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ABSTRACT 
Chords are commonly represented, at a low level, as 

absolute pitches (or pitch classes) or, at a higher level, as 
chords types within a given tonal/harmonic context (e.g. roman 
numeral analysis). The former is too elementary, whereas, the 
latter, requires sophisticated harmonic analysis. Is it possible to 
represent chord transitions at an intermediate level that is 
transposition-invariant and idiom-independent (analogous to 
pitch intervals that represent transitions between notes)?  

In this paper, a novel chord transition representation is 
proposed. A harmonic transition between two chords can be 
represented by a Directed Interval Class (DIC) vector. The 
proposed 12-dimensional vector encodes the number of 
occurrence of all directional interval classes (from 0 to 6 
including +/- for direction) between all the pairs of notes of two 
successive chords. Apart from octave equivalence and interval 
inversion equivalence, this representation preserves 
directionality of intervals (up or down). Interesting properties 
of this representation include: easy to compute, independent of 
root finding, independent of key finding,  incorporates voice 
leading qualities, preserves chord transition asymmetry (e.g. 
different vector for I→V and V→I), transposition invariant, 
independent of chord type, applicable to tonal/post-tonal/ 
atonal music, and, in most instances, constituent chords from a 
chord transition can be uniquely derived from a DIC vector. 
DIC vectors can be organised in different categories depending 
on their content, and distance between vectors can be used to 
calculate harmonic similarity between different music passages. 
Preliminary tests are presented using simple tonal chord 
sequences and jazz sequences.  

This proposal provides a simple and potentially powerful 
representation of elementary harmonic relations that may have 
interesting applications in the domain of harmonic 
representation and processing. 

I. INTRODUCTION 
In recent years an increasing number of studies propose 

computational models that attempt to determine the harmonic 
distance between two pieces/excerpts of music, primarily for 
music information retrieval tasks (Allali 2007, 2010; de Haas, 
2008, 2011; Hanna et al., 2009; Paiement 2005; Pickens et al. 
2002). Such models assume a certain representation of chords 
and, then, define a similarity metric to measure the distance 
between chord sequences. Chords may be represented as 
chroma vectors (pitch class profile), or chord  root transitions 
within a given tonality (following harmonic analysis), or, even, 
abstract chord distances (see below). In the case of absolute 
pitch representation, such as chroma vectors, transpositions are 
not accounted for. Allali concludes that “no pitch 
representation correctly enables retrieval polyphonic music 
systems to be transposition invariant.” (Allali et al, 2007, p.29). 

If harmonic analytic models are used  to derive a harmonic 
description of pieces, more sophisticated processing is possible 
as chords maybe represented as degrees within keys or tonal 
functions and so on, but these models rely on complicated 
harmonic analytic systems (such as Temperley’s Melisma 
model - 2001).  

All the above models rely on some representation of 
individual chords. There are a few attempts, however, to 
represent chord transitions. For instance, de Haas et al. (2008, 
2011) represent chord transitions as chord distance values  
adapting a distance metric from Lerdahl’s Tonal Pitch Space 
(2001); however, a chord transition being represented by a 
single integer value seems to be an excessive abstraction that 
potentially misses out important information. This paper 
explores the possibility of a richer chord transition 
representation that can be readily derived directly from the 
musical surface and that has many interesting and useful 
properties. 

In the first section below I will try to show the need for a 
new chord transition representation, which is analogous to the 
melodic interval representation. Then, the new Directed 
Interval Class (DIC) representation will be introduced and 
some of its potentially useful properties will be highlighted. 
Finally, the DIC representation will be used as the basis for two 
preliminary tests on a harmonic similarity task for different 
musical idioms. Finally, a brief discussion will summarise the 
importance of the proposed representation and will suggest 
interesting new avenues for further exploration. 

II. MELODIC VS HARMONIC INTERVAL 
REPRESENTATION 

Before discussing harmonic content, I would like to 
examine aspects of melodic representation. This brief 
discussion will make clear what shortcoming in the harmonic 
domain the proposed harmonic representation attempts to 
address. In this paper we assume a discrete 12-tone 
equal-tempered pitch system.  

At the lowest symbolic level, a melody can be represented as 
a sequence of absolute pitches (e.g. MIDI pitch numbers), or as 
a sequence of relative pitch intervals (e.g. in semitones). These 
simple low-level encodings require no further idiom-specific 
knowledge, such as scales, keys, tonal hierarchies. Any 
melodic sequence (e.g. tonal, atonal, modal, post-tonal, serial, 
etc.) can be represented as a series of absolute pitch numbers, 
or can be automatically converted to a sequence of relative 
pitch intervals (in semitones). If octave equivalence is assumed, 
pc can be used for absolute pitch and pitch intervals can be 
represented as simple pitch intervals (without octaves). 

The relative interval representation is closer to the way most 
listeners perceive pitch sequences (of course there exist a 
smaller proportion of listeners with absolute pitch – see, for 
instance, Levitin and Rogers 2005).  The interval encoding 
facilitates transposition-invariant storage and comparison of 

188



melodic sequences (as opposed to the absolute pitch encoding). 
This low-level interval representation may be hypothesised to 
be close to the way naïve listeners (that have no implicit 
higher-level knowledge of a specific musical idiom) perceive a 
melodic sequence.  

Obviously, an acculturated listener into a specific idiom (e.g. 
tonal idiom) uses more advanced representations to interpret 
and encode melodic sequences (e.g. scale degrees within a 
tonality). The construction of such sophisticated 
representations requires more complex cognitive ‘processing’, 
but, in return, facilitates more efficient and sophisticated 
comparisons between different melodic material allowing 
‘meaningful’ musical entities to emerge (e.g. melodic motives, 
themes). 

Let us now turn our attention to harmony. Let’s assume, for 
simplicity, that we have a simple progression of chords, i.e. 
mere vertical sonorities (without any ornamentations). By 
chords we mean any vertical sonority of two or more notes (not 
merely tonal triads). How can chords be represented in line 
with the above discussion on melodic representation?  

At the lowest levels, chords are simply co-sounding absolute 
pitches. This representation is too naïve to account for any 
aspect of harmony. At the level of an idiom-specific 
representation, and, more specifically, tonal representation, 
there are various harmonic descriptions, such as figured bass, 
traditional roman numeral analysis, guitar style chords, 
functional harmonic description (T/S/D), and so on. All these 
analytic interpretations of the actual vertical sonorities, require 
specialised knowledge regarding tonal centres, scales, keys, 
chord roots, chord root relations (circle-of-fifths) and so on.  
Even figured bass, the simplest and poorest of all these 
representations, requires scale knowledge so that the numbers 
above the bass note can be defined (e.g. a 3 above C is either Eb 
or E). Such tonal harmony analytic descriptions are anything 
but trivial.  

The question arises: is there any harmonic representation 
that is idiom-independent and traspositionally invariant 
(relative pitch)? That is, is it possible to represent harmony at a 
higher level than the primitive absolute pitches and, at the same 
time, at a level that does not require domain specific musical 
knowledge? Is it possible to define a harmonic equivalent to 
the idiom independent transposition invariant ‘pitch interval’?1 
Is it possible to devise a representation to fill in the gap in Table 
1? 
 

Table 1  Melodic and harmonic representation in relation to 
transposition invariance and idiom-independency. 

 Melodic 
Representation 

Harmonic 
Representation 

Idiom 
indepen

Transp. 
sensitive Absolute pitch Absolute Pitch 

                                                                 
1 It should be noted that in terms of individual chords, it is very simple 
to represent them as a set of intervals (traditional tonal intervals or 
interval vectors), but in case of tonal music these interval sets are 
trivial (for instance, major-minor chords consist of the same intervals: 
inteval vector: 001110). 
 

-dent Transp. 
invariant Intervals (semitones) ??? 

Idiom-dependent 
(e.g. tonal) 

Trad. Note Notation  
Scale degrees 

Figured bass 
Roman Numerals 
Guitar style chords 

 

III. THE DIRECTED INTERVAL CLASS (DIC) 
CHORD TRANSITION REPRESENTATION 

A novel chord transition representation is proposed. A 
harmonic transition between two chords can be represented as 
a Directional Interval Class (DIC) vector. The proposed 
12-dimensional vector encodes the number of occurrence of all 
directional interval classes (from 0 to 6 including +/- sign for 
direction) between all the pairs of notes of two successive 
chords. That is, from each note of the first chord all intervals to 
all the notes of the second chord are calculated. Direction of 
intervals is preserved (+,-), except for the  unison (0) and the 
tritone (6) that are undirected. Interval size takes values from 
0-6 (interval class).  If an interval X is greater than 6, then its 
complement 12-X in the opposite direction is retained (e.g. 
ascending minor seventh ‘+10’ is replaced by its equivalent 
complement descending major second ‘-2’).  

The 12-dimensional DIC vector features the following 
directed interval classes in its twelve positions: 0 (unison), +1, 
-1, +2, -2, +3, -3, +4, -4, +5, -5, 6 (tritone). For instance, the 
transition vector for the progression I→V is given by the DIC 
vector: Q = <1,0,1,1,1,1,0,1,0,0,3,0> (which means: 1 unison, 
0 ascending minor seconds, 1 descending minor second, 1 
ascending major second, etc.) – see Figure 1, and further 
examples in Figure 2. 

I -> V chord transition
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Figure 1  The DIC vector: <1,0,1,1,1,1,0,1,0,0,3,0> for the 

chord transition I→V depicted as a bar graph.  
 
The DIC vector is unique for many tonal chord transitions. 

However, there are a number of cases where different tonal 
transitions have the same vector. For instance, the transitions 
I→V and IV→I share the same DIC vector as their directed 
interval content is the same; it should be noted, that, heard in 
isolation (without a tonal centre reference), a human listener 
cannot tell the difference between these two transitions. 

The DIC vector uniquely determines the two chords that 
comprise the transition. This is true for all cases except when 
one of the two chords is symmetric, such as augmented chord, 
or diminished seventh chord. This is actually an interesting 
finding that agrees with music theory; for instance, diminished 
seventh chords are considered ambiguous and can resolve to 
different chords leading to different tonal regions/keys. 

The proposed DIC representation preserves directionality of 
intervals (up or down), and, therefore, it incorporates 
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properties of voice leading. For instance, the DIC vector 
naturally accommodates chord transition asymmetry. If the two 
chords in a chord transition are reversed, the absolute values of 
intervals are retained; however, the directions of intervals are 
reversed. This way, the vectors, for instance, for the I→V 
transition and the V→I transition, are different (compare, DIC 
vectors of Figure 1 and Figure 2a (top) - see also numerical 
distance between them in next section). 

 
V -> I chord transition

0

1

2

3

4

0 1 -1 2 -2 3 -3 4 -4 5 -5 6

directed interval classes

nu
m

be
r o

f i
nt

er
va

ls

IV -> V chord transition
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ii -> V chord transition
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I -> V7 chord transition

0

1

2

3

4

0 1 -1 2 -2 3 -3 4 -4 5 -5 6

directed interval classes

nu
m

be
r o

f i
nt

er
va

ls

Figure 2 DIC vectors for four standard tonal chord transitions: 
V→I,  IV→V, ii→V, I→V7 

 

IV. HARMONIC DISTANCE VIA DIC 
VECTORS: TWO PRELIMINARY TESTS 

In this section, we attempt to test the effectiveness of the 
DIC vector representation in a harmonic progression similarity 
task. The main assumption here is that, if this representation 
encodes sufficiently aspects of the harmonic content of chord 
progressions, then, given an appropriate distance metric, 
similarity between different chord progressions can be 
calculated and evaluated. We herein use the DIC vector 

representation as a basis for calculating the distance between 
simple chord progressions in two preliminary tests. In one case, 
we calculate the distances between 12 simple tonal triadic 
progressions, whereas in the second case, we have 11 jazz 
progressions.  

For this preliminary testing, we employ a very simple 
distance metric, namely the city block distance. The city block 
distance between two vectors is defined as the sum of the 
absolute differences of their coordinates. Essentially it counts 
the number of intervals that are different between two vectors. 
The total distance between two chord progressions is the sum 
of the distances between their corresponding DIC vectors. 
There are various other more advanced ways to measure the 
distance between two DIC vectors, but this simple metric will 
suffice for this preliminary test. The city block distance 
between DIC vectors P and Q is: 

  n 

d(P,Q) = ∑|pi-qi| 

 
i=1 

where P=(p1, p2, p3, …  pn) & Q=(q1, q2, q3, …  qn). 
Some examples: d(I→V, I→V7)=3, d(ii→V, IV→V)=6, 
d(I→V, IV→V)=8, d(I→V, V→1)=10, d(V→I, IV→V)=10. 

The total distance between two chord progressions C1 & C2 
is defined as the sum of the city block distances between each 
pair of corresponding chord transitions. For two equal-length 
chord sequences that consist of m chords, we have two 
corresponding sequences of m-1 DIC vectors: P=(P1, P2, P3,… 
Pm-1) and Q=(Q1, Q2, Q3,… Qm-1). The distance between the 
two chord progressions is calculated as: 

 m-1 

d(C1,C2) = ∑ d(Pi,Qi) 

 
i=1 

Cluster analysis can be used to group objects based on a 
given distance matrix. In this paper we use phylogenetic trees 
(branching diagrams) that can be used to visualise distance or 
similarity relations that exist between members of a group of 
entities (e.g. genetic materials, or cultural objects) – for use of 
phylogenetic trees in relation to musical rhythms see Toussaint 
et al. (2011). A phylogenetic tree is constructed such that the 
distance in the branches corresponds as closely as possible to 
the corresponding distance in the distance matrix. We used the 
software application SplitsTree-4 (Huson, 1998) for 
constructing phylogenetic trees from our chord sequence 
distance matrices. 

In a first preliminary test, we constructed a set of twelve 
triadic tonal chord progressions, each consisting of 4 chords 
(see Figure 3). A simple computer application calculates the 
distance between every pair of these chord progressions 
according to the measure described above creating a 12x12 
distance matrix. From this matrix, a phylogenetic tree is 
constructed using the SplitsTree-4 package (see Figure 3). The 
phylogenetic tree splits the twelve progressions into three 
groups that correspond with each staff in Figure 3. If the chord 
sequences are examined more closely, it is clear that in terms of 
functional harmony the chord progressions in the first staff 
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correspond to the progression T-S-D-T2, in the second staff to 
T-S-T-D, and in the third staff to S-T D-T. This very simple 
method manages to group together successfully these chord 
progressions without any knowledge of tonality, keys, chord 
roots, scales or any other sophisticated harmonic concept. Even 
if we transpose these progressions to various keys the proposed 
method would give exactly the same result (this whole process 
is transposition invariant). The mere intevallic content of these 
progressions is sufficient for finding similarities between these 
progressions and organising them into groups. It should be 
noted, however, that, if in this example more extensive 
substitutions of chords are introduced, the resulting tree is less 
successful, possibly because the distance metric is extremely 
elementary. Further research and testing are required. 
 

 

 
Figure 3  The triadic chord progressions are organised into a 
phylogenetic tree that illustrates their similarities and grouping 
based on their DIC vector distance. 

In a second preliminary test, we asked an experience piano 
jazz performer to write down some jazz chord progressions 
(same length) and also to let us know how she thinks they relate 
to each other. The jazz pianist prepared eleven jazz chord 
progressions each consisting of 4 chords (see Figure 4). As in 
the previous test, these were organised into an 11x11 distance 
matrix and, then, a phylogenetic tree was constructed (see 
Figure 4). The jazz musician examined the resulting 
phylogenetic tree and stated: “I think it is very nice and I agree 
with the main parts. The point on which I would disagree is 
placing 6 far away from 5,7,8; I would place them in a same 

                                                                 
2 T:Tonic, S:Subdominant, D: Dominant 

class. Secondly, group 1, 3 is closer to 2 in my opinion; the rest 
of the tree is very convincing.” The harmonic similarity 
between these jazz chord progressions seems to be captured 
reasonably well, despite the simplicity of the proposed model 
and its total ignorance of jazz harmony. This is a positive 
indication. Yet, more systematic research is necessary to 
improve the model and to test it more extensively (e.g. 
empirical data for the 11 progressions could be gathered from a 
larger number of jazz musicians). 

 

 
Figure 4  The jazz chord progressions are organised into a 
phylogenetic tree that illustrates their similarities and grouping 
based on their DIC vector distance. See text for more details. 

V. CONCLUSIONS – FUTURE WORK 
In this paper a novel chord transition representation has been 

proposed, wherein a harmonic transition between two chords 
can be represented as a Directional Interval Class (DIC) vector. 
This representation may be useful for practical computational 
modelling tasks, and at the same time, may have interesting 
ramifications for understanding musical harmony per se. 
Potentially useful properties of this representation include: 
easy to compute, independent of root finding, independent of 
key finding,  incorporates voice leading qualities, preserves 
chord transition asymmetry, transposition invariant, 
independent of chord type, idiom-independent, chords can be 
uniquely derived from vector (except for symmetric chords 
such as the diminished seventh).  

It is suggested that the proposed representation of chord 
transitions (as directed intervallic content) is analogous to the 
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way melodic transitions between notes are being represented as 
pitch intervals. This representation may afford cognitive 
relevance in the sense that, in some cases at least,  listeners may 
abstract and categorise directly intervallic content of chord 
progressions (instead of applying more advanced processing 
that involves identifying chord types, chord roots, 
circle-of-fifth relations between roots, and key). It is also 
suggested that listeners may encode not the full DIC vector, but 
rather a summary of it.  For instance, small intervals (0-2 
semitones) may be considered easier to perceive/encode as 
they commonly belong to independent melodic streams/voices; 
the same may apply for rare intervals (for tonal music) such as 
the tritone (6 semitones). Such smaller vectors may be 
considered more economic and cognitively plausible, and may 
allow quite efficient harmonic processing as they embody an 
important part of interval transition information. 

Further research is required to establish more reliable 
distance metrics and clustering processes, and further testing 
on larger chord progression ground truth data sets (from music 
theory or empirically-derived). It is hoped that the Directed 
Interval Class representation may prove to be simple and 
potentially powerful representation of elementary harmonic 
relations that may have interesting ramifications in 
understanding harmony, and, additionally, for practical 
applications that involve harmonic encoding and processing. 
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