Musical Praxis, Vol 1, No 1 (1994) 41

Markov Chains
As an Aid To Computer Assisted Composition

Emilios Cambouropoulos

Abstract

In this article we introduce some fundamental features of Markov Chains and their use as a
mathematical means of encoding temporal or sequential information in computer-assisted
composition. Simple examples are presented at every stage, as well as a more extended
application on 16th century motet melody construction.

Introduction

In aleatory composition with computers two main classes of random processes have
been used by composers: random processes with independent observations and
processes in which the current outcome is influenced by previous results.

A simple way to generate a sequence of randomly distributed notes is by constructing a
spinner that is divided into a number of sectors each labelled with one note (e.g. 8
sectors with the 8 notes of the C major scale above middle C). By recording the
outcome of each spin, a random, totaly uncorrelated melodic sequence may be
produced:

A more sophisticated melodic surface can be generated if the next outcome depends on
the current pitch value. For this purpose we should construct 8 spinners, each used
only after a specific note has occured. For example:

current
note: C D E F G A B C'

i .®

In this case, if we suppose that the first note is a C, we could have melodic sequences
as the ones shown below:
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One can discern an obvious control over the melodic progression in contrast to the first
random melodic sequence. The second mechanism described above is said to be a
Markov chain.

Definition of Markov Chains

A probability process whose outcomes are functions of time (stochastic process) is said

to be a finite Markov Chain! if a sequence of outcomes satisfy the following two

properties:

a. Each outcome belongs to a discrete finite event space {e1 ,&2, €3...6m }

b. The next outcome depends only on the current event and not on any other previous
outcomes.

If the outcome of the nt trial is ; , then we say that the system is in event e; at the nt
step (or at time n). For each pair of events (g; ,¢;) the probability? pij» that e; occurs
immediately after e; occurs, is defined. The transition probabilities p;; can be arranged
In an mxm matrix :

P11 P12 - Pim
P21 P22 .- P2m

Pm1 Pm2 --- Pmm

If the system is in event ¢j then the i row (p;1,pi2..-Pim) Of the matrix P, presents the
probabilities of all the possible events of the next trial (probability vector). Each
probability takes a value within the interval 0<p;;<1 and the sum of the probabilities of

m
each row is equal to one, i.e. 2pjj=1.
§=0

The transition probabilities of a Markov chain depend on the events i,j and on time t. In
most applications (everywhere in this article) transition probabilities do not depend on
time (pjj) and in this case we speak of a Markov chain with stationary transition
probabilities or of a homogeneous Markov chain.

In our 8-spinner example, the event space is the C major scale i.e. {C, D, E, F, G, A,
B, C'}. Each spinner represents all the transition probabilities for the next event
(probability vector) after one specific note of the event space. For example, after C
each of the notes C, D, E, G, C' can occur equiprobably (equal arcs on spinner) with
transition probabilities p=0.2 (i.e. 20%) and notes F, A, B can never occur, p=0. So
we have the probability vector for note C:

pc= (02, 0.2, 0.2, 0, 0.2, 0, 0, 0.2)
Similarly we get the probability vector for note D:

pp=(0.2, 0, 0.4, 0, 0.4, 0, 0, 0) etc.

1 For the purposes of this article we will consider Markov Chains with discrete time parameter i.e.
time will take positive integer values (t=1,2,3...). Instead of time values we can speak about sequence
of steps (n=1,2,3...) of the process.

2 The transition probabilities of a Markov chain depend on the events ij and on time t. In most
applications {everywhere in this article) transition probabilities do not depend on time (pjj) and in this
case we speak of a Markov chain with stationary transition probabilities or of a homogeneous Markov
chain.
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The probability vectors for each note can be arranged in a transition matrix:

next note

CE DA W R SEPARE B T
C|.20.20].20 ©|,20]l O O}.20
D|2|0 (40|00 |4|0|0]0

E b Oales0d SO eSO EL [0y 0,150

present F [20|0|40]|0[40]0]0]0
mote ¢ |20|0|0|30|30|20/0]0
A S0P 0% 0 TOTFO L 0
Bl{ojofofo|ofo|of1
cloflo|lo|o|o|.s0|50f0

The transition probabilities of a Markov chain can be represented by a transition
diagram (or kinematic diagram):

Event Space

Event spaces of different kinds have been defined by composers that use stochastic
processes for musical composition. For the introductory example of this article our
event space consisted of the notes of the C major scale. An event space may be made
up of any fundamental compositional set of ordered elements such as pitches,
durations, intervals, chords, motives, dynamic levels, timbre qualities, sound
complexes, natural sounds, sound synthesis elements etc. On the other hand, the
events of an event space may be defined not as single static entities but they may
themselves be dynamic processes (e.g. stochastic processes like Markov chains with
different event spaces each). The events may depend on sets of parameters each
manipulated by various computer techniques. This way one can organise musical
material in more than one levels.



In the computer program "Synthetis" we have implemented Markov chains for the
rhythmic progression of a composition. The user inputs a set of rhythmic patterns for
each part separately which are processed in a Markovian manner and defines other
parameters for melodic and harmonic progression manipulated by other techniques.
For example, in the beginning of the following three part composition, the rhythm
event space for the soprano was defined as indicated below:
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Properties of Markov Chains

An event ¢; is said to be reachable from €; (e;—¢;) if it is possible for the chain to reach
e; from e; in a finite number of steps. Two events ¢; and e; communicate (e;¢>e;)) if

they are both reachable from eachother. Then the relation ej¢>e; is an equivalence
relation:
a) ej¢>¢; for each state e
b) if ej¢>e; then ej¢>e; and
c) if ej¢>e; and e;¢>ex then e;6re.
The events of a Markov chain can be partitioned 1nto equivalence classes of

communicating events. One event may be reachable from an event of a different
equivalence class but the two can not communicate.

In the Markov chain example presented previously we see that e.g. notes A and C'
communicate (A<>C'") because A—B—C' and C'—A whereas A is reachable from G

but not the other way round (i.e. they don't communicate) because G—A but from A
we can never reach G again. Events (e.g. note A) that once reached are certain to occur
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again are said to be recurrens and the equivalence class they belong to recurrent class.
A recurrent class with only one event is said to be an absorbing event. Events that have
a possibility of not occuring again (not recurrent) are said to be transient and the
equivalence class they belong to transient class. Every Markov chain consists of
recurrent (at least one) and mansient classes (optional).

Once a process enters a recurrent class it can never leave it whereas once a process
exits a transient class it can never re-enter. A Markov Chain that contains only one
recurrent class (not periodic) and probably some transient classes it is called ergodic. If
it contains one and only one recurrent class is called irreducible.

The Markov chzin we hawve illustrated previously is an ergodic Markov chain that
consists of one reccurent and one transient class. We can rewrite the recurrent class in a
separate matix (it is mades up from the last three columns of the last three rows of the
original matrix) which alone describes an irreducible Markov chain:

010
001
550

A classic Markov Chain example (Random Walk)

Consider a man standing on 2 staircase on a step between the first step e; and the 8th
step eg being able to climb up or down by one step at a time. If he has a probability p to
go upwards, he will go downwards with a probability g=1-p (if p=0.5 then g=0.5 and
it is equiprobable 1 go up or down). When he reaches the top or the bottom of the
staircase, he is sent wowards

P =

the opposite direction. This 01000000
case 1s said to be a random walk q0p000O0O
with reflecting boundaries and the 0qO0Op00O0O
transition matrix is given by Py Pi={00q0p000O0
000q0po00
This random walk is an frreducible 0000q0pPO0
Markov chain (only one recurrent 00000q0DP
class). If the event space is the 00000010
C major scale we get sequences of notes as shown below:
jl’ _‘_ﬁl s 7 'A 7 #ﬁ L ri 'A I__'Z_’ e - 1 1 1 L) !
Consider the case where the man remains permanently at the top or the bottom of the
staircase when he reaches
there. This process is 2 10000000
random walk with absorbing qgO0p00O0O0O
bourdaries and its wansition 0qO0p00O00O0
matrix is given by P> P,={00q0p000O0
000q0po0o0
This Markov chain is non-ergodic 0000q0p0
as it consists of two absorbing 00000q0DP
events e;.eg (recurrent classes) 00000001

and one transient class (e;...e7).

Random walks can be used for musical applications in which small gradual changes
over the musical material are required (e.g. dynamic levels, sonic structure parameters
etc.)



Higher Transition Probabilities and Stationary Distributions

The one-step transition from e to €; is given by the probability pjj. The transition from

€i {0 €j in n-steps (ei—>ek1 ek —>€k3...—€k,1—¢;) is denoted by the probability p;™.
If P is the transition matrix of a Markov chain then the n-step transition matrix is given
by the nth power of P, i.e. PM=Pn,

Example: For the 3x3 irreducible matrix P for notes { A, B, C'} what is the probability
to receive a B note after an A that occured 5 stages earlier, PAg® ?

010 0inl-a04] 1,010 010
P=|0 0 1 Hence3, P@=0 0 1{-{0 0 1|={5.5 0
550 S=:5-011:555.0 0.5.5

0 5. .5 25 .25 .50

P& =p2) .p2) =|25.25.5 P& =P P& =25 50 .25

25.5°25 125 .375 .50

So we get Pop® =0.25 that is 25%.

We note that in matrix P©) all entries are positive. Therefore a transition can be made
between any two events in 5 steps, so this Markov chain is proved to be irreducible.

It can be shown that for an irreducible Markov chain, in the long run, the probability of
occurence for any event e; is stationary and is given by the component t; on the unique
fixed probability vector t of matrix P.

010
001
550
that means that in the long run note A will occur 20% and B and C' 40% of the time
each.

Example: For matrix P = the unique fixed vector is found to be t = (.2, 4, .4)

3 Marrix multiplication for mxm matrices A and B:

a1l alm b1y b1 .. Pim c11 Clm
aj] Am | ] e = Gjj
aml amm bm] bmj -+ Pmm ml Cmm
m
where cjj = aj1b1j + 2i2b2j + ... + aimbmj =k§1 ajkbk;j
th

L.e. the ij-entry is obtained by multiplying the elements of the i
th column of B and then adding.

row of matrice A with the corresponding
elements of the j
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"Memory" of Markov Chains and Higher Order Processes

According to the definition of Markov chains the current event depends explicitly only
on the previous one. On the other hand, we note that there is a weaker indirect
dependence on more than just the previous event. If event ¢; is followed by e; with
probability p;; and €; by ex with probability pjx then the probability that e; will be
followed by ¢; and then by ey is pjjx and is given by the relationship p;j=p;;pjx. For
example on the 8-spinner matrix note E is followed by F with probability 0.5 (i.e.
50%) and F followed by C with probability 0.2 (i.e. 20%). The probability then of

having the whole sequence F=>G—C is prgc=0.5 :0.2=0.1 (i.e.10%).

It is therefore obvious that the current event depends on earlier outcomes as well. This
influence strongly decreases the more distant a previous event is.

It is possible to define higher order processes in which the current event depends
explicitly on more than one of the previous events. For example, in a 2nd-order
process, the current event depends on its two previous events. Its transition
probabilities can be represented by a 3-dimensional matrix (on one axis the current
event, on the other the last and on the third axis the second-to-last event). Higher order
processes result in structures with greater coherence and regularity of succession. As in
traditionally composed scores a current event usually depends on previous events in a
stronger manner than a simple Markov chain designates, it is often practical or even
necessary to implement higher order processes.

Justification and Criticism on the use of Markov Chains

The use of Markov chains in computer-assisted composition has been criticized by
composers as producing musical texts that are too regular in the long run and that there
is no phrase structure and hierarchical control on the musical material. Classical
musical scores (e.g. by Bach, Beethoven etc.) have been statistically analysed and then
reproduced using Markov chains or higher order processes. The music produced by
such stochastic methods seems at first similar to the original score but in the long run
there is no actual relationship to the initially analysed musical material.

These observations are rather obvious as, by definition, a Markov chain is a unilevel
probability process (no hierarchical multilevel control) and, more specifically, an
irreducible Markov chain (the most commonly used) has stationary transition
probabilities in the long run (as we have mentioned before). Trying to reproduce
classical scores using only microstructural techniques, ignoring higher structural
organisation is obviously doomed to failure.

Composing with the computer requires a very accurate set of controlling mechanisms
on many levels which contain a great amount of data (much of this data is considered
for granted by a human composer and is used in classical score writing with out even
been realized). Markov chains are a convenient way to reduce information that
concerns the succession of musical material (in some level) into a formalized
mathematical process that can easily be implemented on the computer. They can
successfully be used to control the temporal or sequential flow of events from the
microstructural level up to the overall formal level. More than one levels can be
simultaneously manipulated by using Markov chains within Markov chains and so on.
Alterations on the evolution of musical progression can be achieved by using transient
classes till a recurrent class is finally reached.

If used in combination with other methods (generate and test methods, deterministic
methods, grammars, transition networks, other stochastic techniques etc.) Markov
chains can prove to be a very useful tool into computer composition.
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An Application for 16th century Melody Construction

We will now present a practical application of Markov chains into the synthesis of
melodic surfaces according to the style of Palestrina. We chose the style of early
counterpoint (motets) as the microstructural features of composition of this era
dominate over higher level organisation (in opposition to the multileveled structures of
classical tonality).

The fundamental Tules of melodic construction can be summarised as follows:

1. Rhythmic structure
a. Metres in use: 4/2 and 3/2 (less common)
b. Basic time-values? inuse: &+, 8 » -, &, 4
(In this application we have omitted 1 , ¢ ). The dotted values are always a
time-value tied with its half and not the opposite (i.e. o- = ~d never 4o )
c.Succession of time values:
i. Quarter notes come in pairs in the place of half-note beats
ii. Never two quarter notes alone in a stressed half-note

2. Melodic structure
a. Notes are selected from one of the authentic modes (in this application without
key-signature)
b. Allowed intervals: 2nd  3td 4th 5t mipor g4, §th
No augmented or diminished intervals allowed
¢. Succession of intervals:
i. The minor 6% and 8t are preceded and followed by a 2" in the opposite
direction
ii. Never two or more consecutive melodic leaps in the same direction
iii. During an ascending succession of notes a melodic leap (if there is one)
will always be at the beginning. Exception: inverse cambiata
iv. During a descending succession of notes a melodic leap (if there is one)
will always be at the end
v. A syncopation is always followed by a 27d descending interval
vi. Never an ascending melodic leap after a stressed quarter-note
vii. Never a descending melodic leap after a weak quarter-note
viii An ascending succession of notes can never end on a weak quarter note
d. Accidentals
The note B can be replaced by bB (musica ficta) as long as melodic
intervals before and after conform with rule 2b
e. Overall melody
i. Starts and ends on the tonic degree (for one part compositions)
ii. The second-to-last note (leading note) is preceded and followed by a 274
interval and is sharpened for the Dorian, Mixolydian and Aeolian modes
(in the Phrygian mode the second-to-last note is the supertonic)
iii. Only one peak for each phrase.

4 Time-values have been seperated into two categories depending on whether they occur on a strong or
on a weak half-note beat, This is necessary as we can make distinctions as the following:

1. a whole-note on a weak beat is a syncopation

2. a dotted whole-note on a strong beat is a syncopation

3. a dotted whole-note is not allowed on a weak beat (- = ¢°e). We also make the distinction
between strong and weak quarter-notes.
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Most of these rules along with statistical analyses concerning the succession of time-
values and melodic intervals (from Palestrina motet melodies) can be represented by a
Markov chain and some transition tables. We implemented a Markov chain for the
succession of time-values and depending on the previous time-value we constructed
transition tables for the selection of the pitch of the current note. Probability values p=1
indicate compulsory progression of the mechanism according to the rules and for
O<p<1 we have probabilities taken from the statistical analysis of a small sample of
Palestrina melodies.

Of course, there are quite a few matters that have to be taken care of by different
algorithmic approaches. It is obvious that things such as the start or final cadence or the
peak of the melody need different techniques. Or the balance of the melody in the
middle range of the particular voice range needs special boundary treatment (e.g. by
incrementing probabilities for opposite direction melodic leaps etc.).

But even details of the microstructure are not covered by the Markov chain (1st order
process). For example, the cambiata or inverse cambiata figure needs at least a 3rd
order transition process (it consists of 4 notes) or some special deterministic method
that will interrupt the flow of the Markov chain. Or, in order to avoid having two
quarter notes alone in a stressed half-note beat, we have forced the Markov chain to
give another consecutive pair of quarter notes. But this might not be necessary as other
quarter-notes may have preceded the strong beat pair. Again this problem is
automatically solved by a 214 order process or some other algorithmic method.

We can see below a melodic surface generated by the mechanism described above:
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The following matrix describes the time-value Markov chain:

current time-value

strong beat weak beat

ool e J
STo-lololo|o|o]|of|os|wlmw]o
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. 2300000000001
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s gﬁooooo1o 0|00
¢ |d[o]ololo]o]0 1 ]o
:'n ‘g_o oclolololo|o 1005|750} O
: lin.oooool olojo|o|oO
1; E oj os|40|d0 |40fos|0|0|O|0O[O]|O
’ ?iloooooooooo1
L‘J ,05|,05|05|40(45/0|0|0|0 0|0

This chain generates the sequence of time-values for a melody. For each time-value the
program selects one pitch according to one of the four interval transition tables (see
next page). The interval table used, depends on the previous time-value (depicted in
rhombus).  For example, if the previous time-value was a weak whole-note (i.e. we
have a syncopation), for the current time-value selected by the Markov chain process
the transition table for syncopations (next page bottom left) is used, which actually
forces the meledy to descend by a 2nd interval. Or, if the previous time-value was a
stressed quarter note (p ), for the current time-value the corresponding table (upper
right) is used.
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The four transition tables below are used for the selection of the current melodic
interval (gives current pitch), depending on the time-value of the previous note. The
bottom left table for syncopations can be replaced by a simple routine that gives a
descending 2™ interval. (In the tables: t for ascending intervals, | for descending).
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Conclusion

In this article we investigated the use of Markov chains as a mathematical means of
encoding information relating to temporal or sequential progression of the musical
material. Such mathematical processes can prove to be effective tools, used under the
guidance of musical theory, to formulate computer models for classical or
contemporary compositional purposes.
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