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Abstract

This paper proposes an efficient pattern extraction algorithm that can be applied on melodic sequences that are repre-
sented as strings of abstract intervallic symbols; the melodic representation introduces special ‘‘binary don’t care’’ symbols
for intervals that may belong to two partially overlapping intervallic categories. As a special case the well established
‘‘step–leap’’ representation is examined. In the step–leap representation, each melodic diatonic interval is classified as a
step (±s), a leap (±l) or a unison (u). Binary don’t care symbols are used to represent the possible overlapping between
the various abstract categories e.g. � ¼ s, � ¼ l and # ¼ �s, # ¼ �l. We propose an Oðnþ dðn� dÞ þ zÞ-time algorithm
for computing all maximal-pairs in a given sequence x ¼ x½1::n�, where x contains d occurrences of binary don’t cares and z

is the number of reported maximal-pairs.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, there have been different proposals in the literature to develop an effective music information
retrieval system. The goal of these proposals is to take advantage of appropriate computer science techniques.
For example, representing the musical surface as a string or set of strings may make it possible in some cases to
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Fig. 1. Melodic pattern-matching example (the pitches of this example are taken from Bach’s Well-Tempered Clavier, Book I, Fugue in
F# major).
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apply existing algorithms from the field of stringology. For instance, in order to discover similarities between
different musical entities or to establish motivic ‘‘signatures’’, music analysts may use algorithms that extract
repetitions from strings. Such similarities often involve finding approximate repetitions [11]. This requires
developing new approximation measures that meet musicians’ needs.

One commonly used representation for music is the numeric representation MIDI.4 For such a representa-
tion, different approximation measures have been developed, such as, d-, c- and {d,c}-approximate. For exam-
ple, in the d-approximate measure, equal-length strings consisting of integers match if each corresponding
integer differs by not more than d – e.g. a C-major {60,64,65,67} and a C-minor {60,63,65,67} sequence
can be matched if a tolerance d = 1 is allowed in the matching process. Using these approximation measures,
algorithms for finding approximate repetitions in musical sequences have been developed [1,8,9,18]. These
algorithms are based on approximate pattern matching techniques. For an overview refer to [10].

Although MIDI is the most common representation in the computational domain, it has certain well-
known shortcomings, for instance, many important musical properties are not explicitly represented (e.g. note
durations, accidentals, etc.) and almost all information on musical structure is lost. Therefore, different rep-
resentations have been proposed in the literature. For example, Hawley [17] proposed representing the musical
signal as a sequence of pitch intervals. In order to allow tolerance in interval matching, Ghias et al. [15] used
the reduced interval alphabet of the ‘‘melodic contour’’ representation. Lemström and Laine [20] proposed
classifying the intervals into seven partially overlapping classes: small, medium and large, up- or down-wards,
and prime.

In this paper, we propose an alternative method to using approximate pattern matching techniques for find-
ing approximate repetitions in a musical string. Our approach is based on using exact pattern matching tech-
niques to extract repetitions from an abstract level of a musical sequence. As an abstract representation, we
will use the ‘‘refined contour’’ (or step–leap) representation – see, for instance, application of this representa-
tion in <http://www.themefinder.org>. In the step–leap representation, intervals are classified into five distinct
equivalence classes: up- or down-wards step and leap, and unison. An interval with magnitude a = 0 is a unison
(u), a < 2 is a step (s), and any other interval a P 2 is a leap (l); the direction of intervals is preserved – see
second string of symbols in Fig. 1.

In the second string of symbols in Fig. 1, two repeated substrings are found: �s s�l and l�s s s�l each
occurring twice. However, for a listener/musician, the second half of this string of intervals is an approximate
repetition of the first half (two approximately matching substrings separated by a ‘‘hole’’ of size one) because
intervals a = 1 and a = 2 are considered similar (i.e. a step is similar to a small leap). This is not simply some
rare exception in music. It is a rather common phenomenon especially when themes appear in their dominant
form (see, for instance, the tonal answers of almost half of Bach’s fugue themes from the two books of the
Well-Tempered Clavier). In Figs. 2 and 3 some melodic examples are presented.

The problem in the step–leap representation is that the abstract interval classes ðu; s; lÞ have sharp bound-
aries and no diatonic pitch interval instance may belong to more than one class. In other words, borderline
members can never be matched to other ‘similar’ members of other classes (e.g. an a = 2 interval as a member
of leap can never be matched to a ‘similar’ a = 1 interval which is a step), i.e. a small leap can never be con-
sidered as a step. A way to overcome this problem is to allow partial overlapping between the various classes
4 Musical Instrument Digital Interface.
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Fig. 2. Melodic examples where an a = 1 interval (step) and an a = 2 (leap) should be matched (these positions are indicated by asterisks
in the melodic examples). Brackets indicate extracted melodic maximal-pairs.

Fig. 3. The opening melody of Mussorgsky’s, pictures from an exhibition, Promenade. Extracted maximal-pairs are indicated by brackets.
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(this is also suggested in [20]). For instance, an interval a = 2 may be classified as either step or leap. A special
‘‘binary don’t care’’ symbol * that matches either s or l is used (see third string of symbols in Fig. 1). Similarly,
another binary don’t care symbol # that matches both �s and �l is also used. Note that this idea can be easily
extended to any constant number of partially overlapping classes, such as those proposed in [20].

For strings with don’t cares, several string matching algorithms have been proposed (see [3,2,14]). Iliopo-
ulos et al. [19] presented algorithms for computing typical regularities in strings with don’t cares. Recently,
approximate matching in the presence of don’t cares has been studied [4]. Here, we consider binary don’t care
symbols that each matches beside itself two additional symbols. For string x ¼ x½1::n� with d binary don’t
cares, we propose an algorithm for computing a special kind of repetition that we refer to as maximal-pair.
The proposed algorithm uses Oðnþ dðn� dÞ þ zÞ time, where z is the number of reported maximal-pairs.

The paper is organized as follows: in Section 2, we state the preliminaries used throughout the paper. In
Section 3, we define all maximal-pairs problem and describe in general how to calculate them. In Section 4,
we give details of our algorithm. In Section 5, we analyse the running time of the algorithm. Conclusion is
drawn in Section 6.
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2. Preliminaries

Throughout the paper, x ¼ x½1::n� denotes a string over R [ f�;#g, where R ¼ fs;�s; l;�l; ug. The length

of x is denoted by jxj. The symbols ‘*’ and ‘#’ are called ‘‘binary don’t care’’ symbols. Each binary don’t care
matches itself and two different symbols, that is, � ¼ �, � ¼ s, � ¼ l, # ¼ #, # ¼ �s and # ¼ �l.

We use x[i], for i ¼ 1; 2; . . . ; n, to denote the ith symbol of x, and x½i::j� as a notation for the substring

x½i�x½iþ 1� � � � x½j� of x. If x ¼ uv then x is said to be the concatenation of the two strings u and v. A string y

is said to occur in x at position i if y½j� ¼ x½iþ j� 1�, for 1 6 j 6 jyj.
A pair in x is represented by ðp; i; jÞ where, x½i::iþ p � 1� ¼ x½j::jþ p � 1� for some i 6¼ j. The positive inte-

ger p is called the period of the pair. If x½i� 1� 6¼ x½j� 1� then ðp; i; jÞ is left-maximal. Respectively, if
x½iþ p� 6¼ x½jþ p� then ðp; i; jÞ is right-maximal. If ðp; i; jÞ is both left- and right-maximal then it is maximal-

pair.
Here, we present a method for finding all maximal-pairs in a given string x, where x may have occurrences

of binary don’t cares. This method uses the suffix tree of x as a fundamental data structure. A complete
description of suffix trees is beyond the scope of this paper, and can be found in [12] or [16]. However, for
the sake of completeness, we will briefly review the notion.

Definition 1 (Suffix tree). A suffix tree TðxÞ of the string x$ ¼ x½1::n�$ is a rooted directed tree with exactly
n + 1 leaves numbered 1 to n + 1, where $ 62 R. Each internal node, has at least two children and each edge is
labelled with a non-empty substring of x. No two edges descending of a node can have edge-labels beginning
with the same symbol. The key feature of the suffix tree is that for any leaf i, the concatenation of the edge-
labels on the path from the root to leaf i exactly spells out the ith suffix x½i::n� of x, with n + 1 denoting the
empty suffix.

Several algorithms construct the suffix tree TðxÞ in H(n) time and space – see for example [21,23,24] for
constant size alphabet, and [13] for general alphabet. For any node v, the path-label of v is the concatenation
of the edge-labels on the path from the root to v; it is denoted by label(v). The depth of v is the length of the
path-label of v; it is denoted by depth(v). The leaf-list of v is the set of the leaf numbers in the subtree rooted at
v; it is denoted by LL(v).

Our method relies on efficient calculation of the lowest common ancestor [5,6,22]. For a given rooted tree T,
the lowest common ancestor (LCA) of two nodes u and v is the deepest node in T that is an ancestor of both u

and v. After a linear amount of preprocessing of a rooted tree, any two nodes can be specified and their lowest
common ancestor found in constant time. That is, a rooted tree with n nodes is first preprocessed in O(n) time,
and thereafter any lowest common ancestor query takes only a constant time to be solved, independent of n.

In the context of suffix trees, the situation commonly arises that both u and v are leaves in TðxÞ, where
x½i::n� and x½j::n� are the suffixes represented by u and v respectively, for integers i and j in the range
1::nþ 1. In this case, the node w ¼ LCAðu; vÞ is the root of the minimum size subtree that contains u and
v. Note that the path-label of w (label(w)) is the longest common prefix of x½i::n� and x½j::n�. The capability
to find a longest common prefix is an important primitive in many string problems.

3. All maximal-pairs problem

In this section, we start by introducing Gusfield’s algorithm for finding all maximal-pairs in a given string
without don’t cares. The basic tool behind Gusfield’s algorithm is the suffix tree. The algorithm starts by con-
structing the suffix tree for a given string. The algorithm then uses a bottom-up approach (from leaves to root)
to report for each internal node the maximal-pairs associated with it. This is accomplished by maintaining the
leaf-list LL(v) of each internal node v as a collection of disjoint sublists LLaðvÞ, where a is the symbol preced-
ing the suffix associated to a leaf in the subtree rooted by v. Thus, each internal node is attached at most jRj
sublists. Reporting the maximal-pairs is accomplished by the cartesian product of a leaf-sublist with all the
leaf-sublists of its brothers that correspond to different symbols. The algorithm runs in Oðnþ zÞ time, where
z is the number of reported maximal-pairs.

Here, we want to find all maximal-pairs in a given string x, where x over R [ f�;#g. The presence of the
binary don’t care symbols complicates the extraction of the maximal-pairs. Useful data structure such as suffix



Table 1
Using dynamic programming to find all maximal-pairs

1 2 3 4 5 6 7 8 9 10 11 12 13
s s # l l * �l s * �l l l s

1 s – 1 0 0 0 1 0 1 1 0 0 0 1

2 s – 0 0 0 1 0 1 2 0 0 0 1

3 # – 0 0 0 2 0 0 3 0 0 0
4 l – 1 1 0 0 1 0 4 1 0
5 l – 2 0 0 1 0 1 5 0
6 * – 0 1 1 0 1 2 6

7 �l – 0 0 2 0 0 0
8 s – 1 0 0 0 1
9 * – 0 1 1 1

10 �l – 0 0 0
11 l – 1 0
12 l – 0
13 s –

The bold values represent the periods of the reported maximal-pairs.
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tree cannot be directly used. However, dynamic programming seems to be an obvious method for solving such
problems. The cost of this method is quadratic. For example, if x = s s # l l * �l s * �l l l s, then using dynamic
programming, the following maximal-pairs can be found: (1; 1,2), (1; 1,6), (6; 1,8), (1;1,9), (1;1,13), (2;2,6),
(1;2,8), (1;2,13), (2; 4,5), (1; 4,6), . . . , (1;11,12) (see Table 1).

In the next section, we will explain how we can still use the suffix tree to speed up the dynamic programming
calculations. Independently of the size of the alphabet, our algorithm works for any strings that have occur-
rences of a finite number of binary don’t cares.

4. Algorithm

Given a string x over R [ f�;#g, we construct two new strings xs and xl. Where string xs (respectively, xl) is
obtained by replacing each * by s and # by �s (respectively, each * by l and # by �l). The idea is to construct
two new strings both over R where each is a complement of the other in a sense that for each binary don’t care
in the original string x each of the two new constructed strings contains one of the two matching symbols.
Note that the suffix trees of the two constructed strings can be built in linear time.

Given xs and xl, each maximal-pair ðp; i; jÞ in x can be considered as the concatenations of m right-maximal
pairs:
ðp1; i; jÞ; ðp2; iþ p1; jþ p1Þ; . . . ; pm; iþ
Xm�1

k¼0

pk; jþ
Xm�1

k¼1

pk

 !
;

where

1. the starting-pair ðp1; i; jÞ is maximal (i.e. left- and right-maximal) in either xs or xl,
2. the collection of these right-maximal pairs is distributed between xs and xl i.e. one right-maximal pair is in

xs and the following pair is in xl,
3. p ¼

Pm
k¼1pk.

The above states the main idea of our algorithm. The algorithm iterates twice. In the first iteration, all max-
imal-pairs in x whose starting-pairs are in xs are calculated. In the second iteration, all maximal-pairs in x

whose starting-pairs are in xl are calculated.
Recall that the starting-pair needs to be maximal. Thus, each iteration starts by calculating all maximal-

pairs using the suffix tree (as in Gusfield). Then, each maximal-pair is extended to the right by a sequence
of right-maximal pairs using a series of jumps from one suffix tree to another. In each attempt of jump we cal-
culate the depth of the lowest common ancestor of two nodes. For example, if the starting-pair ðp1; i; jÞ is a
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maximal-pair in xs then p2 is equal to the depth of the lowest common ancestor of the two leaves iþ p1 and
jþ p1 in TðxlÞ. Similarly, p3 is the depth of the lowest common ancestor of leaves iþ p1 þ p2 and jþ p1 þ p2

in TðxsÞ and so on.
For example, if x = s s # l l * �l s * �l l l s then xs = s s �s l l s �l s s �l l l s and xl = s s �l l l l �l s l �l l l s.

The suffix trees of xs and xl are represented in Figs. 4 and 5.
Consider node v1 2TðxsÞ. During the bottom-up traversal of TðxsÞ and at node v1, the maximal-pair

(2;1,8) is calculated. To check whether this starting-pair can be extended to the right, the algorithm have
to check whether x½1þ 2� matches x½8þ 2�. Since they match, the algorithm jumps to TðxlÞ and calculates
the lowest common ancestor of leaves 1 + 2 and 8 + 2. The lowest common ancestor of these two leaves is
v2. Since depthðv2Þ ¼ 3, the current pair is extended to the right by the right-maximal pair (3;3,10). Since
x½3þ 3� matches x½10þ 3�, the algorithm jumps back to TðxsÞ calculating the lowest common ancestor of
the two leaves 3 + 3 and 10 + 3, that is v3. Since depthðv3Þ ¼ 1, the current pair is extended further to the right
by the right-maximal pair (1;6,13). Because x½6þ 1� does not match x½13þ 1�, no more jumps are possible. So,
the algorithm reports (6;1,8) as a maximal-pair in x.

The details of the algorithm are presented in Figs. 6 and 7. For simplicity, algorithm Find-Maximal-Pairs

assumes that both TðxsÞ and TðxlÞ are binary suffix trees. This is always a valid assumption since that any
suffix tree can be transformed into a binary one in O(n) time.
Fig. 4. The suffix tree of xs = s s �s l l s �l s s �l l l s $.

Fig. 5. The suffix tree of xl = s s �l l l l �l s l �l l l s $.



Fig. 6. All-Maximal-Pairs algorithm.

Fig. 7. Jump&Report and Find-Maximal-Pairs subroutines.
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5. Running time

In this section, we analyse the running time of All-Maximal-Pairs algorithm. Recall that, for constant size
alphabet, a suffix tree can be built in O(n)-time. Thus, building both TðxsÞ and TðxlÞ costs O(n)-time. Creat-
ing the leaf-lists of all leaves costs O(n)-time. At every internal node, the algorithm reports the maximal-pairs
associated with this node and constructs the leaf-sublists by concatenating the leaf-sublists of the children of
this node. The total cost for creating the leaf-lists over all internal node is O(n) time for constant size alphabet.



Table 2
The values calculated and reported by All-Maximal-Pairs algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13
s s # l l * �l s * �l l l s

1 s – 1 1 1 1

2 s – 1 1 2 1

3 # – 2

4 l – 1 1 1 1

5 l – 2 1 1 5
6 * – 1 1 2 6

7 �l – 2

8 s – 1 1

9 * – 1 1 1

10 �l –
11 l – 1

12 l –
13 s –

The bold values represent the periods of the reported maximal-pairs.
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For each reported maximal-pair the algorithm performs a series of jumps from one tree to another. Each
jump costs constant time which is the cost of the lowest common ancestor (LCA) query. In the following we
will estimate an upper bound for the number of jumps performed by the algorithm.

Observe that, we jump from TðxsÞ to TðxlÞ to extend the current pair to the right by a right-maximal pair
in xl. This is only possible, if and only if, the first two characters of both two copies of this new right-maximal
pair are either * and l or # and �l. Similarly, we jump back from TðxlÞ to TðxsÞ, if and only if, the current
pair can be extended to the right by a right-maximal pair in xs, where the first two characters of both copies of
this pair are either * and s or # and �s. Thus, the total number of jumps is Oðdðn� dÞÞ, where d is the number
of binary don’t cares occurring in x.

Summing the above gives that the total running time as follows:

Theorem 1. Given string x½1::n� 2 fR [ f�;#gg�, algorithm All-Maximal-Pairs calculates all maximal-pairs in x

in space O(n) and time Oðnþ dðn� dÞ þ zÞ, where d is the total number of binary don’t cares in x and z is the
number reported maximal-pairs.

Clearly, our algorithm might have a quadratic running time if x has n/2 binary don’t care symbols. For
example, finding all maximal-pairs in string x ¼ fslgn=4�n=2 will cost Oðn2Þ-time. This is asymptotically equal
to the running time of the dynamic programming. In practice, we expect our algorithm to have a better per-
formance. Table 2 shows the values in the dynamic programming matrix that are calculated using our algo-
rithm to compute all maximal-pairs in string x = s s # l l * �l s * �l l l s. Note that, in addition to the 22
maximal-pairs, only four intermediate values have been calculated by our algorithm.

6. Conclusion

In this paper we have presented an algorithm that enables extraction of melodic patterns from abstract
strings of symbols; this abstract representation allows partial overlapping between the various abstract sym-
bolic classes. As a special case, we have applied the proposed algorithm on the commonly used ‘‘step–leap’’
interval representation.

In terms of melodic representation, it is suggested that a more refined representation that comprises of a
larger number of abstract interval classes (e.g. unison, step, small leap, medium leap, large leap) may actually
enable the extraction of better melodic patterns from the standpoint of musical analysis or, even, music per-
ception. Additionally, the use of rhythmic ‘contour’, in terms of rhythmic abstract classes (e.g. equal, slightly
larger, larger, much larger), may improve results further. Such representations have yet to be studied,
implemented and tested.
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The proposed algorithm requires extensive testing on pattern extraction tasks, and its performance has yet
to be compared with other similar algorithms. This study, however, has presented a novel problem in terms of
melodic representation and pattern extraction, and has attempted to provide an efficient solution to it that can
be used for further testing and evaluation.
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