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Abstract 

In this paper a number of issues relating to the application of string processing techniques on musical 
sequences are discussed. A brief survey of some musical string processing algorithms is given and 
some issues of melodic representation, abstraction, segmentation and categorisation are presented. 
This paper is not intended towards providing solutions to string processing problems but rather 
towards highlighting possible stumbling-block areas and raising awareness of primarily music-related 
particularities that can cause problems in matching applications. 
 
1. Introduction 

There exists a large number of string matching algorithms which are usually applied on text strings or 
biological strings (e.g. DNA or protein strings) - a plethora of string algorithms is surveyed in 
(Apostolico and Galil, 1985) and (Crochemore and Rytter, 1994). 

It is often hypothesised that a musical surface may be seen as a string of musical entities such as 
notes, chords etc. on which pattern recognition or induction techniques can be applied. In this text, the 
term pattern induction refers to techniques that enable the extraction of useful patterns from a string 
whereas pattern recognition refers to techniques that find all the instances of a predefined pattern in a 
given string. 

Overviews of the application of pattern processing algorithms on musical strings can be found in 
(McGettrick, 1997; Crawford et al, 1998; Rolland et al, 1999); a very brief overview of a number of 
such music pattern processing methods is presented in this paper in Table 1 - see Appendix. 

When attempts are made to apply string matching algorithms to musical strings various questions 
arise that have to do with the particular nature of musical elements. For instance, should a melody be 
represented at the lowest level as a single string of note tuples (pitch and duration) or should the 
different parameters be treated as separate strings? Should the melodic surface be considered as a 
string of absolute pitches, pitch classes, pitches in relation to a tonal centre or pitch intervals? Should 
rhythmic strings consist of durations or duration ratios? How about more abstract representations such 
as step-leap and contour pitch strings or shorter-longer-equal rhythm strings? How can structural 
prominence of some of the musical entities (e.g. more prominent notes in terms of duration length, 
harmonic content, metrical stress etc.) be taken into account? 

Apart from issues relating to the selection of an appropriate representation of the musical surface, 
other issues arise as well.  For instance, although approximate matching seems to be the obvious 
solution for capturing musical variation (e.g. filling and thinning of thematic material, rhythmic 
changes, pitch changes, tonal changes etc.), can exact matching account for such a phenomenon? 
Especially in relation to pattern induction, are exact repetitions and similarity ratings between musical 
patterns sufficient for extracting ‘significant’ patterns from a musical string? Should categorisation 
techniques be considered a necessary or an optional part of pattern induction methods? Is the pre-
segmentation of a string necessary or even useful? 
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In the next sections most of these questions will be addressed and some possible solutions will be 
presented. First, problems in relation to the representation of musical strings will be discussed, then, 
some pros and cons of using exact or approximate matching techniques will be presented and, finally, 
the relevance of categorisation techniques and segmentation in pattern induction problems will be 
addressed. 

2. Musical String Representation 

There is a wide range of possible representations of musical strings that researchers can use as input to 
pattern processing algorithms. Often one representation is chosen as a first test case (e.g. absolute 
pitch) and then the assumption is made that the same string-matching mechanism can be applied to 
other representations (e.g. contour or pitch intervals). This assumption is often valid; however there 
are some caveats that the researcher should be aware of - some of these are discussed below. 

2.1 Pitch Representation 

Pitch is most often represented - in the western tradition - either by the traditional pitch naming 
system (e.g. F#4-G#4-A4) or as absolute pitch (e.g. in MIDI: 66, 68, 69). Most computer-aided 
musical applications adopt the absolute pitch representation. It has been argued in (Cambouropoulos, 
1996) that the absolute pitch encoding is insufficient for applications in tonal music as it disregards 
the hierarchic importance of diatonic scale tones over the 12-tone discrete pitch space (e.g. 
enharmonic tones that have different tonal qualities are made equivalent).  

As far as pattern matching is concerned, applications that use the MIDI representation sometimes 
resort to what will be referred to as δ-approximate matching in order to compensate for the 
information lost by the use of absolute pitch. In δ-approximate matching, equal-length patterns 
consisting of integers match if each corresponding integer differs by not more than δ - e.g. a C-major 
(60, 64, 65, 67) and a C-minor (60, 63, 65, 67) sequence can be matched if a tolerance δ=1 is allowed 
in the matching process (efficient algorithms for δ-approximate problems are currently studied by the 
Algorithm Design Group at the Department of Computer Science, King’s College London).  

The main problem however with applying a pattern processing algorithm on an absolute pitch string is 
that transpositions are not accounted for (e.g. the repeating pitch motive in bars 1 & 2 in figure 1). 
And there is plenty of evidence, both theoretical and experimental, that transposition is paramount in 
the understanding of musical patterns. One partial solution that has sometimes been devised is to 
transpose different musical works (e.g. folk melodies) to the same key - this approach, however, does 
not account for transpositions of a pattern within the same piece and of course the whole idea of a 
musical work being in one key is problematic. The obvious solution to this problem is the use of 
relative pitch, mainly through the derivation of pitch intervals from the absolute pitch surface. 

2.2  Pitch Interval Representation and Abstractions 

Pitch intervals are adequate for representing relations between absolute pitches. Most commonly, 
computer systems make use of intervals that consist of a number of semitones. Cambouropoulos 
(1996) argues that this is insufficient for tonal music and proposes the General Pitch Interval 
Representation (GPIR) that can encode intervals according to the relevant set of scales in a given 
musical idiom. For instance, in figure 1 pitch-class intervals are inappropriate for revealing the 
repetition of the first two bars whereas name-class intervals (nci) - i.e. diatonic intervals in scale steps 
- are more adequate (see below for problems in this example). 
 

 

 



         

Figure 1   Beginning of theme of the A major sonata KV331 by Mozart (pci: pitch-class intervals, nci: 
name-class intervals). See text for discussion on the ‘incorrect’ pattern depicted here. 

 

There exists a somewhat ‘peculiar’ relationship between pitch strings and pitch interval strings. As 
Rowe (1995) points out, if one note is altered within a string of notes then two corresponding intervals 
change. The converse also needs attention: if one pitch interval in a string of pitch intervals is altered 
then all the succeding notes are altered (transposed). So a change in a string of pitches and in a string 
of pitch intervals is not exactly the same thing. Take, for instance, the ‘deletion’ (or ‘insertion’) 
transformation commonly employed in approximate pattern processing techniques: the deletion of a 
pitch or the deletion of a pitch interval may have quite different effects on the transformed musical 
sequence (e.g. if the second pitch of the first bar of the melody in figure 1 is deleted a not very 
different pitch pattern C#-C#-E-E occurs; if the second pitch interval is deleted a rather more ‘radical’ 
change in the resulting pitch pattern C#-D-F#-F# occurs). 

In terms of pattern induction techniques, the following problem arises as well: successive contiguous 
non-overlapping patterns in a string of pitch intervals result in overlapping patterns (by a single pitch) 
in the corresponding string of pitches. For instance, if a pattern induction algorithm that attempts to 
find an ‘economic’ non-overlapping description of the string is applied to the nci string of figure 1 - 
e.g. minimal length description methods such as (Annunziata et al, 1995) or grammar-induction-based 
compression methods such as (Nevill-Manning and Witten, 1997) - then the underlined pattern 
illustrated in figure 1 appears; at the pitch interval level these two patterns do not overlap wheras at 
the absolute pitch level they overlap by one note (see brackets in figure 1)! If a whole melody could 
be described in terms of contiguous non-overlapping pitch interval patterns then, at the note level, 
these consecutive patterns would overlap by one note resulting in a rather implausible description. 

Pitch interval encodings readily lend themselves for constructing a number of more abstract 
representations of musical strings such as contour strings. Intervals can be categorised in a number of 
classes according to their sizes (e.g. repeat: nci=0, step: nci=1, leap: nci>1 and a string can be 
constructed from the alphabet {-l, -s, r, +s, +l} or according to the signs of intervals in which case 
contour can be represented as a string from the alphabet {-, +, =}. This way exact matching 
techniques can be applied for revealing ‘approximate’ matches.  

In the example of figure 2, if the patterns are represented by absolute pitch no interesting matches 
occur; if encoded as pitch intervals in semitones then the first 5 intervals are matched; if encoded as 
step-leap strings then the whole patterns are matched (of course contours match as well but step-leap 
matching is more accurate). This pitch pattern repeats 12 times in this piece, each time transposed 
upwards by one semitone and at the same time the second-to-last and last pitches are transposed 
downwards by one semitone - ‘evolution’ algorithms such as (Crawford et al., 2000 – this issue) may 
be used to capture such gradually evolving transformations. 

 

 

 

 



 
 
Figure 2  The first 4 occurrences of a motive from Messiaen’s Vingt Regards sur l’Enfant Jésus (III-

L’échange). 

2.3 Rhythm Representation 

In terms of the rhythmic component of musical strings, string processing algorithms are most 
commonly applied to strings of durations (or inter-onset intervals). This type of matching can be very 
effective, but one should also consider encoding rhythm strings as strings of duration relations such as 
duration ratios or shorter/longer/equal strings. Duration ratios encapsulate the observation that 
listeners usually remember a rhythmic pattern as a relative sequence of durations that is independent 
of an absolute tempo. Duration ratios can reveal augmentations or diminutions of a rhythmic pattern 
(figure 3). 

 wo  r  r  w  eo  t  t  e  
dur.      12   2     2     8  6    1     1    4 
ratios   1/6   1    4    1/6    1    4

Figure 3.  The above two rhythmic patterns match at the level of duration ratios. 

It should be noted, however, that the problems that arise between pitch and pitch-interval 
representations (high-lighted in the previous section) apply also for the relationship between durations 
and duration ratios. 

3. Matching of Structured Musical Patterns 

The musical entities that constitute a musical pattern are not usually of equal salience, i.e. some notes 
(or chords etc.) are more prominent than others in terms of metrical position, duration length, register, 
harmony, tonal hierarchies and so on. In this section, ways in which pattern processing techniques 
may account for structured strings will be examined. 



Exact pattern matching is aimed at finding instances of given patterns (or inducing identical patterns). 
However, pattern matching may be used for revealing or establishing similarity between different 
patterns as well. What kind of pattern matching methodology, though, is most adequate when 
attempting to establish similarities between complex entities such as melodic passages? 

Simplifying for the sake of argument we will suppose that there are two main approaches:  

a)  approximate pattern-matching applied on the unstructured musical surface and,  

b) exact pattern-matching applied on the musical surface and on a number of reduced versions of it 
that consist of structurally more prominent components.  

The first approach is based on the assumption that musical segments construed as being parallel 
(similar) will have some of their component elements identical (for example, two instances of a 
melodic motive will have a 'significant' amount of common notes or intervals but not necessarily all) - 
some approximate pattern-matching algorithms based on this approach are described in (Bloch and 
Dannenberg, 1985; Cope, 1990, 1991; Rowe and Li, 1995; Stammen and Pennycook, 1993; Rolland, 
1998 - see Appendix). The second approach is based on the assumption that parallel musical segments 
are necessarily identical in at least one parametric profile of the surface or reduction of it (for 
example, two instances of a melodic motive will share an identical parametric profile at the surface 
level or some higher level of abstraction, e.g. pattern of metrically strong or tonally important 
notes/intervals and so on) - computational techniques based on this approach are described in 
(Cambouropoulos, 1998a; Hiraga, 1997).  

What are the pros and cons of each of the above pattern-matching methodologies? Perhaps an 
example will help clarify the relative merits of each approach. Consider the tonal melodic segments of 
figure 4. How similar are segments b, c, d to segment a? Let us suppose, for convenience, that each 
melodic segment is represented as a sequence of pitch and onset time note tuples (figure 4, bottom).  

Approximate pattern matching would show that each of the segments b,c,d is 71% identical to 
segment a as 5 out of 7 note tuples match. Depending on the threshold that has been set, the three 
melodic segments are equally similar - or dissimilar - to segment a. It is quite clear however to a 
musician that segment b is - for most tonal contexts - much more similar to segment a than any of the 
other segments because segments a & b match in exactly the 'right' way, i.e. more prominent notes 
match and less important ornamentations are ignored.  

 

 
 segment a:   [g,0],[c,4],[b,8],[c,9],[a,10],[b,11],[g,12] 
 segment b:   [g,0],[a,2],[b,3],[c,4],[b,8], [a,10], [g,12] 
 segment c:   [g,0],[a,4],[b,8],[c,9],[a,10],[b,11],[c,12] 
 segment d:   [g,0],[c,4],[b,8],[c,9],[a,10],[c,11],[d,12] 

 
Figure 4. How similar are melodic segments b, c, d to segment a? 

 

In order for the second pattern matching methodology to be applied, a significant amount of pre-
processing is required - for instance, the melodic segments are not simply examined at the surface 
level but various more abstract levels of representation that reflect structural properties of the melodic 



segments have to be constructed (e.g. longer notes, metrically stronger notes, tonally important notes 
etc.). It should be noted, however, that it is possible to take account of structural prominence in 
approximate matching techniques by introducing weights to the matches of pattern elements - e.g. 
similarity contributions for each transformation especially in relation to duration length and pitch 
distance as proposed and implemented by Mongeau and Sankoff (1990) and Rolland (1998). 

Both methodologies can handle musical similarity and parallelism. One advantage, however, of the 
second pattern-matching methodology is that the reasons for which two musical segments are judged 
to be parallel/similar are explicitly stated, i.e. the properties common to both are discovered and 
explicitly encoded. Such explicit knowledge may be used constructively for further analytic - or 
compositional - tasks. 

4. Segmentation and Categorisation in Relation to Pattern Induction 

4.1 Segmentation 

Pre-segmentation of a musical work can increase significantly the efficiency of pattern induction 
techniques (see table 1 for researchers who favour this approach). However, committing oneself to a 
particular segmentation means that patterns crossing over boundaries are excluded a priori. This can 
be a serious drawback especially if one takes into account that often significant musical patterns 
contribute to the segmentation process itself, i.e. although there may be no strong indication for a 
point of segmentation, due, for instance, to a relatively long note or a relatively large melodic interval, 
a recurring musical pattern may indeed suggest a strong boundary at that point (see, for instance, 
boundary between first two bars of Frère Jacques). 

Alternatively, an analytical methodology that relies solely on pattern recurrence is bound to find 
patterns that are cognitively and analytically implausible (e.g. a frequently repeating pattern may end 
on a very short note, or contain a long rest in the middle, and so on). It is suggested that pattern 
induction techniques should not rely heavily on a pre-segmented musical surface, but they should take 
into account methods that are geared towards finding perceptually-pertinent local boundaries as such 
boundaries can facilitate the selection process of ‘significant’ musical patterns. An integrated 
approach that takes into account both low-level discontinuities in the musical surface and higher-level 
emerging patterns has been proposed by Cambouropoulos (1998b) 

4.2 Similarity and Categorisation 

A further serious consideration regarding pattern induction is finding suitable criteria (e.g. weights for 
parameters such as pitch, rhythm and so on) for comparing musical sequences and setting an 
appropriate threshold for defining similarity between them. Most commonly such criteria and 
thresholds are selected in an ad hoc manner by the user/programmer.  

Regarding parametric weights for contribution functions in musical sequence comparison tasks 
Rolland et al. (1996a) apply a supervised technique whereby the analytic results given by a human 
analyst are used to optimise the system’s performance by finding the most appropriate weights for 
pitch and rhythm parameters.  

Defining an appropriate threshold for determining which musical excerpts are similar - along with 
deciding which parameters contribute most in similarity judgements - is a very difficult issue. It has 
been proposed by Cambouropoulos and Smaill (1997) that similarity is always dependent on context 
and that it is essentially meaningless unless it is seen in association with processes of categorisation 
(usually the term similarity is merely considered to be inversely related to distance – an important 
further difference between the two is that the former requires a threshold). It is suggested that the 
notions of categorisation, similarity and the representation of entities/properties are strongly inter-
related. It is not simply the case that one starts with an accurate description of entities and properties, 
then finds pairwise similarities between them and, finally, groups the most similar ones together into 
categories. It seems more plausible that as humans organise their knowledge of the world, they alter 
their representations of entities concurrently with emerging categorisations and similarity judgements.  



Following this discussion on similarity and cate-gorisation the Unscramble algorithm 
(Cambouropoulos and Smaill, 1997) has been devised which, given a set of objects and an initial set 
of properties, generates a range of plausible classifications for a given context. During this 
dynamically evolving process, the initial set of properties is adjusted so that a satisfactory description 
is generated. There is no need to determine in advance an initial number of classes or a specific 
similarity threshold or the relative prominence of properties. At every stage of the process both the 
extension and the intension of the emerging categories are explicitly defined.  

5. Conclusions 

In this paper, a number of issues relating to the application of pattern processing techniques on 
melodic strings have been addressed. Special emphasis was given to the various options and 
difficulties a researcher faces when trying to select an adequate representation of the melodic surface 
for pattern processing. Issues relating to the application of exact or approximate techniques on 
structured sequences were briefly discussed. Finally, the relevance of pre-segmentation and 
categorisation processes for pattern processing was addressed. 
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Appendix 
 
 pitch 

representation 
rhythm  
representation 

other 
structural 
factors 

pre-
segmentation 
required 

type of 
pattern 
processing 

type of 
matching 

string 
matching 
algorithm 

Mongeau & 
Sankoff, 1990 
 

pitch/degree 
difference from 
tonal centre  

durations weights based 
on degree of 
consonance 

 comparison approximate dynamic 
programming 

Stammen & 
Pennycook 
1993 

intervals in 
semitones 

duration 
ratios 

no yes recognition approximate dynamic 
programming 

Smith,McNab 
Witten, 1997 
 

intervals in 
semitones & 
contour 

durations no no recognition exact & 
approximate 

dynamic 
programming 

Rowe, 1995 
Rowe & Li 
1995 

intervals in 
semitones 

durations no yes recognition & 
induction 

approximate dynamic 
programming 

Rolland 
1996a,b 1998 
 

absolute pitch 
& intervals 

durations & 
ratios 

contribution 
weights (e.g. 
long dur.) 

no induction approximate dynamic  
programming 

Bakhmutova, 
Gusev, 
Titkova 1997 

scale-step 
intervals 

 metric 
position 

no induction approximate dynamic 
programming 

Cope 1990, 
1991 
 

intervals in 
semitones 

durations elimination of 
very short 
notes 

no m-length  
pattern 
induction 

near-exact brute-force 
algorithm 

McGettrick 
1997 
 

abs. pitch,  
intervals in 
semitones 

duration 
ratios 

accented 
notes 

no recognition exact Boyer-Moore 
algorithm 

Coyle & 
Shmulevich 
1998 

intervals in 
semitones 
(+error) 

duration 
ratios 
(+error) 

key-finding 
algorithm 
 

 comparison exact (+ error 
absolute and 
perceptual) 

equal length 
comparison 

Hsu, Liu & 
Chen, 1998 
 

absolute pitch durations elementary 
chords and 
metre 

no induction exact dynamic 
programming 
(only exact) 

Hiraga 1997 
 
 

interv: sem, 
scale-steps, 
step-leap, 
contour 

durations: 
exact, log-
ratio, shorter-
longer-equal 

reduction of 
surface 

yes 
(tentative) 

induction exact 
(emphasis in 
immediate 
repetition) 

not described 

Cambouro-
poulos  
1998a,b 
 

interv: sem, 
scale-steps, 
step-leap, 
contour 

durations: 
exact, ratio, 
shorter-
longer-equal 

reduction of 
surface 

no induction exact Crochemore 
(1981) 

 
Table 1  Left column indicates a number of musical pattern processing methods.  Top row indicates 

some useful aspects of these methods (at least as far as this paper is concerned); first four entries 
refer to melodic representation issues and last three entries to aspects of pattern processing. 
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