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Abstract. Composers commonly employ ornamentation and elabora-
tion techniques to generate varied versions of an initial core melodic
idea. Dynamic programming techniques, based on edit operations, are
used to find similarities between melodic strings. However, replacements,
insertions and deletions may give non-musically pertinent similarities,
especially if rhythmic or metrical structure is not considered. We pro-
pose, herein, to compute the similarity between a reduced query and a
melody employing only fragmentation operations. Such fragmentations
transform one note from the reduced query into a possible large set
of notes, taking into account pitch and rhythm constraints, as well as
elementary parallelism information. We test the proposed algorithm on
four “theme and variations” piano pieces by W. A. Mozart and L. van
Beethoven and show that the proposed constrained fragmentation opera-
tions are capable of detecting simple variations with high sensitivity and
specificity.

Keywords: Melodic similarity · Reduced melody · Variations · Fragmentation ·
Musical parallelism

1 Introduction

Ornamentation, embellishment, elaboration, filling in are common strategies
employed by composers in order to generate new musical material that is recog-
nized as being similar to an initial or reduced underlying musical pattern. This
way musical unity and homogeneity is retained, whilst at the same time, variation
and change occur. This interplay between repetition, variation and change makes
music “meaningful” and interesting. Listeners are capable of discerning com-
mon elements between varied musical material primarily through reduction, i.e.
identifying “essential” common characteristics. Systematic music theories

c© Springer International Publishing Switzerland 2014
M. Aramaki et al. (Eds.): CMMR 2013, LNCS 8905, pp. 298–312, 2014.
DOI: 10.1007/978-3-319-12976-1 19



Fragmentations with Pitch, Rhythm and Parallelism Constraints 299

(e.g. Lerdahl and Jackendoff [19]) explore such processes, as do high-level descrip-
tions [10,22] or semi-Schenkerian computational models [20]. We try here to iden-
tify ornamentations of a given reduced melodic pattern. The proposed pattern
matching algorithm employs not only pitch information but also additional
rhythmic properties and elementary parallelism features.

Pattern matching methods are commonly employed to capture musical
variations, especially melodic variations, and may be based on dynamic pro-
gramming techniques. Similarity between melodies can be computed by the
Mongeau-Sankoff algorithm [23] and its extensions, or by other methods for
approximate string matching computing edit-distances, that is allowing a given
number of restricted edit operations [7,9,13,14]. The similarities can be computed
on absolute pitches or on pitch intervals in order to account for transposition
invariance [4,11,16,25]. Note that some music similarity matching representa-
tions do not use edit-distance techniques [1,8,17,21]. Geometric encodings also
provide transposition invariance [18,26,27].

In edit-distance techniques, the allowed edit operations are usually matches,
replacements, insertions, deletions, consolidations and fragmentations. However,
edit operations such as replacements, insertions and deletions of notes are ade-
quate for various domains (e.g. bioinformatics [12]) but present some problems
when applied to melodic strings. In the general case, insertions or deletions of
notes in a melodic string seriously affect metrical structure, and the same is true
for substitutions with a note of different duration. Fragmentations and consoli-
dations may be a further way to handle some aspects of musical pattern trans-
formation [6,23]. In [2], Barton et al. proposed to focus only on consolidation
and fragmentation operations on pitch intervals: the sum of several consecutive
intervals in one melodic sequence should equal an interval in another sequence.
Their algorithm identifies correctly variations, including transposed ones, of a
given reduced pattern, but incorrectly matches a large number of false positives,
the consolidation and the fragmentation being applied only on the pitch domain.

In this paper it is asserted that identifying simple variations (that contain
ornamentations) of a given reduced melodic pattern is best addressed using frag-
mentation operations, taking into account both pitch and rhythm information,
along with other higher level musical properties such as parallelism. Apart from
leaving aside replacement, insertion and deletion operations (only fragmentation
is employed), this paper gives emphasis to rhythmic properties of melodic strings
and other higher level structural features (e.g. similar ornamentations are intro-
duced for similar underlying patterns) showing that such information increases
both sensitivity and specificity of melodic variation detection.

The current study is not meant to provide a general method for identifying
variations of a given melodic pattern, but rather an exploration of some
factors that play a role in some “prototypical” cases of musical variation. The
chosen set of variations (W. A. Mozart K. 265, K. 331, K. 455 and Beethoven
WoO 64) are commonly used in composition as prototypical examples illustrat-
ing a number of basic variation techniques (ornamentation, rhythmic variation,
modal change); these apparently simple sets of variations are already quite chal-
lenging for computational modeling as the number of notes varies significantly



300 M. Giraud et al.

between different versions (some variations may have 8 times or more notes than
the underlying thematic pattern). Variations, however, appear in many guises
and musical similarity is very difficult to pin down and define systematically in a
general way [3]; further research that takes into account a much larger variation
dataset will be necessary. In the last section, limitations of the current proposal
are discussed and future developments suggested.

The paper is organized as follows. Section 2 presents some definitions, Sects. 3
and 4 describe the algorithm and its results on three sets of variations by Mozart
and one set of variations by Beethoven, totaling 728 bars in 4 themes and 31
variations. The best results are obtained while combining pitch, length and paral-
lelism constraints, with sensitivity between 70 % and 85 % and precision between
60 % and 100 %. Section 5 discusses some perspectives of this work.

2 Definitions

A note x is described by a triplet (p, o, �), where p is the pitch, o the onset,
and � the length. The pitches can describe diatonic (based on note names) or
semitone information. We consider ordered sequence of notes x1 . . . xm, that is
x1 = (p1, o1, �1), . . . , xm = (pm, om, �m), where 0 ≤ o1 ≤ o2 ≤ . . . ≤ om (see
Fig. 1). All the sequences used in this paper are monophonic: there are never
two notes sounding at the same onset, that is, for every i with 1 ≤ i < m,
oi + �i ≤ oi+1. We do not handle overlapping notes.

Fig. 1. A monophonic sequence of notes, represented by (p, o, �) or (Δp, o, �) triplets. In
this example, onsets and lengths are counted in sixteenths, and pitches and intervals
are represented in semitones through the MIDI standard.

Approximate matching through edit operations. Let S(a, b) the score of the
best local alignment between two monophonic sequences xa′ . . . xa and yb′ . . . yb.
This score can be computed by dynamic programming [23]:

S(a, b) = max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S(a − 1, b − 1) + δ(xa, yb) (match, replacement)
S(a − 1, b) + δ(xa, ∅) (insertion)
S(a, b − 1) + δ(∅, yb) (deletion)
S(a − k, b − 1) + δ({xa−k+1...xa}, yb) (consolidation)
S(a − 1, b − k) + δ(xa, {yb−k+1...yb}) (fragmentation)
0 (local alignment)
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Fig. 2. The two first measures of the theme and variations of the Andante, K. 331,
by Mozart, preceded by a reduction R of the theme. In the theme, the circled D of
the first measure is a neighbor tone, as the C# of the second measure. This neighbor
tone D can also be found in the variation VI, as an appoggiatura. The D that is
present in the first measure of the other variations is better analyzed as a passing tone
between C# and E (a similar role of passing tone can be also argued in a medium-scale
interpretation of the theme). Finally, there are no such Ds in variation I. A “note for
note” alignment between the theme and variation III, IV and V that would align all
these Ds but include some deletions and insertions does not lead here to a satisfactory
analysis. Less errors are done when considering fragmentations between the reduced
pattern and the variations.

δ is the score function for each type of mutation. If the last line (0) is removed,
this equation computes the score for the best global alignment between x1 . . . xa

and y1 . . . yb. Moreover, initializing to 0 the values S(0, b), the same equation
computes the score for the best semi-global alignment, that is the score of all
candidate occurrences of the sequence x1 . . . xa (seen as a pattern) inside the
sequence y1 . . . yb.

The complexity of computing S(m,n) is O(mnk), where k is the number of
allowed consolidations and fragmentations.

3 A Fragmentation Operation for Variation Matching

Allowing many fragmentations may produce many spurious matches: often
fragmentations are thus restricted to only 2, 3 or 4 notes, of same length and
pitch. However, fragmentation with more notes and with different pitches does
occur in real cases, especially when a pattern is ornamented. Moreover, if we
consider a reduced pattern, then almost any variation of the pattern can be seen
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as a fragmentation of this reduction. For example, the variations of the Andante
grazioso of Mozart K. 331 (Fig. 2) can be seen as a fragmentation of a reduced
pattern in 2 to 6 notes, using chord tones but also ornamental tones.

More specifically, we take fragmentation to mean that a relatively long note
is fragmented into shorter notes of the same overall duration (length constraint),
and that the pitch of at least one of the shorter notes matches with the initial long
note (pitch constraint). Finally, if the given reduced theme (query) comprises
repeating pitch and/or rhythm patterns, we assume that the same ornamentation
transformations will be applied on the repeating pitch/rhythm patterns (this
parallelism constraint is enforced in a post-processing stage).

We thus propose here to consider a semi-global pattern matching between
a reduced pattern x1 . . . xa and a monophonic sequence y1 . . . yb with only frag-
mentations:

S(a, b) = max
k

S(a − 1, b − k) + δ(xa, {yb−k+1...yb})

The only operation considered here is the fragmentation of a note xa into
k notes {yb−k+1...yb}. We require that the score function δ(xa, {yb−k+1...yb})
checks the following constraints:

– length constraint – the total length of the notes {yb−k+1...yb}, with their asso-
ciated rests, is exactly the length of xa;

– pitch constraint – at least one of the pitches yb−k+1...yb must be equal to the
pitch of xa, regardless of the octave.To match minor variations, we simply use
a “diatonic equivalence”, considering as equal pitches differing from only one
chromatic semitone (or, when the pitch spelling is not known, allowing ±1
semitone between the sequences, as in the δ-approximation [5,24]).

We are not interested here into fine-tuning error costs: δ(xa, {yb−k+1...yb})
equals 0 when the constraints are met, and −∞ otherwise. Note that with these
simplified costs, a consequence of the length constraint is that, at each position,
there is at most one fragmentation for each note xa – so dynamic programming
can be implemented in only O(mn) time.

Finally, we also propose a post-filtering that applies very well to the variations
technique. Usually, inside a variation, the same transformation pattern is applied
on several segments of the theme, giving a unity of texture. In Fig. 2, variation I
could be described by “sixteenths with rest, using chromatic neighbor tones”,
possibly with the help of some high-level music formalism [10,19,22]. We propose
here a simple filter that will be very computationally efficient. The unity of
texture often implies that the underlying base pitch is heard at similar places
(+ marks on the Fig. 2). We thus applied a refinement of the pitch constraint:

– pitch position parallelism filtering – when applying the pitch constraint on a
pattern divided into segments, at least one matched pitch must be found at
the same relative position in at least two segments.

For example, on Fig. 2, all + marks, except the ones in parentheses in varia-
tion V, occur at the same relative position in both measures.
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4 Results

4.1 The Corpus

In order to evaluate the proposed algorithm, we apply it on the following sets
of “theme and variations” (see Table 1). We started from either .krn Humdrum
[15] or .mid files, keeping only the melody (without acciaccaturas):

– the first movement Andante grazioso of the Piano Sonata 11 in A major
(K. 331) by W. A. Mozart,

– the variations on Ah vous dirai-je maman (K. 265) by W. A. Mozart,
– the variations on Wilhelm von Nassan (K. 25) by W. A. Mozart,
– and the Six Easy Variations on a Swiss Song (WoO 64) by Ludwig van

Beethoven.

Table 1. Sets of variations used in this study. For Mozart K. 331, we started from the
.krn Humdrum files available for academic purposes at kern.humdrum.org, and kept
only the melody. For the other pieces, the melody has been extracted manually and
encoded in .mid or .krn symbolic notation.

Mozart K. 331 A major 6/8 Theme + 6 variations 144 bars

Mozart K. 265 C major 2/4 Theme + 12 variations 363 bars

Mozart K. 25 D major 4/4 Theme + 7 variations 144 bars

Beethoven WoO 64 F major 4/4 Theme + 6 variations 77 bars

Table 2. Reduced themes used as query for the fragmentation matching, and number
of ground truth occurrences of these themes in the considered sets of variations. The
“parallelism” column display the number of segments used to check the parallelism
constraint. Note that the length of the patterns is manually adapted for variations
with another meter than the theme (variation 12 of K. 265, in 3/4, and variation 10 of
K. 455, in 6/8).

Reduced theme Length Occurrences Parallelism

Mozart K. 331 C#EBD 2 bars 7 × 3 ×2

Mozart K. 265 CGAGFEDC 2 bars 13 × 2 ×4

Mozart K. 25 DEF#EGF# 4 bars 8 × 2 ×2, ×2

Beethoven WoO 64 CFACGFCCEFDC 6 bars 7 × 1 ×2

In a study on the recognition of variations using Schenkerian reduction [20],
the author uses 10 sets of variations by Mozart; only the first four bars of each
theme (10 themes) and variations (77 variations) are used for testing the pro-
posed system.

In the current study, the corpus has a total of 4 themes and 31 variations.
This number may seem low, but the set of variations is used here searching for
a reduction of the theme in the whole melodic surface of the piece (728 bars on

http://kern.humdrum.org
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the four pieces). Moreover, the search is not restrained to full bars – there could
be an occurrence starting from any note. However, in the majority of cases,
the length constraint will enforce the metrical structure of the pattern in the
occurrences.

For each variation set, a reduced version of the theme (or part of the theme)
is given as the query (Table 2). The algorithm then identifies matches of this
theme in the piece. The following paragraphs details the results on the four sets.
Some alignments corresponding to the best constraints can be downloaded from
www.algomus.fr/variations.

4.2 Andante grazioso, Piano Sonata 11 (K. 331)

The query is the reduced theme melody R (top of Fig. 2), consisting of the
four notes C#E B D. We choose this pattern, having three occurrences in each
variation, instead of the full eight-notes pattern C#E B D AB C# B which has
only one complete occurrence in each variation.

Table 3. Number of occurrences of the reduced pattern C#E B Dfound in the theme
and variations of the Andante grazioso of the Piano Sonata 11 by Mozart (K. 331).
Several fragmentation operations are tested. The columns “sens” and “prec” repre-
sents the sensitivity (recall) and precision of the proposed algorithm compared to the
ground truth (3 occurrences in the theme and each variation). In all the cases, these
3 occurrences are found by the method (true positives), except for the variation III,
in minor, when not using diatonic pitch matching. The “no constraint” line is directly
related to the number of notes of the variation – there are matches everywhere.

theme variations
I II III IV V VI sens prec

number of notes 88 156 201 201 121 351 304

no constraint (all frag. 1...20) 85 153 198 198 118 348 301 100% <2%
pitch 79 108 186 129 112 327 260 100% <2%
length 36 45 37 40 55 37 81 100% 6%

length + pitch 3 3 8 0 3 14 13 83% 41%
length + pitch + parallelism 3 3 6 0 3 3 4 83% 82%

length + pitch (diatonic) 3 3 8 5 4 14 14 100% 46%
length + pitch (diatonic) + parallelism 3 3 6 3 3 3 4 100% 84%

ground truth 3 3 3 3 3 3 3

Results are summarized on Table 3. In the theme and each variation, 3 occur-
rences have to be found. As our fragmentations can handle very large sets of
notes, the 3 truth occurrences are always found, except for the variation III, in
minor, when using pitch matching without diatonic equivalence.

The algorithm has thus an almost perfect sensitivity (recall), and should be
evaluated for his precision. Allowing any fragmentation (even starting only on
beats) leads to many spurious results. Adding only the pitch constraint does not

www.algomus.fr/variations
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help so much. Adding only the length constraint gives matching every sequence
of two measures against the pattern.

As soon as both pitch and length constraints are enforced, the algorithm gives
good results, with very few false positives: In the majority of the variations, only
the 3 true occurrences are found. The best results are here when using afterwards
the “pitch parallelism” constraint (on two halves of the pattern), filtering out
some spurious matches (see Fig. 3). This method has an overall 84 % precision.

Fig. 3. Two overlapping matches found on the minor variation of K. 331, at measures
13 and 14, including each one 4 fragmentations into 6 notes (F6), with length and pitch
±1 constraints. The ∗ marks indicate the pitches that are identical to the query (with
the approximation C = C#). (Top.) The real match is confirmed by the parallelism
of pitch positions (sixteenths number 1, 5, 7 and 10 inside each measure) (Bottom.)
This spurious match is discarded, as the position of the matching pitches are different
in the two measures.

False (or inexact) positives can still happen in some situations (Fig. 4), but
they are very few: only 4 in this piece. Moreover, some false positives are over-
lapping with true matches, and could be discarded with a more precise scoring
system.

4.3 Variations on Ah vous dirai-je maman (K. 265)

For Twelve Variations on “Ah vous dirai-je, Maman” (K. 265), we selected a
query as the eight notes C GAGF E D C, this full theme appearing twice in
each variation, totaling 26 occurrences. The parallelism constraint here applies
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Fig. 4. A false positive in variation III of K. 331, that has also common pitch positions.
This false positive occurs (with overlapping) one measure later than a true occurrence,
at measure 5, that is correctly detected.

Table 4. Number of occurrences (occ) of the reduced pattern C G A G F E D C found in
Twelve Variations on “Ah vous dirai-je, Maman” by W. A. Mozart (K. 265, 1387 notes
in our encoding). The ground truth has 2 occurrences in the theme and each variation,
totaling 26 occurrences. The column “(tp)” shows the number of true positives found
by each method, and the columns “sens” and “prec” give the associated sensibility
and precision. As we encoded the files in MIDI, without pitch spelling information, we
used here a ±1 semitone pitch approximation to match the minor variation (but it also
brings some spurious occurrences).

occ (tp) sens prec

Length + pitch 39 (20) 77 % 51 %

Length + pitch + parallelism 29 (20) 77 % 69 %

Length + pitch (± 1) 71 (22) 85 % 31 %

Length + pitch (± 1) + parallelism 36 (22) 85 % 61 %

Ground truth (26)

Table 5. Number of occurrences of the reduced pattern found in Wilhelm von Nassan
(K. 25) by W. A. Mozart. The ground truth has 2 occurrences in the theme and each
variation, totaling 16 occurrences.

occ (tp) sens prec

Length + pitch (± 1) 35 (12) 75 % 34 %

Length + pitch (± 1) + parallelism 20 (12) 75 % 60 %

Ground truth (16)

on the four segments of one measure, requiring that at least two measures share
common pitch positions.

Results are summarized on Table 4. With pitch, length and parallelism con-
straints, the algorithm outputs 20 true positive occurrences (sensitivity of 77 %)
with regular pitch matching, and 22 true positive occurrences (sensitivity of
85 %) with ±1 pitch matching.

Note that the sensitivity is not as perfect as in K. 331: For example, on
some variations, the length constraint can not be enforced (see Fig. 5, bottom).
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Fig. 5. Two matches found in the first variation of K. 265. (Top.) Good match and
alignment. (Bottom.) Although the end of this match is a true positive, the align-
ment is wrong: the true occurrence should be shifted a quarter before, but the ties
on the melody prevent a good alignment respecting the length constraint across the
fragmentations.

Again, there are very few false positives, especially when the parallelism
constraint is required.

4.4 Variations on Wilhelm von Nassan (K. 25)

On the variations on Wilhelm von Nassan (K. 25), the query appears twice in
each variations, totaling sixteen occurrences (Fig. 6). Since the reduced query
is not symmetrical (two whole notes, then four half notes), we choose here to
apply the parallelism constraint in two separated parts, first checking the first
two bars together, and then the third and fourth bars.

With the pitch, length and parallelism constraint, the algorithm is able to
find twelve true occurrences (sensitivity of 75 %). The results are summed up
in Table 5. Even with the parallelism constraint, eight false positives are found.



308 M. Giraud et al.

Some of them are in fact true positives that are shifted in time, and therefore
not correctly located.

However, fifteen false positives are discarded by the parallelism constraint,
bringing the precision of the algorithm from 34 % to 60 %. This example shows
again how a simple parallelism constraint discards many false positives, and
therefore provides results with better precision.

4.5 Six Easy Variations on a Swiss Song (Beethoven, WoO 64)

On Six Easy Variations on a Swiss Song (L. van Beethoven, WoO 64), we use a
longer reduced query with two anacrousis (Fig. 7). The theme being eleven bars
long, and the query six bars long, the query appears only once in each variations.
Therefore, the pattern appears seven times in the whole piece. The parallelism
constraint (see Fig. 9) compares the pitch positions of the first three bars (with
the anacrousis) and of the last three bars (also with the anacrousis).

With the pitch, length and parallelism constraint, the algorithm is able to
find five true occurrences (sensitivity of 71 %). The pattern has not been found
in the first variation, the pitch constraint not being respected (see Fig. 8). In
this variation set, no false positive has been found (precision of 100 %), which
can be explained by the length of the query. However, despite this length, the
algorithm is still able to provide a very good sensitivity.

Fig. 6. Query used for the Variations on Wilhelm von Nassan (K. 25) aligned to the
theme.

Fig. 7. Reduced theme of Beethoven’s Six Easy Variations on a Swiss Song used as a
query in the algorithm.

5 Discussion

In this paper, we have shown that a unique edit operation – a fragmentation –
gives very good results in matching a reduced query against a theme and a set
of variations. The key point in our approach is to focus on musically relevant
fragmentations, allowing very large fragmentations, but restricting them with
rhythm and pitch information along with some parallelism.
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Such an approach with fragmentations works because we start from a reduced
query. Moreover, a very simplified matching procedure and error cost have been
used in this study. This simple model has produced good results in four sets
of variations that contain instances of extensive ornamentation. However, the
model may be improved in many ways. For instance, fine-tuning scores for the
δ function could improve the results, allowing imperfect fragmentations and some
other classical operations. The “parallelism” constraint that was tested here is
also very simple (one common pitch position on several segments of a pattern),
and the number and the position of segments were manually selected for each
piece. This parallelism constraint could be extended to become more generic, but
its current simplicity makes it very suitable for efficient computation. Finally,
theses ideas could also be adapted to interval matching, to be transposition
invariant.

5.1 Analysis of Elaborated Sets of Variations

An important limit of this present study is that the four chosen sets of variations
are easy or intermediate piano pieces, and that their composition technique
almost always respects the global layout of the theme. At the opposite end of
the spectrum, one could look for example to the 15 “Eroica” Variations (op. 35)
or the 33 “Diabelli” Variations (op. 120) by Beethoven. Such pieces exhibit much
complex transformations of the musical material. The proposed algorithm could
extract some of these variations, but will be limited by the following facts:

– In many cases, there is not a single melody that can be extracted from the
polyphonic texture, or the melody can alternate between several voices (see
Fig. 10);

– However, even in the cases where a melody can be extracted, further orna-
mentation and transformation sometimes do not respect the length constraint.

Fig. 8. First bars of the first variation of WoO 64. The A in the first bar does not
respect the pitch constraint (F in the query), and therefore this occurrence is not
found.

Fig. 9. A positive match found in the fifth variation of WoO 64. The parallelism con-
straint is enforced for at least one position in both segments.
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Fig. 10. Example of a more complex transformation on the “Eroica” variations by
Beethoven (op. 35).In this set of variations, two melodies are transformed: the theme
and the bass line. In the variation no. XIV, these melodies are tangled: During the first
eight bars, the transformed bass line is played at the soprano, and the transformed is
played at the bass. Then, the roles are exchanged.

We used in this study only fragmentations, and not the usual insertion/
deletion/substitution operations from [23], but, as stated in the introduction,
these operations break the metrical structure as soon as they affect durations
of individual notes. For us, a good generic solution based on the fragmentation
operation could include some relaxation of the length constraints – thus allowing
insertion of notes or group of notes – but at the same time shall include a
reinforcement of high-level constraints, such as the parallelism operation.

5.2 Towards a Unique Transformation Operation

Going a step further, we argue that relevant similarities between two melodies –
and maybe even between polyphonic pieces – should be computed with a unique
high-level transformation operation of a group of several notes {x1, x2...x�} into
another group of notes {y1, y2...yk}. The traditional edit operations of match/re-
placement/insertion/deletion, along with fragmentation and consolidation, can
be seen as particular cases of this transformation operation, one set of notes
being reduced to a singleton or to the empty set. In such a framework, com-
puting δ({x1, x2...x�}, {y1, y2...yk}) may require several steps, possibly including
dynamic programming with the more classical operations. Seeing transformation
as the basic operation could yield musical similarities that span a larger range
than usual operations.
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