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ABSTRACT 

Despite the fact that musical parallelism is considered as an 
important factor for musical segmentation, there have been very 
few attempts to describe systematically how exactly it affects 
grouping processes. The main problem is that musical 
parallelism itself is very difficult to formalise. In this paper a 
computational model will be presented that extracts melodic 
patterns from a given melodic surface. Following the 
assumption that the beginning and ending points of 'significant' 
repeating musical patterns influence the segmentation of a 
musical surface, the discovered patterns are used as a means to 
determine probable segmentation points of the melody. 
‘Significant’ patterns are defined primarily in terms of 
frequency of occurrence and length of pattern. The special 
status of non-overlapping immediately-repeating patterns is 
examined. All the discovered patterns merge into a single 
‘pattern’ segmentation profile that signifies points in the surface 
that are most likely to be perceived as points of segmentation. 
The effectiveness of the algorithm is tested against a series of 
musical surfaces illustrating both strengths and weaknesses of 
the approach.  

1. INTRODUCTION 

Music becomes intelligible to a great extent through self-
reference, i.e. through the relations of new musical passages to 
previously heard material. Structural repetition and similarity 
are crucial devices in establishing such relations. Similar 
musical entities are organised into musical categories such as 
rhythmic and melodic motives, themes and variations, 
harmonic progression groups etc. Musical similarity not only 
establishes relationships between different musical entities but 
enables - in the first place - the definition of such entities by 
directly contributing to the segmentation of a musical surface 
into meaningful units. 

Despite the importance of musical parallelism, even the most 
elaborate contemporary musical theories avoid tackling the 
problem of parallelism in a formal way. Temperley, that has 
developed one of the most sophisticated computational models 
of musical cognition admits that “despite the clear role of 
parallelism in meter, it would be very difficult to incorporate 
parallelism into a computational model. The program would 
have to search the music for patterns of melodic and rhythmic 
repetition. Since this seems to me a huge and complex problem, 
I am not addressing it formally in this book.” (Temperley, 
2001:51).  

Pattern-matching techniques have been employed in attempts to 
formalise musical similarity. Most such research, however, has 
focused on algorithms for comparing melodic sequences (i.e. 

finding the best possible alignment between two given melodic 
excerpts) or for melodic recognition (i.e. finding instances of a 
given melodic excerpt in a larger musical database).  Only very 
rarely have there been attempts to tackle the difficult issue of 
pattern extraction (i.e. extracting important patterns in one or 
more musical sequences) – one such very interesting model has 
been developed by (Rolland 1999, 2001). Overviews of the 
application of pattern processing algorithms on musical strings 
can be found in (Crawford et al. 1998; Cambouropoulos et al. 
1999, Rolland et al. 1999).  

In this study melodic pattern extraction is used as a means to 
segment a melodic surface.  The current study is a continuation 
of the research presented in (Cambouropoulos 1998). 

2. PATTERN EXTRACTION & SELECTION 

An efficient algorithm that computes all the repetitions in a 
given string is described in (Crochemore, 1981; see also 
description in Iliopoulos et al., 1996). For a given string of 
simple or complex symbols, the matching process starts with 
the smallest pattern length (1 element) and ends when the 
largest pattern match is found. This algorithm takes O(n·logn) 
time where n is the length of the string – this is the fastest 
algorithm possible. 

It is apparent that such a procedure for the discovery of all 
identical melodic patterns for many melodic parametric strings 
will produce an extremely large number of possible patterns 
most of which would be considered counter-intuitive and non-
pertinent by a human musician/analyst.  

A procedure has been devised whereby a prominence value is 
attached to each of the discovered patterns based on the 
following factors: a) prefer most frequently occurring patterns, 
b) prefer longer patterns, c) avoid overlapping. A selection 
function that calculates a numerical strength value for a single 
pattern according to the these principles can be devised, for 
instance: 

ƒ(L,F,DOL)=Fa·Lb/10c·DOL 

where: L: pattern length; F: frequency of occurrence for one 
pattern; DOL: degree of overlapping1;   a, b, c: constants that 
give different prominence to the above principles. 

                                                                 
1 DOL is defined as the number of elements shared by some 
patterns divided by the number of all the elements in those 
patterns or more precisely: DOL = (T-U)/U where: T is the total 
number of elements in all the instances discovered for a pattern 
(T=F·L); U is the number of elements in the union set of all the 
instances discovered for a pattern (this definition allows DOL to 
be in some cases greater than 100%). 
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For every pattern discovered by the above pattern induction 
algorithm a value is calculated by the selection function. The 
patterns that score the highest should be the most significant 
ones. 

3. SEGMENTATION AND PARALLELISM 

Segmentation of a musical surface is a central part of musical 
analysis; an initial selected segmentation can seriously affect 
subsequent analysis as a great number of inter-segment musical 
structures are excluded a priori. The most commonly 
acknowledged (and perhaps most prominent) factors in musical 
segmentation relate to the perception of local discontinuities of 
the surface (e.g. longer note in between shorter ones or larger 
pitch interval in between smaller intervals etc.) – one such 
successful model is the Local Boundary Detection Model 
(LBDM) proposed by (Cambouropoulos 1997, 2001a). The 
segmentation of a musical surface, however, is also affected by 
higher-level processes as well. Perhaps the most important of 
these higher-level mechanisms is musical similarity, i.e. similar 
musical patterns tend to be highlighted and perceived as 
units/wholes whose beginning and ending points influence the 
segmentation of a musical surface. For instance, a model for 
determining local boundaries would select the interval between 
the 3rd and 4th  notes of Frère Jacques (Figure 1) as a local 
boundary (larger pitch interval in between smaller ones) 
whereas it is obvious that a boundary appears between the 4th 
and 5th notes because of melodic repetition. 

The focus of this study is primarily a special case of melodic 
similarity, namely immediate repetition of melodic passages. 
Such repeating passages often diverge towards their endings, 
contain small variations and the repeated passage may be 
transposed. David Lidov (1979) calls this kind of repetition 
formative repetition. Its  function is to establish or to ‘form’ 
motives and phrases. It involves fundamental pattern discovery 
processes primarily at the melodic surface (not reductions of the 
surface) and essentially is independent of more abstract learned 
idiom-specific schemata (e.g. harmony, tonality, meter). This 
kind of melodic similarity is omnipresent in music – a number 
of such examples are presented in this paper. 

It is herein assumed that similarity processes for melodic 
segmentation tasks are restrained essentially to the melodic 
surface in contrast to melodic categorisation tasks (i.e. creating 
motivic/thematic categories after segments have been defined) 
which require similarity measurements at deeper levels of 
musical structure as well (see Cambouropoulos 2000, 2001b for 
a computational model of melodic categorisation). This seems 
to be necessary because extracting patterns at reduced versions 
of the melodic surface would result in ambiguous 
segmentations as it would not be possible to define where 
exactly the boundaries of the repeated patterns should be placed 
(since there are notes missing from the reduced version). This 
problem, in some sense, defeats the point of using pattern 
extraction at reduced versions of the surface for melodic 
segmentation. Of course, musical similarity appears in many 
guises at deeper levels of musical structure but in such cases it 
is likely that this sort of abstract similarity is not the most 
crucial factor in segmentation tasks – other factors such as 
gestalt-based local boundary detection factors or learned 

schemata (e.g. harmonic cadences) are responsible for 
segmenting the surface and only then are more sophisticated 
comparisons of segments made possible at more abstract levels 
of description.  

In this paper, the pattern extraction algorithm is applied at 
parametric profiles of the melodic surface for pitch intervals 
(diatonic intervals and step-leap intervals) and for interonset 
intervals.  An important aspect of the paper is to discover which 
of these parameters (or combination of them) is most 
appropriate for the segmentation task (see discussion below). 

The pattern extraction model described in section 2, that 
consists of the exact pattern extraction algorithm and selection 
function, provides a means of discovering 'significant' melodic 
patterns. There is, however, a need for further processing that 
will lead to a 'good' description of the surface (in terms of 
exhaustiveness, economy, simplicity etc.). It is likely that some 
instances of the selected pitch patterns should be dropped out or 
that a combination of patterns that rate slightly lower than the 
top rating patterns may give a better description of the musical 
surface. 

In order to overcome this problem a very simple methodology 
has been devised – see Table 1. 

 

Construction of the pattern boundary strength profile (PAT) 

The pattern extraction procedure is applied to one (or more) 
parametric sequences of the melodic surface as required. No 
pattern is disregarded but each pattern (both the beginning and 
ending of pattern) contributes to each possible boundary of the 
melodic sequence by a value that is proportional to its 
Selection Function value. That is, for each point in the melodic 
surface all the patterns are found that have one of their edges 
falling on that point and all their Selection Function values are 
summed. This way a pattern boundary strength profile is 
created (normalised from 0-1). It is hypothesised that points in 
the surface in which local maxima appear are more likely to be 
perceived as boundaries because of musical similarity. 

Table 1 

In the melodic example of Figure 1 the pattern boundary 
strength profile (PAT) has been calculated by applying the 
pattern extraction model to the diatonic pitch interval profile – 
notice the strong pattern boundaries at the points indicated by 
asterisks where no local boundaries are detected by LBDM or 
other local detail grouping models. 

The rhythmic profile is not used as it is poor in terms of 
information content, i.e. the number of available duration 
values that form the alphabet of this parametric profile is too 
small and repetitions too many. It is obvious that the smaller an 
alphabet is (in Frère Jacques only three durational values) the 
larger the number of repeating patterns is.  This low information 
content (high redundancy) means that it is unlikely that this 



 

 

profile will convey non-trivial pattern information (see below 
for a method to incorporate rhythmic parameters whilst 
retaining a higher information content).  

The above example consists only of exact full repetitions. This, 
however, is not usually the case. A very frequently encountered 
situation is when two patterns diverge towards their ends (see 
example in Figure 2).  

In general, the beginning of melodic patterns is of paramount 
important into discovering parallel passages. This intuition has 
been incorporated into the current model by making a very 
simple modification to the method described in Table 1: only 
the beginnings of patterns contribute to the strength of the 
pattern boundary profile.  

In the example of Figure 2 (further examples not included in 
this paper due to paper length restrictions) the adjusted PAT 
model detects correctly the beginning of the repeated phrases 
(the initial PAT model inserts spurious peaks at the endings of 
the exactly repeating parts of the phrases). It should be noted 
that in this example the repeated phrases are 5 (i.e. 3+2) bars 
long which is very unusual – the positions given by local 
segmentation processes are wrong – Lerdahl and Jackendoff 
(1983, p.206) take this 5 bar length grouping structure for 
granted (no systematic procedure for detecting it is given). 

The pattern boundary detection model, as described to this 
point, can discover repeating patterns in the diatonic pitch 
interval domain that may or may not diverge towards their 
endings (patterns may be transposed).  What happens if some 
intervals are not exactly the same (as the first intervals of the 
repeating phrases in Figure )? How can rhythmic information be 
also taken into account?  

It is suggested that a more abstract representation for pitch 
intervals may be useful, such as a step-leap profile, especially if 
it is coupled with duration information. The step-leap encoding 
comprises of 5 distinct symbols (+step, +leap, -step, -leap, 
same) which is a rather too limited alphabet. If it is combined 
with duration symbols (or duration ratios) then the alphabet 
becomes rich enough to capture all the necessary information so 
that the pattern boundary detection model may operate 
effectivelly. In this encoding each interval of a melody is 
represented as a tuple [step-leap interval, duration ratio].  

This further adjustment to the model enables it to segment 
correctly more difficult cases such as the one depicted in Figure 
3 giving correct results, at the same time, for all the previous 
cases studied in this paper. 

4. FURTHER IMPROVEMENTS 

The computational attempt presented in this paper for capturing 
melodic similarity with a view to achieving melodic 
segmentation is still a long way from providing a robust, 
flexible and general model of melodic parallelism. It does, 
however, show its potential and further research is necessary to 
improve the model and also to evaluate it on a much larger 
scale. 
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Figure 1  Frère Jacques - Segmentation profile according to the Local Boundary Detection Model (LBDM) and the Pattern 
Boundary Detection Model (PAT) for the diatonic pitch interval profile – local maxima indicate points of segmentation (N.B.  
strong pattern boundaries are detected at the points indicated by asterisks where no local boundaries are discovered by LBDM) 
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 St. Antoni (arranged by Brahms in his Haydn Variations op.56). Segmentation profile according to LBDM and 
ic pitch interval profile – N.B.  the strong pattern boundaries that indicate the end points of the exactly repeating 
rases (indicated by asterisks) are eliminated in the version of the model that takes into account only the 

erns. 
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f section III of Mozart’s G minor Symphony K550. Segmentation profile according to LBDM and the Pattern 
n Model (PAT), firstly, for the diatonic pitch interval profile and, secondly, for the combined step-leap and 
ile. The diatonic pitch interval matching fails as the first interval of the repeating phrase is a 3rd interval rather 
– the combined step-leap and duration ratio encoding enables the correct segmentation of the two phrases - local 
 capable of providing a correct segmentation. 


