
  
 

TRADITIONAL ASYMMETRIC RHYTHMS: A REFINED 
MODEL OF METER INDUCTION BASED  
ON ASYMMETRIC METER TEMPLATES 

Thanos Fouloulis Aggelos Pikrakis Emilios Cambouropoulos 
Dept. of Music Studies,  

Aristotle Univ. of Thessaloniki  
thanos.fouloulis@gmail.com 

Dept. of Computer Science, 
University of Piraeus 
pikrakis@unipi.gr 

Dept. of Music Studies,  
Aristotle Univ of Thessaloniki 
emilios@mus.auth.gr 

ABSTRACT 
 
The aim of this study is to examine the performance of an exist-
ing meter and tempo induction model (Pikrakis et al, 2004) on 
music that features asymmetric rhythms (e.g. 5/8, 7/8) and to 
propose potential improvement by incorporating knowledge 
about asymmetric rhythm patterns. We assume knowledge of 
asymmetric rhythms in the form of metric templates (consisting 
of both isochronous and asymmetric pulse levels).  Such 
knowledge seems to aid the induction process for symmet-
ric/asymmetric rhythms and thus improve the performance of 
the aforementioned model. 

1. INTRODUCTION 

In recent years a number of meter induction and beat 
tracking models have been implemented that attempt to 
identify perceptually pertinent isochronous beats in musi-
cal data. Such models assume an isochronous tactus with-
in a certain tempo range (usually centered around the 
spontaneous tempo). The performance of such systems is 
usually measured against musical datasets drawn from 
Western music (e.g. classical, rock, pop, jazz) that fea-
tures almost exclusively symmetric rhythmic structures  
(e.g. 3/4, 4/4, 6/8) (Mckinney et al. 2007;  Dixon 2007; 
Davies et al. 2009). The tactus of asymmetric/complex 
musical rhythms, however, is non-isochronous; for in-
stance, a 7/8 song is often counted/taped/danced at a level 
3+2+2 (not at a lower or higher level). Such models fail 
to identify asymmetric beat levels (Fouloulis et al, 2012). 

Musical time is commonly organized around a (hierar-
chic) metrical structure of which the most prominent lev-
el is the beat level (tactus) (Lerdahl and Jackendoff, 
1983). Such a metric structure facilitates the measure-
ment of time and the categorical perception of musical 
temporal units (durations, IOIs). In western music, an 
isochronous beat level is almost always assumed; any di-
vergences from isochronous beat are treated as ‘special 
cases’ or even ‘anomalies’. 

A central assumption of this paper is that the beat level 
(tactus) of metrical structure need not be isochronous. It 
is asserted that metrical structure is learned implicitly 
(through exposure in a specific idiom), that it may be 
asymmetric and that the tactus level itself may consists of 
non-isochronous units. It is maintained that an acculturat-
ed listener may use spontaneously an asymmetric tactus 
to measure time, as this is the most plausible and parsi-
monious way to explain and organize rhythmic stimuli 
within specific musical idioms. 

Rhythm and pitch share common cognitive underlying 
mechanisms (Parncutt, 1994; Krumhansl, 2000). Asym-
metric structures are common in the pitch domain. Major 
and minor scales, for instance, are asymmetric. Listeners 
learn pitch scales through exposure to a specific musical 
idiom, and then automatically organize pitch and tonal 
relations around the implied asymmetric scales. Asym-
metric scales are actually better (cognitively) than sym-
metric scales (e.g. 12-tone chromatic scale or whole-tone 
scale) as they facilitate perceptual navigation in 
pitch/tonal spaces. It is, herein, assumed that asymmetric 
beat structures may arise in a similar fashion to asymmet-
ric pitch scales, and may organize certain rhythmic struc-
tures in an accurate and more parsimonious manner. 

In more formal terms, the kinds of asymmetric beat 
structures mentioned in this study may be described as 
series of repeating asymmetric patterns consisting of long 
(three’s) and short (two’s) units. Such asymmetric pat-
terns are ‘sandwiched’ in between a lower isochronous 
sub-beat level (commonly at the 1/8 duration) and a high-
er isochronous metric level (e.g. 5=3+2 or 7=3+2+2) 
(Fouloulis et al, 2012). Such hierarchic metric structures 
are considered in this paper as a whole rather than a num-
ber of independent isochronous and asymmetric pulse 
levels.  

2. METER AND TEMPO INDUCTION MODEL 

2.1 Original model architecture 
In this study we examine a potential improvement in the 
performance of an existing model (Pikrakis et al, 2004) 
that focuses on meter and tempo extraction on polyphonic 
audio recordings. The existing version processes audio in 
non overlapping long-term windows while using an inner 
moving short-term window to generate sequences of fea-
ture vectors considering energy and mel frequency 
cepstral coefficients (MFCCs) (Figure 1). For every long-
term window a Self Similarity Matrix (SSM) is formulat-
ed based on the assumption that its diagonals can reveal 
periodicities corresponding to music meter and beat. Cal-
culating the mean value of each diagonal and plotting it 
against the diagonal index each audio segment reveals a 
“rhythmic signature” that can be further analyzed in order 
to infer the actual beat and meter. Two different ranges of 
SSM diagonal indices in this “rhythmic signature” are 
considered suggesting that beat and meter candidates are 
lying within respectively. 



  
 

The original model relies on two criteria to associate 
certain periodicities to music meter and tempo. In the first 
criterion beat candidates are selected as the two neigh-
bouring local minima that possess larger values. Meter 
candidates are validated in relation to beat candidates ac-
cording to the accepted set of music meters under investi-
gation. Calculating the sum of corresponding mean val-
ues for every pair, the music meter of a segment can be 
determined as the one that exhibits the lowest value. The 
second criterion differentiates in that it takes into account 
the slope (sharpness) of the valleys of each pair and not 
just their absolute values.  

The meter of the whole audio is selected taking into 
account its frequency of occurrence through histograms 
that are formed using the calculated meter values per 
segment. Tempo estimation process, based on previous 
results about beat lag, is jointly extracted per long-term 
segment or as average for the whole audio. 

 
Figure 1. Overview of the architecture of the original 
meter and tempo induction model. 
 

2.2 Refined model architecture 
The main motivation behind the refined model relies on 
the assumption that meter induction can be assisted by 
querying an audio recording against known metric tem-
plates. Knowledge about metric structure is incorporated 
into the model by including a set of both symmetric and 
asymmetric templates in a form of a template library 
(Figure 2). During the induction process and for a given 
tempo hypothesis each “rhythmic signature” of an audio 
recording can be evaluated in turn with the contents of 
the template library so that we can conclude to the most 
prominent one. 
 

2.3 Template Generation 
Templates were generated for the following time signa-
tures 2/4, 3/4, 4/4, 5/8 (3+2), 6/8, 7/8 (3+2+2), 8/8 
(3+3+2) and 9/8(3+2+2+2) using MIDI and audio drum 
sounds for a reference tempo of 260bpm (1/8). The corre-
sponding audio files were then transformed into their re-

spective template “rhythmic signatures” by using the 
same procedure as before. In Figure 3 “rhythmic signa-
tures” of 7/8 and 5/8 templates on a tempo of 260bpm 
(1/8) are presented. The lowest local minima (valleys) on 
these templates match strong periodicities and can be 
considered as meter candidates. The distance in the x-axis 
Dt between two successive meter candidates is generally 
altered accordingly to tempo changes and is utilized dur-
ing the induction process in order to scale the template 
according to the calculated tempo.  
 

 
Figure 2. Overview of the architecture of the refined  
meter and tempo induction model. 
 

3. IMPLEMENTATION DETAILS 

The refined system keeps the initial audio processing 
steps of the original model but we refer to them anyway 
for the sake of comprehension. In the first step audio re-
cordings are processed on a segment by segment basis in 
non overlapping long-term windows of 10s. Sequences of 
feature vectors are extracted using a “chroma based” var-
iation of standard MFCCs, which yields significantly bet-
ter results by emphasizing beat and meter candidates. 
This approach instead of assuming equally spaced critical 
band filters in the mel scale makes use of a critical band 
filter bank consisting of overlapping triangular filters, 
that is aligned with the chromatic scale of semitones 
(starting from 110 Hz and reaching up to approximately 
5KHz) (Pikrakis et al, 2004).  

Feature vectors in each long-term window are extract-
ed by means of a short-term processing technique. The 
values for the length, ws and hop size hs of the short-term 
window were chosen as 100ms and 10ms respectively. 
Then, the sequences of feature vectors are utilized to 
form self-similarity matrices (SSM), using the Euclidean 
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function as a distance metric, in order to reveal the domi-
nant periodicities inside each segment. This can be 
achieved by computing the mean value Bk for each diag-
onal k and plot the value against the diagonal index. Lo-
cal minima in this curve correspond to strong periodici-
ties that are prominent in the specific time frame. We can 
consider the function B(k) as the “rhythmic signature” of 
the long-term segment from which it is extracted.  

 

 
Figure 3. “Rhythmic signatures” for a 5/8 (top) and a 7/8 
(bottom) template. 
 

3.1 Peak detection - smoothing 
Each “rhythmic signature” is then processed using a peak 
detection algorithm to extract the diagonal indices k that 
correspond to the most salient local minima (valleys). 
The peak detection algorithm uses the first derivative of 
the signal and relies on the fact that the first derivative of 
a peak has a downward-going zero-crossing at the peak 
maximum. To avoid picking false zero-crossing due to 
the noise we use a technique that initially smooths the 
first derivative of the signal using a rectangular window, 
and then it takes only those zero crossings whose slope 
exceeds a certain pre-determined minimum (slope thresh-
old). The smoothing algorithm simply replaces each point 
in the signal with the average of m adjacent points de-
fined by smooth width. For example, for a 3-point 
smooth (m = 3) (O’Haver, 2013): 
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where Sj the j-th point in the smoothed signal, Yj the j-th 
point in the original signal, and n is the total number of 
points in the signal. 
 

3.2 Clustering valleys 
In order to account for light tempo changes and also 
slight deviations from strict metronomical performance 
we cluster the detected valleys by using the notion of val-
ley bins. Each bin is defined by a diagonal index mean 
value mb and a tolerance window e. Each time a new val-
ley is assigned to a relative bin the bin mean value mb is 
updated. The time equivalent Tk for a local minimum k is 
Tk = k ∗ step (Pikrakis et al, 2004) where step is the 
short-term step of the moving window (10 ms for our 
study). In this work the width of the tolerance window 
was defined to be 8*step =80ms. 

Valleys are weighted by taking into account their fre-
quency of occurrence in the sequence of “rhythmic signa-
tures”, their slope and their amplitude. This relies on the 
assumption that meter periodicities are prominent in the 
majority of the “rhythmic signatures” and exhibit steeper 
slopes and narrower valleys. Therefore, bins which are 
more populated and contain sharper valleys are discrimi-
nated. The next step is to pick the two most important 
valleys bins that have successive mean values mb. If the 
previous assumption is right and those two successive 
valley bins correspond to meter candidates then the dis-
tance Ds in x-axis between them can be compared to the 
corresponding distance Dt of each template. 

This comparison determines the stretching/expanding 
factor ft for each template that is needed to compensate 
for the tempo difference between the tempo of the real 
audio file and the reference tempo (260bpm - 1/8) that 
was specified during template generation. The product of 
this step is to conclude in tempo hypothesis using factor ft 
and then perform a “time scaling” for each template of 
the template bank.  

3.3 Meter extraction 
The final step of the algorithm performs a correlation 
analysis between each “rhythmic signature” of the audio 
and every time-scaled template. In particular, each tem-
plate is slided through every rhythmic signature and a 
correlation coefficient is calculated. Finally, the template 
for which the correlation coefficient has a maximum val-
ue is considered as the winner. The results for a 7/8 and a 
9/8 song are presented in figure 4.  

4. RESULTS AND DISCUSSION 

In a previous study (Fouloulis et el. 2012) we tested the 
original version of the model (Pikrakis et al. 2004) 
against a set of Greek traditional songs that featured 
mostly asymmetric rhythms with time signatures of 2/4, 
3/4, 5/8, 6/8, 7/8, 8/8, 9/8, 10/8 and 11/8. The majority of 
the songs were derived from educational material and 
most of them start with an introductory rhythmic pattern 
in order to indicate the correct way of tapping/counting. 

In this study we used a similar set of 30 Greek tradi-
tional songs and examined the model’s performance after 
incorporating templates with time signatures of 2/4, 3/4, 
4/4, 5/8, 6/8, 7/8, 8/8, and 9/8 (Table 1). The preliminary 
results are encouraging, indicating that this architecture 
may prove to be quite effective and may assist the induc-
tion process. In general the model seems to retain its sig-
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nificant behavior in processing non-symmetric meters but 
some more tweaking is needed in order to further im-
prove performance.  

 

 
Figure 4. Correlation analysis for a 7/8 (top) and a 9/8 
song (bottom).  
 

In cases (tracks 19, 20, 21, 26, 28 and 29) when the 
original model tended to designate as more dominant pe-
riodicities the ones that referred to a span of two 
measures the refined model’s output corresponds to the 
correct tempo and meter.  

For tracks no. 4-6, the refined model assumes a 6/8 
meter instead of 3/4. This seems to be supported but the 
nature of the performance (Figure 5).  For track 7 and 8, 
it indicates an asymmetric 8/8  while the notation of the 
song indicates an isochronous pulse; again this is due to 
the performance elements that introduce asymmetric fea-
tures. 

It is worth pointing out that the instances in which the 
algorithm falls into a wrong estimation are songs with too 
fast tempi (songs 10, 16, 18, 22 and 23). In all these cases 
the actual meter value resides in the correlation plot but 
with a lower peak.  

5. FURTHER RESEARCH 

The architecture presented above still has many open is-
sues that need to be explored. First of all it is necessary to 
evaluate its performance using a larger data set. Second-
ly, the results could probably be improved if further mu-
sicological/cogntive knowledge is incorporated. For ex-
ample, constraints about tempo hypotheses that exceed 
some limits (e.g. too slow or too fast rates) could be inte-

grated. Additionally, a wider range of more refined tem-
plates can be generated (by assigning a variety of sounds 
to the various metric midi templates), allowing a more 
effective discrimination between different metric struc-
tures for a given tempo.  

 

 
Figure 5. “Rhythmic signatures” from one segment of 
song no. 14 (top) and song no. 6 (bottom). Patterns seem 
to support the fact that even if song no. 6 is notated as 3/4 
it can be considered as 6/8 due to performers’ musical 
idiom.  

6. CONCLUSION 

In this study we investigate a potential improvement in 
the performance of an existing model (Pikrakis et al, 
2004) in inducting  meter  from audio recordings of folk 
music by embedding knowledge about asymmet-
ric/complex rhythmic structures. Templates of common 
asymmetric rhythm patterns were generated and then im-
ported into the system. The preliminary results in this on-
going research are very encouraging, indicating that this 
architecture may prove to be quite effective and can assist 
the induction process. 
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Table 1.  Meter and tempo induction results of the original and refined model.  

         Refined Model with 
 embedded templates 

Original model 

  Song's Name Time 
Signature 

Tempo Meter Calc. 
Tempo 

Calc.  
Meter 

Calc. 
Tempo 

Calc. 
Meter 

1 Sousta Rodou 2/4 144 (1/4)  141 (1/8) 2/4 285 4:1 
2 Mpalos 2/4 82 (1/4)  84 (1/8) 2/4 171 4:1 
3 Ehe geia panagia  

(Hasapiko) 
2/4 130 (1/4)  258 (1/8) 4/8 260 4:1 

4 Tsamikos 3/4 98 (1/4)  196 (1/8) 6/8 98 3:1 
5 Apopse mavromata mou 3/4 104(1/4)  209 (1/8) 6/8 206 6:1 
6 Valtetsi 3/4 108(1/4)  218 (1/8) 6/8 214 6:1 
7 Armenaki 4/4 180(1/4)  357 (1/8) 8/8 181 4:1 
8 Louloudi ti marathikes 4/4 127(1/4)  256 (1/8) 8/8 260 8:1 
9 Zagorisios -Kapesovo 5/8 94 (1/8) 2-3 96 (1/8) 5/8 97 2:1 or 5:1 
10 Mpaintouska Thrakis 5/8 420 (1/8) 2-3 250 (1/8) 3/8 83 4:1 
11 Dio palikaria apo to Aivali 5/8 239(1/8) 3-2 241 (1/8) 5/8 - - 
12 Esvise to keri kira Maria 5/8 249(1/8) 3-2 243 (1/8) 5/8 - - 
13 I Kiriaki 5/8 300(1/8) 3-2 293 (1/8) 5/8 - - 
14 Itia 6/8 201(1/8)  202 (1/8) 6/8 208 6:1 
15 Enas aitos kathotane 6/8 209(1/8)  209 (1/8) 6/8 206 6:1 
16 Perasa ap΄tin porta sou 7/8 264(1/8) 3-2-2 74 (1/8) 2/8 130 7:1 
17 Tik Tromakton Pontos 7/8 488 (1/8) 2-2-3 499 (1/8) 7/8 73 2:1 
18 Mantilatos Thrakis 7/8 483 (1/8) 2-2-3 199 (1/8) 3/8 69 2:1 or 3:1 
19 Mantili Kalamatiano 7/8 273 (1/8) 3-2-2 273 (1/8) 7/8 132 7:1 
20 Milo mou kokkino 7/8 268 (1/8) 3-2-2 265 (1/8) 7/8 133 7:1 
21 Na diokso ta synefa 7/8 266 (1/8) 3-2-2 266 (1/8) 7/8 130 7:1 
22 Oles oi melahroines 8/8 381 (1/8) 3-3-2 83 (1/8) 2/8 193 4:1 
23 Dyo mavra matia agapo 8/8 396(1/8) 3-3-2 97 (1/8) 2/8 200 4:1 
24 Marmaromenios vasilias 8/8 198(1/8) 3-3-2 195 (1/8) 8/8 - - 
25 Feto to kalokairaki 9/8 136(1/8) 2-2-2-3 139 (1/8) 9/8 139 9:1 
26 Karsilamas 9/8 256 (1/8) 2-2-2-3 255 (1/8) 9/8 130 9:1 
27 Amptaliko neo 9/8 104 (1/8) 3-2-2-2 246 (1/8) 9/8 61 9:1 
28 Tsiourapia Makedonias 9/8 276 (1/8) 2-2-2-3 296 (1/8) 9/8 109 9:1 
29 karsilamas - Ti ithela 9/8 288 (1/8) 2-2-2-3 290 (1/8) 9/8 146 9:1 
30 Ela apopse stou Thoma 9/8 185 (1/8) 2-2-2-3 184 (1/8) 9/8 96 9:1 

 


