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ABSTRACT 

Listeners are capable to perceive multiple voices in 
music. Adopting a perceptual view of musical ‘voice’ 
that corresponds to the notion of auditory stream, a 
computational model is developed that splits musical 
scores (symbolic musical data) into different voices. A 
single ‘voice’ may consist of more than one 
synchronous notes that are perceived as belonging to 
the same auditory stream; in this sense, the proposed 
algorithm, may separate a given musical work into 
fewer voices than the maximum number of notes in the 
greatest chord. This is paramount, among other, for 
developing MIR systems that enable pattern recognition 
and extraction within musically pertinent ‘voices’ (e.g. 
melodic lines). The algorithm is tested against a small 
dataset that acts as groundtruth. 

1. INTRODUCTION 

Recently, there have been a number of attempts [3, 5, 9, 
10, 11, 12, 13] for the computational modelling of the 
segregation of polyphonic music into separate voices. 
Much of this research is influenced by empirical studies 
in music perception [1, 6, 7] as well as by musicological 
concepts such as melody, counterpoint, voice-leading 
and so on.   

It appears that the term ‘voice’ has different 
meanings for different research fields (traditional 
musicology, music cognition and computational 
musicology). A detailed discussion is presented in [1]. 
A single musical example is given in Fig. 1 that 
presents three different meanings of the term voice. 

 
Figure 1 How many voices in each example?  

Standard understanding of the term voice refers to a 
monophonic sequence of successive non-overlapping 
musical tones; a single voice is thought not to contain 
multi-tone sonorities. However, if ‘voice’ is seen in the 

light of auditory streaming, then, it’s clear that the 
standard meaning is not sufficient. It's possible that a 
single monophonic sequence may be perceived as more 
than one voice/stream (e.g., pseudopolyphony or 
implied polyphony) or that a passage containing 
concurrent notes may be perceived as a single 
perceptual entity (e.g., homophonic passages in Fig.1c).  

The perceptual view of voice adopted in this study, 
allows for multi-tone simultaneities in a single ‘voice’, 
while bearing the most significant difference of the 
proposed model with existing ones. In Fig. 1, all 
existing algorithms (see exception regarding Kilian and 
Hoos’s algorithm in the next section), that are based on 
purely monophonic definitions of voice, would find two 
voices in the second example (Fig. 1b) and three voices 
in the third example (Fig. 1c). It is clear that such 
voices are not independent voices. In terms of harmonic 
voices, all examples can be understood as comprising of 
three voices (triadic harmony). In terms of perceptual 
voices/streams, each example is perceived as a single 
auditory stream (harmonic accompaniment); it makes 
musical sense to consider the notes in each example as 
a single coherent whole, as a unified harmonic 
sequence. The proposed algorithm determines a single 
‘voice’/stream in all three examples. 

In this paper, initially, a number of recent voice 
separation algorithms are briefly described and their 
main differences to the current proposal are 
highlighted. Then, the fundamental auditory streaming 
principles, forming the basis of the proposed model, are 
presented. The description of the proposed algorithm 
follows, concluded by evaluation of the algorithm and 
results on ten different musical works. 

2. RELATED WORK 

Voice separation algorithms such as [3, 5, 10, 11, 
12, 13] assume that ‘voice’ is a monophonic sequence 
of successive non-overlapping musical tones. The 
underlying perceptual principles that organise tones in 
voices are the principles of temporal and pitch 
proximity (cf. Huron’s [7] Temporal Continuity and 
Pitch Proximity principles). In essence, these models 
attempt to determine a minimal number of monophonic 
lines/voices such that each line consists of successions 
of tones that are maximally proximal in the temporal 
and pitch dimensions.  
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Kilian and Hoos’s [9] model is pioneering in the 
sense that multi-note sonorities within single voices are 
allowed. The pragmatic goal of the algorithm is the 
derivation of reasonable score notation - not 
perceptually meaningful voices (see [9], p.39). The 
results are not necessarily perceptually valid (e.g., a 4-
part homophonic piece may be ‘forced’ to split into two 
musical staves that do not correspond to perceptually 
pertinent streams). The algorithm does not discover 
automatically the number of independent musical 
‘voices’ in a given excerpt; if the user has not defined 
the maximum number of voices, the algorithm 
automatically sets the maximum number equal to the 
maximum number of co-sounding notes – in this case 
the algorithm becomes similar to all other algorithms 
mentioned above (see discussion in [8]). 

3. PERCEPTUAL PRINCIPLES FOR VOICE 
SEPARATION 

Bregman [1] offers an in depth exploration of processes 
relating to perceptual integration/segregation of 
simultaneous auditory components. Coordinated and 
synchronously evolving in time sounds tend to be 
perceived as components of a single auditory event.  
Concurrent tones that start, evolve and finish together 
tend to be merged perceptually. The proposed principle 
(below) relates to Huron’s Onset Synchrony Principle 
[7] but it differs in a number of ways as discussed by 
Cambouropoulos [2]. 

Synchronous Note Principle: Notes with synchronous 
onsets and same inter-onset intervals IOIs (durations) 
tend to be merged into a single sonority. 

The horizontal integration of musical elements 
(such as notes or chords) relies primarily on two 
fundamental principles: Temporal Continuity and Pitch 
Proximity [7].  

It is suggested, that a voice separation algorithm 
should start by identifying synchronous notes that tend 
to be merged into single sonorities and then use the 
horizontal streaming principles to break them down 
into separate streams (most algorithms ignore the 
vertical component). This is an optimisation process 
wherein various perceptual factors compete for the 
production of a ‘simple’ interpretation of the music in 
terms of a minimal number of streams. 

4. VISA: THE VOICE 
INTEGRATION/SEGREGATION ALGORITHM  

This section describes the proposed voice separation 
algorithm VISA. 

4.1. Merging Notes into Single Sonorities  

During vertical integration, according to the 
synchronous note principle, we have to determine when 
to merge concurrent notes and thus require a merging 
criterion. 

Given a set of concurrent notes S, the algorithm 
examines the frequency of appearing concurrency in a 
certain musical excerpt (window) around them. If 
inside the window most co-sounding notes have 
different onsets/offsets, then it is most likely that we 
have independent monophonic voices so occasional 
synchronous notes should not be merged. Thus, by 
having a user-defined threshold T that signifies 
frequency, if the ratio of concurrency is more than T, 
we merge the notes of S as a single sonority. 

4.2. The Algorithm 

The Voice Integration/Segregation Algorithm (VISA) 
receives as input the musical piece in the form of a list 
L of notes that are sorted according to their onset times, 
a window size w, and the threshold T. The output is a 
set of lists V (initially empty). After termination, each 
list contains the notes of each detected voice, sorted by 
onset time. Notice that VISA does not demand a-priori 
knowledge of the number of voices. The proposed 
algorithm is illustrated in Fig. 2. 

 

Figure 2 The VISA algorithm. 

In VISA, a sweep line, starting from the beginning 
of L, proceeds in a step-wise fashion to the next onset 
time in L. The set of notes having onsets equal to the 
position of the sweep line is denoted as sweep line set 
(SLS). Next, every SLS is divided into clusters by 
partitioning the notes in the SLS into a set of clusters C. 
The ClusterVertically procedure, detects contextual 
information, accepting, thus, w and T as parameters. If, 
based on context, we decide to merge concurrent notes, 
each cluster contains all notes with the same IOI. 
Otherwise, if merging is not decided, each cluster 
contains a single note. 

Given the set of clusters, C, a bipartite graph is 
formed in order to assign them to voices, where one set 
of vertices corresponds to the currently detected voices 
and the other set corresponds to the clusters in C. 
Between every pair of vertices in the graph, we draw an 
edge to which we assign a cost. Having determined the 
cost on every edge, we can solve the assignment 
problem by finding the matching with the lowest cost in 
the bipartite graph. Two cases are possible: (i) If |V| < 
|C|, then we match voices to clusters. This is done by 



  
 

 

assigning to each of the currently detected voices a 
cluster, in a way that the total cost is minimised. The 
remaining clusters that have not been assigned to a 
voice constitute new voices that are added to V. This is 
handled inside procedure MatchVoicesToClusters. (ii) 
Conversely, if |V| ≥ |C|, we match clusters to voices, i.e., 
each cluster is assigned to one of the currently detected 
voices, in a way that the total cost is minimised. 
Nevertheless, a matching may not be feasible, in which 
case new voices, enabling a matching, are created.  

Finally, we introduce two extra constraints to the 
problem of a matching; (a) voice crossing should be 
avoided and (b) the top voice should be minimally 
fragmented [12]. Section 4.3 presents more details for 
the inclusion of constraints in the matching procedure. 

4.3. The Matching Process 

For convenience, we convert the minimisation problem 
to an equivalent maximisation one. For this reason, the 
assignment of the cost w(eij) between a voice vi and a 
cluster cj is converted to max{ekl} – w(eij), where 
max{ekl} is the maximum edge cost determined for the 
specific instance of the matching problem (and this cost 
is due to the edge connecting voice vk and cluster cl) .  

(a) pair-wise costs
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(b) best matching (c) best crossing-free matching 
Figure 3 Maximum matching examples 

Traditional bipartite matching algorithms do not 
preserve the order of the matching. In our case, order 
preservation is important (voice crossing), formulating 
a new problem that can not be directly tackled by 
bipartite matching algorithms. Figure 3 illustrates three 
voices, five clusters and the pair-wise cost for their 
assignment. A maximum weighted matching (Fig. 3b), 
with a total cost of 23 does not necessarily avoid voice 
crossing, while a crossing-free maximum weighted 
matching with cost of 22 is depicted in Fig. 3(c). The 
proposed matching can handle larger number of 
voices/clusters, and is based on [4].  

The matching process is depicted in Fig. 4(a), where 
each cell of the matrix M represents the total matching 
cost. The matrix is filled according to the recurrence 
equation (see [8]) of the dynamic programming. 

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

      c1   c2   c3  c4  c5

v1
v2
v3

(a) matching path

      c1     c2     c3    c4    c5

      v1     __     __    v2    v3

(b) final assigment  
Figure 4 The matching process 

The best matching cost itself does not provide for the 
assignment of voices to clusters. To determine the 
matching path (Fig. 4a) we perform a trace-back process 
starting at the cell which contains the best matching 
value.  In the trace-back process we never choose a 
vertical cell, since no gaps are allowed to be placed on 
the cluster sequence, meaning that all voices must be 
matched. The final assignment is given in Fig. 4(b). 

According to the previous discussion, the running 
time of the algorithm is O(n*m) (n>=2, m>=2) where n 
is the number of voices and m the number of clusters. 
Evidently, we need O(n*m) time to calculate all 
elements of the matrix M, and O(n+m) time to 
reconstruct the matching path. 

5. EXPERIMENTS AND RESULTS 

The proposed algorithm has been tested on ten pieces 
with clearly defined streams/voices which are used as 
groundtruth. The first six pieces include four fugues 
and two inventions by J.S.Bach; these polyphonic works 
consist of independent monophonic voices. Two 
mazurkas and a waltz by F.Chopin consist of a melody 
(upper staff) and accompanying harmony (lower staff). 
Finally, the “Harmony Club Waltz” by S.Joplin has two 
parallel homophonic streams (chordal ‘voices’) that 
correspond to the two piano staves. See excerpts in Figs 
5, 6, 7. 

In this pilot study, our aim is to examine if a single 
algorithm can be applied to two very different types of 
music (i.e. pure polyphonic music and music containing 
clear homophonic textures). All the parameters of the 
algorithm are the same for all ten pieces, while the 
number of streams/voices is determined automatically. 
It should be noted that for the pieces by Chopin and 
Joplin all other voice separation algorithms would 
determine automatically at least four different voices 
(up to eight voices) that do not have perceptual validity 
(and musicologically are problematic). 

 
Figure 5 Four independent streams/voices are present in this 
excerpt from the Fugue No.1 in C major, WTCI, BWV846 by 
J.S.Bach. The algorithm performs voice separation correctly 
except for the last five notes of the upper voice which are 
assigned to the 2nd voice rather than the first voice, as these 
are closer by a semitone to the last note of the second voice. 

 
Figure 6 In the opening of the Mazurka, Op.7, No.5 by 
F.Chopin, the algorithm detects correctly one voice (low 
octaves) and, then, switches automatically to two voices 
(melody and accompaniment). 



  
 

 

 
Figure 7 Two independent chordal streams/voices are 
correctly determined by the algorithm in this excerpt from the 
“Harmony Club Waltz” by S.Joplin; the only mistake is 
indicated by the circled note which is placed ‘erroneously’ in 
the upper stream (because of pitch proximity). 

The evaluation metrics used is the precision of the 
obtained result. For the previously described musical 
dataset, Table 1 shows the results. The effectiveness of 
the proposed methodology is evident by the high 
precision rates achieved for all ten pieces.  

 
Musical Work Precision 

J.S.Bach, Fugue No.1 in C major, BWV846 92,38% 
J.S.Bach, Fugue No.14 in F# major, BWV859 95,56% 
J.S.Bach, Fugue No.11 in F major, BWV 856 87,31% 
J.S.Bach, Fugue No.7 in E major, BWV 852 97,52% 
J.S.Bach, Invention No.1 in C Major, BWV 772 99.34% 
J.S.Bach, Invention No.13 in A Min, BWV 784  96.45% 
F. Chopin, Mazurka, Op.7, No.5 100% 
F. Chopin, Mazurka in A Minor, Op. 67, No.4 88.8% 
F. Chopin, Waltz in B Minor, Op. 69, No. 2 90.31% 
S. Joplin, “Harmony Club Waltz” 98.12% 

Table 1 Results in terms of precision for the dataset.   

The results were examined in detail (qualitative 
analysis). Most wrong results were given in cases where 
the number of voices changes and erroneous 
connections are introduced primarily due to pitch 
proximity (e.g., see last upper five notes in Fig. 5). 
Kilian and Hoos [9] address this same problem 
claiming that, in essence, it is unsolvable at the note 
level. A second kind of problem involves voice 
crossing. Since voice crossing is disallowed, notes at 
points where voices cross (in the Bach fugues) are 
assigned to wrong voices. A third type of mistake 
relates to the breaking of vertically merged notes into 
sub-sonorities and allocating these to different voices; 
in this case the breaking point in the sonority may be 
misplaced (e.g., circled note in Fig. 7). 

6. CONCLUSIONS 

In this paper, the notions of voice and auditory stream 
have been examined. It is suggested that, if ‘voice’ is 
understood as a musicological parallel to the concept of 
auditory stream, then multi-note sonorities should be 
allowed within individual ‘voices’.  It is proposed that a 
first step in voice separation is identifying synchronous 
note sonorities and, then, breaking these into sub-
sonorities incorporated in horizontal streams or 
‘voices’. 
 The proposed voice separation algorithm, VISA, 
incorporates the two principles of temporal and pitch 
proximity, and additionally, the Synchronous Note 

Principle, performing in the general case where both 
polyphonic and homophonic elements are mixed 
together. 
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