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Abstract: In this paper a general theory will be introduced that facilitates the detection of local
boundaries in melodic surfaces. A model will be proposed that discovers points of maximum local change
that allow a listener to identify potential perceptual boundaries. It is suggested that the Local Boundary
Detection Model (LBDM) presents a more effective method for low-level segmentation in relation to
other existing models and it may be incorporated as a supplementary module to more general grouping
structure theories.

1. Introduction

The Gestalt principles of perceptual organisation are a set of rules-of-thumb that suggest preferential
ways of grouping mainly visual events into larger scale schemata. [Tenney 1961] discusses the use of the
principles of proximity and similarity as a means of providing cohesion and segregation in 20th century
music and, later, [Tenney & Polansky 1981] develop a computational system that discovers grouping
boundaries in a melodic surface. Musical psychologists [see Deutsch 1982a,b; McAdams 1984; Bregman
1990] have suggested and experimented as to how the Gestalt rules may be applied into auditory/musical
perception and [Deutsch & Feroe 1981] further incorporate such rules in a formal model for representing
tonal pitch sequences. The grouping component of the Generative Theory of Tonal Music (GTTM)
[Lerdahl & Jackendoff 1983] is based on the Gestalt theory and an explicit set of rules is thereby
described - especially for the low-level grouping boundaries (the formulation of these rules has been
supported by the experimental work of [Deliège 1987]).

In this paper a systematic theory will be described that attempts to define local boundaries in a given
melodic surface. The proposed segmentation model (Local Boundary Detection Model - LBDM) will be
based on two rules: the Identity-Change rule (which is lower-level than the Gestalt principles of
proximity and similarity) and the Proximity rule (which is an extended version of the Gestalt proximity
principle). It will be shown that the formulation of the boundary discovery procedures defined by Lerdahl
& Jackendoff and Tenney & Polansky are merely specific instances of the proposed theory. Most of the
examples and counter-examples will be given in relation to the influential formulation of the local detail
grouping preference rules (mainly GPR 2 & 3) and supporting examples presented by [Lerdahl &
Jackendoff 1983].

More specifically, the following issues will be addressed:
1. What are some problems, limitations and inconsistencies in the way the Gestalt rules of proximity and
similarity are applied to temporal musical sequences by existing theories? How might these problems be
resolved?
2. Is there a more general and clear way to define the low-level rules of perceptual organisation? How
may the existing rules relate to such lower-level principles?
3. Can one construct a general formal theory that suggests all possible grouping boundaries rather than a
theory that relies on a restricted set of heuristic rules?
4. How can this general fundamental theory be further refined?

Our goal is to develop a formal theory that may suggest all the possible points for local grouping
boundaries on a musical surface with various degrees of prominence attached to them. These are only
seen as potential boundaries as one has to bear in mind that musically interesting groups can be defined
only in conjunction with higher-level grouping analysis (parallelism, symmetry etc.). Low-level grouping
boundaries may be coupled with higher-level formations so as to produce 'optimum' segmentations (see
fig. 1).



figure 1: Beginning of Frère Jacques. Higher-level grouping principles override some of the local detail
grouping boundaries (note that LBDM gives local values at the boundaries suggested by parallelism -
without taking in account articulation - whereas Lerdahl and Jackendoff do so only for the 3rd and 4th
boundary).
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2. Problems in the application of the low-level Gestalt rules in existing theories

The low-level Gestalt principles of perceptual - mainly visual - organisation state that objects closer
together (Proximity principle) or more similar to eachother (Similarity principle) tend to be perceived as
groups. Some problems in the way these rules have been applied in the organisation of temporal  musical
sequences are briefly discussed below:

1. [Tenney and Polansky 1981] state that the similarity principle - as they define it - actually includes the
proximity principle as a special case. "In both, it is the occurrence of a local maximum in interval
magnitudes which determines clang-initiation" (p. 211). In the GTTM [Lerdahl & Jackendoff, 1983] the
grouping rules are defined in such a way that it seems rather plausible that the proximity rules can be
subsumed by the change (similarity) rules and the reverse. For example, GPR3a (register rule) states that
a greater pitch interval inbetween smaller neighbouring intervals initiates a grouping boundary. This can
been seen in two ways: a) that the pitches of the first and last intervals are more similar to each other than
the pitches of the middle interval or b) that there is a greater proximity between the first two pitches (and
the last two) rather than between middle pitches. [Handel 1989, p.198] states: "Proximity really refers to
spatial proximity and when we say that two frequencies are near each other we are really employing a
spatial analogy. We could just as easily have said that they were more similar to one another. However, it
really does not matter since the effects of the two are the same. Things that are either more similar to one
another than to their neighbours, or nearer to one another, will tend to be grouped together perceptually."

As defined in these theories the proximity and similarity principles are merely different descriptions of
the same phenomenon, namely a local maximum in interval magnitudes. In the current paper it will be
maintained that although this definition provides the most important factor for discovering local
boundaries a more general approach should also account for local minima (actually for any change) in
interval magnitudes. For example, in the following sequence of durations:       e    e    e    r   e    e    e
a listener easily hears a possible point of segmentation (neither the Tenney & Polansky nor the Lerdahl &
Jackendoff formalisms suggest any boundary). For this reason a different, more elementary rule will be
introduced based on the principle of identity/change. This issue will be discussed further in the following
sections and it will be shown that the above example can naturally be accommodated within LBDM.

2. The way that the Gestalt principles are usually defined, implies that the proximity principle applies for
spatial (or temporal) intervals/distances between different objects whereas the similarity principle applies
for internal attributes of objects. It seems though natural - at least for music - to relate the similarity
principle to intervals as well (musical intervals as defined by [Lewin 1981]). Musical intervals may be
considered 'objects' themselves perceived by the musical mind. This is rather obvious for the domain of
musical time, as durations are simultaneously attributes of individual musical events and intervals
between time points of different events. But pitch and loudness intervals (timbre intervals are not
discussed in the current paper) can also be perceived as objects independent of actual pitch and loudness
values. Pitch intervals tend to be perceived categorically [Handel, 1989, p.281-283] and play a leading
role in the perception and memorisation of melodic schemata [Dowling, 1986, ch. 5]. Loudness has a
built-in interval aspect as even in the physical domain a decibel - for example - is defined as "a unit of
difference between two sounds in terms of the ratio between sound pressures" [Handel, 1989, p.551]. The
assumption made in the current proposed model is that the similarity principle can be directly applied to
musical intervals. The proximity principle is also extended so that it may be applied to intervals between
any parametric attributes of musical events (not only temporal distances).



3. The underlying assumption of any attempt to apply the principles of visual perceptual organisation into
the temporal domain is that time can be modelled as a one-dimensional space (see [Xenakis 1992] on
outside-time and in-time aspects of music). Musical scores are possible because of this sort of mapping.

There is though one fundamental difference that is often overlooked or is implicitly presupposed that
makes this mapping not as obvious as it initially seems. This has to do with the fact that temporal objects
are not simply mapped on a one-dimensional space but onto a directional one-dimensional space i.e. an
axis with a given positive and negative direction (in other words, we can tell left from right). The low-
level Gestalt principles of proximity and similarity are usually applied on symmetrical spaces. On
applying them to musical temporal spaces, one has to make certain concessions by removing all possible
asymmetrical directional properties. One aspect of doing this, is to consider mainly absolute-values of
event properties and intervals, for example, absolute-value pitch intervals (i.e. not direction: ascending-
descending). Of course, event start-times must be omitted as these are the basic directional temporal
values, and absolute start-time intervals should be used instead.

There is though one aspect of musical asymmetry that cannot be avoided. This relates to the fact that
musical objects are asymmetric object themselves (even the most simplified homogeneous description of
a note distinguishes between its attack and the rest of its body). This asymmetry is reflected in that, for
example, the temporal grouping rules can never give an identical grouping structure to the original and
the retrograde form of a melody - unless one considers a melody of 'timeless' musical objects! It relates to
the way that rules of perceptual organisation give different grouping boundaries for musical duration
sequences and for start-time interval sequences. It will be shown below how the interaction between these
different groupings results in the asymmetric perceptual organisation of a sequence of musical events.

We will now attempt to define the Identity-Change rule (lower-level and more precise than the Gestalt
principles) and the Proximity rule (similar to the Gestalt principle of proximity extended for any kind of
interval)  which will form the basis of the LBDM. These rules will be discussed initially for any sequence
of two or three objects and then will be applied to sequences of musical objects.

3. The Local Boundary Detection Model

3.1 The Identity-Change and Maximum Interval Rules

Let us consider two discrete symmetrical objects, and an external observer who has selected a set of
properties that are pertinent to the objects' description and a set of metric units with which discrete
quantised (perceptually pertinent) values for each of these properties can be calculated. If the values for
all the properties are the same (except for the spatio-temporal values/coordinates) then the two objects are
said to be identical.  If at least one is different then they are non-identical.

It is assumed that our observer is only concerned with attributes and relations that are immanent to the
two-object world. Obviously spatial or temporal coordinate values rely on the observer's system of
reference and thus are disregarded. Absolute values, though, of spatial or temporal intervals (distances)
between two objects may be considered as they are independent of any external reference axes. Absolute
values of intervals relate to what was discussed in the previous section.

In the case where the two objects are identical (fig. 2a) the observer is not able to tell them apart and to
label them  solely on their immanent attributes. This is a consequence of the fact that they both have all
properties the same  i.e. there isn't a single property which is unique to either of them. (We do not
consider properties that may arise in relation to the observer's viewpoint - e.g. left-right, up-down, near-
far). If the objects are non-identical (fig. 2b) then the observer may give them different descriptions and
label them uniquely. In this case a change is detectable/discernible and a possibility arises for placing the
two objects in different classes/groups.

figure 2

a. •     • b. •     +

c. • • • d. •      •  •      e. •      + +



Let us suppose now that a third object is added to the two-object universe and that it's placed on the same
axis with the other two (fig. 2c, d, e).  The observer can now not only compare the property values of
each pair of adjacent objects but the intervals that are defined by each pair as well i.e. inferences can be
made as to whether two intervals are identical or not. And what was previously discussed about the two
objects can now be applied to two intervals (including space/time intervals).

For the three identical objects of fig. 2c the observer may calculate that the two spatial/temporal intervals
are identical and consequently that there is no way to group the three identical objects in uniquely defined
sub-groups. On the contrary, in fig.2d the two distances are non-identical - i.e. a change is discernible
between them - and this change makes it possible to uniquely define and identify any sub-group of
adjacent objects relying solely on the immanent features of the three-object world (e.g. find the group that
consists of the two adjacent objects that are closer together).

Assuming that we are presented with any sequence of values that are relating to the values of properties
of objects or intervals between such values, grouping boundaries may be inserted in the sequence
according to the following rule:

Identity-Change Rule: Grouping boundaries may be introduced only between two non-identical
elements (objects, parametric values, intervals). Identical elements do not allow any such
boundaries between them.

The traditional Gestalt rules of proximity and similarity are higher-level than the above rule as they can
be applied on at least three objects. The main claim made here is that facets of the similarity principle are
captured by the ICR rule when this is applied to consecutive pairs of objects or intervals (more on this
issue in the next section).

The Identity-Change rule is partially supported by an experiment [Garner 1974, quoted in Handel 1989]
wherein an eight-element pattern composed of two different pitch elements, for example XXXOXOOO,
is looped indefinitely and listeners are asked to describe the pattern they perceive. Various preferential
ways of organisation were recorded (there are eight possibilities starting on each element of the sequence)
but hardly ever did any listener break a run of same elements.

When the application of ICR on two consecutive intervals detects a change and suggests a local
boundary, this boundary is ambiguous i.e. the middle object can be placed on either side of the boundary
(for example, in fig. 2d ICR suggests a boundary on the first and/or the second interval). How can a
decision be taken as to whether the grouping boundary should occur on the one or the other side of the
object? This is where the second fundamental rule (relating to the Gestalt rule of proximity - and
similarity - seen as local maxima in interval sizes) comes into play:

Proximity Rule:  Amongst three adjacent objects those two will tend to form a group that are
closer together (or more similar to eachother) i.e. a boundary will be inserted on the larger interval.

In fig. 1d the two objects on the left will tend to be grouped together (i.e. the PR rule gives a grouping
boundary between the two objects on the right).

3.2 Applying the ICR and PR rules on three-event musical sequences.

We will assume that for each parametric feature of a musical surface we can construct a sequence of
intervals on which the ICR and PR rules may be applied. We will start off by presenting the application
of the rules to the following intervals defined by parametric properties of contiguous musical events:
pitch, dynamics, rests and articulation. The grouping boundaries resulting from the sequence of start-time
intervals and durations will be presented at the end of this section.

The pitch intervals may be measured in semitones or scale-steps depending on the kind of melody at hand
(tonal, atonal etc.). We use the absolute values, i.e. the interval size regardless of direction (ascending-
descending). For the loudness intervals, we use the scale from ppp=1 to fff=8 to calculate the absolute
value of the interval between these scale values (e.g. mp-ff is 3 units). Rests are considered as the
distances between the end-time of the previous and the start-time of the next event (the maximum
common denominator of the time intervals appearing in a musical surface can be used as a unit e.g. 16th
durational value = 1). Slurs, staccati, breath-marks etc. are considered to be expressional rests and are



inserted between the notes they mark as normal rests that have a value that is a fraction of the preceding
note (we will not introduce here any detailed way of measuring them).

The relation between two intervals can be of two types: identity or change. For reasons of asymmetry that
will be introduced later on we will depict the change relation in two directional forms (fig. 3b,c). In the
following figures, dots represent parametric values of musical events and the distances between the dots
the interval sizes between these values (∆x, ∆y are interval values and are placed at the left-hand side of
the interval). In fig. 3a ∆x=∆y and the identity relation is represented by a zero. In fig. 3b ∆x>∆y and in
fig. 3c ∆x<∆y, and the change relations are represented by the + and - signs respectively.

figure 3

a. • • • b. •    •   • c. •   •       •
∆x ∆y ∆x     ∆y ∆x  ∆y

 0        +     -

ICR: 0 0 1 1     1 1
PR: 0               0 1            0     0              1
Total 0 0 2 1     1 2

At this stage we will introduce numeric values for the strength of the ICR and PR rules (more research is
necessary for the selection of the most appropriate values). A numeric value is given to each interval as
shown below:
ICR: 0 for the identity relation (0 for each interval)

2 for the change relations (1 for each interval)
PR: 0 for no boundary

1 for proximity boundary suggestion
We get thus the total interval boundary preference strengths as depicted in fig. 3 (last three lines).

We can now examine the duration and start-time intervals. The duration of a musical event is an internal
attribute of that event whereas start-time intervals are temporal distances between two different
successive events (a rest is considered to be part of the preceding note's duration - rests are considered
independently in a separate parametric profile). We have thus the application of the ICR and PR rules for
the start-time intervals exactly as described above plus the application of ICR for the sequence of
durations (numeric strength 2). We now have the following kinds of relations for two start-time intervals
delimited by 3 start-time points (dots) and the two corresponding durations (rectangles) (fig. 4).

figure 4
a. • • • b. • • • c. • • •

∆x ∆y         ∆x        ∆y         ∆x    ∆y
 0      +     -

ICR (st-ints)   0 0    1 1     1 1
PR (st-ints)  0 0  1 0     0 1
ICR (dur) 0               0  2           0     2             0
Total   0 0  4 1     3 2

It is now clear that the + and - change relations are not symmetric. It is not possible to apply the
principles of perceptual organisation in the musical domain without introducing local asymmetry.

3.3 Applying the ICR and PR rules on longer musical surfaces

For a given parametric profile of a musical surface one finds all the kinds of interval relations (0, +, -)
that exist between every two successive intervals. If there are 3 or more consecutive + or - (e.g. +++, - - -
- -), then only the ones at the ends are considered - the others do not contribute to the numeric strengths.
Then, the sum of the numeric strengths for each kind of relation is calculated. For a single numeric
strength sequence all the local maxima suggest the most preferable local grouping boundaries. If a local
maximum consists of two numbers, then this is an ambiguous boundary (explained in the next section). If
a single maximum has an adjacent numeric strength that differs by one unit, then this suggests a possible
ambiguous boundary. If three numbers constitute a local maximum or one maximum is surrounded by



two numeric values that differ by one numeric unit then the middle interval is preferred as a grouping
boundary (it is not possible to have a maximum with more than three numbers).

The above procedure is realised for every parametric profile of interest. Then the total  sum of all the
numeric strength strings is calculated. The local peaks are the points in a melodic sequence in which
boundaries may preferably appear. Obviously the LBDM rules may contradict each other for different
parametric profiles leading to local peaks consisting of more than one similar values. In this case one may
estimate the relative strength of parametric profile and decide which wins or simply consider this
boundary as ambiguous. As in this study we do not aim at reaching a final segmentation of a given
surface (higher level grouping rules have to be taken into consideration) we will simply leave ambiguities
unresolved.

The 0, +, - interval relations can be combined in pairs to form sequences of three intervals (i.e. 4 events).
There are 32=9 possible combinations.  In fig 5 we give a first example of how one can use the ICR & PR
rules to calculate the strengths of grouping boundaries for the  - +  combination.

figure 5
   a. scale-step  ints        b. start-time ints      c. dynamic ints        d. rest intervals

   (16th = 1 unit)       (16th = 1 unit)
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sum:           1     4      1       3       6      1                1       4       1                  1      4      1
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As it happens, almost all the grouping preference rules of Lerdahl & Jackendoff and all the grouping rules
suggested by Tenney & Polansky fall under the  -  +  category! (Exception: L&J's GPR3d (equal note
length) and the articulation changes form legato to staccato and the opposite, fall under the 0 + 0  and  0 -
0 combinations). See fig. 6 for the application of the LBDM rules to the local detail examples of Lerdahl
& Jackendoff's grouping theory. LBDM accounts for all the positive instances of the Lerdahl &
Jackendoff's groupings and for all the examples where their rules do not apply!

figure 6: Application of the Local Boundary Detection Model to the Lerdahl &Jackendoff [1983, p.44-
46] local detail grouping examples 3.14-3.17. For the examples not accounted for by the GPR2 and GPR3
rules, the proposed theory suggests ambiguous boundaries (depicted as  ∧    ∧ ).
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The - +  interval relation is the strongest no matter what  the interval context in which it appears is. The
rest though of the possible combinations are important as well, especially when they are enclosed
between two 0's (identical intervals). Most of the existing grouping theories do not account for these
cases. In fig. 7  LBDM boundaries are depicted for the following sequences: 0 + - 0,  0 + 0,  0 - 0,  0 + +
0,  0 - - 0 (runs of + and - that do not contribute to the strength values are enclosed in parentheses).

figure 7
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In the following examples the LBDM is applied on musical excerpts from classical and contemporary
pieces. The preferred grouping structure is presented for Mozart's opening of the Symphony in G min.
(fig. 8), an excerpt from Xenakis' Keren (fig. 9) and an excerpt from Stravinsky's Three pieces for solo
clarinet, no. III (fig. 10).



figure 8: Low-level grouping structure for the theme of Mozart's Symphony in G min. (sequence A).
Sequence B depicts the most probable local boundaries given by the refined version of LBDM (see last
section of this paper for further details).
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2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2

rests (slurs): + 0 + - 0 + - + - + - 0 + - 0 + - + - +
1 2 2 2 2 2 2 4 2 4 2 2 2 2 2 2 2 4 2 4     (1)
___________________________________________________________________

Total: A. 3     7  10 5   7  10 5     9  11 12 5 5    10 5   7  10 5    9     9 12
     ∧ ∧           ∧ ∧ ∧  ∧
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   5.7 4.9

3.4 Further comments on the application of the LBDM  rules

• Most grouping formal theories define exclusively clear boundaries that appear unambiguously between
two musical objects. There are cases though where a boundary is ambiguously suggested. This
phenomenon is conveniently accommodated within the present theory wherein numeric peaks with two
identical or similar values suggest a blurred boundary (higher level grouping mechanisms may support
one interpretation over other possibilities). [Deliège 1987, p. 331, 342] suggests that in the following
sequences (fig. 11) the grouping boundary perceived by listeners tends to appear after the first half-note
and staccato note respectively. The current theory suggests an ambiguous boundary on those notes.

figure 11

L&J rules:         3d             3c

e e e w w w e e e e e e
   •     •                          •

0 0 - 0 0 0 0 - 0 0
0 0 3 2 0 0 0 1 2 0

∧                  ∧

• It may be preferable in some cases to use subjective scales for interval sizes instead of acoustic ones.
For example, in the following series of equally timed elements (fig. 12) the more intense ones tend to be
perceived as beginnings of groups [Handel, 1989, p. 386-389]. In other words, it may be said say that the
interval p  —> f is larger than the reverse f —> p. The sequence below will have the following grouping
boundaries:

figure 12 m v m v m v m v
physical intervals 3 3 3 3 3 3 3

0 0 0 0 0 0      (no boundaries)

m v m v m v m v
subjective intervals 2 3 2 3 2 3 2

-               +              -               +              -               +_____
1 4 1 4 1 4 1

∧ ∧ ∧



• [Deliège 1987] suggests that a change in melodic contour contributes weakly towards the establishment
of a local boundary. This may be incorporated in the current theory by detecting changes of contour of
the form 0 * 0, e.g. U U D D, and at the point of change applying the ICR rule - 1 numeric value for each
interval (fig. 13a).

figure 13
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 0                0              *               0 0                0              *                 0

a) 0 0 1 1 0 0 1 1
∧        ∧ ∧          ∧

b) 0 0 2 1 0 0 2 1
∧____ ∧_____

Deliège [1987, p.353] reports that the analysis of the responses of listeners to the change of the melodic
contour "revealed a preference for cutting before the pivot sound". Taking this observation into account it
would seem plausible to give an extra numeric weight at the first interval (fig. 13b).

4. Refinements in the Local Boundary Detection Model

The LBDM can be enhanced in various ways so as to accommodate further nuances of musical perception
that contribute towards a more accurate description of the low-level grouping structure of a musical
surface. Some of these are described below:
1. The various parametric profiles may be given different weights depending on the degree of prominence
they may have for a given melodic surface. If, for instance, start-time intervals are considered more
important, then the start-time profile may be given a higher weight factor before it is added to the other
profiles.
2. The numeric value of the PR rule may be augmented (e.g. have a value of 2). This will produce sharper
local maxima.
3. The 0, +, - identity/change relations may be refined by taking into account the ratio/difference between
two interval sizes (factor α). As [Deliège 1987, p. 328] points out, the sensation of a boundary is
strengthened in correspondence to the increase in difference between two intervals. For example, the
second of the following two sequences suggests a stronger boundary:

e e w e e r r w r r
↑   ⇑

4. A further factor that contributes to the perceived strength of a boundary relates to the total sum of the
two intervals. The larger the sum is, the greater the prominence of the perceived boundary (factor β). For
example, the second of the following two sequences suggests a stronger boundary:

r r e r r e e w e e
↑   ⇑

5. Values that appear under slurs may be attenuated or deleted altogether.

Taking in account some of the above suggestions (mainly factors α & β) the local boundary strengths
have been calculated for fig.  8 & 10 (if x, y are positive integer interval sizes then factors α & β may be
calculated using functions such as: α =  (x-y)/(x+y) and β = 1 - 1/(x+y) and  0<α,β<1). For the theme of
Mozart's Gmin Symphony it is clear that the middle and last boundaries are more prominent and could be
considered as best candidates for higher level groupings (actually, these boundaries would emerge if the
second-order local maxima were selected i.e. the maxima of the first-order maxima). This is a rather
interesting result, especially if one bears in mind that no higher level perceptual principles have been
employed (e.g. symmetry, parallelism).



A second example is given for an excerpt from the 3rd piece from the Three pieces for solo clarinet by I.
Stravinsky. Lerdahl and Jackendoff apply their grouping preference rules on the beginning of the 1st of
these pieces to show that their theory is general and not style specific. If though a different excerpt from
this set of monophonic pieces (fig. 10) is examined the local boundaries proposed by Lerdahl and
Jackendoff show limitations in two respects: firstly, not all the perceptually significant points of
segmentations are accounted for (see, for example, the third grouping boundary - after the 10th note);
secondly, many points are given excessive grouping boundary importance (see, for example, the second
half of the excerpt in which strong GPR 2a and 2b boundaries are placed on every rest). On the contrary,
the refined version of LBDM accounts for all the possible local boundaries and also highlights those that
are more prominent (actually, as it happens, the second-order maxima suggest boundaries which
correspond to the composer's articulations).

The refined LBDM encompasses facets of similarity more effectively as it accounts for the degree of
difference between two intervals. The refined LBDM may be incorporated in real-time systems that
attempt to segment input musical data. If, for instance, two input durations are almost the same - but not
identical - factor α  will tend to become zero so this slight performance difference will not contribute
towards the establishment of a boundary (there is no need for quantisation of musical parameters before
segmentation). It can also cope with the longer strings of only + or - change relations (e.g. ++++) because
these changes will receive different strengths according to their relative factor importance. In addition to
musical sequences, it seems plausible that the proposed model may be applied to any sequence of visual
or auditory events.

5. Conclusion

In this paper a formal theory has been described that attempts to define local boundaries in a given
melodic surface. The proposed Local Boundary Detection Model is based on two rules, namely the
Identity-Change and the Proximity rules, and it is suggested that it presents (especially the refined
version)  a more effective and general method for low-level segmentation in comparison to other existing
models.
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