
From MIDI to Traditional Musical Notation

Emilios Cambouropoulos

Austrian Research Institute for Artificial Intelligence

Schottengasse 3, A-1010 Vienna, Austria
emilios@ai.univie.ac.at

Abstract

In this paper a system that is designed to extract the musical
score from a MIDI performance is described. The proposed
system comprises of a number of modules that perform the
following tasks: identification of elementary musical
objects, calculation of accent (salience) of musical events,
beat induction, beat tracking, onset quantisation, streaming,
duration quantisation and pitch spelling. The system has
been applied on 13 complete Mozart sonata performances
giving very encouraging results.

Introduction

A system that attempts to extract the musical surface (i.e. a
symbolic representation of notes in terms of quantised
onsets and durations, and correctly spelled pitches) from a
polyphonic MIDI performance is herein described. This
system was developed as a means for obtaining the scores
(in a symbolic machine-readable format) of a large number
of performed piano works in the context of the project:
‘Artificial Intelligence Models of Musical Performance’ .
Working on a score-extraction project would not only
provide a useful tool for obtaining symbolic scores (optical
recognition techniques are probably a more obvious
candidate for this task) but would additionally give rise to
invaluable insights into the relation of a musical
performance to its corresponding musical score. In general,
however, score-extraction techniques are indispensable for
a plethora of applications that process performed MIDI
input (e.g. music notation packages, interactive musical
performance systems etc.).

The proposed system comprises of a number of
modules that perform the following tasks: identification of
elementary musical objects, calculation of accent (salience)
of objects, beat induction, beat tracking, onset quantisation,
streaming, duration quantisation and pitch spelling. The
aim of this paper is to highlight a number of issues relating
to score extraction and to give a quite broad understanding
of problems relating to the development of and interaction
among components that are necessary for score extraction
tasks. Figure 1 gives an overall outline of the score
extraction system.

The above system has been applied - to this date - to the
midifiles of 13 complete sonatas by W.A.Mozart
performed by a professional Viennese pianist. The system
performs well in the above tasks. However, it does make
mistakes. For instance, the beat tracker may add a few
extra beats if a fermata is encountered, or it may shift
temporarily off-beat if very weak notes appear on the beat
(although this may be corrected by the quantisation
preference process); the duration quantisation module
strongly avoids rests and also goes wrong when a
streaming mistake has been made; occasional pitch spelling
mistakes may occur even though the pitch spelling module
is in general very successful. Such mistakes can be
corrected either interactively during the score-extraction
process or manually after the symbolic representation has
been generated.

The various components of proposed score extraction
system are described in more detail in the sections below.

Salience of Musical Objects
As a first task elementary musical ‘objects’ are identified in
the MIDI file and corresponding accent values are
calculated for each of them.

Identification of Elementary Musical Objects
Musical 'objects' such as chords, arpeggiated chords, trills,
mordents etc. are initially identified in the raw midifile. It
is hypothesised that such collections of notes are perceived
as ‘wholes’ before being broken down to their constituent
parts. For instance, in Figure 2, if the arpeggiated chord is
not identified in advance, then a quantisation procedure is
likely to give rise to a wrong result such as the one
depicted in the last example in Figure 2.

It is necessary, as a first step, to determine when a
number of independent notes are close enough to be
considered constituents of a chord. Empirical research has
shown that two tones are heard as being synchronous if
their onset differences are less than roughly 40 ms - for
more than two tones this threshold is higher but usually not
more than 70 ms (Handel 1989:214). We have used the
threshold of 70 ms to convert the MIDI data into chords.

Figure 1: Overall the score extraction system (pitch
spelling is a separate module).

�� �� �

 score notation performed incorrectly
 quantised

Figure 2: Arpeggiated chord: as notated in the score, as
actually performed and as incorrectly quantised (should be

identified early on as a musical ‘object’)

Musical knowledge is essential for identifying other
kinds of objects such as trills, grace-notes, mordents,
arpeggiated chords and so on. The exact definition of such

objects and the development of routines that can compute
them is not trivial. For instance, a rapid alternation of two
pitches (at a 2nd interval) may belong to a trill or to a very
fast melodic passage; note duration is not sufficient for
detecting grace-notes as staccato notes have very short
durations as well. As this is a large topic in its own right it
will not be discussed further in this paper.

Musical Accents
 For each musical object an 'accent' strength is computed
that indicates the relative salience of the object. Musical
salience is determined by a number of factors such as note
duration, dynamics, pitch, harmony, cadences and so on
(for instance, longer notes or harmonically more stable
notes are more salient). In the current version of this
system the following three salience factors have been taken
into account: a. duration in ms of notes in each event, b.
dynamic value (MIDI velocity) and c. pitch value. Notes
with longer durations, higher dynamic values or lower
pitch are considered to be more salient. The rationale
behind the last factor is that notes in lower voices
(especially the bass line) tend to be less ornamented and
more accurate in terms of keeping time whereas higher
voices (e.g. melody) have more expressive flexibility and
variation. The salience strength of events (e.g. chords) is
taken to be the sum of the strengths of their constituent
notes.

A possible salience strength function for each note is
proposed:

f(d,p,v) = (v/p)⋅ d where:

d is duration in ms (d = Offset - Onset),
v is dynamic value (MIDI-velocity), 30 < v < 90
p is pitch (MIDI-pitch), 30 < p < 60

Values for v and p smaller or greater than the minimum or
maximum of each range are taken to be equal to the
minimum or maximum respectively. The most significant
factor into the above function is the duration of notes as
this can take a wide range of values (from roughly 100 ms
to a few seconds). The dynamic and pitch factors become
more influential when notes have relatively similar
durations.

In the next section, it will be shown that knowledge of
such accent strengths can enhance beat-processing
applications.

Finding the Beat
Beat is taken to refer to a regular pulse perceived when
listening to music - this is usually the temporal level at
which listeners tap their feet or clap their hands. The action
of finding an appropriate beat rate (tempo) will be referred
to as beat-induction whereas the task of following the beat
will be referred to as beat-tracking. Ordinary human

Duration Quantisation

MIDI File

Primary Music Events

Salience Profile

Prediction of Next Beat

Onset Quantisation

Streaming within Beat

 Is previous
 beat known or

 steady?

Beat Induction

 Is this
 last beat?

no

 yes

listeners are competent in performing these tasks;
equivalent performance on the computer has proved
however remarkably hard to achieve.

Perhaps computer systems are quite weak in simulating
this behaviour (except for simple strict tempo cases)
because they often do not have access to musical
knowledge that can adjust the tracking process when
significant local variations in the beat occur. Most beat-
tracking and beat-induction systems rely solely on note
onsets or inter-onset intervals (Desain and Honing, 1992;
Rosenthal 1992; Rowe 1992). It has often, however, been
proposed in theoretical work that finding the beat (the
lowest meaningful level of metrical structure) involves
matching a regular grid to the accentuation structure of a
music work (e.g. Lerdahl & Jackendoff, 1983; Povel &
Essens, 1985).

It is herein hypothesised that more salient (accented)
musical events tend to have a stronger influence on beat-
tracking processes than less important ones, i.e. beats tend
to fall on more accented/salient events.

Beat Induction
Extracting an adequate beat is achieved by ’looking’ into a
pre-specified time window for the most common inter-
onset interval. All the possible IOIs formed by all the
onsets within the window (e.g. 3 seconds) are calculated.
For each IOI, a salience value is attached that takes into
account the accents of its two delimiting notes (in this
implementation the IOI salience is simply the sum of the
two accents). The IOIs are sorted by size and ‘clustered’
into small overlapping time bins (70ms). For each time bin
the sum of all the IOI saliences is calculated. The cluster
with the highest salience value determines the local tempo
(i.e. inter-beat interval).

The IOI clustering algorithm is described in detail in
(Dixon et al. 2000). The current version differs from that
algorithm in that it takes into account the salience of each
IOI.

The beat induction module is activated at the beginning
of the piece and whenever the beat variance of preceding
beats exceeds a certain value (meaning that the beat-tracker
is ‘ lost’).

Beat Tracking
For a given moment in a piece a prediction is made for the
next beat based on the previous few beats (e.g. average of
the last three beats). The next beat position is calculated
using a Gaussian function that is centered at the predicted
time point and that has an overall width equal to the beat
value. The 'steepness' of the function depends on the
observed variance of the previous beats. The accent
strengths of musical objects within the prediction range are
adjusted according to the function and the greatest value is
selected. If there are no events in the predicted window,

then a beat position is placed at the predicted point and
beat-tracking proceeds from there on.

This method takes into account the relative salience of
musical events (see figure 3). For instance, a weaker event
that falls closer to the predicted beat position may be
disregarded as the algorithm may select a stronger event
that has a greater distance to it. This way, the beat tracker
can track correctly sections with greater temporal
deviations (more rubato). In a recent study (Dixon et al,
2000) it is shown that the performance of a multi-agent
beat tracking system improved from 75% to over 90%
when musical event accents were taken into account (the
system was applied to the same Mozart data).

 A. • • • • • • •

 B. • • • • • • •

Figure 3: Sequence A illustrates the event onsets, and
sequence B the accents of musical events. The proposed

beat-tracking algorithm is applied to sequence B.

Figure 4: In this example the beat may erroneously shift
forward by one eighth note as the notes on every other
actual beat are less accented than their succeeding three

note chords.

This beat-tracking algorithm can make mistakes
especially in cases where weak events appear on beats and
strong events appear very close to them. In Figure 4 the
beat-tracker may shift forward by one eighth note; if,
however, the previous tempo has been very steady it is
likely that this section will be tracked correctly as well as
the prediction function will be very sharp. The beat-tracker
usually recovers from mistakes as soon as strong musical
events indicate the correct beat (there are cases however
where the beat-tracker goes astray). Points where the beat
tracker has gone wrong can be corrected interactively by
the user; after a particular beat is corrected the system is
allowed to track the beat again from that point onwards.

Time Quantisation
Once a beat is detected, an attempt is made to quantise all
the onsets and durations of notes within the range of this
beat and its preceding beat.

Onset Quantisation
Onsets within the range of two successive beats are
quantised by selecting the time grid (multiples of 2 and 3)
that fits best to the observed onset values. Rather than
‘moving’ the observed event onsets to the closest points of
the quantisation grids and then selecting the grid for which
the minimum deviation error is computed (as many
commercial quantisers do), quantisation is applied to each
inter-event interval. The last inter-event interval in the beat
equals to 1 minus the sum of the previous quantised beat
fractions (this way a round-off error is avoided). A
goodness value that is inversely related to the deviation
error is attached to each subdivision level. The quantisation
subdivision level that gives the highest goodness value is
selected (further discussion on the quantisation problem
can be found in Desain and Honing, 1992).

The quantisation of onsets within the beat can affect
beat tracking as well. If the beat-tracker does not have any
strong indication of which of two equally accented events
is on the beat, it can examine both possibilities selecting
the one that gives a ‘better’ quantisation (e.g. a beat event
that results in a quantisation of five equally spaced onsets
is less preferred to another event that results in a
quantisation of four equally spaced ones).

Duration Quantisation
The actual offsets of notes are of hardly any use in
quantisation, especially for a percussive instrument such as
the piano (even more so if the pedal is used). In figure 6,
the lower notes of the arpeggios are commonly held longer
than the higher notes – if these performed durations were
quantised to the closest nominal values then lower notes
would be notated as eighth notes or even dotted eighth
notes. Calculation of note durations has thus been based in
the current system on an elementary 'streaming' algorithm
whereby notes within a beat are split into independent
streams (voice parts) and then durations are considered to
be equivalent to the inter-onset intervals for the notes of
each stream.

The streaming algorithm is based on the Gestalt
principle of proximity and simply tries to find the shortest
streams that connect all the onsets within a beat (figure 5).
Crossing of streams is not allowed. The number of streams
is always equal to the number of notes in the largest chord.
The solution to this problem is not trivial and appropriate
searching techniques are required for developing an
efficient algorithm. The current elementary version of the
algorithm makes mistakes (see figure 6) but can be

Figure 5: Duration quantisation relies on a streaming
algorithm. Dots in the graph represent the onsets of the

notes in the musical segment; dotted lines show the three
streams detected by the streaming algorithm; horizontal

lines indicate the inter-onset intervals for each stream. The
algorithm in this case gives the correct score durations.

� �

Figure 6: Duration quantisation fails locally as the
streaming algorithm has given wrong results (see caption

of fig.5 for explanation of graph).

improved if other principles like ‘goodness of
continuation’ are taken into account. Streaming is a large
research topic in its own right (see Bregman 1990) and the
current algorithm is only a means for providing a crude

time

...
 .
..
. .. .

..
.
.

.

pi
tc

h
pi

tc
h

time

..
..

. .

..
..

.
 beat

beat

streaming of notes so that durations of notes may be
calculated as interonset intervals of each stream. Obviously
this methodology avoids rests (rests, however, may appear
at the beginning of beats if no note was held from a
previous beat and if the beginning of the beat has fewer
streams than its continuation).

Pitch spelling
In (Cambouropoulos, 2000) an algorithm is presented that
generates a correctly spelled diatonic score from a MIDI
file. The algorithm can be applied to polyphonic music.
This algorithm is based on two principles:
a. notational parsimony (i.e. double-sharps and double flats
are avoided) and
b. diatonic interval optimisation (i.e. common diatonic
intervals are preferred whereas rare intervals such as
augmented, diminished, chromatic intervals are avoided).

The above optimisation procedure is applied locally on
a MIDI-file using a shifting overlapping windowing
technique. The spelling of the pitch classes within the
window that gives an optimal solution for the above two
rules is selected. This transcription algorithm is unique in
that it requires no previous key- or tonality-finding
mechanisms; on the contrary, it can be used as a precursor
to key-finding algorithms.

It has been tested on 3 complete Mozart piano sonatas
(kv279, kv280, kv281) for which it gives 97% correct
results (total number of notes is 13002; number of notes
with accidentals is 3546; notes mis-spelled by algorithm is
111) - further extended tests are currently underway. Minor
mistakes occur occasionally, mainly because of local
conflicts introduced by voice-leading concerns (see figure
7); an example of correct pitch spelling is given in figure 8.

Figure 7: The pitch spelling algorithm would spell both
notes with accidentals as G# as it has no knowledge of

voice-leading.

� �� � � � � � � � � �� �� �� � �� � � � � � �� �� ��
� �� 	 ���
 � � �� � �� � �� � � 	 ���
 � �� �� � �� � � �

Figure 8: Musical section from Mozart’s Sonata kv279
spelled correctly by the algorithm.

The proposed pitch-spelling component, on the one hand,
highlights the importance of the traditional diatonic pitch-
interval system when dealing with tonal music and, on the
other hand, provides a very simple and robust algorithm

that can be easily incorporated in a number of music
applications (e.g. music notation software, score-extraction
systems, music analytic systems and so on).

Conclusions
In this paper a system that attempts to extract the musical
surface from a performed MIDI files has been presented. A
wide range of independent but interacting modules was
described. Special emphasis has been given to making use
of musical accents for determining the beat level and then
using this for quantising all the note onsets. Streaming was
also presented as a means for deriving the duration of
notes. Finally a module was described that converts MIDI
numbers to the traditional pitch notation. The current score
extraction system can be further improved by refining the
existing modules and determining more accurately their
interdependencies; additionally, new components may be
introduced to cope with aspects of musical scores that
depend on knowledge of musical structure.

Acknowledgements
This research is part of the project Y99-INF, sponsored by
the Austrian Federal Ministry of Education, Science, and
Culture in the form of a START Research Prize. The
Austrian Research Institute for Artificial Intelligence is
supported by the Austrian Federal Ministry of Education,
Science, and Culture.

References
Bregman, A. S. 1990. Auditory Scene Analysis. Cambridge,

Mass: The MIT Press.
Cambouropoulos, E. 2000. Pitch Spelling: from Numbers to

Sharps and Flats. Submitted to ICMC 2000, Berlin.
Cambouropoulos, E. 1996. A General Pitch Interval

Representation: Theory and Applications. Journal of
New Music Research, 25(3): 231-251.

Desain, P. and Honing H. 1992. Music, Mind and
Machine. Amsterdam: Thesis Publishers

Dixon, S. and Cambouropoulos E. 2000. Beat Tracking
with Musical Knowledge. Accepted for ECAI 2000,
Berlin.

Handel, S. 1989. Listening. An Introduction to the
Perception of Auditory Events. Cambridge, Mass: The
MIT Press.

Lerdahl, F. and Jackendoff, R. 1983. A generative Theory
of Tonal Music. Cambridge, Mass: The MIT Press.

Povel, D. J. and Essens, P. 1985. Perception of Temporal
Patterns. Music Perception 2:411-440.

Rosenthal, D. 1992. Emulation of Human Rhythm
Perception. Computer Music Journal 16(10):64-76.

Rowe, R. 1993. Interactive Music Systems (Machine
Listening and Composing). Cambridge, Mass: The MIT
Press.

