. 

Hint: Do you recognize the number 1.5707? 

5 An important graph 

Let us summarize our knowledge of the sine function by drawing its graph. 
The integer multiples of rr will give us a convenient scale for the x­

axis, since the values of sin x at these points are easy to calculate. For the 
y-axis, we need only values from -1 to 1, since sin x can only take on 
these values. 

We can draw the graph by looking at a unit circle (drawn on the right 
below), and recording the height of a point which makes an angle a with 
the x-axis. Here is what it looks like for a typical acute angle ot. 

As ot varies from 0 to rr /2, the graph of y = sin x increases. 

y 

1 

X 

1t 

-1 

Here is a typical scene from the second quadrant: 

y 

1 

sinx 
X 

-1 

And in the third and fourth quadrants, the situation is like this: 
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y 

sinx -1 

After a has rotated through 2n radians, the whole cycle repeats itself. 
For negative values of a, the situation is the same. Here is the complete 
curve: 

y 

-1t X 

-1 

Exercise 

1. Use the graph above to answer the following questions. You can 
check some of the answers using your calculator. 

a) Is sin 7n /5 positive or negative? Estimate its value. 

b) Is sin (-3n /7) positive or negative? Estimate its value. 

c) We know that sin n j6 = 1/2. Check this on the graph. Where 
else does the sine function achieve a value of 1/2? 

d) For what values of x does sinx = sinn/12? Mark, on the x­
axis, as many of these values as you can find. 

e) For what values of x does sinx = 0.8? Estimate a value of x 
for which this is true. Then locate, on the x-axis, as many other 
values as you can find. 
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6 Two small miracles 

We pause here to describe two remarkable relationships, so remarkable that 
they seem like miracles. An explanation (that is, a mathematical proof) of 
these miracles is postponed for later. 

Miracle 1: The area under the sine curve 

Look at the first arch of the curve y = sin x. What can we tell about 
the area under this arch? The area is certainly less than rr, since it fits into 
a rectangle whose dimensions are 1 and rr: 

y 

X 

And the area is greater than that of the isosceles triangle shown in the di­
agram, whose area is rr /2. So if we wanted to approximate the area under 
this arch, we would say that it is between rr /2 and rr. We could go fur­
ther with the approximations, taking more and more triangles which would 
"fill" the area below the curve. Something like this is in fact done, in cal­
culus. 

The result is a small miracle: The area under one arch of the sine curve 
is exactly 2. 

Miracle 2: The tangent to the sine curve 

Let us take a point P = (a, sin a) on the curve y = sinx. Let the per­
pendicular from P meet the x-axis at the point Q. Let us draw the tangent 
to the curve at point P, and extend it to meet the x -axis at R. It is easy to 
see that PQ =sin a. 

y 
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But, by a small miracle, we can also find the length of Q R. lt is just 
I tan a I, the absolute value of tan a. 

Appendix - Some advantages of radian measure 

Notice that the radian measure of angles, like their degree measure, is 
additive. That is, if two angles are placed so as to "add up" to a larger 
angle, the sum of the angles corresponds to the sum of the arcs. 4 

Another good thing about radian measure is that it is dimensionless. 
That is, it is independent of any unit of measurement. Length, for instance, 
can be measured in centimeters, inches, or miles, and we get different num­
bers. The same is true of area, volume, and many other quantities. But ra­
dian measure, like the sine of an angle, is a ratio, and so does not depend on 
the units used to measure the arc of the circle or its radius. This is another 
reason why physicists, and other scientists too, like to use radians. 

Since the radian measure and the sine of an angle are both dimension­
less, we can compare them. For an acute angle a, which is larger,· sin a or 
the radian measure of a? 

Geometry can help us answer this, if the angle is small. In the diagram 
below, we took a circle of unit radius, and drew a tiny angle A 0 P. Then 
we made another copy of this angle (back-to-back with the first copy) and 
labeled it PO B. Then arc AP =arc P B. 

4Whenever we decide how to measure something, we would like the measure to be 
additive. Length is additive, as is area and volume. However, a trip to the grocery will 
quickly confirm that the price of Coca-Cola is not additive. The price of two 6-ounce bottles 
is likely to be more than the price of one 12-ounce bottle, because you are paying for 
packaging, labeling, shipping, and so on. 
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If the length of this arc is a, then the radian measure of iA 0 P = i P 0 B = 
2a/l (since the circle has unit radius, and iAOP = iPOB =a). From 
right triangle A 0 M, we see that AM = sin a, so A B = 2 sin a. Since arc 
A B is longer than line segment A B, we see that 2 sin a < 2a, or sin a < a. 

From this picture we also see that if the angle a is small enough, then 
2a and 2 sin a are very close to each other. 5 

Once again, we can see the advantage of radian measure. If the angle 
a were measured in degrees, the best statement we could make would be 
that sin a < a.rr/180. 

But with radian measure we can even prove a bit more. Later on we 
will see that for a small angle a measured in radians, the ratio sin a I a is 
very close to 1. For example, for a = 0.1, sin a is more than 99% of a 
itself. 

Radian measure also goes well with the trigonometric ratios. We have 
already seen that sin x is approximately close to x for small angles. It is 
even closer to x - x 3 /6, an excellent and simple approximation. We can 
even show that the error is less than x 5 /120, which, for small angles, is a 
very tiny number. 

But this is true only if we use radian measure for x. In degrees, as we 
have seen, this formula would be terrible. 

It is true that the nicest angles have radian measures which involve 
the number .rr. And we admit that sometimes it is difficult to deal with .rr 
because it is an irrational number, and our decimal notational system for 
numbers doesn't provide us with a good symbol for it6(this is why we use 
a Greek letter). But it's even less convenient for English-speaking people 
to convert miles to kilometers, or pounds to kilograms. So please don't let 
this slight inconvenience stop you from using radian measurement. 

5What does it mean for two numbers to be "close"? For example, 1 and 0.99 are cer­
tainly close: their difference is 0.01, a tiny number. But 1000 and 998 are also close. 
Their difference is 2, which is a much larger number than 0.01. However, the ratio 
998 : 1000 = 0.998 is very close to l. So sometimes we should measure "closeness" 
by seeing how close the ratio of two numbers is to l. Thinking this way, we would not say 
'that, 0.1 and 0.0001 are close. Although both these numbers are s.mall, and their difference 
is small, their ratio is 1000, which is not small. In the diagram it is true that if a is small, 
not only is sin a also small, but the two numbers are close, since their ratio is close to l. 

6The number JT is one of two irrational constants that come up quite naturally. The 
other is e, which is approximately 2.71828, and is also irrational. The number e comes up 
in calculus as naturally as the number JT does in geometry. About 250 years ago, it was 
discovered that these two numbers are related by the remarkable equation ein = -1. 
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Exercises 

l. Use your calculator to fill in the following table (of course, the sec­
ond and third columns will be numerical approximations): 

a (radians) a (degrees) sin a 
1 57.29578 

0.5 
0.2 
0.1 

0.01 
0.02 

0.001 
0.002 
0.005 

2. Without using your calculator, give an estimate for the value of 

sin 0.00123456. 

Is this estimate too large or too small? Check this using your calcu­
lator, after you've answered the question. 

3. a) Use your calculator to fill in the following table: 

a3 
sin a a a--

6 
1 

0.5 
0.2 
0.1 
0.05 
0.01 

0.001 

b) The table above shows that sin a is approximately equal to 
a - a 3 /6, if a is a small angle measured in radians. Write 
the corresponding approximation for sinD, where Dis a small 
angle measured in degrees. Your approximation should be an 
expression in the variable D. Then check your expression for 
D = 1°. 
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4. The error in the above estimate is always less than a 5 /120. What is 
the largest possible error if the angle is measured in degrees, instead 
of radians? 

5. Use your calculator to determine the radian measures of the angles 
x for which x 5 /120 < 0.001. 

6. We have discussed the formula 

x3 
sinx ~ x--

6' 

which is proven in calculus. Can you guess the next term of this 
approximation? 

If you can do this, you will have a formula which gives sin x for 
small values of x to more decimal places than most calculators can 
display! 

7. In the year 2096, a space capsule landed on earth, with artifacts 
from a distant alien civilization. Here are some diagrams found in 
the space capsule: 

Experts believe that this chart shows how they measure angles. Tell 
as much as you can about the system of angle measure in this civi­
lization. What do you think the symbol <p stands for? 
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8. ln which quadrant do each of the following angles lie? 

1, 2, 3, 4, 5, 6, 1000 (all these in radians), 1000°. 

9. Suppose you answered the question above for angles of radian mea­
sure 1, 2, 3, 4, ... , 100. What fraction of these angles do you sup­
pose would lie in quadrant 1? quadrant 2? quadrant 3? quadrant 4? 

Solution. You can guess that approximately 114 of the angles lie in 
each quadrant- there is no reason for the angles to "favor" one quad­
rant in particular. In fact, this guess is correct. It is a special case of 
the important Ergodic Theorem of higher mathematics. If you took 
angles of radian measure 1, 2, 3, ... up to 1000, your approximation 
would be even closer to 114 for each quadrant. o 



Chapter 6 

The Addition Formulas 

1 More identities 

We now come to an important and fundamental property of the sine and 
cosine functions. If we know the values of sin a and cos a, and also the 
values of sin fJ and cos {J, then we can calculate the values of sin (a + {J), 
cos (a + {J), sin (a - {J), and cos (a - {J). 

But perhaps this is easy. Perhaps sin (a + {J) is simply equal to sin a+ 
sin {J. Let us test this guess by setting a = fJ = rr /2. Then sin (a+ {J) = 
sin (rr /2 + rr /2) = sin rr = 0, while sin rr /2 +sin rr /2 = 1 + 1 = 2. Since 
these two values are not equal, our guess is wrong. 

Exercises 

1. Complete the following table: 

a fJ sin a sin fJ sin a+ sin{J sin (a+ {J) 
60° 30° 

rr/4 rr/4 
rr/6 rr/3 

2. Note that sin (a + {J) is not equal to sin a+ sin fJ for these values of 
a and {J. Which expression has the larger value in each case? 

3. Check which of the following identities are correct, and which are 
not, using the angles a = 60°, fJ = 30°: 

a) sin a+ sin fJ = sin (a + {J). 
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b) sin (a - {3) = sin a - sin {3. 

c) sin2 a - sin2 f3 = sin (a+ /3) sin (a - {3). 

4. a) The diagram below shows a circle with diameter AC = 1. 

Find a line segment in the diagram equal in length to sin a and 
one equal to sin f3. 

b) The diagram below shows the same circle as above. Its diame­
ter is still 1, but A C is not a diameter. Angles a and f3 are the 
same acute angles as before. 

Find line segments in the diagram equal in length to sin a and 
to sin {3. 

c) In the figures for parts a) and b), draw in a line segment equal 
in length to sin (a+ {3). 

5. Recallthatsin45o = f ~ 0.707andsin60o = "{ ~ 0.866. 
Note that both these values are greater than 112. How can you tell 
immediately, without much calculation, that sin 45° +sin 60° cannot 
equal sin 105°, although 45 + 60 = 105? 
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2 The addition formulas 

So far, most of what we have done is to give new names to familiar objects. 
But now we will explore the following addition formulas for sines and 
cosines: 

sin (a + {3) = sin a cos f3 + cos a sin f3 , 
cos (a + {3) = cos a cos f3 - sin a sin f3 . 

In a sense, they are the key reason why the sine and cosine functions 
find so many uses in physics, and in mathematics as well. 1 

There are also two related formulas for differences: 

Exercises 

sin (a- {3) = sinacos/3- cosa sin/3, 
cos (a - {3) = cos a cos f3 +sin a sin f3. 

1. Check the formulas given above by letting a = 60°, f3 = 30°. 

2. Check that these formulas say something true (if not enlightening) 
when a = 0 and f3 is any angle. What happens if f3 = 0? 

Note: If you ever forget which formula is which, you can quickly 
look at what happens if f3 = 0. The formula for sin (a+ 0), for 
example, should give you the value sin a. 

3. Check the formulas for sin (a+ {3) and cos (a+ {3) when a+ f3 = 
]'( /2. 

Hint: Assume a and f3 are acute angles in the same triangle, and 
compare sin a and cos f3. 

4. Check that the addition formulas are true if a = f3 = rr I 4. 

5. Check that sin2(a + {3) + cos2(a + {3) = 1 using the formulas 
above. That is, show that (sin a cos f3 + cos a sin {3)2 + (cos a cos f3 
-sin a sin {3) 2 = 1. 

1 But these uses for sine and cosine were not the earliest. The astronomer Ptolemy, in 
the second century CE, used these addition formulas, although he didn't have the names 
sine and cosine that we use now. As an astronomer, he needed equivalent concepts to locate 
the stars and planets, and to describe their periodic motions. 



12(1 Addltio11 Nmnu/11s 

6. Using the formulas given in the text above, prove that 
sin (a+ {3) sin (a - f3) == sin2 a - sin2 {3. That is, show that 

(sin a cos f3+cos a sin f3)(sin a cos {3-cos a sin f3) = sin2 a-sin2 f3. 

3 Proofs of the addition formulas 

The exercises above have shown that the addition and subtraction formulas 
we propose are reasonable, but if we are to do mathematics, we must have 
a proof. 

We will first prove the addition formula for sin (a+ f3) in the case 
where a, f3, and a+ f3 are all acute angles. We wiil need two right triangles: 
one containing an acute angle equal to a, and another containing an acute 
angle equal to f3. 

We must put these triangles together in some way, so that the resulting 
diagram includes an angle equal to a+ f3 (we assumed that this angle is also 
acute). There are only three ways to do this, so that they have a common 
side: 

Fig. 1 Fig. 2 Fig. 3 

Each of these pictures gives us a different beautiful proof of the formula 
for sin (a + {3). We explore here the first two. We postpone the third, which 
is perhaps the most interesting, for another occasion (see the appendix of 
this chapter). 
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4 A first beautiful proof 

We start with Fig. 1. Let us label the sides of the triangle as shown. Then 
sin a = ajc, sin fJ = ejd. We need to represent sin (a+ {J) in the diagram. 

D 

B 

a 

A b c 

Let us draw line D Q perpendicular to the segment marked b: 

D 

B 

a 

A b c 

Now we can write 
DQ 

sin (a + {J) = d . 

But DQ, which is related to sin (a+ {J), is not related to the ratios repre­
senting sin a and sin p. To establish this relationship, we divide D Q into 
two parts, with a perpendicular from point B: 



12H 

Then 

A b 
Fig.4 

D 

Addition Nmnulus 

a 

c 

. p+q p q p a 
sm (a+ {3) = -d- = d + d = d + d · 

Now we must relate pld and aid to sina and sinf3. We start with the 
second fraction. The segment a is in triangle A C B, and the segment d is in 
triangle A B D. We relate the fraction aId to both triangles by introducing 
cas an intermediary (since cis in both triangles): 

a a c . 
- = - · - = sm a cos f3 . 
d c d 

It is a bit more difficult to work with the fraction pI d. The segment d is 
in triangle AB D (which includes angle {3), and the segment pis in triangle 
D P B. Happily, this last triangle contains an angle equal to a; namely2 

LP DB. Nowwe use segment e as an intermediary, and write 

p p e . 
- = - · - = cos a sm f3 . 
d e d 

Putting this all together, we find that 

. a c p e . . 
sm (a + {3) = -- + -- = sm a cos f3 +cos a sm f3 . 

c d e d 
2Ifyou don't see that LP DB= LBAC =a right away, look at the diagram below. You 

will see that both LBAC and LPDB are complementary to the angles marked y, which 
are equal. v 

A 
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Exercises 

1. We can also use the same diagram (Fig. 4) to derive a formula for 
cos (a+ {3), where a, {3, and a+ f3 are acute angles. Let AQ = q, 
C Q = r. Fill in the gaps in the following proof: 

cos (a+ {3) 
AQ 

- AD 
AC- QC 

- AD 
AC BP 
---
AD AD 
AC AB BP BD 

- -·---·-
AB AD BD AD 

- cos a cos f3- sin a sin f3. 

Notes: 

a) Here we used two different "intermediaries": AB for the first 
ratio and B D for the second. Again, each intermediary plays 
two different roles, in two different triangles. 

b) The segment Q D appears with a minus sign. This is how the fi­
nal formula ends up having a term subtracted rather than added. 

2. Derive formulas for sin (a- {3) and cos (a- {3), using the diagram 
below, in terms of sin a, sin f3, cos a, and cos f3, assuming that a, f3, 
and a - f3 are all positive acute angles. 

B 

c 

A Q 
Here are the formulas to derive: 

sin (a - {3) = sin a cos f3 - cos a sin f3 , 
cos (a - {3) =cos a cos f3 +sin a sin f3. 
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5 A second beautiful proof 

For our second proof, we use the following theorem from Chapter 3 (see 
page 75). 

Theorem The area of a triangle is equal to half the product of two sides 
and the sine of the angle between them. 

In our diagram (see page 126) we have two right triangles, one includ­
ing an acute angle a and the other including an acute angle f3. If we place 
them so that they have a common side, then we get a new triangle, with 
one angle equal to a + f3: 

c 

A B 

In this new triangle, the common leg of the two right triangles is an altitude, 
labeled h in the diagram. Each original hypotenuse is a side of the new 
triangle, labeled c1 and c2 in the diagram. 

The theorem above tells us that the area of the new triangle is 

(1/2)ctc2 sin (a+ {3) . 

Let us also calculate the area of this triangle using methods of elementary 
geometry. The comparison of these two results will give us our formula. 

Let BD = b1 and DC= b2• In right triangle ABD, we have 

bt . 
-=sma, 
Ct 

so b1 = c1 sin a. Similarly, in triangle ACD, b2 = c2 sin/3. Also, (from 
right triangle AB D), h = c1 cos a, and (from right triangle ADC) h = 
C2 COS {3. 
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Using these relationships, we can express the area of triangle ABC as:3 

iAD · BC = ih(bt + bz) ihbt + ihbz 

- 4cz cos ~Ct sin a+ !c2 cos act sin ,8. 

Equating our two expressions for the area of triangle ABC, we have 

Finally, dividing through by (l/2)c1c2 gives us the desired result. Note that 
a + f3 need not be acute for the proof to be correct (although a and f3 must 
be acute). 

Exercises 

1. If a = 30° and f3 = 30°, what values do our formulas give us for 
sin (a+ {3) and cos (a+ {3)? Do these values agree with the values 
that you already know? 

2. Ifsina = 3/5 and sinf3 = 5/13, what values do our formulas give 
us for sin (a + {3) and cos (a + {3)? 

. v'6+~ v'6-~ 
3. Show that sm 75° = 

4 
and cos 75° = 

4 
. 

4. Find expressions in radicals (similar to those in Problem 3) for sin 15° 
and cos 15°. Explain the coincidences. 

5. a) Suppose a and f3 are acute angles. Can cos (a + {3) be zero? 

b) Suppose a and f3 are acute angles. Can sin (a+ {3) be zero? 
Remember that neither 0 nor rr /2 are considered acute. 

c) We know that if a and f3 are acute angles, then sin a, sin f3, 
cos a and cos f3 are all positive. For acute angles a and {3, must 
sin (a + {3) be positive? Must cos (a + {3) be positive? 

6. Phoebe set out to prove the identity 

sin2 a - sin2 f3 = sin (a + {3) sin (a - {3) . 

3Remember that the area of a triangle is half the product of any altitude and the side to 
which it is drawn. 
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She reasoned as follows: 

sin2 a - sin2 f3 · = (sin a + sin {3)(sin a - sin {3) 
= sin (a + {3) sin (a - {3) . 

What criticism do you have of her reasoning? 

7. Check the identity in Problem 6 using a = 30°, f3 = 60°, on your 
calculator. You will find that, despite Phoebe's specious reasoning, 
the identity is true for these values. Is this a coincidence? 

8. Prove that sin2 a - sin2 f3 = sin (a + {3) sin (a - {3). 

9. Prove that cos2 f3 - cos2 a = sin (a + {3) sin (a - {3). 

10. Without using your calculator, find the numerical value of 
sin 18° cos 12° +cos 18° sin 12°. 

11. a) Without using your calculator, try to find the numerical value 
of sin 113 o cos 307° + cos 113 o sin 307°. 

b) Now use your calculator to check the result. 

c) Did you use the addition formulas in part (a)? Remember that 
we have proved the addition formulas only for positive acute 
angles. Doesn't it look like they work for larger angles as well? 

12. Simplify the expression sin 2a cos a -cos 2a sin a. 

13. Simplify the expression sin (a + {3) sin f3 +cos (a+ {3) cos {3. 

14. Simplify the expression 

sin (a + {3) -cos a sin f3 
cos(a + {3) +sin a sin f3 

15. For any angle a < rr /4, show that 

• 7T ../2. 
sm (a+ "4) = T(sma +cos a). 

16. For any acute angles a and f3 for which cos a cos f3 # 0, show that 

cos (a+ {3) 
---- = 1- tanatanf3. 
cos a cos f3 

17. Use the law of cosines and the figure drawn for the second beautiful 
proof to give a direct derivation of the formula for cos (a + {3). 
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Appendix- Ptolemy's theorem and its connection with the 
addition formulas 

In this appendix we explore the connection between the formula for 
sin (a + {3) and a remarkable geometric theorem of Ptolemy. 

1. The angles of a quadrilateral inscribed in a circle 

133 

Ptolemy's theorem concerns quadrilaterals that are inscribed in circles. 
Suppose we have a quadrilateral ABC D, and we want to inscribe it in a 
circle. This is not always possible. In fact, if there is such a circle, then 
LA+ LB = LC + LD = rr. 

I~ed, LA = ~BcD, and LC = ~BA'v, so LA+ LC = ~(BcD + 
BAD)= ~(2rr) = rr, and similarly, LB + LD = rr. 

We can also show that this condition is sufficient: If the opposite angles 
of a quadrilateral are supplementary, then the quadrilateral can be inscribed 
in a circle. 

To prove this, let us take some quadrilateral ABC D in which L B + 
LD = rr, and draw a circle through A, B, and C (we know that any three 
non-collinear points lie on a circle). 

Then we can show that point D also lies on this circle. Indeed, L B = 
4lc (the arc not containing point B)~o iBC = 2rr - Ac = 2rr - 2L B. 
Point Dis on~e circle if LD =~ABC (see page 65). But in fact this is 
true, since ~ABC= rr- LB = LD. 

So we have the following results: 

Theorem A quadrilateral can be inscribed in a circle if and only if its 
opposite angles are supplementary. 

Example 49 Suppose we want to inscribe a parallelogram in a circle. The 
result above tell us that its opposite angles must be supplementary, so this 
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parallelogram must be a rectangle. Then the intersection of its diagonals 
will be the center of the circle, and half the diagonal will be its radius. D 

2. The sides of a quadrilateral inscribed in a circle 

The theorem of the last section characterizes inscribed quadrilaterals 
in terms of their angles. Ptolemy's theorem characterizes them in terms of 
the length of their sides. 

A quadrilateral has four vertices, and so pairs of vertices determine six 
lengths. Four of these lengths are sides of the quadrilateral, and two of 
these lengths are diagonals. Ptolemy's theorem will use these six lengths 
to tell us whether or not the quadrilateral can be inscribed in a circle. 

Ptolemy's Theorem A quadrilateral can be inscribed in a circle if and 
only if the product of its diagonals equals the sum of the products of its 
opposite sides. 

That is, quadrilateral ABC D can be inscribed in a circle if and only if 
AB x CD+ AD x BC = AC x BD. 

Example 50 What does Ptolemy's theorem tell us for a rectangle? We 
know that a rectangle can be inscribed in a circle. 

If the rectangle is ABCD, then we have 

AB x CD + AD x BC = AC x B D , or 

AB2 + BC2 = AC2
. 

That is, Ptolemy's theorem here reduces to the theorem of Pythagoras. 

We will not give a geometric proof of Ptolemy's theorem here. Rather, 
we will show that it is equivalent to the addition formula for sin(a + {3). 

Ptolemy's theorem concerns the sides of a quadrilateral. Trigonometry, 
of course, works with angles. So our first job is to reformulate Ptolemy's 
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theorem in terms of angles. Let us take a quadrilateral inscribed in a circle 
of diameter 1. 

We know (Chapter 0, page 62) that in such a circle, the length of a chord is 
equal to the sine of its inscribed angle. If we look at the inscribed angles in 
the diagram, we find pairs of equal angles. These are labeled with the same 
Greek letter. 

If we have four points A, B, C, and D, then we can divide them into 
pairs in three different ways: 

AB CD 
AC BD 
AD BD 

Each pair of points determines a length. If we take the product of these 
lengths, then Ptolemy's theorem says that a circle exists passing through 
the four points if and only if the sum of two of these products minus the 
third equals 0. Similarly, if we have n points, a necessary and sufficient 
condition that they lie on a circle is that the condition of Ptolemy's theorem 
is fulfilled for every choice of four of the given points. 

Now we can "translate" the lengths of the quadrilateral's sides into 
trigonometric expressions. We have 

AB = sinct BC =sino 

CD= sinfi DA =sin y. 

What about the diagonals? Diagonal BD is subtended by !..BAD, and AC 
by !..ABC, so we have 

BD = sin(o + fi) = sin(y +a) 

AC = sin(ct + 8) = sin(fi + y) . 
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Now we can write Ptolemy's theorem in trigonometric form: 

AB x CD+ AD x BC = AC x BD 

sin a sin f3 +sin y sino= sin({)+ y) sin(a + y). 

Let us put this another way. If we have four angles a, f3, y, 8 such that 
a + {3 + y + 8 = rr, then we can divide a circle of diameter 1 into arcs of 
length 2a, 2{3, 2y, 28 and use this circle to recreate the above figure. Since 
the resulting quadrilateral is inscribed in a circle, we have: 

Ptolemy's Identity If a + f3 + y + 8 = rr, then sin a sin f3 + sin y sin 8 = 
sin(a + y) sin({)+ y). 

This statement is equivalent to the part of Ptolemy's theorem that says 
that if a quadrilateral is inscribed in a circle, then the product of the diago­
nals equals the sum of the products of the opposite sides. 

Ptolemy's theorem is a bit more general than the usual addition formula 
for sin(a+f3), and looks a bit nicer, since it uses only sines, and not cosines. 

3. Ptolemy's identity implies the addition formula for sines 

What happens to our old formula for sin(a + {3)? It is a particular case 
of Ptolemy's identity. Indeed, suppose, in quadrilateral ABC D, a+ 8 = 
f3 + y = rr /2. Then sin ({3 + y) = 1, and because a + 8 = rr /2, we have 
sin 8 = cos a. And since f3 + y = rr /2, we have sin f3 = cos y. For this 
special case, Ptolemy's identity reduces to 

sin a cosy+ cos a sin y = 1 · sin(a + y), 

which is the usual addition formula. Thus Ptolemy's theorem implies Ptol­
emy's identity, which implies the addition formula for sines. o 

4. The addition formulas imply Ptolemy's theorem 

Suppose we know the addition formulas for sin(a + {3) and cos(a + {3). 
Let us show that we can use them to prove Ptolemy's identity. 

In Ptolemy's identity, every term is the product of two sines. In order 
to derive this identity from the addition formulas, we need to convert these 
products into sums. The reader is invited to verify, using the formulas for 
cos(x ± y), that 

sin a sinf3 = Hcos (a- {3)- cos (a+ f3)], (1) 
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and to recall that 

cos (rr +a) =-cos a. (2) 

We use these results to prove Ptolemy's identity. 
We want to show that if a + f3 + y + 8 = rr, then 

sin a sin{J +sin y sin8 = sin({J + y) sin(a + y). 

The right side is a product of two sines. We use (1) to convert this to a sum 
of cosines: 

sin({J + y) sin(a + y) = ![cos((fJ + y)- (a+ y)} 

- cos((fJ + y) +(a+ y))] 

= H cos ({3 - a) - cos (a + f3 + 2 y)] . 

We must do something about the expression a+ f3 + 2y. We have a+ f3 + 
2y =a+ f3 + y + 8 + y- 8 = ;rr + y- 8, and by (2), cos( a+ f3 + 2y) = 
cos(rr + y - 8) = - cos(y - 8). So if a + f3 + y + 8 = rr, we have 

sin(a + {3) sin(a + 8) = ~ [ cos({J -a) + cos(y - 8)]. 

Since the cosine is an even function, we can write this as 

sin(a + {3) sin(a + 8) = ~ [ cos(a - {3) + cos(y - 8)] . 

Now let us look at the left side of Ptolemy's identity. We have 

sina sin{J +sin y sin8 = !(cos(a- {3)- cos(a + f3)] 

+ !(cos(y- 8)- cos(y + 8)]. 

Nowifx+y = rr, weknowthatcosy = -cosx.Here, (a+f3)+(y+8) = 
rr, so cos(y + 8) = - cos(a + {3), and we can write 

sin a sin f3 +sin y sin 8 = H cos(a - {3) - cos(a + {3)] 

+ H cos(y - 8) + cos(a + {3)] 

= !(cos( a- {3) + cos(y- 8)]. 

But this is the same expression that we found equal to the left side. So 
Ptolemy's identity follows from the formulas for sine and cosine. o 
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Chapter 7 

Trigonometric Identities 

1 Extending the identities 

Let us look back at some of our trigonometric identities. We first noted that 
sin2 a+ cos2 a = 1 for any acute angle a. When we extended the definition 
of sin a and cos a to angles greater than 90° and less than oo, we noted that 
the identity still held true. 

We have shown (in Chapter 6) that 

sin (a + {3) = sin a cos f3 +cos a sin f3 

for a and f3 positive acute angles. Is this identity still true for any angle at 
all? 

Using the definition from Chapter 4, we can see that this formula works, 
for example, when a = 150° and f3 = 300°. And in fact, it will always 
work for angles of any size: Why is this true? 

2 The Principle of Analytic Continuation: Higher 
mathematics to the rescue 

Checking the formula for sin (a+ {3) for general angles becomes very 
tedious. You can try it for other angles, reducing each sine or cosine to 
a function of a positive acute angle. But pack a lunch, because such a pro­
cedure takes a long time. 

For this situation, a theorem from higher mathematics comes to our 
rescue. Called the Principle of Analytic Continuation, it says, roughly, that 
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most of our identities will be preserved under the new definitions of the 
trigonometric functions. 

More precisely, the Principle of Analytic Continuation says that any 
identity involving rational trigonometric functions that is true for positive 
acute angles is true for any angle at all. 

Since a proof of this statement will involve results from a course in 
calculus and another in complex analysis, we will only state this principle 
here. But to understand the statement above, we must explore some ter­
minology. A rational trigonometric function is a function you can get by 
taking the sine and cosine of various angles, together with all the constant 
functions, and adding, subtracting, multiplying, or dividing them.1 Some 
examples of rational trigonometric functions are: 

2 sin a + 3 cos a 

3 sin a- 2cosa ' 

sin a cos f3 + cos a sin f3 , 

tan a+ tanf3 

1- tanatanf3 

sin (a+ {3), 

cosx + -J3 sinx 

2 sin a + 3 cos f3 
3 sin a - 2 cos f3 ' 

2 
, tana, 

Here are some examples which are not rational trigonometric func-
tions: 

Jsin2 x-3, 

1- cosx 
log (sinx), cos (sinx), 

$nX 

Some of our examples should seem familiar to you. In fact, you can 
check that most of our identities so far have involved rational trigonometric 
functions. 

The Principle of Analytic Continuation tells us that if two such trigono­
metric rational functions are equal for numbers in any one interval (all the 
numbers between two real numbers) then they are equal for any numbers. 

For example, in our list above of rational trigonometric functions, we 
have the examples sin (a + {3) and sin a cos f3 + cos a sin f3. Using geom­
etry, we have already proved (three times!) that these two functions are 
equal for oo < a, f3 < 45° (so that a, {3, and a+ f3 are all acute angles). 
The Principle of Analytic Continuation says that these two functions must 

1 In the same way, if you start with integers, you can get all the rational numbers by 
adding, subtracting, multiplying, and dividing. 
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then be equal for any values of a and {3, and not just for the ones in the 
interval between oo and 45°. 

Exercises 

1. For each of the functions below, state whether or not it is a rational 
function of sin a: 

a) J2sina b) J2sina 
1- sin2 a 

c) --. --:;:;JT~ 
sm-

1 
d) ---;-1-

1+-.­
sma 

2 

2. Write each of the following expressions as rational functions of sines 
and cosines: 

a) tana 

tan a+ tan f3 
c)-----

1- tanatanf3 

e) tan a cot a 

b) (1 + tana)(1- tan a) 

3. For any angle a between 0 and rr /2, we know cos a = J 1 - sin2 a. 
Does the Principle of Analytic Continuation guarantee that this state­
ment is true for any angle? For example, is this identity correct if 
a=2rr/3? 

4. For any angle a between 0 and JT /2, we know sin2 a+ cos2 a = 1. 
Does the Principle of Analytic Continuation guarantee that this state­
ment is true for any angle? For example, is this identity correct if 
a=2rr/3? 

3 Back to our identities 

You may imagine that a general statement such as the Principle of Ana­
lytic Continuation (and the full statement of this principle is even more 
general!) must have its roots in rather deep properties of functions. And 
in fact it does. This is why one needs to follow two advanced courses of 
mathematics before understanding it fully. 
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So we can continue to work with our identities, with the assurance of 
the mathematicians, who have proved the Principle of Analytic Continu­
ation, that our work is valid for angles of any measure, and not just for 
positive acute angles. 

Here, once again, are our formulas. We repeat them to emphasize their 
added meaning. Because of the Principle of Analytic Continuation, they 
are true for angles of any measure, and not just acute angles: 

Exercises 

sin (a + {3) = sin a cos f3 +cos a sin f3 
sin (a - {3) = sin a cos f3 - cos a sin f3 
cos (a + {3) - cos a cos f3 - sin a sin f3 
cos (a - {3) = cos a cos f3 +sin a sin f3 

1. If a and f3 are acute angles such that sin a = 315 and sin f3 = 5113, 
find the numerical value of sin (a+ {3) amd cos (a+ {3). In what 
quadrant does the angle a :+ f3 lie? 

2. If a and f3 are acute angles such that sin a = 415 and sin f3 = 12113, 
find the numerical value of sin (a + {3) and cos (a+ {3). In what 
quadrant does the angle a + f3 lie? 

3. If a and f3 are angles such that sin a = 3 I 5 and sin f3 = 5 I 13, find 
sin (a+ {3). (Note that we don't specify here that a and f3 are acute 
angles.) How many possible answers are there? 

4. Verify that sin (a - {3) = sin a cos f3 - cos a sin f3 for: 

2rr rr 
a) a = -, f3 = -. 

3 3 
rr 3rr 

b) a=-, f3 = -. 
4 4 

rr 3rr 
c) a=--, f3 = -. 

6 2 

5. Show that cos2 a+ cos2 (2rr 13 +a)+ cos2 (2rr 13- a) = 312. 

6. Show that sin (x + y) +sin (x- y) = 2 sinx cosy. 

7. Simplify cos (x + y) +cos (x- y). 
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8. Show that cos (x + y) cos (x- y) = cos2 x cos2 y- sin2 x sin2 y. 

9. Show that sin (x + y) sin (x- y) = sin2 x cos2 y- cos2 x sin2 y. 

10. Using the previous two exercises, show that 

cos (x + y) cos (x - y) - sin (x + y) sin (x - y) = cos2 x - sin2 x . 

Note that the left side depends on both x and y, but the right side 
depends only on x. 

Remark We can simplify the expression 

cos (x + y) cos (x - y) - sin (x + y) sin (x - y) 

in another way. Let us put A = x + y, B = x - y. Then we have 
cos (x + y) cos (x - y) + sin (x + y) sin (x - y) = cos A cos B -
sin A sin B. But this is just cos (A + B). However, A + B = (x + 
y) + (x- y) = 2x. Hence, 

cos (x + y) cos (x - y) + sin (x + y) sin (x - y) = cos 2x . 

We. see once more that the value of the expression 

cos (x + y) cos (x - y) + sin (x + y) sin (x - y) 

is independent of y. 

11. We now have a slight misunderstanding. From Exercise 10 we see 
that the expression we are interested in equals cos2 x - sin2 x. And 
in the remark to that same exercise we see that it is equal to cos 2x. 
Is this an error? Try to prove that it is not. 

12. Show that cos (a + {3) cos f3+sin (a + {3) sin f3 does not depend on f3. 

4 A formula for tan (a+ {3) 

tan a+ tan/3 
Let us now show that tan (a+ {3) = . We use the addition 

1- tanatanf3 
formulas to write: 
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sin (a + {3) sin a cos {3 +cos a sin {3 
tan (a + {3) = · = --------

cos (a + {3) cos a cos {3 - sin a sin {3 

We now can divide the numerator and denominator by cos a cos {3: 

sin a cos {3 cos a sin {3 

sin a cos {3 + cos a sin {3 

cos a cos {3 - sin a sin {3 

----+----
cos a cos {3 cos a cos {3 
cos a cos {3 sin a sin {3 

This leads to: 

= 

cos a cos {3 cos a cos {3 

sin a sin {3 
--+--
cosa cosf3 

sma sm/3 
1----­

cosa cos {3 

tan a+ tan/3 tan (a + {3) = ___ ___;:__ 
1-tanatan/3 

In a way, this is nicer than the formula for sin (a + {3) and cos (a+ {3), 
since it uses only the tangents of a and {3. The formula for sin (a+ {3), on 
the other hand, uses cos a and cos {3 as well as sin a and sin {3. 

Exercises 

1. Check that our formula for tan (a+ {3) is correct for a - 7rr /6, 
{3 = 5rr /3. 

2. Find a formula for tan (a - {3) in terms of tan a and tan {3. 

3. Show that 

(
rr ) 1+tana 

tan -+a = . 
4 1-tana 

4. Show that 

(
rr ) 1- tan a 

tan --a = . 
4 1+tana 

5. If a+ {3 = rr /4, prove that (1 +tan a)(1 +tan {3) = 2. 
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6. Find an expression for tan (a+ f3 + y) which involves only tan a, 
tan {3, and tan y. 

7. Using the result of Problem 6, or otherwise, show that if a + f3 + 
y = rr (for example, if they are the three angles of a triangle), then 
tan a+ tan f3 +tan y =tan a tan f3 tan y. 

8. Show that tan a tan 2a tan 3a = tan 3a - tan 2a - tan a whenever 
all these expressions are defined. For what values of a are some of 
these expressions not defined? 

5 Double the angle 

If we know sin a and cos a, we can find the value of sin 2a and cos 2a. 
We know that 

sin (a + {3) = sin a cos f3 +cos a sin f3 

and 

cos (a+ {3) = cos a cos f3 -sin a sin f3. 

Let a = f3. Then we have: 

sin 2a - sin (a + a) sin a cos a + cos a sin a 
- 2 sin a cos a, 

cos 2a = cos (a + a) = cos a cos a - sin a sin a 

The formula for cos 2a is particularly interesting. Since cos2 a = 1 -
sin2 a, we can write cos 2a = 1 - 2 sin2 a. 

Similarly, since sin2 a = 1-cos2 a, we can write cos 2a = 2 cos2 a -1. 
The reader is invited to check these computations. 

So we have four beautiful and useful formulas: 

sin 2a 2 sin a cos a 
cos 2a = cos2 a - sin2 a 
cos2a 2cos2 a- 1 
cos2a 1- 2sin2 a 
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Problem 1. If cos a = ,J3 /2, find cos 2a. 

Solution. We have 

2 (,J3)2 1 cos 2a = 2 cos a - 1 = 2 2 - 1 = 2 · 

(The reader should check that the other two formulas for cos 2a lead to the 
same answer.) 0 

Problem 2. If cos a = ,J3 /2, find sin 2a. 

Solution. We have sin 2a = 2 sin a cos a, and before we go any further 
we must compute sin a. But sin a is not uniquely determined. (After all, 
we are not given the value of a, but only of cos a. More than one angle has 
a cosine equal to ,J3;2.) 

To compute sin a, we recall that 

so 
. 1 

sma =.±2. 
Then 

. 2 . ( 1 ) ( ,J3) ,J3 sm2a = smacosa = 2 ± 2 2 = ± 2 . 

The reader should check that in fact there are values of a for which each 
of our two answers is correct. If we are given the value of cos a, then the 
value of cos 2a is determined, but the value of sin 2a is not. (And certainly 
the value of a itself is not determined.) o 

The "double angle" formulas are often used in the following form. If 
we write a = 2{3, then fJ = a/2, and we have: 

"fJ 2.{3 fJ sm = sm 2 cos 2 , 

cos fJ = cos2 !!._ - sin2 !!._ = 2 cos2 !!._ - 1 = 1 - 2 sin2 !!._ . 
2 2 2 2 
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Exercises 

1. a) If sin a = 7/25 and cos a is positive, find sin 2a and cos 2a. 

b) If sin a = 7/25 and cos a is negative, find sin 2a and cos 2a. 

2. If sin a and cos a are both rational numbers, can sin 2a be irrational? 
Can cos 2a? Check your answer with the examples given in the text, 
and with Exercise 1 above. 

3. In doing a certain problem, a student accidentally wrote cos2 a 
instead of cos 2a. But for the particular angle he was using, the an­
swer turned out to be correct. What could these values of a have 
been? That is, for what values of a is cos2 a =cos 2a? 

4. If sin a +cos a = 0.2, find the numerical value of sin 2a. 

5. If sin a -cos a = -0.3, find the numerical value of sin 2a. 

6. Show that cos 2a cos a + sin 2a sin a = cos a. 

7. Show that sin 2a cos a +cos 2a sin a = sin 4a cos a - cos 4a sin a. 

8. Prove that cos2 a :=: cos 2a. 

9. Express (sin (a/2) -cos (a/2) )
2 

in terms of sin a only. 

10. Find the numerical value of sin 10° sin 50° sin 70°. 

Hint: If the value of the given expression is M, find M cos 1 oo. 

11. Find the numerical value of cos 20° cos 40° cos 80°. 

' 7r 7r 1 
12. Show that sm 

10 
cos S = 4. 



14H 'fi·igonomctric Identities 

6 Triple the angle 

Let us now find formulas for sin 3a and cos 3a. 
We can write 

sin 3a =sin (2a +a) 

= sin 2a cos a + cos 2a sin a 

= 2 sin a cos2 a + ( 1 - 2 sin2 a) sin a 

= 2sina(l- sin2 a) + (1- 2sin2 a) sin a 

= 3 sin a - 4 sin3 a . 

(The reader should check the details.) 
In the same way, we can show that 

cos 3a = 4 cos3 a - 3 cos a . 

Exercises 

1. Complete the derivation of the formula for cos 3a given above. 

2. If sin a = 3/5, what are the possible values of sin 3a? Of cos 3a? 

3. If cos a = 4/5, what are the possible values of sin 3a? Of cos 3a? 

4. Derive formulas for cos 4a in terms of (a) cos a only; (b) sin a only. 

5. Show that sin 3a cos a - cos 3a sin a = sin 2a. 

6. Show that 
sin 3a cos3a 
-----=2 
sina cosa 

for any angle a. 

7. a) Show that sin3a = 4sina sin (60° +a) sin (60°- a). 

b) Show that cos 3a = 4cos a cos (60° +a) cos (60°- a). 

8. Derive a formula for the ratio sin 4a I sin a in terms of cos a. 

9. Show that sin 3a sin3 a +cos 3a cos3 a = cos3 2a. 
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7 Derivation of the formulas for sin ex /2 and cos ex /2 

Let us now derive formulas for sin a /2 and cos a /2 in terms of trigonomet­
ric functions of a. 

We being with the formula for cos a in terms of cos a/2 (see page 146): 

cos a= 2cos2 (~)- 1. 

This can be written as 2 cos2 ( ~) = 1 + cos a, which leads to 

(a) J1+cosa cos 2 = ± 
2 

To get a formula for sina/2, we proceed similarly: 

cos a = 1 - 2 sin2 
( ~) , 

or 2 sin2 
( ~) = 1 - cos a, which leads to 

. (a ) J 1 - COS a 
sm 2 = ± 2 

1- cos a 
To show that tan ( ~) = ± , we write 

1 +cos a 

. (a) J 1 - cos a sm - ± 
(a) 2 2 

tan 2 ~cos(~)~ ±jl+~oso 

=± 

1- cos a 

2 
1 +cos a 

2 

J1- cos a 2 
=± ·---

2 1 +cos a 

=± 
1- cos a 

1 +cos a 
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In the next section, we will see two formulas for tan(a/2) that are more 
convenient. 

Exercises 

1. If cos a = 1, find all possible values of cos(a/2). You will find that 
there are two possible values. Give an example of a value for a which 
leads to each of these values. 

2. Try out the formula given above for cos(a/2) if 

a) a= 60°, c) a= 240°. 

For which of these angles must we take the positive square root, and 
for which angles must we take the negative? 

3. Fill in the following table. Note that for each of the given values of 
I a, cos a= 2. 

II a I Quadrant a? I a/2 I Quadrant a/2? I cos a/2 II 
780° 
1020° 
1140° 
1380° 
-60° 
-300° 
-420° 
-660° 
-780° 

4. Find radical expressions for sin 15° and cos 15°. 

5. Each of the "half-angle formulas" we have developed includes the 
square root of a trigonometric expression. Why don't we have to 
worry about the possibility that we are taking the square root of a 
negative number? 

. . /1 +cos a . 
6. For positive acute angles, we can wnte cos ~ = V 

2 
, with-

out the ambiguity of sign. If we could apply the Principle of Analytic 
Continuation to this identity, we would conclude (erroneously) that 
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this statement, without ambiguity of sign, was true for any angle. 
What is it about this identity that prevents us from applying the Prin­
ciple of Analytic Continuation? 

7. Suppose that the angles a, {3, yare such that a+ f3 + y = rr. (For 
example, a, {3, y could be the three angles of a triangle.) Show that: 

a) tan 1 tan ~ + tan ~ tan ~ + tan ~ tan 1 = 1. 

Hint: Note that tan ai.B =cot~. so that 

b) sin a + sin f3 + sin y = 4 cos 1 cos ~ cos ~. 

8 Another formula for tan a /2 

We showed that 

We can write this as 

a 
tan 2 = ± 

1- cos a 

1 +cos a 

± 

1- cos a 

1 +cos a 

1- cos2 a 

(1 + cosa)2 

= ± sin
2

a 
(1 + cosa)2 

sma 
= ±----

1 +cos a 

So we have another formula for tan(a/2), without radicals, but with an 
ambiguous sign. But in fact there is a small miracle here: we don't need 
the ambiguous sign! This miracle can easily be understood by looking at 
analytic continuation. 
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If the angle is positive and acute, that is, between 0" and 90", we must 
select the positive sign. In other words, in this case we have 

(
a) sina 

tan 2 = 1 + cos a ' 

(without the ambiguous sign). Unlike the formula we started with, this new 
formula is a rational trigonometric expression, so the Principle of Analytic 
Continuation guarantees that in fact the equation is true for any angle. 

Exercises 

1. In this exercise, we check the result of the section above directly. We 
have shown that sin a is twice the product of two particular numbers 
(they are sina/2 and cosa/2), and we know that tana/2 is the quo­
tient of the same two numbers. But the product and the quotient of 
any two numbers always have the same sign. So sin a and tan a /2 
have the same sign. How does it now follow that 

(
a) sin a tan - = , 
2 1 +cos a 

without ambiguity of the sign? 

2. Show that 

9 Products to sums 

(
a) 1- cosa 

tan -
2 

= 
sin a 

We can get some further useful results by working with the formulas for 
sin (a+ {3) and cos (a+ {3). For example, we can write 

cos (a + {3) +cos (a - {3) = 2 cos a cos f3. 

This simple yet remarkable formula says that the sum of the cosines of 
two angles can be written as the product of the cosines of two other angles. 
Perhaps this is clearer if we write it as follows: 

I cos a cos f3 = ~ cos (a + f3) + ~ cos (a - f3) I 
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So the cosine function, in a rather complicated way, "converts" prod­
ucts to. sums. You may know that the logarithm function also "converts" 
products to sums, although in a much simpler fashion. In fact, people used 
to use cosine tables, like logarithm tables, to perform tedious multiplica­
tions by turning them into addition. If you study complex analysis you will 
learn of the rather deep relationship between the trigonometric functions 
and the exponential or logarithmic functions. 

In the same way, we can write 

Exercises 

sin a sin p = ~cos (a - p) - ~cos (a + p) 

sin a cos p = ! sin (a+ p) +~sin (a- p) 

1. Prove the last two identities referred to in the text. 

2. Show that sin 75° sin 15° = i· 
3. Show that sin 75o cos 15° = 2+

4
.J3. 

4. Find the numerical value of 

a) cos 75° cos 15°, b) cos 75° sin 15°. 

5. Show that 

2 cos (: + a) cos (: - a) = cos 2a , 

for any angle a. 

6. For any three angles a, p, y, show that 

sin (a + P) sin (a - P7 + sin (p + y) sin (p - y) 

+ sin ( y + a) sin ( y - a) = 0 . 

7. For any three angles a, p, y, show that 

sin a sin (p - y) + sin p sin (y - a) 

+ sin y sin (a - fi) = 0. 
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10 Sums to products 

It is sometimes useful to convert sums of sines and cosines to products. 
The following series of examples shows how this can be done. 

Example 51 Factor sin (y + 8) + sin (y - 8). 

Solution. We begin by using the addition formulas 

sin (y + 8) = sin y cos 8 +sin 8 cosy, 
sin (y - 8) = sin y cos 8 - sin 8 cosy . 

Adding, we find that sin (y + 8) + sin (y - 8) = 2 sin y cos 8, which rep­
resents a factored form of the given expression. D 

Example 52 A bottle and a cork together cost $1.10. The bottle costs $1 
more than the cork. How much does the cork cost? 

Solution. It is tempting to say immediately that the bottle costs $1 and 
the cork costs 10 cents, but this is incorrect. With those prices, the bottle 
would cost only 90 cents more than the cork. · 

Algebra will quickly supply the correct answer. If the price of the bottle 
is b, and the price ofthe cork is c, then we have 

b+c = 1.1 
b-e = 1. 

We may solve for b and c by adding these two equations. We find that 
2b = 2.1, sob = 1.05. Using this result, we know how to calculate the 
value of c from either equation. For example, using the first equation, we 
obtain c = 1.1- b = 1.1- 1.05 = 0.05 . 

. Thus, the bottle costs $1.05 and the cork costs 5 cents. D 

Example 53 If x + y = a and x - y = b, express x and y separately in 
terms of a and b. 

Solution. Proceeding as in the problem with the bottle and the cork, 
we add the two equations to obtain 2x = a+ b, sox = 4Ca +b). Then, 
instead of adding, we can subtract the equations, to obtain 2y =a- b, so 
y = 4Ca- b). In general, we have 

If x + y =a and x- y = b, then x = 4Ca +b) andy= 4Ca- b) 
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Please remember this result. It will be useful in many applications of alge­
bra and trigonometry, and not just in problems about bottles (of undeter­
mined contents). o 

Example 54 Write the expression sin a + sin f3 as a product of sines and 
cosines. 

Solution. With the experience of the previous examples, this is not dif­
ficult to do. We may use Example 51 if we can find angles y and 8 such 
that y + 8 =a andy- 8 = {3. Example 53 shows us how to do this. We 
just need to choose 

a+/3 
y=--, 

2 

a-{3 
0=-2-. 

Substituting into the result of Example 51, we obtain the useful formula 

I
. . . a+f3 a-{3~ 
~ma + sm/3 = 2sm-

2
-cos-

2
- 0 

We may also express the difference sin a - sin f3 as a product of sines 
and cosines. We use the angles y and 8 found before, such that y + 8 = a 

and y - 8 = {3, and write 

sin a - sin f3 = sin (y + 8) -sin (y - 8) = 2 cosy sin 8. 

We now express this result in terms of the original variables a and {3, and 
find that 

I
. . f3 2 a+f3. a-{3~ sm a - sm = cos -

2
- sm -

2
-

In the same way, we can prove the formulas 

Exercises 

a+f3 a-{3 
cos Ol + cos f3 = 2 cos -2- cos -2-

. a+f3 . a-{3 
cos a - cos f3 = -2 sm -- sm --

2 2 

1. Give a detailed derivation of each of the last two formulas mentioned 
above. 
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2. Show that cos 70° + sin 40° = cos 1 oo. 

3. Find an acute angle a such that cos 5SO + cos 65° = cos a. 

4. Show that cos 20° +cos 100° +cos 140° = 0. 

5. Show that sin 78° + cos 132° = sin 18°. 

6. Show that 
cos 15° +sin 15° r;:; 
------------=v3. 
cos 15° - sin 15° 

7. If a + fJ + y = rr, show that 

a) sin (a+ fJ) =sin y. 

b) cos(a + fJ) =-cosy. 

c) sin2a + sin2fJ + sin2y = 4sina sin{J sin y. 

8. For any angle a, show that 

sin a + sin (a + 2rr /3) + sin (a + 4rr /3) = 0. 

9. For any angle a, show that 

sin a + 2 sin 3a + sin 5a = 4 cos2 a sin 3a . 

10. For any three angles a, fJ, y, show that 

sin (fJ- y) sin (y- a) sin (a- fJ) _ 
0 

sin fJ sin y + sin y sin a + sin a sin fJ - · 

11. For any three angles a, fJ, y, show that 

sin (a- fJ) +sin (a- y) +sin (fJ- y) 

4 
(a- fJ) . (a- y) (fJ- y) 

= cos 
2 

sm 
2 

cos 
2 

. 

12. For any three angles a, fJ, y, show that 

sin (a + fJ + y) + sin (a - fJ - y) + sin (a + fJ - y) 

+ sin (a - fJ + y) = 4 sin a cos fJ cos y . 



Appendix to '11-igonom(.•tric ldcntitic.'i 157 

Appendix 

1.1. Expressions for sin fJ, cos {3, and tan f3 in terms of tan f3 /2. 

We can use our results in trigonometry to obtain some results in number 
theory. Let us begin by reviewing some results obtained earlier. 

Example 55 Show that tan2 f3 + 1 = 1jcos2 {3. 

. 2 sin2 f3 sin2 f3 + cos2 f3 1 
Solutwn. tan f3 + 1 = --

2
- + 1 = 

2 
= --

2
-. 0 

cos f3 cos f3 cos f3 

1 
Example 56 Show that cos2 f3 = 2 l+tan{J 

Solution. This result follows from the previous one. 0 

Example 57 If tan f3 = a, express in terms of a the value of sin 2{3. 

Solution. We have 

sin 2{3 = 2 sin f3 cos f3 
. cos f3 

= 2sm{Jcos{J-­
cos{J 

2 sin /3 cos2 f3 
= 

cos f3 
2 tan f3 cos2 f3 

2 tan f3 
= 

1 + tan2 f3 ' 

this last because of the result of Example 56. Then, since tan f3 = a, we 
have that 

. 2a 
sm2{J = --

2
• 

1+a 
0 

In working Example 57, we have found a way to express sin 2{3 as a 
rational function of tan f3: 

. 2tan{J 
sm2{J = 

2 
. 

1 +tan f3 
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Similarly, we can express cos 2{3 in terms of tan {J: 

(
cos2 fJ sin

2 fJ) 
cos 2{3 = cos2 fJ - sin2 fJ = --

2
- - --

2
- (cos2 fJ) 

cos fJ cos fJ 
= (1 - tan2 {J)(cos2 {J) 

1 - tan2 fJ 
= 1 + tan2 fJ · 

We can also express tan 2{3 in terms of tan {J. The simplest way to do this 
is to use the formula we have derived for tan (a+ {J): 

tan a+ tan fJ 
tan (a + fJ) = . 

1- tanatan{J 

Letting a = fJ, we find that 

2 tan fJ 
tan2{J = ., . 

1- tan~ fJ 

If we let tan fJ =a, we can write 

. 2a 
sm2{J = --

2
, 

1+a 
1- a2 

cos 2{3 = --2 ' 
l+a 

which are all rational expressions in a. 

Exercises 
Using the above rational expressions, verify that: 

1. sin2 fJ + cos2 fJ = 1 

2. tan 2{3 = sin 2{3 /cos 2{3. 

I. 2. Uniformization of sin a, cos a, and tan a 

2a 
tan2{J = --

2 1-a 

We can rewrite our new identities by letting a = 2{3: 

. 2tani 
sma = 2 a, 

1+tan 2 

1 - tan2 !! 
2 

COSet= 2 a , 
1+tan 2 

2tan i 
tana = 2 a • 

1-tan 2 
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These formulas provide a uniformization of the trigonomelril: func­
tions. That is, they allow us to represent all these functions using ratio­
nal expressions of a single function, tan a /2. So, for instance, if we have 
a trigonometric identity, or an equation involving trigonometric functions, 
we can rewrite these functions as rational functions of this single variable. 
Then the trigonometric equation or identity becomes an algebraic equation 
or identity. 

While this may be important theoretically, it rarely makes things easier 
when we have an actual problem to solve. However, this uniformization 
yields some very interesting results in a most unexpected area. We can use 
it to find Pythagorean triples: solutions in natural numbers to the equation 
a2 + b2 = c2. 

We know that if the numbers a, b, and c form a Pythagorean triple, 
then there is a right triangle with legs a and band hypotenuse c. Then each 
acute angle of this triangle has a rational sine, cosine, and tangent. For 
example, we are familiar with the fact that the numbers 3, 4, and 5 satisfy 
the equation a 2 + b2 = c2 . We can build a triangle with legs 3 and 4 and 
hypotenuse 5. For the smaller acute angle a of this triangle, sin a = 3/5, 
cos a= 4/5, and tan a= 3/4. 

We can use our uniformization to find other triangles with angles whose 
sine, cosine, and tangent are rational by following this process backwards. 
If we let tan a /2 be some rational number, then our uniformization tells 
us that sina, cosa, and tana will also be rational. We can then form a 
right triangle with rational sides and, by scaling it up, we can form a right 
triangle with integer sides. The sides of this triangle will be a Pythagorean 
triple. 

For example, let 

Then we have 

a 2 
tan-=-. 

2 3 

i 12 
0 3 sma=--

4 
=-, 

1 + 9 13 

1- i 5 
cos a = --9 = -, 

1 + ~ 13 

12 
tana=-. 

5 
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In this case, a right triangle with an acute angle a can have sides 12/ 13, 
5/13, and 1. Multiplying each side by 13, we form a similar right triangle 
with sides 12, 5, and 13. Because they are the sides of a right triangle, these 
three natural numbers satisfy the equation a2 + b2 = c2. 

Let us do this in general. Suppose 

Then 

sina = 

a p 
tan-=-. 

2 q 

p 

q 2pq 
p2 = q2 + p2' 

1+-q2 

q2- p2 
cosa = 2 2 • 

q +p 

Then the triangle has rational sides 2pq j(q2+ p2), (q 2- p2)j(q2+ p2), and 
1, and the triangle with integer sides has sides 2pq, q2 - p 2, and q2 + p2. 

Exercises 

1. Iftan(a/2) = 3/2, find the values of sin a, cos a and tan a. Do these 
values provide us with a Pythagorean triple? with an integer right 
triangle? 

2. What right triangle with integer sides results from letting tan(a/2) = 
5/8 in our formulas above? 

3. Verify that the numbers 2pq, q2 - p2, and q 2 + p2 satisfy the Pythag­
orean relationship. Which side is the hypotenuse? 

II. Themes and variations 

We return to a theme that we introduced in Chapter 1, and develop it more 
fully. 

Theme: The maximum value of sin x cos x 

Variation 1: Find the largest possible value of the expression sin x cos x. 

Certainly sin x cos x < 1, since both sin x and cos x are at most 1 (and 
cannot be equal to 1 for the same angle). But is this the best estimate? 
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Exercises 

1. With your calculator, find the value of sin x cos x for the following 
values of x: 

2. Without your calculator, find the value of sin x cos x for the follow­
ing values of x: 

Variation 2: Perhaps you have noticed some patterns in the numerical 
examples above. Let us see what is going on mathematically. 

The product sin x cos x reminds us of the formula sin 2x = 2 sin x cos x. 
In fact, sin x cos x = sin 2x I 2. But sin 2x, like the sine of any angle, is less 
than 1. Hence, 

. sin 2x 1 
smxcosx = -- <-. 

2 - 2 

As we have seen, the value 1/2 occurs, for example, if x = 45°, so this is 
the maximum value of our expression. 

Exercises 

1. Find all x for which 

a) sinx cosx = ~· 

b) . ../3 smx cosx = 2 . 

. ../3 c) smx cosx = 4 . 

2. Which of the following equations has no solutions at all? 

a) sinx cosx = 0.4, 
b) sinx cosx = 0.5, 
c) sinx cosx = 0.6. 

3. For what values of N does the equation 

sinx cosx = N 

have a solution? How would you solve it? 
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Theme: The maximum value of sin x + cos x 

Variation 1: For any x, sin x + cos x < 2, of course, since each addend 
on the left is at most 1 (and the addends cannot equal 1 simultaneously). 
Can the value be as much as ! ? Certainly: if x = 30°, then sin x = ! and 
cos x > 0, so sin x + cos x is certainly greater than ! . 
Exercises 

1. Check that if x = 30°, sin x + cos x is greater than 1. 

2. Find at least one value of x for which sin x + cos x = 1. 

3. Find at least one value of x for which sin x + cos x = .J2. 

Now let us do things mathematically. Notice that (sinx + cosx)2 = 
sin2 x + cos2 x + 2 sin x cos x = 1 + sin 2x. Since the maximum value 
of sin2x is 1, the maximum value of (sinx + cosx)2 = 2, and sinx + 
cosx < .J2. 

Exercises 

1. Can sinx + cosx = 1.414? 

2. Can sinx + cosx = 1.415? 

3. For what values of x does sin x +cos x = J2? 
4. What is the smallest possible value of the expression sin x + cos x? 

For what value of xis this minimum achieved? 

Variation 2: Let us find the maximum value of sin x + cos x in a differ­
ent way, by comparing this with the formula sin (x + a) = sin x cos a + 
cosx sin a. We can do this by using a trick. We will write 

sinx + cosx = h(~ sinx + ~ cosx). 

Why do we do this strange thing? The answer is that Jz is sin ~ and also 

cos ~. So we can write 

sin x + cos x = h (sin x cos : + cos x sin :) = h sin ( x + :) . 

Now the largest possible value for the sine of any angle is 1, so the largest 
possible value for sin x + cos x is h. 
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Exercises 

1. For what values of x is the maximum of sin x +cos x achieved? 

2. What is the minimum possible value of sinx + cosx? When is this 
minimum achieved? 

Variation 3: Now let us look at the expression 3 sinx + 4cosx. What is its 
maximum value? This time, it won't help to square the quantity (try it!), so 
we can't use our first method. 

We can compare the expression 3 sin x + 4 cos x to cos a sin x + 
sin a cos x. But the numbers 3 and 4 are not the sine and cosine of the 
same angle. However, the numbers 3 and 4 remind us of our "best friend", 
the 3-4-5 right triangle. In fact, the larger acute angle of this triangle has a 
cosine of 3/5 and a sine of 4/5. So, if we call this angle ex, we can write 

3 sin x + 4 cos x - 5 ( ~ sin x + ~ cos x) 

- 5 (cos ex sin x + sin ex cos x) = 5 sin (ex + x) . 

The maximum value of this expression is 5. 

Exercises 

1. In the above argument, must ex be positive and acute? 

2. What is the minimum value of 3 sin x + 4 cos x? For what values of 
x does this occur? 

3. What are the maximum and minimum values of 2 sin x + 7 cos x? 

Hin.t: Take .J53 = -J22 + 72, and investigate the corresponding 
question for -v's3(k sinx + k cosx). 

III. An approximation to rr 

We can use the half-angle formulas to find a numerical approximation to 
the number rr. 

Let us begin by checking our formulas for cos x /2 and sin x /2 when 
x = rr /2. We have 

7T /2 7T J 1 + cos ~ Pf-+ 0 1 ../2 
COS--=COS-= = --=-=-

2 4 2 2 ../2 2 ' 
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which, as we already know, is correct (note that we choose the positive sign 
for the radical). 

Similarly, we have 

which we also expected. 
Now let us get radical expressions for cos rr /8 and sin rr /8: 

cos " ~ cos "/4 ~ /1 +cost ~ J 1 + 1 ~ J 2 + ./2 
8 2 y 2 2 4 

=~/2+h. 
2 

. rr . rr 14 ~ 1 - cos f __ J 1 -
2
1 __ J 2 -

4
V2 sm- =sm-- = 

8 2 2 

= ~/2-h. 
2 

Note that the expressions we get contain "nested radicals." 

Exercises 

1. Finish the derivations below of radical expressions for cos ;6 and 
• 71:. sm 16 . 

" "/8 l + cos ~ 1 J / cos- = cos- = = ... = - 2 +2 + h. 
16 2 2 2 

" "/8 l- cos ~ 1 J / "' sin 
16 

= sin T = 
2 

= · · · = Z 2 - 2 + v 2 . 

2. Fill in the table with nested radical expressions for the values of the 
indicated trigonometric functions. Two of the values have been filled 
for you. 
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II a cos a sma II 
7r ~J2+J2+Ji -
16 

7r ~J2-J2+J2+Ji -
32 

7r 
-
64 

7r 
-
128 

Now we know that cos 0 = 1, and it is also true that the cosine of a very 
small angle (one whose measure is close to 0) is close to 1. The sequence 
of angles 

7r 7r 7r 7r 7r 

2, 4, 8' 16 ' ... ' 2n ' 

get closer and closer to 0 (approaches 0). So it is reasonable to expect that 
the sequence 

7r 
cos-

2' 
7r 

cos-
4' 

7r 
cos-

8' 
7r 

cos-
16' 

7r 
cos-

2n' 

approaches 1. In fact, this is the case. That is, the sequence: 

0, 
1 -h 
2 ' 

approaches 1. Mathematicians express this by writing 

n radicals 

Now let us look at another sequence: 

sin!. sin!. sin!. • rr 
__ 2 4 8 sm 2n 

rr rr rr ... 
' rr 

2 4 8 2n 

We have seen (Chapter 5) that for very small angles a, the ratio sin a fa 

is very close to 1. So the sequence above should approach 1. One way of 
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saying this is to assert that the value sin ;,. approaches the value In (for 
large values of n ), or that the value of 

approaches rr, and mathematicians have in fact proved this. 
That is, they have shown (using our nested radical expressions for 

sin In) that 

n radicals 

Exercises 

1. Using your calculator or a computer, check that the expressions 

approach 1. 

!Jz. 
! J,.-2 -+-Jz-=2 , 

4J2+J2+.Ji. 

4/2+J2+J2+.Ji, ... 

2. Using your calculator or a computer, check that the expressions 

22J2- .Ji, 
23J2-J2+Jz, 

24/2- J 2 + J2 + Jz, 

25jz- /2+ )2+ v'z+ -./2, ... 

approach rr. You will have to think a bit about how to organize the 
computation. (The value ofrr is approximately 3.141592653589793 ... ) 
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3. We know that 
JT ,J3 

cos-=-. 
6 2 

Show that: 

a) cos ;2 = ~J2 + JJ. 

b) cos ;4 = ~J2 + J2 + ,J3. 

c) cos :s = ~ J 2 + J 2 + J 2 + ,J3. 

d) cos;:,~ !)z+.JZ+/HJH../3. 
By evaluating these expressions (with a calculator or computer), ob­
serve that they are approaching 1. Can you explain why? 

4. We can find another approximation to rr by finding nested radical 
expressions for sin rr I 12, sin rr /24, sin rr /48, sin rr /96, etc. Using a 
calculator or computer, find the values of the expressions: 

a) 12 sin ;2 = 6J2- ,J3. 

b) 24 sin; = 12}r2---/-;.2=+==J3;;3. 

c) 48 sin :s = 24J2- J2 + /2 + ,J3. 

d) 96sin.;:, ~ 48)2- .j2+ /2+ v'H ../3. 

IV. Trigonometric series 

In this section we use the identities we have learned to the find the sum of 
series whose terms involve trigonometric expressions. This topic turns out 
to be of great importance in later work. 

We introduce some of the techniques used by first looking at some 
purely algebraic problems. 

Example 58 Find the sum x + x 2 + x 3 + x 4 + ... + x 100 . 
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Solution. Let S = x + x 2 + x 3 + x 4 + · · · + x 100 and multiply S by x: 

Things get very simple if we subtract 

S- xS = S(l- x) = x- x 2 + x 2
- • •• + x 100

- x 101 

=x-x!Ol_ 

Most of the terms drop out, and we find that 

X -XlO! 
S=---

1-x 
D 

Of course, if you already know the general formula for the sum of 
a geometric progression, this result is not unexpected. But if you don't 
already know the general formula for the sum of a geometric progression, 
you have essentially learned it above: the general case will work in just the 
same way. 

The key to this trick is forming a "telescoping" sum: a sum of terms in 
which many pairs add up to zero. 

Exercises 

1. Find the sum 

1 1 1 
JT + v'2 + v'2 + -J3 + · · · + -J99=99=-+-v'I00-=1 o=o · 

Hint: Rationalize the denominators to get a telescoping sum. 

2. Express in terms of n the sum 1 + 3 + 5 + · · · + (2n + 1). 
Hint: Write each odd integer as the difference of consecutive squares. 

3. Find the product (1 + x)(1 + x2)(1 + x4)(1 + xs)(l + x 16). 

Hint: Call this product P, and multiply P by (1 - x). 

4. Without using your calculator, find the numerical value of the prod­
uct cos 20° cos 40° cos 80°. 

Hint: Call this product P, and multiply P by the sine of a certain 
well-chosen angle. 
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V. Summing a trigonometric series 

We would like to find the sum of the series 

S = sin x + sin 2x + sin 3x + · · · + sin nx . 

We can form a telescoping sum, as in Example 58 above. The trick is 
to multiply by 2 sin (x/2): 

2·xs 2.x. 2.x.2 2.x. sm 2 = sm 2 sm x + sm 2 sm x + · · · + sm 2 sm nx . 

Now we tum the products into sums. The reader can recall, or check, that 

2 sin A sin B =cos (A- B)- cos (A+ B) 

= cos (B - A) - cos (B + A) . 

So we can write 

2 . XS 2 . X • 2 . X • 2 2 . X . sm - = sm - sm x + sm - sm x + · · · + sm - sm nx 
2 2 2 2 

= (cos!x- cos~x) + · · · + (cos(n- !)x- cos(n + !)x) 

=cos !x- cos (n + !)x, 

and so, 
cos !x- cos (n + !)x s = _ _;:__ ____ =:.__ 

2 sin~ 

Sometimes this formula is more useful if we convert the sum in the 
numerator to a product. We find that 

sin n+I x sin (~x) s = 2 . 2 . 
sm:!. 

2 

This technique is quite general, and can be used to sum the sines or 
cosines of angles which are in arithmetic progression. We can find a gen­
eral formula for the sum 

S = sinx +sin (x +a)+ sin (x + 2a) +···+sin (x + na) 

by multiplying this sum by 2 sin a /2 and "telescoping" the result. We find 
that 

sin n+l a sin (x +~a) s = 2 2 . 
sin~ 

2 
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Similarly, we can find a general formula for the sum 

S = cos x + cos (x + a) + cos (x + 2a) + · · · + cos (x + na) , 

again by multiplying by 2 sin a /2, and using the identity 

2 cos A sin B = sin (A + B) - sin (A - B) . 

We find that 
sin n+l a cos (x +!!.a) c = 2 2 . 

sin~ 
2 

In the following exercises, we recommend using the hints provided, 
then checking the results by applying the formulas directly. 

Exercises 

1. Find the sum 

sin x + sin 3x + sin 5x + · · · + sin 99x . 

Hint: Multiply this sum by 2 sin x. 

2. Find the sum 

rr 2rr . 99rr 
sin x + sin (x + "4) + sin (x + 4 ) + · · · + sm (x + 4) . 

Hint: Multiply this sum by 2 sin (rr /8). 

3. Find the sum 

cos2x + cos4x + cos6x + · · · + cos2nx. 

4. Find the sum 

rr 2rr 3rr nrr 
cos- +cos - +cos- + ... +cos- . 

k k k k 
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5. The diagram below shows a regular 24-sided polygon inscribed in 
a circle. A diameter of the circle is drawn, and perpendiculars are 
dropped from all the vertices of the polygon that lie on one side of 
this diameter. Find the sum of the lengths of these perpendiculars. 





Chapter 8 

Graphs of Trigonometric 
Functions 

One of the most important uses of trigonometry is in describing periodic 
processes. We find many such processes in nature: the swing of a pendu­
lum, the tidal movement of the ocean, the variation in the length of the day 
throughout the year, and many others. 

All of these periodic motions can be described by one important family 
of functions, which all physicists use. These are the functions of the form 

y =a sin k(x - /3) , 

where the constants a and k are positive, and f3 is arbitrary. In this chapter, 
we will describe their graphs, which we will call sinusoidal curves. Since 
they are so important, we will discuss them step-by-step, analyzing in turn 
each of the parameters a, k, and {3. 

1 Graphing the basic sine curve 

y = a sin k (x - {3) for a = 1, k = 1, f3 = 0 

In Chapter 5 we drew the graph of y = sin x: 

y 

-n 
-1 

X 
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That is, we start with the case a = 1, k = 1, f3 = 0. Recall that we can 
take the sine of any real number (the domain of the function y = sin x is 
all real numbers), but that the values we get are all between -1 and 1 (the 
range of the function is the interval -1 ::::=: y ::::=: 1 ). 

Let us review how we obtained this graph. On the left below is a circle 
with unit radius. Point P is rotating around it in a counterclockwise direc­
tion, starting at the point labeled A. If x is the length of the arc K?, then 

y 

1 

X n x 
-1 

sin x is the vertical displacement of P. On the right, we have marked off 
the length x of arc A P. The height of the curve above the x -axis is sin x. 

As the angle x goes from 0 torr /2, sin x grows from 0 to 1 (the picture 
for x = rr /2 is shown below). 

y 

X n x 
-1 

In fact, this is all we need to graph y = sin x. As x goes from rr /2 to rr, 
the values of sin x repeat themselves "backwards": 

y 

1 

sinx X 

A x n 

-1 
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And as x goes from rr to 2rr, the values are the negatives of the values in 
the first two quadrants: 

y 

A 

y 
1 

-1 

2 · The period of the function y = sin x 

As x grows larger than 2rr, the values of sin x repeat on intervals of length 
2rr. For this reason, we say that the function y = sin x is periodic, with 
period 2rr. Geometrically, this means that if we shift the whole graph 2rr 
units to the right or to the left, we will still have the same graph. Alge­
braically, this means that 

sin (x + 2rr) = sinx 

for any number x. 

Definition: A function f has a period p if f (x) = f (x + p) for all values 
of x for which f(x) and f(x + p) are defined. 

The function y = sin x has a period of 2rr. You can check that it also 
has periods of 4rr, 6rr, - 2rr, and in general, 2rr n for any integer n. This 
is no accident: if f(x) is a periodic function with period p, then f(x) 

is periodic with period np for any integer n. This is why we make the 
following definition: 
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Definition: The period of a periodic function .f (x) is the smallestpositive 
real number p such that f(x + p) = f(x) for all values of x for which 
f (x) and f (x + p) are defined. 

Using this definition, we say that the period of y = sin x is 2rr. 
Let us also draw the graph of the function y = cos x. Following the 

same methods, we find that the graph is as shown below: 

y 

-n X 

-1 

The period of the function y = cos x is also 2rr. We will see later that this 
curve can be described by an equation of the form y = a sin k(x - {3). 

3 Periods of other sinusoidal curves 

y =a sin k(x - /3) for a = 1, f3 = 0, k > 0 

Example 59 Find the period of the function y = sin 3x. 

Solution: One period of this function is 2rr /3, since sin 3(x + 2rr /3) = 
sin (3x + 2rr) = sin 3x. It is not difficult to see that this is the small­
est positive period (for example, by looking at the values of x for which 
sin3x = 0). 

Example 60 Draw the graph of the function y = sin 3x. 

Solution: The function y = sin x takes on certain values as x goes from 
0 to 2rr. The function y = sin 3x takes on these same values, but as x goes 
from 0 to 2rr j3. Hence one period of the graph looks like this: 

y 

-I 
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Having drawn one period, of course, it is easy to draw as much ofthe whole 
graph as we like (or have room for): 

y 

X 

The graph is the same as that of y = sin x, but compressed by a factor of 3 
in the x- direction. In general, we have the following result: 

Fork > 1, the graph of y = sin kx is obtained from the graph 
y = sinx by compressing it in the x-direction by a factor of k. 

What if 0 < k < 1? Let us draw the graph of y = sin x 15. Since the 
period of y = sin xI 5 is 1 Orr, our function takes on the same values as the 
function y = sin x, but stretched out over a longer period. 

~ ...--=::;::: I 

-'Jt -1 1t 21t 

I :::;-:--....... ~ I I -----t---::::=-1-

31t 4tt Stt ~--7=•--=8•-~ !On 

Again, we have a general result: 

For 0 < k < 1, the graph of y = sin kx is obtained from the 
graph y = sinx by stretching it in the x-direction by a factor 
of k. 

Analogous results hold for graphs of the functions y = cos kx, k > 0. 
Our basic family of functions is y = a sin k(x -rr). What is the signif­

icance of the constant k here? We have seen that 2rr I k is the period of the 
function. So in an interval of 2rr, the function repeats its period k times. 
For this reason, the constant k is called the frequency of the function. 

Exercises 

Find the period and frequency of the following functions: 

1. y = sin5x 2. y = sinxl4 3. y = cos4xl5 4. y = cos5xl4. 
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Graph each of the following curves. lndicate the period of each~ Check 
your work with a graphing calculator, if you wish. 

5. y =sin 3x 6. y = sinx/3 7. y =sin 3x/2 8. y =sin 2x/3 

9. y = cos2xj3 10. y = cos3xj2 

11. The graph shown below has some equation y = f (x). 

y 

(a) Draw the graph of the function y = f(3x). 

(b) Draw the graph of the function y = f(x/3). 

4 The amplitude of a sinusoidal curve 

y=asink(x-,8); a>0,,8=0,k>0 

Example 61 Draw the graph of the function y = 3 sin x. 

Solution: The values of this function are three times the correspond­
ing values of the function y = sin x. Hence the graph will have the same 
period, but each y-value will be multiplied by 3: 

y 

y=3sinx 

X 
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We see that the graph of y = 3 sin x is obtained from the graph of 
y = sin x by stretching in the y-direction. Similarly, it is not hard to see 
that the graph of y = ( 1 /2) sin x is obtained from the graph of y = sin x 
by a compression in the y-direction. 

We have the following general result: 

For a > 1, the graph of y = a sin x is obtained from the graph 
y = sinx by stretching in they-direction. ForO < a < 1, the 
graph of y = a sin x is obtained from the graph y = sin x by 
compressing in they-direction. 

Analogous results hold for graphs of functions in which the period is not 1, 
and for equations of the form y = a cos x. The constant a is called the 
amplitude of the function y =a sink(x- {3). 

Exercises 

Graph the following functions. Give the period and amplitude of each. As 
usual, you are invited to check your work, after doing it manually, with a 
graphing calculator. 

1. y = 2sinx 2. y = (1/2) sinx 3. y = 3 sin2x 

4. y=(l/2)sin3x 5. y=4cosx 6. y = (1/3) cos 2x 

7. Suppose y = f (x) is the function whose graph is given in Exercise 11 
on page 178. 

(a) Draw the graph of the function y = 3 f (x ). 

(b) Drawthegraphofthefunctiony = (lj3)f(x). 

5 Shifting the sine 

y =a sink(x- {J); a= 1, k = 1, f3 arbitrary 

We start with two examples, one in which f3 is positive and another in 
which f3 is negative. 

Example 62 Draw the graph of the function y = sin(x - rr /5). 

Solution: We will graph this function by relating the new graph to the 
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graph of y = sin x. The positions of three particular points 1 on the original 
graph will help us understand how to do this: 

~ 
Etd 

y 

X 

-1 

What are the analogous points on the graph of y = sin (x - ~ )? It is 
not convenient to use x = 0, because then y = sin(-~), whose value is 
difficult to work with. Similarly, if we use x = ~, we will need the value 
y = sin ( ~ - ~) = sin ~~ , which is still less convenient. 

But if we let x = ~, ~ + ~, rr + ~, things will work out better: 

II X I x - ~ I sin (x - ~) II 
:n: 0 0 5 

Z!:.+!!. :n: 1 2 5 2 
rr+!!. 

5 rr 0 

That is, our choice of "analogous" points in our new function are those 
where they-values are the same as those of the original function, not where 
the x-values are the same. The graph of y = sin (x - ~) looks just like the 
graph of y = sin x, but shifted to the right by ~ units: 

y 

X 

But we must check this graph for more than three points. Are the other 
points on the graph shifted the same way? Let us take any point (x0 , sin x0) 

on the graph y = sin x. If we shift it to the right by ~, we are merely adding 
this number to the point's x-coordinate, while leaving its y-coordinate the 
same. The new point we obtain is (x0 + ~, sin xo), and this is in fact on the 
graph of the function y = sin (x - ~ ). 

1 Of course, with a calculator or a table of sines, you can get many more values. Or, 
if you have a good memory, you can remember the values of the sines of other particular 
angles. But these three points will serve us well for quite a while. 
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There is nothing special about the number ~, except that it is positive. 
In general, the following statement is useful: 

If fJ > 0, the graph of y = sin(x - {J) is obtained from the 
graph of y = sin x by a shift of {J units to the right. 

What if fJ is negative? 

Example 63 Draw the graph of the function y = sin(x + ~ ). 

Solution: In this example, {J = -~.Again, we will relate this graph to 
the graph of y = sin x. Using the method of the previous example, we seek 
values of x such that 

sin (x + JT) = 0, sin (x + ~) = 1, sin (x + JT) = 0 (for a second time). 
5 5 5 

It is not difficult to see that these values are x = - ~, I - ~, 1r - ~, 
respectively. Using these values, we find that the graph of y = sin (x + ~) 
is obtained by shifting the graph of y = sin x by ~ units to the left: 

y 

In general: 

The graph of the function y = sin(x- {J) is obtained from the 
graph of y = sin x by a shift of fJ units. The shift is towards 
the left if {J is negative, and towards the right if {J is positive. 

The number fJ is called the phase angle or phase shift of the curve. 
Analogous results hold for the graph of y = cos(x - {J). 

Exercises 

Sketch the graphs of the following functions: 

1. y = sin (x - %) 

4. y = ~ sin(x + I) 

7. y = sin(x- 2rr) 

2. y=sin(x+%) 

5. y = cos(x- ~) 

3. y=2sin(x-I) 

6. y = 3cos(x + t) 
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8-11: Write equations of the form y = sin(x -a) for each of the curves 
shown below: 

y y 

l 1 

X X 

1t 1t 21t 1t 
3 3 

(a) (b) 
y 

1 

X 

-1t 1t 

-1 

(c) 

X 

-1t 1l 1t 
4 

-1 

(d) 

6 Shifting and stretching 

Graphing y =a sink(x- {3) 

We run into a small difficulty if we combine a shift of the curve with a 
change in period. 

Example 64 Graph the function y = sin(2x + rr /3). 

Solution: Let us write this equation in our standard form: 

sin(2x + rr /3) = sin 2(x + rr /6) 
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We see that the graph is that of' y = sin 2x, shifted rr /6 units to the left. 
At first glance, one might have thought that the shift is rr /3 units to the 

left. But this is incorrect. In the original equation, rr /3 is added to 2x, not 
to x. The error is avoided if we rewrite the equation in standard form. 

Exercises 

Graph the following functions: 

1. y=sin4Cx-~) 2. y=sin(4x-~) 3. y=cos2(x+%) 

4-5: Write equations of the form y = sin k(x- {3) for the following graphs: 

y 

4. 1t 

-1t X 

5. 
-1t 

-I 

7 Some special shifts: Half-periods 

We will see, in this section, that we have not lost generality by restricting 
a and k to be positive, or by neglecting the cosine function. 

It is useful to write our general equation as y = a sin k(x + y ), where 
y = - f3. Then, for positive values of y, we are shifting to the left. For 
the special value c = 2rr, we already know what happens to the graph 
y = sin x. Since 2rr is a period of the function, the graph will coincide 
with itself after such a shift. 

In fact, we can state the following alternative definition of a period of 
a function: 

A function y = f (x) has period p if the graph of the function 
coincides with itself after a shift to the left of p units. 
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Our original definition said that a function f(x) is periodic with period p 
if f(x) = f(x + p) for all values of x for which these expressions are 
defined. Our new definition is equivalent to the earlier one, since the graph 
of y = f(x), when shifted to the left by p units, is just the graph y = 
f(x + p). These graphs are the the same if and only if f(x) = f(x + p). 

Let us see what happens when we shift the graph y = sin x to the left 
by mr /2, where n is an integer. 

For n = 1, we have the graph y = sin(x + rr/2), a shift to the left of 
the graph y = sin x: 

y 

-7t 

-1 

But sin(x + rr /2) = cos x. The reader is invited to check this, either by 
using the addition formulas or by looking at the definitions, quadrant by 
quadrant. That is: 

The graph of the function y = cos x can be obtained from the 
graph y = sin x by a shift to the left of rr /2. 

We don't need to make a separate study of the curves y = a cos k(x + {3). 
Letting y = x+f3+rr /2, we can write any such curve as y =a sin k(x+y). 

For n = 2, we are graphing y = sin(x + rr): 
y 

-7t • 7t 

-1 

But sin(x + rr) = - sin x. So we have: 

The graph of the function y = - sin x can be obtained from 
the graph y = sin x by a shift to the left of rr. 

In fact, we do not need to make a separate study of the curves y 
a sin k(x + y) for negative values of a. We need only adjust the value of y, 
and we can describe each such curve with an equation in which a > 0. 

The following general definition is convenient: 



7. Some special shifts: Half-periods 

The number p is called a half-period of the function f if 
f(x + p) = - f(x), for all values of x for which f(x) and 
f (x + p) are defined. 

We have shown that n is a half-period of the function y = sin x. 
Now let k = 3. We obtain the following graph: 

y 

n 

-I 

It is not difficult to check that 

sin(x + 3rr /2) = -cos x . 
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If k = 4, we will shift by 4(rr /2) = 2rr, which we already know is a 
full period, and we will have come back to our original sine graph. 

What if k = 5? Since 5 = 1 + 4, we have sin(x + 5n /2) = sin(x + 
n /2 + 4rr /2) = sin(x + n /2), because 2p is a period of the sine function. 
So k = 5 has the same effect as k = 1, and the cycle continues. 

In general, we can make the following statements: 

If k = 4n for some integer n, then sin (x + kn /2) = sin x. 

Ifk = 4n + 1 for some integern, then sin(x +kn /2) = cosx. 

Ifk = 4n+2 forsomeintegern, then sin(x+kn/2) =- sinx. 

Ifk = 4n+3 for some integern, then sin(x+kn /2) =- cosx. 

To summarize, we have now examined the whole family of sinusoidal 
curves y =a sin k(x- {3). 

The constant a is called the amplitude of the curve. It tells us how far 
from 0 the values of the function can get. Without loss of generality, we 
may take a to be positive. 

The constant k is called the frequency of the curve. It tells us how many 
periods are repeated in an interval of 2rr. The period of the curve is 2rr I k. 
Without loss of generality, we can take k to be positive. 

The constant f3 is called the phase or phase shift of the curve. It tells 
us how much the curve has been shifted right or left. If we allow f3 to be 
arbitrary, we need not consider negative values of a or k, and we need not 
study separately curves expressed using the cosine function. 
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Exercises 

1-10: These exercises are multiple choice. Choose the answer 

(A) if the given expression is equal to sin x, 

(B) ifthe given expression is equal to cosx, 

(C) if the given expression is equal to - sin x, or 

(D) if the given expression is equal to - cos x. 

1. sin(x+2rr) 

4. sin(x - rr /2) 

7. - sin(x- 19rr/2) 

2. sin(x + 3rr) 

5. sin(x - 3rr /2) 

8. sin(x + 157rr /2) 

3. sin(x + 9rr /2) 

6. sin(x + 19rr /2) 

9. sin(x - 157rr /2) 

11. Prove that rr is a half-period of the function y = cos x. Is rr a half­
period of the function y = tanx? of y = cotx? 

12. Prove that if q is a half-period of some function f, then 2q is a period 
of f. 
13. Show that for all values of x, cos(x + krr /2) = 

a) - sinx, if k = 4n + 1 for some integer n, 

b) - cosx, if k = 4n + 2 for some integer n, 

c) sinx, if k = 4n + 3 for some integer n, 

d) cosx, if x = 4n for some integer n. 

14. Write each of the following in the form y = a sin k(x - /3), where a 
and k are nonnegative: 

a) y = -2sinx 

b) y = -2sin(x -rr/3) 

c) y=-2sin(x+rr/4) 

d) y = 3cosx 

e) y = 3cos(x -rr/6) 

f) y = -3 cos(x + rr /8) 
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15. Draw the graph of the function y = cos(x - rc I 5) 

16. Suppose we start with the graph of the function y = cosx. By how 
much must we shift this graph to the right in order to obtain the graph of 
y = sinx? By how much must we shift to the left to obtain the graph of 
y = sinx? 

17. Show that if k is odd, tan(x + krc /2) = - cotx. How can we simplify 
the expression tan(x + krc /2) if k is even? 

8 Graphing the tangent and cotangent functions 

The function y = tan x is different from the functions y = sin x and y = 
cos x in two significant ways. First, the domain of definition of the sine 
and cosine functions is all real numbers. However, tan x is not defined for 
x = nrc /2, where n is an odd integer. 

Second, the sine and cosine functions are bounded: the values they take 
on are always between -1 and 1 (inclusive). But the function y = tanx 
takes on all real numbers as values. 

These differences are easily seen in the graph of the function y = tan x: 

Note that the graph approaches the line x = rc /2, but never reaches it. 
This line is called a vertical asymptote of the curve y = tan x. This graph 
y = tan x has a vertical asymptote at every line y = nrc /2, for n an odd 
integer. 

To draw the graph or y = cotx, we note that 

cos x sin (x - rc /2) 
cot x = -- ::::: - = - tan (x - rc /2) . 

sin x cos (x - rc /2) 



188 Omphs of Trigononwtric Functions 

Therefore, the graph of y = cotx also takes on all real numbers as val­
ues. It is not defined for x = mr, where n is any integer, and has vertical 
asymptotes at y = nrr: 

y 

X 

Exercises 

1. Draw the graphs of 

a) y=tan(x-rr/6) b) y=3tanx c) y=cot(x+rr/4). 

2. Suppose we graphed the equation y = tan x. Is it possible to describe 
this graph with an equation of the form y = cot (x + cp), for some 
number cp? Why or why not? 

9 An important question about sums of sinusoidal functions 

We hope that from this material you have seen the importance, and the 
beauty, of the family of sinusoidal curves that we have been studying. 
Physicists call this family the curves of harmonic oscillation. 

Let us now consider the following question. Suppose we have two 
sinusoidal curves (harmonic oscillations): 

Yl = a1 sink1(x- fh) 
Y2 = az sin kz(x -/h) . 

Will the sum of these two also be a sinusoidal curve (harmonic oscillation)? 
That is, will 

y = a1 sin k1 (x - fJ1) + az sin kz(x - f3z) 
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be a sinusoidal curve? The answer is somewhat surprising. If k 1 = k2, the 
answer is yes, but if k1 =f k2, the answer is no. 

That is, the sum of two harmonic oscillations is again a harmonic 
oscillation if and only if the original frequencies are the same. The results 
of the next few sections will allow us to explore this situation. 

Exercises 

Each of these exercises concerns the following three functions: 

Yl = 2sinx 

Y2 = sin(x- rr/4) 

Y3 = 3 sin2x 

1. Use your calculator to draw the graph of (a) YI + yz; (b) YI + y3; 

(c) Yz + Y3· 

2. Which of the graphs in Exercise 1 appear to be sinusoidal functions? 

10 Linear combinations of sines and cosines 

Definition: If we have two functions f(x) and g(x), and two constants a 
and b, then the expression af (x) + bg(x) is called a linear combination of 
the functions f(x) and g(x). 

Let us look at the graph of a linear combination of sinusoidal curves. 

Example 65 Graph the function y = 1 sin x + & cos x. 

Solution. Since 1 = cos~ and & = sin~' we use the formula 
sin(a + {3) = sin a cos {3 +cos a sin {3. Letting a = x and {3 = ~' this 
formula tells us that the given function can be written as y = sin(x + ~ ). 
Now we can graph it as we did in Section 5: 

y 

This solution may seem artificial, but is in fact a general method. It 
works because there is an angle cp such that cos cp = 1/2 and sin cp = v'3 /2, 



190 Om phs of Trigonometric Functions 

and this happened because the values A = 1/2 and B = ,J3 /2 satisfy the 
equation A2 + B 2 = 1. (The reader is invited to do this computation.) 

But what if A 2 + B 2 is not equal to 1? 

Example 66 Draw the graph of the function f (x) = 3 sin x + 4 cos x. 

Solution. Our "best friends" (of Chapter 1) are hiding in this expres­
sion: where we have 3 and 4, we try to look for the number 5. Indeed, 

f(x)/5 = ~ sinx + ~ cosx, and (~) 2 + (~) 2 = 1, so we can use the method 
of Example 3. We know that there is an angle cp such that cos cp = 3/5 and 
sin cp = 4/5, and so 

f(x) . . . ( ) -
5

- = COS cp Sill X + Sill cp COS X = Sill X + cp 

or f(x) = 5 sin(x + cp), for a certain angle cp. The graph is a sine curve, 
shifted to the left cp units, and with amplitude 5: 

The same technique will work for linear combinations of y = sin kx 
and y = cos kx, as long as the frequency of the two functions is the same. 
This is important enough to state as a theorem: 

Theorem A linear combination of y = sin kx and y = cos kx can be 
expressed as y = a sin k(x + cp ), for suitable constants a and cp. 

Proof A linear combination of y = sin kx and y = cos kx has the 
form y = A sin kx + B cos kx. We can rewrite it as 

y = J A 2 + B2 ( A sin kx + B cos kx) . 
J A2 + B2 J A2 + B2 

Then 
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so there exists an angle a such that 

Now we can write 

A sinkx + B coskx = J A2 + B2(cosa sinkx +sin a coskx) 

= J A2 + B2 sin(kx +a) 

= J A2 + B2 sink(x + aj k). 
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(1) 

Taking a= J A2 + B 2 and cp =a/ k, we have the required form. o 

We have proved that A sin kx + B cos kx can be written in the form 
a sink(x + y), where a = J A2 + B2 and cp == a/ k (for a defined by 
equations (1) above). 

The converse statement is also correct: 

Theorem The function a sin k(x + cp) can be written as a linear combina­
tion of the functions sin kx and cos kx. 

Proof We have asink(x + cp) = a(sinkxcoskcp + coskxsinkcp). 
Taking A = acoskcp and B = asinkcp, we see that asink(x + cp) = 
A sin kx + B cos kx. o 

We can now write a sinusoidal curve in either of two standard forms: 
y = a sin k(x - {3) or y = A sin kx + B cos kx. 

Example 67 Write the function y = 2 sin(x + rr /3) as a linear combina­
tion of the function y = sin x and y = cos x. 

Solution. We have 2 sin(x + rr /3) = 2(sin x cos rr /3 +cos x sin rr /3) = 
2(1/2) sinx + 2vS/2cosx = sinx + vScosx. 

Exercises 

1. Write the function y = 2 sin x + 3 cos x in the form y = 
a sink(x- {3). What is its amplitude? 

2. What is the maximum value achieved by the function y = 
2 sin x + 3 cos x? 
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3-6: Write each function in the form y = a sin k(x - {:J). What is the 
maximum value of each function? 

3. y = sinx + cosx 

4. y = sinx- cosx 

5. y = 4sinx + 3cosx 

6. y = sin2x + 3cos2x 

7, 8: Write each function in the form A sinx + B cosx: 

7. y=sin(x-rr/4) 

8. y = 4 sin(x + rr /6) 

11 Linear combinations of sinusoidal curves with 
the same frequency 

Now we are ready to address the important question of Section 9. 

Theorem The sum of two sinusoidal curves with the same frequency is 
again a sinusoidal curve with this same frequency. 

Proof Let us take the two sinusoidal curves 

a1 sink(x- f3I) and 

az sin k(x - f3z) . 

Using the addition formula, we can write: 

a1 sink(x- f3I) = A1 sinkx + B1 coskx 

az sin k(x - f3z) = Az sin kx + Bz cos kx 

for suitable values of A1. Az, B1, and B2 • Then our sum is equal to 

But we know, from the theorem of Section 9, that this sum is also a sinu­
soidal curve. Our theorem is proved. 0 

We invite the reader to fill in the details, by giving the expressions for 
A1, Az, B1, and Bz. 
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Note that the two functions we are adding may have different ampli­
tudes. The result depends only on their having the same period. This result 
is very important in working with electricity. Alternating electric current is 
described by a sinusoidal curve, and this theorem says that if we add two 
currents with the same periods, the resulting current will have this period 
as well. So if we are drawing electric power from different sources, we 
need not worry how to mix them (whether their phase shifts are aligned), 
as long as their periods are the same. 

The next result is important in more advanced work: 

Theorem If a linear combination of the functions y = sin kx and y = 
cos kx is shifted by an angle {3, then the result can be expressed as a linear 
combination of the same two functions. 

Proof Let us take the linear combination 

a sin kx + b cos kx 

and shift it by an angle {3. The result is 

asink(x- {3) +bcosk(x- {3). 

We know that cosk(x- {3) can be written as sink(x -y), for some angle y. 
Thus we can write our shifted linear combination as 

a sink(x- {3) + b sink(x- y). 

But this is a sum of sinusoidal curves with the same frequency k, so the 
previous theorem tells us that it can be written as a single sinusoidal curve 
with frequency k (even though the shifts are different!). And we know, 
from Section 9, that such a sum can be written as a linear combination of 
sin kx and cos kx. 

Example 68 Suppose we take the graph of a linear combination of y = 
sinx andy= cosx: 

y = 2 sin x + 4 cos x 

and shift it rr /6 units to the left. We get: 

y = 2 sin(x + rr /6) + 4 cos(x + rr /6) 

= 2(sin x cos rr /6 +cos x sin rr /6) + 4(cos x cos rr /6- sinx sin rr /6) 

= 2( J3;2 sinx + 2( l/2) cosx + 4( J3;2) cosx- 4(1/2) sinx 

= c-J3- 2) sinx + (2v'3 + 1) cosx 
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which is again a linear combination of y = sin x and y = cos x. 

This technique works whenever we apply a shift to a linear combination 
of y = sin kx and y = cos kx. The proof follows the reasoning of the above 
example. 

A final comment: We have not considered linear combinations of sines 
and cosines with different frequencies: This is a more difficult situation, and 
leads to some very advanced mathematical topics, such as Fourier Series 
and almost periodic functions. We will return to this question a bit later. 

Exercises 

1. Express each function in the form y = A sin kx + B cos kx 

(a) y = 2 sin(x + 1r j6) + cos(x + 1r /6) 

(b) y = 2 sin 2(x + 1r /4)- cos 2(x + 1r j4) 

2. Look at the exercises for Section 9 on page 189. 

(a) Write Yt + yz as a linear combination of sin x and cos x. 

(b) What goes wrong when you try to write y1 + Y3 as a linear 
combination of sin x and cos x? 

12 Linear combinations of functions with different frequencies 

So far, we have some important results about linear combinations of sines 
and cosines with the same frequency. We would like to investigate the sum 
of two functions like y = sin ktx andy = sin kz, where kt =/:- kz. We start 
the discussion with some examples which may not at first appear related. 

Example 69 Graph the function y = x + sin x. 

Solution. Each y-value on this graph is the sum of two other y-values: 
the value y = sin x and the value y = x. So we can take each point on 
the curve y = sin x and "lift it up" by adding the value y = x to the value 
y = sinx. 
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This is particularly easy to see for those points where sin x = 0. For 
these points, the value of x + sin x is just x: 

y 

In between these points, the line y = x is lifted up slightly, or brought 
down slightly, by positive or negative values of sin x. We can think of the 
sine curve as "riding" on the line y = x. 

Example 70 Graph the function y = sin x + 1 I 10 sin 20x. 

Solution. This seems much more complicated, but in fact can be solved 
using the same method as the previous examples. We graph the two curves 
y = sinx andy = 1110 sin 20x independently, then add their y-values at 
each point: 

X 

Again, we can think of one curve "riding" on the other. This time the curve 
y = 1 I 10 sin 20x "rides" on the curve y = sin x, or perturbs it a bit at each 
point. 

Note that our new curve is not a sinusoidal curve. We cannot express it 
either in the form y = a sin k(x- /3) or in the form y = A sin kx +b cos kx. 
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Exercises 

Construct graphs of the following functions. 

1. y = -x + sinx 

2. y=x2 +sinx 

3. y = x 2 + cosx. Hint: Is the function odd? Is it even? 

4. y = x 3 + sin x 

5. y = x 2 + (1/10) sinx 

6. y = cosx + (1/10) sin20x 

7. y = 2sinx + (1/10) sin20x 

13 Finding the period of a sum of sinusoidal curves 
with different periods 

We know that the function y = sin lOx +sin 15x is not a sinusoidal curve. 
Let us show that it is still periodic. Indeed, if we shift the curve by 2rr, 
we have y = sin IO(x + 2rr) +sin 15(x + 2rr) = sin(lOx + 20rr) + 
sin(15x + 30rr) =sin lOx+ sin 15x. 

But what is its smallest positive period? We can answer this by looking 
separately at all the periods of the two functions we are adding. Any period 
of y = sin lOx must have the form m(2rr/10), for some integer m. Any 
period of y =sin 15x must have the form n(2rr/15), for some integer n. 
To be a period of both functions, a number must be of both these forms. 
That is, we must have integers m and n such that 2mrr/10 = 2nrrjl5, or 
3m = 2n. If we take m = 2, n = 3, our problem is solved. The number 
2rr/5 = 2(2rr/10) = 3(2rr/15) is a period for both functions. And since 
we took the smallest positive values of m and n, this is the smallest positive 
period for the function y = sin lOx + sin 15x. 

The argument above is drawn from number theory, where it is con­
nected with the least common multiple of two numbers. This concept is 
used in elementary arithmetic, in finding the least common denominator 
for two fractions. The general statement, proved in number theory, is this: 

The function y = sink1x + sinkzx is periodic if and only if 
the quotient kJ/ k2 is rational. 

But a function like y = sin x + sin ,Jix has no period at all. 
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Exercises 

Find the (smallest positive) period for each of the following functions. 

1. y = sin 2x + sin 3x 

2. y = sin 3x + sin 6x 

3. y = sin4x + sin6x 

4. y = sin ,J'ix +sin 3,J2x 

14 A discovery of Monsieur Fourier 

Example 71 Graph the function y = sin x + ( 1 /3) sin 3x. 

Solution. This example is similar to Example 70. The values of sin x 
are "perturbed" by those of ~ sin 3x: 

y 

Example 72 Graph the function y = sin x + ~ sin 3x + ~ sin 5x. (Use a 

graphing calculator or software utility for this complicated function.) 

Solution. 
y 

X 

1t 
2 1t 
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Let us compare the graphs of the three functions: 

y = sinx 

y = sin x + t sin 3x 

y = sin x + t sin 3x + t sin 5x . 

y 

X 

-1t 

The formulas for these functions show a pattern. Can you guess what 
the next formula in the pattern would be? Can you guess what its graph 
would look like? Check your guess with a graphing calculator or software 
utility. 

It is not difficult to guess that the graphs of these functions will look 
more and more like the following: 

y 

X 

-1t 1t 

Mathematicians say that this sequence of functions converges to a limit, 
and that this limit is the function whose graph is given above. In fact, this is 
a special case of the very important mathematical theory of Fourier series. 
The French physicist Fourier discovered that almost any periodic function, 
including some with very complicated or bizarre graphs, can be represented 
as the limit of a sum of sines and cosines (the above example doesn't hap~ 
pen to contain cosines). He also showed how to calculate this sum (using 
techniques drawn from calculus). 

Fourier's discovery allows mathematicians to describe very simply any 
periodic function, and physicists can use these descriptions to model ac~ 
tions that repeat. For example, sounds are caused by periodic vibrations 
of particles of air. Heartbeats are periodic motions of a muscle in the body. 
These phenomena, and more, can be explored using the mathematical tools 
of Fourier analysis. 
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Exercises 

Please use a graphing calculator or graphing software package for these 
exercises. 

1. Graph the function y = sin x - ! sin 2x + ~ sin 3x. 

2. Graph the function y = sin x - ! sin 2x + ~ sin 3x - i sin 4x + 
I . 5 
5 sm X. 

3. Consider the sequence of functions: 

y = sinx 

y = sin x - ! sin 2x 

y = sin x - ~ sin 2x + ~ sin 3x 

y = sin x - ! sin 2x + ~ sin 3x - t sin 4x 

y = sin x - ~ sin 2x + 1 sin 3x - t sin 4x + ! sin 5x 

Draw the graph of the function that you think is the limit of this 
sequence of functions. 

4. Consider the sequence of functions: 

y = cosx 

y = cosx + i cos3x 

y = cos x + i cos 3x + is cos 5x 

y = cosx + i cos 3x + :Js cos 5x + -l9 cos 7x 

Draw the graph of the function that you think is the limit of this se­
quence of functions. Do you recognize the pattern in the amplitudes? 

Appendix 

I. Periodic phenomena 

Many phenomena in nature exhibit periodic behavior: the motions repeat 
themselves after a certain amount of time has passed. The sine function, it 
turns out, is the key to describing such phenomena mathematically. 

The following exercises concern certain periodic motions. Their math­
ematical representations remind us of the sine curve, but are not exactly the 
same. In more advanced work trigonometric functions can indeed be used 
to describe these motions. 
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Exercises 

1. The diagram represents a line segment 1 foot in length. 

A B 

An ant is walking along the line segment, from point A to point B, 
then back again, at a speed of one foot per minute. Draw a graph 
showing the distance from point A to the ant's position at a given 
time t. For example, when t = 0.5, the ant is halfway between A 
and B, and headed towards B. 

2. The diagram shows part of a number line, from A = -1 to P = 0, 
toB=+l. 

-1 -0.5 0 0.5 1 

A p B 

An ant is walking along the number line, starting from point P. The 
ant walks to point B, then to A, then back to B, and so on. The ant 
walks at a speed of one foot per minute. Draw a graph showing the 
position of the ant on the number line at time t. For example, when 
t = 0.5, the ant is at 0.5, and when t = 2.5, the ant is at -0.5. 

3. The diagram shows a square wall of a room. Each side of the square 
is 8 feet long. 

p 

An ant is walking along the perimeter of the wall, at a speed of one 
foot per minute, starting at the point P shown and moving counter­
clockwise. Draw a graph showing the height of the ant above the 
floor (call it h) at any given timet. For example, where t = 4 the 
ant's height is 4 feet, and where t = 12 the ant's height is 8 feet. 
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4. The Bay of Fundy lies between the Canadian provinces of Nova Sco­
tia and New Brunswick. The people who live on its shores experi­
ence some of the world's highest tides, which can reach a height of 
40 feet. This creates a landscape that shifts twice every day. Beaches 
become bays, small streams turn into raging rivers, and peninsulas 
are suddenly islands as the tides rise and fall. 

For anyone who lives near the ocean, it is important to know when 
high and low tide will occur. But for the Bay of Fundy, it is critical 
also to know how fast the tide is rising or falling. The inhabitants of 
this area use the so-called rule of twelfths to estimate this. They take 
the interval between low and high tide to be 6 hours (it is actually a 
bit more). Then they approximate that: 

-b, of the tide will come in during the first hour 

1
2
2 of the tide will come in during the second hour 

tz of the tide will come in during the third hour 

tz of the tide will come in during the fourth hour 

f2 of the tide will come in during the fifth hour 

1
1
2 of the tide will come in during the sixth hour 

Assume that the height of a day's tide is 36 feet, and draw a graph 
of the height of the water at a given point along the Bay of Fundy, 
using these estimates. 

When is the tide running fastest? Slowest? 

II. How to explain the shifting of the graph to your 
younger brother or sister 

When we were little, we used to go every few months to the doctor. The 
doctor would measure our height, and make a graph showing how tall we 
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were at every visit. Here is the graph for my height :2 

ft 

3 

2 

1984 1985 1986 1987 1988 1989 

Two years later, when you were born, our parents asked the doctor if 
she could predict your growth year-by-year. Well, she couldn't exactly do 
this, but she said: "If the new baby follows the same growth curve as your 
older child, then he will be as tall as the older one was three years earlier." 
So the doctor was predicting a growth curve for you which looks like this: 

ft 

3 

2 

1984 1985 1986 1987 1988 1989 

You will be 3 feet tall exactly two years after I was 3 feet tall, and 4 
feet tall also exactly two years after I was, and so on. Your graph is the 
same as mine, but shifted to the right by two years. If you want to know the 
prediction for your height, just look at what my height was two years ago. 
So if my graph is described by the equation height = f(year), then your 
graph is described by the equation height= f(year- 2). 

Of course, it hasn't quite turned out this way. My growth curve was not 
exactly the same as yours. So the doctor's prediction was not accurate. But 
for some families, it is accurate. 

20f course, when I was very little, I couldn't stand up, so they measured my "length." 
When I learned to stand, this became my height. 
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In just the same way, if you are dealing with the graph y = sin(x- a), 
rather than y = sin x, you must "wait" for x to get bigger by a before the 
height of the new graph is the same as that of the old graph. So the new 
graph is shifted a units to the right. 

III. Sinusoidal curves with rational periods 

We have taken, as our basic sine curve, the function y = sin x. The period 
of this function is 2rr, which is an irrational number. The other functions 
we've investigated also have irrational periods. Can a sine curve have a 
rational period? 

Consider the function y = sin 2rr x. Using our formula, its period is 
2rr j2rr = 1. We can check this directly: 

sin(2rr(x + 1)) = sin(2rrx + 2rr) = sin2rrx. 

The exercises below require the construction of sinusoidal curves with 
other rational periods. 

Exercises 

1. Show that the function y = sin rr x has the value 0 when x = 1, 
X = 2, X = 3, and X = 4. 

2. Show that the function y = sin 4rr x has a period of 1· 
3. Write the equation of a sine curve with period 3. 

4. Write the equation of a sine curve with period 2. 

5. If n is a positive integer, write a function of the form y = sin kx with 
period n. 

IV. From graphs to equations 

A tale is told of the Russian tsar Alexei Mikhaelovitch, the second of the 
Romanov line (1629-76; reigned 1645-76). His court astronomer came to 
him one day in December, and told him, "Your majesty, from this day forth 
the number of hours of daylight will be increasing." 

The tsar was pleased. "You have done well, court astronomer. Please 
accept this gift for your services." And, motioning to a courtier, he pre­
sented the astronomer with a valuable gemstone. 
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The astronomer enjoyed his gift and practiced his arts, until one day 
in June, when he again reported to the tsar. "Your highness, from this day 
forth the number of hours of daylight will be be decreasing." 

The tsar scowled. "What? More darkness in my realm?" And he or­
dered the hapless astronomer beaten. 

Of course, the variation in the amount of daylight was not the fault 
of this astronomer, or any other astronomer. It is due to the circumstance 
that the earth's axis is tilted with respect to the plane in which it orbits the 
sun. Because of this phenomenon, the days grow longer from December to 
June, then shorter from June to December. 

What is interesting to us is the rate at which the number of hours of 
daylight changes. It turns out that if we graph the number of hours of day­
light in each day, we get a sinusoidal curve: 

2 4 6 8 10 12 14 16 18 20 22 24 

months 

Since this curve is high above the x-axis, we have shown it with the 
y-axis "broken," so that you can see the interesting part of the graph. If 
you don't like this, try redrawing the curve without a "broken" y-axis. You 
will find that most of your diagram is empty. 

We will learn more about this curve in the following exercises. 
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Exercises 

1. By estimating the distances on the graph above, find an equation of 
the form y =a sin k(x -rr) which approximates the function whose 
graph is shown. 

2. The curves below give the hours of daylight at certain latitudes. 
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months months 

(c) (d) 

Notice that the maximum number of hours of daylight occur at the 
same time of year from graphs (a), (b), and (c), but at different times 
for graph (d). If graph (a) corresponds to a location in the north­
em hemisphere, in which hemisphere are the locations of the other 
graphs? 
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3. Notice that the "average" number of daylight hours is the same for 
each graph. This "average" is given by the y-coordinates along the 
line around which the curve oscillates: On certain days of the year, at 
each location, the actual number of hours of daylight is the same as 
the average number. How does the time of year at which this average 
is actually achieved vary from location to location? 



Chapter 9 

Inverse Functions and 
Trigonometric Equations 

1 Functions and Inverse Functions 

Let us recall the definition of a function. If we have two sets A and B, a 
function from set A to set B is a correspondence between elements of A 
and elements of B such that 

1. Each element of A corresponds to some element of B, and 

2. No element of A corresponds to more than one element of B. 

If the element x in set A corresponds to the element y in B, we write 
y = f(x), where f is the symbol for the function itself. 

Example 73 Let us take A as the set of all real numbers, and B as another 
copy of the set of real numbers. If x is an element of A, then we can make 
it correspond to an element yin B by taking y = x 2 . Every element x in A 
corresponds to some element y in B, (since any number can be squared), 
and no element x in A corresponds to more than one element yin B (since 
we get a unique answer when we square a number). 

Our definition of a function is not very democratic. For every element 
of A, we must produce exactly one element of B. But if we have an element 
of B, we cannot tell if there is an element in A to which it corresponds. An 
element of B may correspond to no element of A, to one element of A, or 
to more than one element of A .1 

1 In older texts, this undemocratic situation was described by calling x the independent 
variable and y the dependent variable. 
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Example 74 In Example 73, if we were given a number x in A, we are 
obliged to supply an answer to the question: what number y in B corre­
sponds to A? For example, if x = 3, then we can answer that y = 9, and if 
x = -3, we can answer y = 9 again. This is allowed, under our definition 
of a function. The only restriction is that our answer must be a number in 
set B. 

But if we choose an element y in set B, we are not obliged to answer 
the question: what number in A corresponds to it? Certainly, if we chose 
y = 9, we could answer x = 3. But we could just as well answer x = -3, 
and so our answer would not be unique. Worse, if we chose y = -1, we 
have no answer at all. There is no real number whose square is -1. 

That is, if y is a function of x, it may not be the case that x is also a 
function of y. However, in some cases, we can improve the situation. 

Example 75 Take the set A to be the set of nonnegative real numbers, 
and for B take another copy of the same set. As before, the correspondence 
y = x 2 is a function: if x is a number in A, then x2 is a number in B, 
since the square of a real number cannot be negative. But now, if we take 
a number y in B, we can always answer the question: What number x in 
A corresponds toy? For example, if y = 9, we can answer that x = 3. 
We are not embarrassed by the possibility of a second answer, since -3 is 
not in our (new) set A. Nor are we embarrassed by the lack of any answer. 
Negative numbers, which are not squares of real numbers, do not exist in 
our new set B. 

In general, we can take a function y = f (x ), try to start with a value 
of y, and get the corresponding value of x. If this is possible- if x is a 
function of y as well- then this new function is called the inverse function 
for f(x). 

Thus the function y = x2, where x 2:: 0 and y 2:: 0, does have an 
inverse, given by the formula x = ,.JY. This is the reason for insisting, in 
elementary algebra books, that the symbol ,.fY refers to the nonnegative 
real number whose square is y. 

When does a function have an inverse function? This is an important 
question. We will not give a general answer here. We will, however, ob­
serve that if A and Bare intervals on the real line, then y = j(x), defined 
on these intervals, has an inverse if and only if it is monotone (steadily in­
creasing or steadily decreasing). The first two graphs below show functions 
that are monotone, and have inverses. The last three graphs show functions 
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that have no inverse on the sets A and IJ. 

2 Arcsin: The inverse function to sin 

Example 76 The equation y = sin x defines a function from the set A of 
real numbers to the set B of real numbers. Does it have an inverse function? 

Again, the answer is no, and for the same two reasons as in Example 7 5. 
For some values of y in B, such as y = 5, there are no values of x such that 
sin x = y. For other values of y, such as y = 1/2, there are many values 
of x: sin rr /6 = 1/2, sin 5rr /6 = 1/2, sin 13rr /6 = 1/2, and so on. 

In Example 75, we were able to overcome these difficulties, by restrict­
ing the sets A and B that the function is defined on. Can we do this here? 
Let us look at the graph of y = sin x. 

y 

-Tt 

Let us start by including the number 0 in our set A. We must choose 
for set A a domain on which the function y = sin x is monotone, and it's 
easiest to take the for set A the set -rr /2 :::: x :::: rr /2: 

y 

-Tt 

Now we can choose for set A our interval -rr/2 ::;: x ::;: rr /2, and for 
set B the interval -1 ::;: y ::;: 1, and for every y in set B, there exists exactly 
one x in A such that sin x = y. 
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The inverse function to y == sin x, defined in this way, is important 
enough to merit its own name. It is called the arcsine function2, and if y = 
sinx (with x andy in the two sets described above), we write x =arcsin y. 

However, sometimes we will discuss the arcsine function in its own 
right. Then we will write y = arcsin x, where -1 ::::: x ::::: 1, and -rr 12 :S: 
y ::::: rr 12. We have already had a chance encounter with this function on 
the calculator. Now we will get to know it much better. 

Example 77 Find arcsin 112. 

Solution: Again, if y = arcsin 112, then sin y = 112. There are many 
such angles, but we have agreed to choose the unique y such that -rr 12 :S: 
y ::::: rr 12. This value is rr I 6, so arcsin 112 = rr I 6. 

Example 78 Find arcsin -.JJ12. 
Solution: If y = arcsin .J3 12, then sin y = -.J3 12 and -rr 12 :S: y ::::: 

rr 12. Hence y = -rr 13. 

Example 79 Find arcsin(sinrrl5). 

Solution: We let y = arcsin(sin rr 15), and rewrite this statement as sin x 
= sin(rr 15). We know that there are many solutions to this equation: x = 
rrl5, 4rrl5, and so on. But since we require that -rrl2 ::::: y :S: rrl2, so 
arcsin(sin rr 15) is just rr 15. 

Example 80 Find arcsin(sin 3rr 15). 

Solution: As usual, we write x = arcsin(sin3rrl5), so that sinx = 
sin 3rr 15. But this time we cannot choose x = 3rr 15, since this value is not 
in the required interval. However, there is a value of x in the interval that 
satisfies this equation. It is x = 2rr 15, and this is our required value. 

Example 81 Draw the graph of the function y = sin(arcsinx). 

Solution: We first decide what the domain of definition of this function 
is. Since we are taking arcsin x, we must have -1 ::::: x ::::: 1. And since 
y is the sine of some angle, -1 ::::: y ::::: 1 as well. On these intervals, 
sin(arcsinx) is simply x, so the graph is as follows: 

2We can explain the odd notation y = arcsin x by remembering that it stands for the 
sentence "y is the arc (or angle) whose sine is x". 



2. Arcsin: The inverse function to sin 211 

Example 82 Draw the graph of the function y = arcsin(sinx). 

Solution: We will soon see that this is not the same as the previous 
example(!). Again, we begin by deciding on the domain of the function. We 
can take the sine of any real number x. Since the resulting value is in the 
interval from -1 to 1, we can then take the arcsine of this value. Hence the 
function y = arcsin(sinx) is defined for any real number x. The possible 
values for y are those of the arcsine function, so -rr /2 ::: y ::: rr /2. 

Let us next look at the function for values of x between -rr /2 and rr /2. 
On this interval, we find that y = x, so the graph looks like this: 

y 

But x can take on any real value, so we are not finished. Let us look at 
the function for values of x between rr /2 and 3rr /2. In this interval, sin x 
decreases from 1 to -1, so the values of y = arcsin(sinx) will decrease 
from rr /2 to -rr /2. The reader is invited to check that the graph is the 
following: 

And now we note that the function y = arcsin(sinx) is periodic, with 
period 2rr: arcsin(sin[x+2rr]) = arcsin(sinx). The full graph is as follows: 

1!: 
2 

y 

~ X 
2 
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As we mentioned, the arcsine function appears on your calculator, and 

you will find that the cal~ulator kn~W~ how to C~mpute ar~sin X r~r an]. 
number x. The button whtch does thts ts marked etther I arcsm I or sm-1 • 

(We are unhappy with the second notation, and will use only the first. 3) 

In just the same way, we can define an inverse of the function y = tan x. 
We choose an interval near 0 for which the function is monotone. It will be 
convenient once again to choose the interval -n 12 ~ x ~ 1r 12. Then the 
inverse function, which we will call arctan x, will take on all real values. 

This is really a very nice function, since it is defined for any real num­
ber x. Its y-values, however, are restricted to the interval-n 12 ~ x ~ 1r 12. 
Indeed, the function y = arctan x supplies us with a one-to-one correspon­
dence between all the real numbers and the numbers on that interval.4 

We can also define an inverse of the function y = cos x. But we cannot 
choose the same interval we chose for the sine and tangent, since the cosine 
is not monotone on -n 12 ~ x ~ 1r 12. Instead we choose the interval 
0 ~ x ~ 1r, on which the function y = cos x is monotone and decreasing. 
We write the new function y = arccos x. 

Example 83 Find sin(arccos(5113)). 

Solution: Let a = arccos 5 I 13. Then cos a = 5 I 13, 0 ~ a ~ 1r, and 
we seek sina. This is a problem we've seen before. We find that sin a = 
12113. 

Example 84 Find cos(arcsin(-315)). 

Solution: Let a= arcsin(-315). Then sin a= (-315), -nl2 ~a ~ 
nl2, and we seek cosa. This time, a is in quadrant IV, so cos a= 415, a 
positive number. 

In summary, 

y = arcsin x means x = sin y and - n 12 ~ x ~ 1r 12 
y = arccosx means x =cosy and 0 ~ x ~ 1r 

y = arctan x means x = tan y and - 1r 12 ~ x ~ 1r 12. 
3The notation sin- 1 1/3 looks too much like the notation sin2 1/3, which of course 

means (sin 1/3)(sin 1/3). By analogy, the symbol sin- 1 1/3 "should" mean 1/ sin(1/3) = 
esc 1/3. But it means something completely different. While it remains standard in some 
texts, and on some calculators, we will not use it. 

40ne way to understand this is to say that there are "just as many numbers" on the 
whole line as there are on the interval -Jr /2 :5 x ::: n /2. When mathematicians started 
talking like this, some people thought this statement strange, since the interval has finite 
length while the line is infinite in length. What they meant, however, was simply that the 
notion of "length" is not based on the "number" of points in the segment being measured. 
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Exercises 

1. Find the value of: 
(a) arcsin 0.5 

(d) arcsin( -1) 
(g) arcsin 2 

(b) arccos0.5 

(e) arccos( -1) 
(c) arctan 1 

(f) arctan( -J3) 

2. Find the numerical value of the following expressions: 

(a) sin(arcsin0.5) (b) cos(arccos 1) (c) tan(arctan(-1)) 

(d) arcsin(sin ~) (e) arccos(cos I~rr) 
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3. Show that sin(arccos b) = ±-Jf=b2. What determines whether we 
should choose the positive sign or the negative sign? 

4. Express tan(arcsin b) in terms of b. Will we need an ambiguous sign, 
as we did in Problem 3? 

5. Express cos(arctanb) in terms of b. 

6. Show that arccos(sin a) = rr /2- a, for 0 ::S a ::S rr /2. What can you 
say for values of a outside this set? 

7. Find each of the following values: 

(a) arcsin(sin ~1 ) 

(d) arcsin(sin i~) 

(b) arcsin(sin ~~) (c) arcsin(sin ~~) 

(e) arcsin(sin ~~) (f) arcsin(sin ~~) 

Hint: For most students, Part (f) is much more difficult than the 
others. 

8. Draw the graph of the function y = cos(arccosx). 

9. Draw the graph of the function y = arccos(cosx). 

10. Find the numerical value of sin(arcsin 3/5 +arcsin 5/13). (Hint: Let 
a= arcsin3/5,fl = arcsin5/13,andusetheformulaforsin(a+,B).) 

11. Recall that tun(a + fi) = (tan a + tan ,8) I (1 - tan a tan ,8). Using 
this formula, prove that arctan a + arctan b = arctan 1a!abb. 



214 Inverse Functions and Trigonometric Hqtwtions 

12. The diagram below shows three equal squares, with angles a, {3, y 
as marked. Prove that a + f3 = y. 

I~ 
Hint: Note that a = arctan 1/3, f3 = arctan 1/2, andy = arctan 1. 
Then use the formula from Problem 8. 

13. Extra credit: Can you prove the result in Problem 9 without using 
trigonometry? 

3 Graphing inverse functions 

How is the graph of a function related to the graph of its inverse function? 

Example 85 Let y = x 2 , for x ::: 0 and y ::: 0. As we have seen, it is 
monotone increasing. Here is its graph: 

2 X 
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We can read the values of the function from the graph. For example, 
the diagram shows that f(2) = 4, since the x-value 2 corresponds to the 
y-value 4 on the graph. 

The inverse function, as we have seen, is g (y) = Jy. This graph also 
contains all the information we need to find values of the inverse function. 
We just choose our first number on the y-axis, and use the graph to get 
the corresponding number on the x-axis. For example, if we want g(4), we 
find the number 4 on they-axis, and use the graph to find the corresponding 
number (which is 2) on the x-axis. 

However, many people are more comfortable using the letter x to de­
note the number in set A for which the function is making an assignment, 
and the letter y for the number in set B to which x is assigned. There are 
two ways to accommodate this need. We can simply relabel the axes of the 
original graph: 

X 

4 

3 

2 

2 y 
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But many people prefer the x-axis to appear horizontal, and the y-axis to 
appear vertical, on the page. We can accommodate them by reflecting the 
graph around a diagonal line: 

y 

2 

2 3 4 X 

This graph contains the same information as the others, but in a more con­
ventional form. 

Here are graphs of the sine function, and its inverse, the arcsine func­
tion. The graph of the inverse function is given in the conventional position. 
Note that the domains are restricted as we discussed above. 

y y 

X X 
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And here are graphs of y = arccos x and y = arctan x: 

y 

y 

1 

X 

-1 

y 

X 

1t 1t 

The graph of y = arctan x shows clearly how the function maps the entire 
real line onto a finite interval. 

4 Trigonometric equations 

We must often solve trigonometric equations: equations in which trigono­
metric functions of the unknown quantity appear. We can often use the 
following method to solve these: 

1. Reduce them to the form sin a =a, cos x =a, or tanx =a; 

2. Locate the solutions to these simple equations between 0 and 2rr; 

3. Use the periods of the functions sinx, cosx, and tanx to find all the 
solutions. 
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We start with a simple example. 

Example 86 Solve the equation sinx = 1/2. 

This means that we must find all the values of x for which sin x = 1/2. 
We will describe two ways of finding these values. Our first method 

uses a circle, and our second uses a graph of the function y = sin x. 

Solution 1: We first use a unit circle, centered at the origin. As a first 
step, we find two particular answers. We recall that sin n j6 = 1/2. Let 
us illustrate this on our circle. We draw an angle of JT j6, and find the line 
segment which is equal to 1/2: 

This is our first answer. 
But if we draw a horizontal line across the circle, we find another angle 

whose sine is 1/2: 

So we have the answers x = n /6 and x = 5n j6. These are all the possible 
answers in the interval 0 ::::: x ::::: 2n. 

To find more answers, note that we can make as many complete ro­
tations about the circle as we like (either clockwise or counterclockwise), 
and we will get back to the same point. 

From our first answer, we get the new values n j6 ± 2n, n /6 ± 4n, 
JT /6 ± 6n, and so on. We can write these as JT /6 + 2nn for any integer n. 

From our second answer, we get the new values 5n j6±2n, 5n j6±4n, 
5n /6 ± 6n, and so on. We can write these as 5n /6 + 2nn for any integer n. 
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So we have two sequences of answers: 

n j6 + 2nn for any integer n, and 

5n /6 + 2nn for any integer n. 

These two sequences contain all the solutions to our equation. 
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We can express all these solutions more elegantly. We started with the 
basic answers x = n /6 and 5n j6. We can write 5n /6 as n - JT j6. Then 
the second set of answers will be JT - JT /6 + 2nn. Then we can write the 
two sequences of solutions as: 

2nn + n /6 for any integer n, and 

(2n + l)n - JT /6 for any integer n. 

Now we note that the expression 2nn represents any even integer multiple 
of JT, and we must add JT j6 to this to get an answer to our equation, while 
(2n + l)n represents any odd integer multiple of JT, and we must subtract 
JT /6 to get an answer. So we can write our solutions elegantly as: 

nk+(-l)k(n/6) foranyintegerk. 

The reader can verify that fork = 2n (that is, for an even integer k), we ob­
tain the first sequence of solutions, and fork = 2n + 1 (for odd integers k), 
we obtain the second sequence. 

Solution 2: We can use the graph y = sin x to solve our equation. 
Along with the graph of the function y = sin x, we draw the line y = 1/2: 

y 

I 

ZL--.~~------~--------~~--------~--------~~---+ 
X 

-1 =1!/6+21! =1!16+411 

This line intersects the graph at a point whose x-coordinate is n /6. This is 
our first initial solution. Since the graph of y = sin x has period 2n, we 
will find more solutions, whose x-coordinates are n /6 ± 2n, n /6 ± 4n, 
n /6 ± 6n, and so on. 

The line y = 1/2 also intersects the graph at the point whose x-coordi­
nate is 5n j6. This is our second initial solution. Again, periodicity gives us 
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more solutions, whose x-coordinates are 5rr /6±2rr, 5rr /6±4rr, 5rr /6±6rr, 
and so on. 

y 

= Sn/6 + 2n 

So, as before, we have two sequences of solutions: rr /6 + 2rrn and 5rr /6 + 
2rrn, and we can express them elegantly as rrk + (-1)k(rr/6), for any 
integer k. 

In general, if we need to solve a simple trigonometric equa­
tion, we can first find all the solutions between 0 and 2rr, then 
use periodicity to get all the other solutions 

Exercises 

1. Using the graph above, find all the points x on the x-axis such that 
sinx > 1/2. 

2. Solve the equation sinx = -1/2. 

3. Solve the equation cosx = ..fi/2. 

4. Solve the equation tan x = 1. 

5. Solve the equation sin x = -1. 

5 A more general trigonometric equation 

Take some acute angle a. We wish to solve the equation sin x = sin a. One 
solution is immediate: x = a. ! 

y 

X 
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Periodicity then gives us the sequence of solutions a + 2nrr, for any 
integer n. 

We also have a second immediate solution: x = rr -a. 

y 

X 

-1 

This solution gives us a second sequence of solutions, which we can write 
as rr -a+ 2nrr, for any integer n. 

So the solutions are given by 

a + 2nrr and rr - a + 2nrr 

for any integer n. As before, we can state this result more elegantly as 

Exercises 

1. Solve the equation sin x = sin rr /5. 

2. Solve the equation sin x = sin rr /2. 

3. Using the graph of the function y = cosx, show that the solutions 
to the equation cosx =cos a (for some acute angle a) are given by 
2rrn +a and 2rrn- a, for any integer n. 

4. Solve the equation cosx = cosrr/5. 

5. Using the graph of the function y = tanx, show that the solutions 
to the equation tanx = tan a (for some acute angle a) are given by 
a + rrn, for any integer n. 

6. Solve the equation tan x = tan rr /5. 

7. Suppose a is some fixed angle. Express in terms of a all the solutions 
to the equation sin x = - sin a. (Hint: One approach is to recall that 
-sin a= sin( -a).) 
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8. Suppose a is some fixed angle. Express in terms of a all the solutions 
to the equation cos x = - cos a. 

9. Check that the formula x = ( -1 )n a+ rr n represents all the solutions 
to the equation sin x = sin a, as n takes on all integer values. 

6 More complicated trigonometric equations 

Example 87 Solve the equation cos2 x = 3/4. 

Solution 1: This equation is equivalent to the two equations 

v'3 
COSX =-and 

2 
v'3 

cosx = --. 
2 

The first equation has two solutions between 0 and 2rr. They are x = rr /6 
andx = 11rr/6: 

y 

1 

~{----~~--~-----4----~~--~+-~ 
1t 

-1 

Then periodicity gives us two sequences of solutions for our first equation: 
x = rr j6 + 2rrn and x = llrr /6 + 2rrn, for any integer n. 

Now we tum to our second equation. The equation cosx = -v'3/2 
has two solutions between 0 and 2rr, namely, 5rr /6 and 7rr j6. 

y 

This gives two more sequences of solutions: x = 5rrj6 + 2rrn and x = 
7rr /6 + 2rrn, for any integer n. 



6. More complicated trigonometric equations 

Altogether, there are four sequences of solutions: 

x = n/6 + 2nn for any integer n 

x = 5n /6 + 2nn for any integer n 

x = 7n /6 + 2nn for any integer n, and 

x = 11n /6 + 2nn for any integer n. 
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The reader is invited to try to find one elegant formula that will give all 
these solutions. 

Solution 2: [Outline] We can write cos 2x = 2 cos2 x - 1 = 2(3/4) -
1 = 1/2. Then we solve for 2x (for example, by looking at the graph of 
y = cos 2x) to find the four sequences of values for 2x. Finally, we divide 
each value we find by 2, to solve for x. 

Example 88 Solve the equation sin x = cos x. 

Solution 1: We can recall that cosx = sin(n/2- x), and rewrite the 
equation in terms of the sine function: 

sinx = sin(n /2- x) . 

But, as we saw earlier, the equation sin x = sin a has two sequences of 
solutions: 

(i) x =a+ 2nn for any integer n, or 

(ii) x = (n- a)+ 2nn for any integer n. 

We apply this result with a = n j2 - x. From sequence (i) we get x 
n j4 + nn. From sequence (ii) we get the equation x = n /2 + x + 2nn, 
which has no solutions at all. 

Thus the solutions to the equation sin x = cos x are given by the se­
quence 

x = n /4 + nn for any integer n. 

Solution 2: If we divide both sides of the equation by cos x, we obtain 
a new equation involving only the tangent function: tan x = 1. 

The only solution between 0 and n is x = n j 4. Since the period of the 
tangent function is n, this initial solution give all the others, which can be 
written as n /4 + nn, for any integer n. 
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A fine point: If we divide by cos x, we must check that this expression 
cannot be equal to 0. In fact, if cos x = 0, we cannot have cos x = sin x, 
because the two functions are never 0 for the same value of x. 

Example 89 Solve the equation sin x = cos 2x. 

Again, we offer two solutions. 

Solution 1: We rewrite the equation in terms of the sine function, and 
proceed as in the second solution to Example 87. We have sin x = 
sin(rr/2- 2x). 

We can now distinguish two cases, as we did in Solution 1 to Example 
Example 88. If x = (rr/2- 2x) + 2rrn, then x = rr/6 + 2rrnj3, which 
gives one sequence of solutions. 

In the second case, we have x = (rr - (rr /2- 2x)) + 2rrn. This leads 
to x = -rr /2- 2rrn. This is a second sequence of solutions. 

Solution 2: We know that cos 2x = 1 - 2 sin2 x (see Chapter 7). So we 
can rewrite the given equation as 

sin x = 1 - 2 sin2 x or 2 sin2 x + sin x - 1 = 0 . 

Let us try to solve for sin x by factoring (if this doesn't work, we can 
always use the quadratic formula). We have (2 sinx - 1)(sinx + 1) = 0, 
so sinx = 1/2 or sinx = -1. 

We can solve these equations separately, using the methods we have 
already demonstrated. 

For sinx = 1/2, we find x = rr /6 + 2rrn or x = 5rr /6 + 2rrn, for any 
integer n. 

For sin x = -1, we have x = 3rr /2 + 2rr n, for any integer n. 
There are three sequences of solutions. 

Example 90 Solve the equation tan2 x = 3. 

Solution: The equation is equivalent to the two equations 

tanx = J3 and tanx = -J3. 

An initial answer to the first equation is x = rr /3, and periodicity gives 
the answers rr /3 + rrn, for any integer n. 

The second equation has an initial solution x = -rr /3, and periodicity 
gives the answers -rr /3 + rr n, for any integer n. These two sequences give 
the complete solution. 
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In conclusion, we note that we have already shown (Ch. 7, Appendix 
I.2; p. 159), that any trigonometric identity can be reduced to an algebraic 
identity. The same is true for trigonometric equations. However, the alge­
braic equation that results is often more difficult than the same equation in 
trigonometric form. 

Exercises 

1-12. Find the solution sets for the following equations: 

1. sin 2x = 1 2. sin x /2 = 1/2 

3. cosx = sin2x 

5. cosx = sin4x 

4. sinx =sin 3x 

6. 26 sin2 x + cos2 x = 10 

7. cos2 x- cos x = sin2 x 8. 3 tan2 x = 12 

9. cos 2x = 2 sin2 x 10. tan2 x = cotx 
5 

11. --
2

- = 7tanx + 3 12 . .J3 tan2 x + 1 = (1 + .J3) tanx 
COS X 

13. Let us look back at Example 89. Solution 1 gave the general solution as 

x = n /6 + 2nnj3 or 

x = -n /2- 2nn for any integer n. 

But Solution 2 gave the general solution 

x = nj6 + 2nn or 

x = 5n /6 + 2rrn or 

x = 3rr /2 + nn for any integer n. 

Show that these two sets of solutions are actually identical. 

Appendix - The Miracles Revealed 

In Chapter 5 we discussed two small miracles: 

The Miracle of the Tangent 
If we draw a tangent to the curve y = sin x at the point x = a, then 

the distance between d, the point of intersection of this tangent with the 
x-axis, and the point (a, 0) is I tan a I. 
The Miracle of the Arch 

The area under one arch of the curve y = sin x is 2. 
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We now return to these results and furnish their proofs. Each draws on 
techniques that are standard in the study of the calculus. In particular, each 
uses the fact that the quotient sinh I h approaches 1 as h gets close to 0. 
We showed why this is true on Chapter 5, p. 118. A more rigorous proof 
would involve the notion of limit, which is the fundamental notion of the 
calculus. In this section, we give a sketch of a proof for each miracle that 
parallels the more formal approach used in a course on calculus. 

ProofofThe Miracle ofthe Tangent 

The diagram shows a point P(a, sin a) on the curve y = sin x. It inter­
sects the x -axis at point R. We will show that Q R = I tan a I, by writing an 
equation for line P R, then finding the coordinates of point R. 

We can write the equation of a line using the coordinates of a point on the 
line and the line's slope. The point will be P, with coordinates (a, sin a). 

To get the slope of line P R, we use a technique from the calculus. 
Instead of looking at tangent P R, we look at a secant to the curve y = 
sinx, which intersects the curve near point P. We take two points, A and 
B, one just to the left of P and one just to the right, at a small distance h 
along the x-axis: 

y 
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The coordinates of point A are (a- h, sin(a- h)), and the coordinates of 
B are (a + h, sin (a +h)). From these two points we can compute the slope 
of secant AB: 

sin(a +h) - sin(a -h) 

2h 

sin a cosh+ cos a sinh- (sin a cosh- cos a sin h) 
=--------------------------------------2h 

2cosa sinh (sinh) 
= = cosa --- . 

2h h 

Now we take smaller and smaller (positive) values of h, so that points A 
and B get closer together, and secant AB begins to resemble tangent P R. 
The expression sinh/ h gets closer and closer to 1 ash approaches 0. And 
of course cos a does not change as h approaches 0. So the slope of secant 
AB, which is looking more and more like tangent P R, gets closer and 
closer to the value cos a. It is reasonable, then, to expect that the slope of 
P R is exactly cos a. (In calculus, this technique of finding the slope of a 
tangent to a curve will receive a full justification. It is related to the notion 
of the derivative of a function.) 

Now we can find the equation of line P R, through point P(a, sin a) 
and with slope cos a: 

y- sin a 
=cos a. 

x-a 
We need the x-coordinate of point R. Its y-coordinate is 0, so its x-coordi­
nate is obtained by letting y = 0 in the equation above. We find that 

sin a 
x =a--- =a -tana. 

cos a 

Then the length of QR is just Ia- (a- tan a) I= I tan a I. 

Exercises 

1. The diagrams above show a case where a > rr /2. Take a numeri­
cal value of a slightly larger than rr /2 (for example, a = 1.6), and 
follow the argument above. (Note that for such values value of a, 
tana < 0.) 

2. Take a value of a between 0 and rr /2, and follow the argument again. 
Note that for such values of a, tan a > 0. Where does point R fall in 
these cases? 
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3. When does point R fall on the origin? 

4. Where does point R fall when a is very close ton 12? How does your 
answer depend on whether a is greater or less than n 12? 

Proof of the Miracle of the Arch 

This miracle concerns the area under one arch of the curve y = sin x, 
which we claim is exactly 2. On p. 117 we showed that this area A satisfies 
the inequalities n 12 < A < n. We did this by drawing figures bounded 
by straight lines that approximated the area A. We can improve on this 
approximation by taking regions closer and closer to the region whose area 
we want to measure. We will construct these regions out of rectangles. 

We take the interval from 0 to n along the x-axis, and divide it into 
many equal pieces. If there are n of these pieces, then the points of divi­
sion are xo = 0, x1 = nln, x2 = 2nln, ... Xn-I = (n- 1)nln, and 
Xn = nn In = n. For each point x;, we draw a rectangle by erecting a per­
pendicular to the x-axis with one endpoint at x; and the other on the curve 
y = sinx (the diagram shows the case n = 8): 

y 

X 

Note that the rectangles are inscribed in the arch for 0 < x; < n 12, and 
they are circumscribed for n 12 < x < n. Also, the widths of the rectangles 
are all n In. Let us set h = n In. Then as h approaches 0, the rectangles 
get thinner and more numerous, and the sum of their areas approaches the 
area A. 

Finally, note that the rectangles associated with x0 = 0 and Xn = n 
are "degenerate": their area is 0 (no matter what value we choose for n). It 
will be convenient for us to ignore the rectangle associated with x0, but to 
include the one associated with Xn. Then we can write the sum ofthe areas 
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of these rectangles as 

h sinx1 + h sinx2 + h sinx3 + · · · + h sinxn 

( 
. rr: . 2rr: . 3rr: . nrr: ) 

= h sm- + sm- + sm- + ·. · · + sm-
n n n n 

sin n+l I£ sin!!. I£ sin n+l I£ rr: sin n+l I£ 
= h 2 n 2 n = h 2 tl • sin - = h n 2 

sin ;n sin ;n 2 sin ~ 

If n is very large, our set of rectangles will look more and more like 
the area A. But as n gets very large, the fraction (n + 1)/n approaches the 
value 1. Hence our expression for A gets close to 

sin rr: /2 h 
h. =-.--

sm rr: /2n sm h /2 

Now if we let k = h/2 this expression is equal to 2kf sink = 2(k/ sink). 
As h gets close to 0, so does k, and so the expression approaches 1. Its 
reciprocal, which is k/ sink, also approaches 1. This means that the sum 
that approximates A gets close to 2 · 1 = 2, a miraculous result. 

In calculus, this technique for finding the area under a curve is related 
to the integral of a function. 

Exercises 

1. Using a calculator, find the approximations to A given by taking n = 
4 andn = 8. 

2. What do you think the area under the curve y = sin x is from x = 0 
to x = rr: /2? 

3. Try using the method outlined above to find the area under the curve 
y = sin x from x = 0 to x = rr: /2. Is the result what you might have 
expected? 
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