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Abstract .  In this paper a general theory will be introduced that allows the de- 
scription of a melodic surface - i.e. a score-like representation of a melody - in terms 
of local grouping, accentuation and metrical structures. Firstly, a formal model will 
be proposed that detects points of maximum local change that allow a listener to 
identify local perceptual boundaries in a melodic surface. The Local Botmdary De- 
tection Model (LBDM) is based on rules that are relating to the Gestalt principles 
of proximity and similarity. Then, it will be shown that the accentuation struc- 
ture of a melody may automatically be inferred from the local boundary grouping 
structure. This is based on the assumption that the phenomenal accents of two con- 
tiguous musical events are closely related to the degree by which a local boundary 
is likely to be perceived between them. Finally, the metrical structure is revealed by 
matching a hierarchical metrical template onto the accentuation structure. It is sug- 
gested that the Local Boundary Detection Model presents a more effective method 
for low-level segmentation in relation to other existing models and it may be incor- 
porated as a supplementary module to more general grouping structure theories. 
The rhythmic analyses obtained by the methods described herein are tentative, and 
complementary to higher-level organizational theories. 

1 I n t r o d u c t i o n  

Many contemporary theories of rhy thm (Cooper & Meyer, 1960; Epstein, 
1995; Kramer,  1988; Lerdahl ~; Jackendoff, 1983; Yeston, 1976) consider 
rhy thm to be the organizat ion/structuring of musical sounds into groups 
(grouping structure) of more or less salient elements (accentuation structure) 
tha t  are in constant interplay/interaction with a hierarchy of beats  (metrical  
structure). Metre receives somewhat  different t rea tment  in each of these the- 
ories and is to a varying extent integrated into the ways rhy thm is defined 
(Moelants, 1997, this book). 

For instance, Lerdahl and Jackendoff 's  definition of rhy thm is based on 
two kinds of structures: namely grouping structure that  "expresses a hierar- 
chical segmentat ion of a piece into motives, phrases and sections" and metr i -  
cal structure tha t  "expresses the intuition tha t  the events of  a piece are related 
to a regular alternation of strong and weak beats at a number  of hierarchical 
levels" (Lerdahl ~ Jackendoff, 1983, p.8). They define three kinds of musical 
accents: phenomenal accents which are due to local intensification such as 
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dynamic stress, high or low register, long notes, harmonic changes and so on, 
structural accents which result from higher-level structural relations such as 
cadences, and metrical accents that correspond to relatively strong beats in 
a metrical context. Defining a metrical structure is finding a well-formed grid 
of metrical accents that fits best onto the structure of phenomenal accents: 
"... the listener's cognitive task is to match the given pattern of phenomenal 
accentuation as closely as possible to a permissible pattern of metrical accen- 
tuation .... Metrical accent, then, is a mental construct, inferred from but not 
identical to the patterns of accentuation at the musical surface." (Lerdahl & 
Jackendoff, 1983, p.18). In their theory, grouping structure is considered to be 
independent of metrical structure and hence different preference rules are for- 
mulated for each: one set of preference rules for the description of groupings 
and a different independent set for the description of the phenomenal and 
structural accentuation structure from which metrical structure is inferred 
(Fig.la). 

The concept that rhythm relates to cognitive grouping of musical events 
is a Gestalt-based one. The Gestalt principles of perceptual organization are 
a set of rules-of-thumb that suggest preferential ways of grouping mainly vi- 
sual events into larger scale schemata. Two of the Gestalt principles state 
that objects closer together (Proximity principle) or more similar to each 
other (Similarity principle) tend to be perceived as groups. These princi- 
ples have been used as a basis for some contemporary theories of musical 
rhythm. Tenney (1964) discusses the use of the principles of proximity and 
similarity as a means of providing cohesion and segregation in twentieth cen- 
tury music and, later, Tenney and Polansky (1980) develop a computational 
system that discovers grouping boundaries in a melodic surface. Musical psy- 
chologists (Bregman, 1990; Deutsch, 1982a, 1982b; McAdams, 1984) have 
experimented and suggested as to how the Gestalt rules may be applied into 
auditory/musical perception and Deutsch and Feroe (1981) further incorpo- 
rate such rules in a formal model for representing tonal pitch sequences. The 
grouping component of Lerdahl and Jackendoff's Generative Theory of Tonal 
Music (Lerdahl ~ Jackendoff, 1983) is based on the Gestalt theory and an 
explicit set of rules is thereby described - especially for the low-level group- 
ing boundaries. The formulation of these rules has been supported by the 
experimental work of I. Deli~ge (1987). 

In the first part of this paper a systematic theory will be described that 
attempts to define local boundaries in a given melodic surface (see Cam- 
bouropoulos, 1996b, for a general representation of pitch intervals). The pro- 
posed segmentation model (Local Boundary Detection Model - LBDM) will 
be based on two rules: the Identity-Change rule (which is more elementary 
than the Gestalt principles of proximity and similarity) and the Proximity 
rule (which relates to the Gestalt proximity and similarity principles). The 
aim has been to develop a formal theory that may suggest all the possible 
points for local grouping boundaries on a musical surface with various de- 
grees of prominence attached to them rather than a theory that suggests 
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Fig. 1. (a) Lerdahl and Jackendoff's theory of musical rhythm. (b) Proposed model 
of musical rhythm 

some prominent boundaries based on a restricted set of heuristic rules. The 
discovered boundaries are only seen as potential boundaries as one has to 
bear in mind that musically interesting groups can be defined only in con- 
junction with higher-level grouping analysis (parallelism, symmetry, etc.). 
Low-level grouping boundaries may be coupled with higher-level theories so 
as to produce optimum segmentations. 

It will be shown that the formulation of the boundary discovery proce- 
dures defined by Lerdahl and Jackendoff (1983) and Tenney and Polansky 
(1980) have limitations and can be subsumed by the proposed theory. Some 
examples and counter-examples will be given mainly in relation to the in- 
fluential formulation of the local detail grouping preference rules by Lerdahl 
and Jackendoff (1983). 

In the second part of the paper it will be maintained that low-level group- 
ing structure and phenomenal accentuation structure are strongly associated; 
they are actually in a one-to-one relation, i.e. if one is defined then the other 
may automatically be inferred. In other words, if local boundaries for a given 
melodic surface have been defined then strengths for phenomenal accents 
may be inferred (the reverse is also possible although not examined in this 
paper). It is assumed that the phenomenal accents of two contiguous musical 
events are closely related to the degree by which a local boundary is likely to 
be perceived between them. A method then is described that mechanically 
derives accent strengths from the local boundary strengths detected by the 
Local Boundary Detection Model. 

The strong link between grouping and accentuation structures is impor- 
tant in that it allows one to develop a model that does not need two sepa- 
rate independent methods for the detection of the local boundaries and the 
phenomenal accents respectively. In contrast with Lerdahl and Jackendoff's 
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model (Fig.la) the proposed model directly links phenomenal accentuation 
structure with grouping structure (Fig.lb). This enables a more economic 
and efficient formulation of a theory for rhythm. 

Once the phenomenal accentuation structure has been defined an attempt 
can be made to match a well-formed metrical structure to it; this may be 
possible for a number of hierarchic metric levels of beats or only for one 
level or possibly for no level at all depending on the kind of music. Metrical 
structure may be inferred from the accentuation structure but, at the same 
time, it influences the perception of the accentuation/grouping structure. The 
interplay between these two kinds of structures is addressed further towards 
the end of this paper. 

In the following sections, formal methods will be described, firstly, for 
the discovery of local boundaries (low-level grouping structure) in a melodic 
surface, secondly, for the derivation of the phenomenal accentuation struc- 
ture from the grouping structure and, lastly, for the selection of a metrical 
structure that fits best onto the accentuation structure. 

2 T h e  G e s t a l t  P r i n c i p l e s  o f  P r o x i m i t y  a n d  S i m i l a r i t y  

in  T h e o r i e s  o f  M u s i c a l  R h y t h m  

Some problems in the way the low-level Gestalt principles of perceptual orga- 
nization have been applied in the organization of temporal musical sequences 
are briefly discussed below. 

The Gestalt principles of proximity and similarity have been applied in 
both Tenney and Polansky's and Lerdahl and Jackendoff's models in such 
a way that allow one to interpret them as being different descriptions of 
the same phenomenon, namely a local maximum in the distance between 
consecutive musical events for any musical parameter e.g. pitch, start-times, 
dynamics and so on. Tenney and Polansky state explicitly that the similarity 
principle - as they define it - actually includes the proximity principle as a 
special case: "In both, it is the occurrence of a local maximum in interval 
magnitudes which determines clang-initiation" (Tenney & Polansky, 1980, p. 
211). Lerdahl and Jackendoff's grouping rules (Lerdahl ~ Jackendoff, 1983) 
are defined in such a way that it seems rather plausible that the proximity 
rules can be subsumed by the change (similarity) rules and the reverse. For 
example, GPR3a (register rule) states that a greater pitch interval in between 
smaller neighboring intervals initiates a grouping boundary. This can been 
seen in two ways: a) that the pitches of the first and last intervals are more 
similar to each other than the pitches of the middle interval or b) that there is 
a greater proximity between the first two pitches - and the last two - rather 
than between the middle pitches (Handel, 1989, p.198). 

In the current paper it will be maintained that although this formalization 
of the Gestalt principles provides the most important factor for discovering 
local boundaries a more general approach should account for any change in 



281 

interval magnitudes. For example, in the following sequence of durations: 
J J J .~ ~ J J a listener easily hears a possible point of segmentation for 
which neither the Tenney and Polansky nor the Lerdahl and Jackendoff for- 
malisms suggest any boundary. For this reason a different, more elementary 
rule will be introduced based on the principle of Identity-Change. This issue 
will be discussed further in the next section and it wilt be shown that the 
above example can naturally be accommodated within the proposed model. 

The low-level Gestalt principles of proximity and similarity are usually 
applied on symmetrical non-directional spaces. On applying them to musical 
temporal spaces, one has to make certain concessions by removing all possible 
asymmetrical directional properties (e.g. direction of pitch-intervals). There is 
though one aspect of musical asymmetry that cannot be avoided. This relates 
to the fact that musical objects are asymmetric objects themselves - even the 
most simplified homogeneous description of a note distinguishes between its 
attack and the rest of its body. This asymmetry is reflected in that, for 
instance, the temporal grouping rules can never give an identical grouping 
structure to the original and the retrograde form of a melody. It relates to the 
way that rules of perceptual organization give different grouping boundaries 
for musical duration sequences and for start-time interval sequences. It will 
be shown below how the interaction between these duration and start-time 
interval groupings results in the asymmetric perceptual organization of a 
sequence of musical events. 

We will now attempt to define the Identity-Change rule and the Proximity 
rule which will form the basis of the Local Boundary Detection Model These 
rules will be discussed initially for any sequence of two or three objects and 
then will be applied to longer sequences of musical objects. 

3 T h e  Local B o u n d a r y  D e t e c t i o n  Mode l  

A formal model that attempts to determine local boundaries in a given 
melodic surface will now be presented. (For or a detailed description, see 
Cambouropoulos, 1996a). 

3.1 The  Iden t i t y -Change  and  P r o x i m i t y  Rules  

As we have seen above, the Gestalt principles of proximity and similarity can 
be interpreted as being different sides of the same coin. In the Local Boundary 
Detection Model (LBDM) an elementary rule will be introduced based on the 
principle of identity. The Identity-Change rule is more elementary as it can 
be applied to a minimum of two entities (i.e. two entities can be judged to be 
identical or not) whereas the Proximity/Similarity rule requires at least three 
entities (i.e. two entities are closer or more similar than two other entities). 
This Identity-Change rule, in conjunction with the Proximity rule, forms the 
basis of the proposed low-level segmentation model. 
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General Identity-Change Rule: Grouping boundaries may be introduced only 
between two different entities. Identical entities do not suggest any bound- 
aries between them. This rule is supported by an experiment realized by 
Garner (1974) wherein an eight-element pattern composed of two different 
pitch elements, for example XXXOXOOO, is looped indefinitely and listen- 
ers are asked to describe the pattern they perceive. Various preferential ways 
of organization were recorded (there are eight possibilities starting on each 
element of the sequence) but hardly ever did any listener break a run of same 
elements. 

If the entities compared are intervals (intervals for pitch, start-times, dy- 
namics, etc.) then this rule can be formulated more specifically: 

Identity-Change Rule (ICR): Amongst three successive objects boundaries 
may be introduced on either of the consecutive intervals formed by the objects 
i f  these intervals are different. I f  both intervals are identical no boundary is 
suggested. When the application of ICR on two consecutive intervals detects 
a change and suggests a local boundary, this boundary is ambiguous (i.e. the 
boundary can be placed on either side of the middle object) and each interval 
receives the same boundary strength value. The second rule (PR) resolves the 
ambiguity by giving preference to the larger of the two intervals. 

Proximity Rule (PR): Amongst three successive objects that form different 
intervals between them a boundary may be introduced on the larger interval 
i.e. those two objects will tend to form a group that are closer together (or 
more similar to each other). 

3.2 Apply ing  the  I C R  and  P R  Rules  on Three  Note  Sequences 

We will assume that for each parametric feature of a musical surface we 
can construct a sequence of intervals on which the ICR and PR rules may 
be applied. We will start by presenting the application of the rules to the 
following parameters: pitch, dynamics, rests and articulation (slurs, staccatti, 
breath-marks etc. are considered to be expressional rests and are inserted 
between the notes they mark as normal rests that have a value that is a 
fraction of the preceding note). The grouping boundaries resulting from the 
sequence of start-time intervals and durations wilt be presented at the end of 
this section. 

The relation between two intervals can be of two types: identity or change. 
For reasons of asymmetry that will be introduced later on we will depict the 
change relation in two directional forms: "+" and "-" (Fig.2b and 2e). In the 
following Figures, dots represent parametric values of musical events and the 
distances between the dots the interval sizes between these values (Ax, Ay 
are interval values and are placed at the left-hand side of the interval). In 
Fig.2a Ax = Ay and the identity relation is represented by a zero. In Fig.2b 
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Ax > Ay and in Fig.2c Ax < gly, and the change relations are represented 
by the "+" and "2' signs respectively. 

At this stage we will introduce numeric values for the strength of the 
ICR and PR rules (more research is necessary for the selection of the most 
appropriate values). A numeric value is given to each interval as indicated 
below: 

ICR: 0 for the identity relation (0 for each interval) 
2 for the change relation (1 for each interval) 

PR: 0 for the identity relation (0 for each interval) 
1 for the change relation (1 for the larger interval) 

We get thus the total interval boundary strengths as depicted in Fig.2 
(bottom line). 

~x Ay ax ~y 
0 + 

ICR: 0 0 l I 
PR: 0 o ! O 
Total '0' values 0 0 '+' values 2 I 

C. • • 

~ A y  

] 1 
o 1 

'2 values 1 2 

Fig. 2. Boundary strengths (last row) calculated by the use of the ICR and PR rules 
for three parametric values (e.g. pitch, dynamics etc.) separated by two intervals 

We can now examine the duration and start-time interval sequences. The 
duration of a musical event is an internal attribute of that event whereas start- 
time intervals are temporal distances between two different successive events. 
We have thus the application of the ICR and PR rules for the start-time 
intervals exactly as described above and, additionally, the application of the 
General ICR for the sequence of durations (numeric strength 2). We now have 
the following kinds of relations (Fig.3 for two start-time intervals delimited by 
3 start-time points (dots) and the two corresponding durations (rectangles) 
Fig.3. It is now clear that the "+" and %" change relations are not symmetric. 
It is not possible to apply the principles of perceptual organisation in the 
musical temporal domain without introducing local asymmetry. 

3 . 3  Apply ing  the  I C R  and  P R  Rules  on Longer  Melodic  Surfaces 

For a given parametric interval profile of a musical surface one finds all the 
kinds of interval relations (0, +, -) that exist between every two successive 
intervals. If there are 3 or more consecutive "+" or "-" relations (e.g. + + + ,  
. . . . .  ), then only the ones at the ends are considered - the others do 
not contribute to the numeric strengths. Then, the numeric strengths for 
each kind of relation are calculated and added for each interval. For a single 
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a. I" n. I'C b. ~ u- I~" c. ~ n-  I¢ 
Z,y ~ Ay ~ Ay 

0 + 

ICR (st-ints) 0 0 1 1 1 1 
PR (st-ints) 0 0 1 0 0 1 
G-ICR (dur) 0 ........ 2 ,, 2 
Total '0' values 0 0 '+' values 4 I '-' values 3 2 

Fig. 3. Boundary strengths (last row) calculated by the use of the ICR and PR rules 
for three start-time values separated by two start-time intervals and durations 

numeric strength sequence the local maxima suggest the most preferable local 
boundaries (when a local maximum consists of more than one same or almost 
the same values then an ambiguous boundary is suggested). 

In Fig.4 we give a first example of how one can use the ICR and PR 
rules to calculate the strengths of grouping boundaries for - 4- sequences. 
As it happens, almost all of the grouping preference rules of Lerdahl and 
Jackendoff (1983) (exception: GPR3d (equal note length) and the articula- 
tion changes form legato to staccato and the opposite, fall under the 0 + 0 
and 0 - 0 combinations), and all the grouping rules suggested by Tenney and 
Polansky (1980) fall under the - 4- category of sequences (see Cambouropou- 
los, 1996a, for the application of the L B D M  rules to the local detail examples 
of Lerdahl and Jackendoff's grouping theory). The formulation of the bound- 
ary discovery procedures defined by Tenney and Polansky and Lerdahl and 
Jackendoff are specific instances of the proposed theory. The boundaries in 

a. scale-step ints b. start-time ints c. dynamic ints d. rest intervals 
(16th = 1 unit) (ppp=l , /~ -8 )  (16th = 1 unit) 

2 ~ /~ d d 
in t e rva l s  1 3 1 4 8 4 0 3 0 0 2 0 

+ -, t + - ~- 
'-' values 1 2 3 2 1 2 1 2 
'+' values 2 1 ~ l 2 1 2 1 
sum: 1 4 1 3 6 1 1 4 1 l 4 1 

A A A A 

Fig. 4. Examples of boundary strengths (last row) determined by the LBDM 

the examples of Fig.4 are detected by Tenney and Polansky's and Lerdahl 
and Jackendoff's methods whereas their models do not suggest any bound- 
aries for the examples in Fig.5. In contrast, the LBDM suggests ambiguous 
boundaries for all the examples of Fig.5 (such ambiguous boundaries may 
be resolved if higher-level grouping organizational principles are taken into 
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account). The above procedure is realized for every parametric interval pro- 

intervals 8 8 4 ~ ~ Z Z 1 1 1 1 J ~ 

0 + - 0 0 + 0 0 - 0 , ,0  
boundary 0 4 4 2 0 2 1 0 1 3 2 0 
strengths A _ . ^  ^ ~  

Fig. 5. Examples of boundary strengths (last row) determined by the LBDM. These 
are ambiguous boundaries which may be resolved if higher-level organizational prin- 
ciples are taken into account 

file of interest. Then the total sum of all the numeric strength sequences is 
calculated (weighted or not). The local peaks are the points in a melodic 
sequence at which boundaries may preferably appear. In Fig.6 the preferred 
grouping structure is presented for Mozart 's opening of the Symphony in G 
minor. The boundary strengths for each parametric interval profile are cal- 
culated and then added to produce the total boundary strength sequence A. 
Sequence B is given by a refined version of LBDM which takes in account the 
degree of difference between two intervals and other factors discussed in Cam- 
bouropoulos (1996b). LBDM has been successfully applied to many kinds of 
melodic surfaces - from traditional tonal melodies to contemporary atonal 
surfaces; see Figs.8-9 and also Cambouropoulos (1996a). This method can 
be further enriched if, for example, harmonic chord distance or scale-degree 
tonal distance profiles of the melodic surfaces are incorporated. 

4 P h e n o m e n a l  A c c e n t u a t i o n  S t r u c t u r e  

In this paper it is maintained that local grouping and phenomenal accentua- 
tion structures are not independent components of a theory of musical rhy thm 
but that  they are in a one-to-one relation, i.e. accentuation structure can be 
derived from the grouping structure and the reverse. If, for instance, one de- 
velops an elaborate model of local grouping structure (such as LBDM) then, 
from this, the accentuation structure can automatically be inferred. This hy- 
pothesis is fundamentally different from much common practice whereby one 
set of rules are given for the detection of grouping boundaries and a different 
set for the determination of accents of musical notes. 

The above hypothesis is based on the observation that group boundaries 
are closely related to the accented/salient events between which they occur. 
A perceived boundary in a given continuum indicates that the elements that  
delimit it are more prominent than other events further away. Epstein states: 
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3d 2a 3c 2a 
2b ~ 3a ~ ~ ~ 3d 
V V V  V V V V V 

start-time ints: 0 - + 0 - 
0 3 6 1 3  

sca le -s tepints :  + - 0 + - 
2 2 2 2 2  

rests (slurs): + 0 + - 0 
1 2 2 2 2  

T o t a l :  A.  3 7 I 0 5 7  
^ 

B.  

+ 0  - - + 0 + 0 -  + 0  - + 
6 1 3 5 6 1 3 6 1 3 6 I 3 5 6 

0 + - + 0 + - 0 + - 0 + 0 
2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 

+ - + - + 0 + - 0 + - + + 
2 2 4 2 4 2 2 2 2 2 2 2 4 2 4 

10 5 9 11 12 5 5 10 5 7 10 5 9 9 12 
A A A A A 

.4 1.72.8.51.72.8 .5 2.3 2.6 5.7 .6 1.7 2.8.51.72.8.5 I]8 2.5 4.9 
2.8 2.8 5.7 2.8 2.8 4.9 

5,7 4.9 

(1) 

(1) 

F ig .  6. Low-level grouping structure for the theme of Mozart 's  Symphony in G mi- 
nor. The boundary strengths sequence A is determined by the LBDM whereas se- 
quence B is determined by the refined version of LBDM described in Cambouropou- 
los (1996a) 

" D e m a r c a t i o n  in effect m e a n s  emphas i s  - the  emphas i s  requi red  at  t ha t  mo-  
m e n t  when a bo rde r  of  some t ime  segment  is to be de l inea ted"  (Epste in ,  

1995, p.24) .  

In  F ig .7  the  local  b o u n d a r y  s t r eng ths  are  given accord ing  to  the  Local 
Boundary Detection Model. It  is hypo thes ized  t ha t  if  the boundary strength 
values are  added for every  two successive intervals the local accentuation 
structure of the surface is revea/ed.  T h e  local  m a x i m a  in th is  sequence of  
accent  s t r eng ths  ind ica te  the  e lements  in the  surface t h a t  a re  perceived as 
be ing  more  p rominen t .  In  pa r t i cu la r ,  the  events  de l im i t ed  by  two approx i -  
m a t e l y  equal  local  b o u n d a r y  values (e.g. F ig .7d)  are considered to  be mos t  
sa l ient ,  i.e. an  e lement  t h a t  is preceded and  followed by a s ignif icant  bound-  
a ry  ind ica t ion  ( ambiguous  b o u n d a r y )  t ends  to  be  u n a m b i g u o u s l y  h igh l igh ted  
in to  pe rcep t ion .  For  the  cases where the  two events  de l im i t i ng  a b o u n d a r y  
receive equal  (or a lmos t  equal)  accent s t r eng th  values (Fig.7c) there  is a gen- 
eral  t endency  to consider  the  e lement  t ha t  in i t i a tes  a g roup  as more  intense 
a l t hough  there  are cases where  this  i sn ' t  t rue  (Handel ,  1989, Chap .11) .  As  the  
p roposed  fo rma l  m o d e l  is considered mere ly  to  be c o m p l e m e n t a r y  to  o ther  
o rgan i za t i ona l  pr inc ip les  (e.g. met re ,  pa ra l l e l i sm,  s y m m e t r y ,  learned  s t ruc-  
t u r a l  s c h e m a t a  etc.)  these  ambigu i t i e s  a re  left  unresolved a t  th is  low level. 
For  example ,  a given m e t r i c a l  con tex t  for the  me lod ic  excerp t  of  Fig .7c  m a y  
assis t  in resolv ing  the  a m b i g u i t y  by  add ing  m e t r i c a l  accent  to  one or the  o ther  
of  the  two accented  notes.  The  accen tua t ion  s t ruc tu re  has  been ca lcu la ted  
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boundaries: 0 0 3 6 1 0 0 4 4 2 0 I ,4 1 0 0 1 7 7 I 0 
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accents: 0 3 9 7 0 4 8 6 1 5. 5 1 1 8 14 8 1 

F i g .  7.  Example s  of p h e n o m e n a l  accent  s t r e n g t h s  der ived f rom the  L B D M  b o u n d -  
a ry  s t r e n g t h s  by merely  add ing  every two ad jacen t  b o u n d a r y  s t r e n g t h  values 
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F i g .  8.  A c c e n t u a t i o n  a n d  met r ic  s t r u c t u r e  for t he  song Fr~re Jacques 
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Fig. 9. Accentuation and metric structure for the beginning of J.S.Bach's Concert 
for Harpsichord in D minor 

for a variety of melodic surfaces and has produced very reliable results. In 
Figs.8-9 the accentuation structure is presented for two melodic examples. 
The local m a x i m a -  and the relatively large numeric strengths - indicate the 
most accented events. Note that  most of the strong accents correspond to 
events that  a listener may perceive as most prominent and tha t  the ones that  
may be considered counter-intuitive (e.g. accent on the 4th quarter-note of 
Frbre Jacques) are due to the fact that  metrical accents and higher-level prin- 
ciples of organization have not been taken into account (especially for Frbre 
Jacques, parallelism/repetition plays a paramount  role in the determination 
of grouping structure). 

In the next section it will be shown that  the rudimentary phenomenal 
accentuation structures revealed with the help of the simple mechanism de- 
scribed above may be sufficient for the derivation of the melodic metrical 
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structures - whenever such metrical structures do exist. This further supports 
the validity of the proposed method for determining accentuation structures. 

5 M e t r i c a l  S t r u c t u r e  

Musical time is structured around a cognitive framework of well-formed hi- 
erarchically ordered time-points (at least for metric/ tonal  music). Metri- 
cal structure is an abstract system of reference that  facilitates the order- 
ing/structuring of sequentially emitted/received musical events (Clarke, 1987). 

A metrical structure consists of a number of levels of steady patterns 
of beats (the beat level at which listeners might tap their foot or clap their 
hands will be referred to as the tactus). The simplest and most natural  tactus 
is when beats are separated by equal time-span units and are delivered at a 
rate in the neighborhood of 1.7 beats/sec (not much slower than 1 beats/sec, 
not much faster than 4 beats/sec) (Handel, 1989). It is possible though to 
have a tactus where beats are separated by non-regular time-span units as in 
much of the traditional music of the Balkans (e.g. dance songs in 7/8 metre 
are usually danced/clapped at 1.5:1:1 beat time-span ratios). Time-spans be- 
tween beats may be further divided into smaller units down to the elementary 
unit or fastest pulse (Seifert, Olk, & Schneider, 1995). Above the tactus beats 
may be organized into larger measures (usually in regular binary/ternary pat- 
terns) and, often, into even larger hypermeasures. In Fig.10 some well-formed 
metrical structures are presented. It should be noted, though, that  some mu- 
sic doesn't have metric structure at all (e.g. much contemporary music) or 
only a tactus without higher-level metrical hierarchies, e.g. much of African 
music - see Arom (1991). 

A metrical hierarchic grid may be matched onto the accentuation struc- 
ture of a musical piece (more on template-matching models in Parncutt ,  
1994). It is asserted that  if the grouping/accentuation structure of a piece has 
been defined then the most appropriate metrical structure may be induced. 
But, conversely, the metrical structure - once a listener has made a selection 
- strongly influences and resolves ambiguity in the grouping/accentuation 
structure. Metrical accents are added onto the accentuation strengths and 
thus regulate the grouping structure of a piece. Metre is not simply a mental 
artefact induced from the music but actually has an autonomous psycho- 
logical existence that  is developed within a cultural context and influences 
actively the way music is performed/perceived (see Clarke, 1985, for an ex- 
periment that  highlights the influence of different metrical frameworks on the 
performance of the same melody). 

Let's examine now how a metric grid may be matched onto a given accen- 
tuation structure. Computational models of the perception of metre - mainly 
for plain sequences of inter-onset intervals - are described in Lee (1991), 
Longuet-Higgins and Lee (1982, 1987), Povel and Essens (1985), Rosenthal 
(1992), and Steedman (1977). In the current model, the total accent strength 
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Fig. 10. Examples of well-formed metrical grids 

that  corresponds to a given metric grid can be calculated by adding the ac- 
cents of all the events whose inception coincides with the points of the grid. 
If between different positions/displacements of a metric grid one finds a sig- 
nificantly greater total value, then this is considered to be the best fit. If the 
various placements of a grid receive similar values, then metrical ambiguity 
is suggested as to that  grid. 

The two examples presented above (Figs.8-9) are taken from the Western 
metric/ tonal musical tradition, so we would expect that  a regular metre of 
binary/ternary beat patterns would be appropriate (Figs.10a-10b). For both 
of these examples we consider that  the tactus appears at the quarter-note du- 
rational value (depends on the tempo). Below is a discussion on the metrical 
structure of these two melodies. 

In Fig.8 we see that  at the half-note metric level the total accent strength 
(indicated at the end of each metric grid) of the binary grid that  starts on 
the first note is much stronger than that  of the one that starts on the second 
quarter-note. This agrees with the metrical perception listeners have and the 
way metre is indicated on the score. Ternary metrical grids do not suggest 
any strong preferences (and obviously parallelism considerations would im- 
mediately rule them out). Once a binary grid is established, we can examine 
the next metric level of a whole-note grid. There is no strong preference (there 
is ambiguity) between the two possible arrangements although the one that  
starts on the third note is slightly preferred i.e. if articulation and the song 
word prosody are not taken into account the structure of the piece suggests a 
gavotte-like metre (bar-lines shifted to the right by two quarter-note beats). 
Interestingly enough, the prosodic structure of the Greek version of the song 
adheres to this alternative metrical structure. 

The first six bars of Bach's Concert for Harpsichord in D minor (Fig.9) are 
already ambiguous at the tactus; the metrical structure becomes clear only 
after the seventh bar. The quarter-note beat grid that  starts on the first note 
and the one that  starts after an eighth durational value have almost the same 
total accent strengths (the ambiguity is maintained at the half-note level as 
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well). The first two notes are heard as an upbeat  and the listener makes 
a first selection of a metrical structure that  considers the 3rd, 5th and 7th 
notes as metrically stronger. This assumption is overturned in bar 2 - where 
the metrical grid is in-phase with the metre indicated on the score - and 
the beginning of bar 3 is perceived as a suspension. But as more information 
arrives there is a tendency to shift the metre again and place strong metrical 
beats on the suspended notes. The section that  comprises of sixteenth notes 
is metrically ambiguous. The second half of bar 5 and the first half of bar 
6 suggest a metrical structure that  conforms with the metric grid that  is 
displaced/shifted by an eighth-durational value. From the second half of bar 
6 onwards the metrical structure becomes clear matching the metre indicated 
in the score. In Fig.9 (top) the melody has been segmented in such a way 
that  the accentuation strength difference in each segment is maximised for 
the two alternative positions. This metrical analysis seems to correspond to 
the metrical ambiguity that  the composer has intentionally implanted in the 
melodic surface and that  is perceived by the listener. 

6 C o n c l u s i o n  

In this paper a formal theory for the low-level rhythmic description of a 
melodic surface has been presented. The Local Boundary Detection Model is 
based on the Identity-Change and Proximity rules and detects points of max- 
imum change that  allow a listener to identify local boundaries in a melody. 
This model is more general than the grouping models of both Tenney and 
Polansky (1980) and Lerdahl and Jackendoff (1983); it can easily be im- 
plemented as a computer program and may readily be incorporated as a 
supplementary module to higher-level theories of rhythmic organization. 

It has also been maintained that  grouping and accentuation structures 
are very closely related. Once a grouping structure is defined, the accentua- 
tion structure emerges naturally and, from this, the metrical structure may 
be inferred. It is suggested that  the proposed theory is more economic and 
coherent than most theories of rhythm that  treat  grouping and accentuation 
structures as independent components. The evidence presented in this study 
accounts only for low-level structural features of grouping and accentuation 
organization. It may be the case that  at higher-levels of organization these 
structures may be partially independent and conflicting. It still is very inter- 
esting to see how much is embodied in and can be inferred from a well defined 
local grouping structure (namely accentuation and metrical structures). 
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