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MUSICAL PARALLELISM AND MELODIC SEGMENTATION:
A Computational Approach

EMIL10s CAMBOUROPOULOS
Aristotle University of Thessaloniki

DESPITE THE CONSIDERATION THAT musical parallelism is
an important factor for musical segmentation, there
have been relatively few systematic attempts to describe
exactly how it affects grouping processes. The main
problem is that musical parallelism itself is difficult to
formalize. In this study, a computational model that
extracts melodic patterns from a given melodic surface
is presented. Following the assumption that the begin-
ning and ending points of “significant” repeating
musical patterns influence the segmentation of a
musical surface, the discovered patterns are used as
a means to determine probable segmentation points
of the melody. “Significant” patterns are defined prima-
rily in terms of frequency of occurrence and length of
pattern. The special status of nonoverlapping, immedi-
ately repeating patterns is examined. All the discovered
patterns merge into a single “pattern” segmentation
profile that signifies points in the surface most likely
to be perceived as points of segmentation. The effec-
tiveness of the proposed melodic representations and
algorithms is tested against a series of melodic surfaces
illustrating both strengths and weaknesses of the
approach.
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USIC BECOMES INTELLIGIBLE to a great extent
l\ /I through self-reference, that is, through the
relations of new musical passages to previ-
ously heard material. Structural repetition and similar-
ity are crucial devices in establishing these relations.
Similar musical entities are organized into musical cate-
gories including rhythmic and melodic motives, themes
and variations, harmonic progression groups, and so
on. However, musical similarity not only establishes
relationships between different musical entities but also
enables the definition of these entities by directly con-

tributing to the segmentation of a musical surface into
meaningful units.

Despite the importance of musical parallelism, even
the most elaborate contemporary musical theories
avoid tackling the problem of parallelism in a formal
way. Theories that attempt to describe musical similar-
ity systematically either restrict themselves to a well cir-
cumscribed and limited area of musical knowledge, for
example, Ruwet’s machine (Ruwet, 1987), or allow a fair
amount of musical intuition to the analyst, for example,
traditional thematic analysis (Reti’s thematic processes;
Reti, 1951), segmentation choices in pitch-class set the-
ory (Forte, 1973), paradigmatic analysis (Nattiez, 1975,
1990). Lerdahl and Jackendoff (1983) acknowledge
the importance of musical parallelism (parallelism
rule GPR6) but admit that their “failure to flesh out the
notion of parallelism is a serious gap in [their] attempt
to formulate a fully explicit theory of musical under-
standing” (p. 53). Temperley, who has developed one
of the most sophisticated computational models of
musical cognition, admits that “despite the clear role of
parallelism in meter, it would be very difficult to incor-
porate parallelism into a computational model. The
program would have to search the music for patterns of
melodic and rhythmic repetition. Since this seems to
me a huge and complex problem, I am not addressing
it formally in this book” (Temperley, 2001, p. 51). See,
however, the next section for a proposal by Temperley
and Bartlette (2002) that incorporates parallelism in a
metric preference rule system.

Models of melodic segmentation are often based on
local Gestalt-based factors that essentially identify
points of local maximal change in various musical
parameters, including IOIs (inter-onset intervals), pitch
intervals, dynamic changes, and so on. Higher-level
processes, however, play an important role as well.
In this study, a central assumption is that similar musi-
cal patterns tend to be highlighted and perceived
as units/wholes whose beginning and ending points
influence the segmentation of a musical surface. The
relation between musical parallelism and melodic seg-
mentation is discussed more extensively in the section
Segmentation and Parallelism.

The aim of this study is to examine the relationship
between musical parallelism and segmentation via
computational modeling. A computational model that
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extracts melodic patterns from a given melodic surface
is presented; following the assumption that the begin-
ning and ending points of “significant” repeating
musical patterns (primarily in terms of frequency of
occurrence and length of pattern) influence the seg-
mentation of a musical surface, the discovered patterns
are used as a means to determine probable segmenta-
tion points of the melody. All the discovered patterns
merge into a single “pattern” segmentation profile that
signifies points in the surface most likely to be per-
ceived as points of segmentation. The study focuses on
a special type of repetition, referred to as formative rep-
etition by D. Lidov (1979), that involves immediately
repeating patterns that often diverge toward their end-
ings, contain small variations, and may be transposed;
the function of this type of repetition is to “form”
motives and phrases.

This study does not provide a comprehensive stand-
alone computer program for melodic segmentation;
since the proposed model addresses only one specific
segmentation factor (that relates to musical paral-
lelism), testing it against a large melodic corpus without
incorporating it first in a comprehensive segmentation
model would be meaningless. The current study
explores melodic surface representation issues and
issues relating to the pattern extraction mechanism
itself through the application of a series of different rep-
resentations and algorithm variants on progressively
“difficult” melodic parallelism examples. The main goal
is neither to provide a comprehensive solution to the
problem of melodic parallelism nor to simulate compu-
tationally the exact cognitive mechanisms involved, but
rather to shed light on various aspects and to enable a
better understanding of the problem.

Related Work on Pattern Extraction Techniques
for Melodic Segmentation

Pattern-matching techniques have been employed in
attempts to formalize musical similarity. Much of the
research has focused on algorithms for comparing
melodic sequences (i.e., finding the best possible align-
ment between two given melodic excerpts) or for
melodic recognition (i.e., finding instances of a given
melodic excerpt in a larger musical database). There have
been, however, relatively few attempts to tackle the diffi-
cult issue of pattern extraction (i.e., extracting important
patterns in one or more musical sequences). Overviews
of the application of pattern-processing algorithms on
musical strings can be found in Crawford et al. (1998),
Rolland and Ganascia (1999), Cambouropoulos et al.
(2001), and Meredith et al. (2002).

Several recent attempts to formalize pattern extrac-
tion and melodic segmentation are presented below. All
these models are relevant for segmentation tasks in that
they discover important musical patterns; however,
only the last two models address melodic segmentation
explicitly.!

Meredith et al. (2002) present an algorithm for
discovering repeated patterns in multidimensional
representations of polyphonic music. The proposed
algorithm computes all the maximal repeated patterns
in a multidimensional data set (e.g., all the maximal
repeated patterns in a two-dimensional representation
of polyphonic music where one axis represents time and
the other pitch). The authors maintain that maximal
repeated patterns tend to be musically important; how-
ever, they acknowledge that the algorithm discovers too
many such patterns and that mechanisms for selecting a
smaller set of salient patterns is necessary. (They
propose some possible mechanisms but admit that
further research is required to restrain the abundance of
extracted patterns.) A handful of musical examples are
chosen to show the potential of the algorithm.

Rolland (1999, 2001) introduces an approximate pat-
tern extraction model that identifies all melodic passage
pairs that are significantly similar (a similarity thresh-
old is set in advance), then extracts actual patterns in
terms of a set of instances that includes a prototype, and
finally orders these patterns according to a prominence
value based on factors such as frequency of occurrence
and pattern length. The heavy combinatorial computa-
tion required is carried out in a computationally eco-
nomic fashion using dynamic programming concepts.
The model has been tested on a corpus of jazz melodies.

A computational model for melodic parallelism that
affects the determination of metrical structure is intro-
duced by Temperley and Bartlette (2002). This model
calculates the “goodness” of beat intervals (i.e., time
spans between beats) in terms of parallelism; this good-
ness value contributes, via the parallelism rule, to find-
ing a preferred metrical structure. The model calculates
“parallelism” values for all the possible pitch interval
pairs in a melody (adjacent or further apart); these val-
ues depend primarily on whether the intervals are the
same (diatonic intervals) or have the same or a different

'An interesting model that investigates melodic segmentation,
parallelism, and metrical structure by Ahlbédck (2004) was published
too late to be included in this study. Among others, the model has a
component that performs “a segmentation of the melody by analysis
of melodic parallelism and structural discontinuity” (p. 20).
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contour. From these values, parallelism scores are com-
puted for beat pairs that reflect the extent to which
events in the vicinity of the first beat are “paralleled” in
the vicinity of the second beat; these scores are used in
the parallelism rule of the metrical structure preference
rule system. It should be noted that the proposed model
does not explicitly identify patterns; neither does it pro-
vide a segmentation of the melodic surface.

Ferrand and Nelson (2003) propose a memory-based
model for melodic segmentation. Different classes of
Markov models are used for acquiring melodic regular-
ities and for determining the probabilities of sequences
of symbols. The main assumption is that “segmentation
boundaries are likely to occur close to accentuated
changes in entropy” (p. 142), that is, points in the
melody where the predictability associated with the
occurrence of a musical event changes abruptly from
low to high or from high to low (these points tend to
coincide with the limits of recurring patterns). The pro-
posed model “learns” from raw musical data, that is, it
does not require a training data set with segmentation
points annotated. The model is applied to Debussy’s
Syrinx, and the results are compared to empirical seg-
mentation data for the same piece.

A different memory-based approach for melodic seg-
mentation is presented by Bod (2002), which requires
an annotated melodic data set in which segmentation
boundaries have been manually identified in advance.
By using the frequencies of occurrence of melodic frag-
ments encountered in previous melodies, predictions
are made for where boundaries might occur in new
unseen melodies. The models presented by the author
are tested against the Essen Folksong collection (train-
ing set of approximately 5,000 folk songs and test set
of 1,000 folk songs) and yield more than 80% phrase
detection accuracy.

Computational models presented above are not
directly comparable as they have varying scopes and
give special attention to different facets of musical
parallelism and/or segmentation. Below are a few
general comments that relate to the approach taken in
this study:

1. Some models extract directly significant musical
patterns from raw unstructured musical material,
which may be considered a strength in that such
models can be applied directly on large data sets
of readily available music (e.g, MIDI files).
However, it may be cognitively more plausible that
some preprocessing of musical data is required for
the pattern-processing mechanisms to be more
efficient. For instance, with polyphonic music it is

plausible that a listener organizes the musical surface
into streams before—or at least concurrently with—
discovering patterns. It is unlikely that patterns
distributed across different streams can be perceived
at all (Bregman, 1990).

. Extracting patterns that embody drastic variations

(e.g., ornamented or reduced patterns) directly from
the musical surface is a task hampered with many
difficulties. For instance, how much tolerance should
be allowed for the approximate matching process?
Where are the exact boundaries of two patterns that
match approximately (i.e., how do we know that extra
notes beyond the boundaries are not part of the pat-
tern)? In addition to these concerns, computational
complexity is also greater for approximate pattern-
processing techniques. It seems more plausible that,
first, simple pattern extraction may contribute to
melodic segmentation and, second, more sophisti-
cated pattern-matching techniques may be applied to
the segmented surface.

. Representation of the musical surface is a very

important issue. Are diatonic intervals sufficient
(many of the aforementioned models use this repre-
sentation)? Should more abstract representations be
employed, for instance, a step-leap representation?
Should time patterns be taken into account? If yes,
should IOIs be used? Or ratios? Or even more
abstract representations? (A musical representation
for pattern extraction tasks is proposed in the multi-
ple-viewpoint representation by Conklin & Witten,
1995; Conklin & Anagnostopoulou, 2001.)

. The use of previously learned musical schemata is

clearly an important factor for segmentation (e.g.,
cadential schemata). However, the emergence of
melodic patterns (e.g., themes, motives, etc.) is prima-
rily linked to the unique structure of a particular
musical piece. Linguistic-oriented approaches that
attempt to learn patterns from previously seen pieces
for predicting boundaries in new pieces seem less
appropriate for music (except perhaps for musical cor-
pora where there is strong inter-opus coherence).
These approaches can be attractive for intra-opus
applications (with the only reservation that very small
data sets are not ideal for statistical approaches).

. Evaluation of computational models for musical

parallelism and/or segmentation is a difficult issue,
as there exist no significant, authoritative, annotated
data sets against which models can be tested.
This problem hampers attempts to compare models
against each other. Researchers use different musical
data sets for evaluation. Test data sets are often small
(sometimes just a handful of examples), but in this
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case, a detailed qualitative evaluation is possible (at
the expense of having selected biased data). At other
times, large data sets are used, but quantitative
results are difficult to judge (for instance, what does
it mean that an algorithm extracted 500 significant
patterns from a data set that contains thousands of
notes? How many of these patterns are musically
significant? How many significant patterns have
been missed altogether?).

The approach in this article attempts to address some of
these problems, but in no case does it provide a com-
prehensive solution. A computational model is pro-
posed as a means to explore parallelism in relation to
melodic segmentation. The proposed model cannot be
tested on how well it performs melodic segmentation in
general, nor can it be directly compared to other mod-
els as it is not a complete model for segmentation. (It
has to be incorporated into a broader model of melodic
segmentation.) Some possible advantages of the pro-
posed algorithm are that it is simple to implement, fast
in terms of computational complexity, and easy to
experiment with (parameters can be altered and differ-
ent melodic surface representations can be tried). Open
questions for further investigation are discussed in the
last section.

The proposed algorithm is applied to a small set of
melodic examples with the following characteristics:

1. Boundaries due to parallelism are unambiguously
defined (i.e., hardly any musician/music analyst
would disagree on where the “correct” boundaries
are).

2. Local Gestalt-based boundary detection models fail
to identify these boundaries.

3. The examples illustrate progressively difficult yet
clear pattern-matching problems.

It is easy to find many counterexamples for which the
proposed model would fail (see the example in the last
section). However, clearly presenting the strengths and
limitations of a certain approach may contribute to a
better understanding of the problem and lead to new,
more robust and sophisticated models.

There is hardly any work of empirical research that
directly examines the influence of parallelism on
segmentation. Early work by Deutsch (1980) that bears
on parallelism has shown that it was easier for listeners
to learn and remember patterned melodies (which con-
sisted of repeating three-note or four-note patterns)
than unpatterned ones. Sloboda (1985) suggests that

memory ability can be improved if items to be remem-
bered can be linked or related together: “In music, such
relations are, to a large extent, already present in the
patterning and structure of a composition . .. [among
others] economy of coding is achieved if repetitions can
be identified and noted” (Sloboda, 1985, p. 190). The
role of parallelism on memory will be discussed further
in the section Segmentation and Parallelism.

The principle of similarity/difference underlies
perceptual tasks including musical segmentation and
categorization. For segmentation, it has been shown
that cues at the musical surface, such as changes in
register, timbre, dynamics, tempo, and so on, play a
primary role in perceiving boundaries in both tonal and
especially nontonal music (Lamont & Dibben, 2001;
Lalitte et al., 2004; see also the overview for experimen-
tal work in local detail grouping factors—Frankland &
Cohen, 2004). For categorization, structural similarity
at the musical surface and/or reductions of it has been
shown to influence the formation of motivic/thematic
categories, especially through repeated hearings of the
musical material (Pollard-Gott, 1983; Deliége, 1996,
2001). Other research suggests, however, that surface
similarity, rather than “deeper” structural similarity, is
the primary factor in categorization tasks (Lamont &
Dibben, 2001; McAdams et al., 2004).

Some researchers acknowledge the importance of
musical parallelism in segmentation tasks (for instance,
Clarke & Krumbhansl, 1990, identify the reiteration of
musical material already heard as one of four character-
istics contributing to segmentation in an experiment
involving the perception of musical form). But this
topic has not been examined in any detail in experi-
mental studies. After presenting a recent detailed study
that involved the quantification of Lerdahl and
Jackendoff’s local grouping rules, Frankland and Cohen
(2004) admit that “the current work could not be
extended to Symmetry (GPR5) and Parallelism (GPR6)
because these rules are not clearly defined,” and they
assert that the lack of an explicit description of paral-
lelism is unfortunate because “it is mainly Symmetry
and Parallelism that serve as a link between the
low-level rules (i.e., GPRs 2, 3) and the high-level
analyses (i.e., Time-Span reduction and Prolongation
Reduction)” (Frankland & Cohen, 2004, p. 538). The
aim of the current study is to formalize aspects of paral-
lelism that contribute to melodic segmentation so that a
fully formalized theory of musical parallelism may
become possible.

In the following sections, the issue of pattern extrac-
tion is first discussed, and an efficient pattern extraction
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algorithm is explained. Then the relationship between
musical similarity and segmentation is examined, and a
model that segments a melodic surface based on
melodic pattern extraction is presented. Finally, a series
of further improvements on the current model is sug-
gested. Throughout the study several melodic examples
illustrate the strengths and weaknesses of the overall
approach. The current study is a continuation of the
earlier research presented in Cambouropoulos (1998).

Pattern Extraction

Musical entities that constitute a musical pattern are
often structured hierarchically, that is, some notes (or
chords, etc.) are more prominent than others in metrical
position, duration length, register, harmony, tonal hier-
archies, and so on. What kind of pattern-processing
techniques are most adequate for establishing similari-
ties between structured strings like melodic passages?

To simplify for the sake of argument, we can suppose
two main approaches:

1. Approximate pattern-processing techniques applied
to the unstructured musical surface

2. Exact pattern-processing techniques applied to
the musical surface and on a number of reduced
versions that consist of structurally more prominent
components

The first approach is based on the assumption that
musical segments construed as being parallel (similar)
will have some of their component elements identical
(e.g., two instances of a melodic motive will have a “sig-
nificant” amount of common notes or intervals but not
necessarily all)—some approximate pattern-matching
algorithms based on this approach are described in
Bloch and Dannenberg (1985), Cope (1990), Stammen
and Pennycook (1993), and Rolland (1999, 2001). The
second approach is based on the assumption that paral-
lel musical segments are necessarily identical in at least
one parametric profile of the surface or reduction of it
(e.g., two instances of a melodic motive will share an
identical parametric profile at the surface or some
higher level of abstraction, for instance, a pattern of met-
rically strong or tonally important notes/intervals and so
on). Computational techniques based on this approach
are described in Conklin and Anagnostopoulou (2001,
2006), Cambouropoulos (1998), and Hiraga (1997) see
also technique proposed by Lartillot (2004) that allows
extraction of mixed parametric patterns.

An exact pattern extraction algorithm will be
presented below. It will be maintained that exact
pattern-matching techniques at the musical surface (or
a slightly reduced version of it) are sufficient for melodic
segmentation tasks, which will be discussed in more
detail in the Segmentation and Parallelism section.

An Exact Pattern Extraction Algorithm

An efficient algorithm that computes all the repetitions
in a given string is described in Crochemore (1981); see
also the description by Iliopoulos et al. (1996)—an infor-
mal description of Crochemore’s algorithm is given in
Appendix 1. For a given string of symbols (simple or
complex), the matching process starts with the smallest
pattern length (one element) and ends when the largest
pattern match is found. This algorithm takes O(# - logn)
time where 7 is the length of the string; this is the fastest
algorithm possible. This algorithm can be applied to as
many parametric profiles considered necessary (e.g.,
pitch intervals, contour, durations, inter-onset intervals,
dynamic intervals, implied harmony) for the melodic
surface and/or reductions of it.

Selection Function

It is apparent that a procedure for the discovery of all
identical melodic patterns for many melodic parametric
strings will produce a great number of possible patterns,
many of which would be considered counterintuitive
and nonpertinent by a musician/analyst.

Rowe attaches a strength value to each pattern depend-
ing on its frequency of occurrence: “Each known
pattern has an associated strength: the strength is an
indication of the frequency with which the pattern has
been encountered in recent invocations of the program”
(Rowe, 1993, p. 248). Frequency of occurrence and pat-
tern length, two properties of pattern significance, are
balanced in the pattern score procedure proposed by
Conklin and Anagnostopoulou (2001).

In line with the procedure proposed by
Cambouropoulos (1998), a prominence value is
attached to each of the discovered patterns based on the
following factors: (a) prefer most frequently occurring
patterns, (b) prefer longer patterns, (c) avoid overlap-
ping. A selection function that calculates a numerical
strength value for a single pattern according to these
principles can be devised, for instance:

AL, E DOL) = L*- F*/10¢ POt
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FIG. 1. Frére Jacques—most prominent pitch patterns extracted by the exact pattern induction algorithm and the selection function (applied only
to the diatonic pitch profile).

where L = pattern length; F = frequency of occurrence
for one pattern; DOL = degree of overlapping;® a, b,
¢ = constants that give different prominence to the
above principles (the following values have been used:
a=1,b=2,c=3).

For every pattern discovered by the above pattern
induction algorithm, a value is calculated by the selec-
tion function. The patterns that score highest should be
the most significant (see Figure 1).

Segmentation and Parallelism

Segmentation of a musical surface is a central part of
musical analysis; an initial selected segmentation can
seriously affect subsequent analysis as a great number of
intersegment musical structures are excluded a priori.
The most commonly acknowledged (and perhaps most
prominent) factors in musical segmentation relate to
the perception of local discontinuities of the surface
(e.g., a longer note between shorter ones or larger pitch
interval between smaller intervals, etc.); one such
model is the Local Boundary Detection Model (LBDM)
proposed by Cambouropoulos (1998, 2001a)—see brief
description in Appendix 2. Higher-level processes,
however, also affect the segmentation of a musical sur-
face. Perhaps the most important of these higher-level
mechanisms is musical similarity, that is, similar musi-
cal patterns tend to be highlighted and perceived as
units/wholes whose beginning and ending points influ-
ence the segmentation of a musical surface. For
instance, a model for determining local boundaries
would select the interval between the third and fourth
notes of Frére Jacques as a local boundary (larger pitch
interval between smaller ones), whereas a boundary
between the fourth and fifth notes appears because of
melodic repetition.

2DOL is defined as the number of elements shared by some
patterns divided by the number of all elements in those patterns, or
more precisely: DOL = (T—U)/U, where T is the total number of
elements in all the instances discovered for a pattern (T = F- L), and
U is the number of elements in the union set of all the instances dis-
covered for a pattern (this definition allows DOL to be in some cases
greater than 100%).

General Assumptions

This study’s focus is primarily a special case of melodic
similarity, namely immediate repetition of melodic pas-
sages. These repeating passages often diverge toward
their endings and contain small variations, and the
repeated passage may be transposed. David Lidov
(1979) calls this kind of repetition formative repetition.
Its function is to establish or to “form” motives and
phrases. This study assumes that it involves fundamen-
tal pattern discovery processes primarily at the melodic
surface (not reductions of the surface) and is essentially
independent of more abstract learned idiom-specific
schemata (e.g., harmony, tonality, meter). This kind of
melodic similarity is omnipresent in music.

From a cognitive point of view, elaborate pattern
extraction processes are more likely to be applied to rel-
atively short melodic excerpts due to the heavy compu-
tation involved. This activity is usually more intense at
the beginning of a musical piece/section where new
musical materials are introduced and established. Once
a number of such musical ideas have been extracted,
links to further new instances (varied or not) can be
made more efficiently: once a pattern has been
extracted from a local context, it is placed in long-term
memory (i.e., it is learned); when the pattern is encoun-
tered again, later in the musical surface, it is recognized
and used for further parsing of the surface.

The proposal here is that pattern extraction takes
place primarily within a short temporal window, and it
assists chunking the melodic input into meaningful
units, thus expanding the storage capacity of short-term
memory. Repetition expands the mnemonic capabilities
of short-term memory (7 = 2 different elements pro-
posed by Miller, 1956) in the sense that more ele-
ments/chunks can be held by short-term memory.
According to Snyder, “a pattern that fits within the time
limits of short-term memory can have repetition of ele-
ments, and hence have more actual events than seven,
perhaps up to a limit of 25” (Snyder, 2000, p. 50). In this
sense, we can imagine a short temporal window sliding
over the sequence of musical events; pattern extraction
algorithms enable repeated patterns to be found within
this window, which, in turn, assist with the segmenta-
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tion and efficient encoding of the musical surface. The
size of the window can reach the limit of the perceptual
present (up to 10-12 seconds; see Snyder, 2000, p. 50) or
even become as long as 30 seconds, according to
Levinsons idea of “quasi-hearing” (Levinson, 1997). In
this study, the pattern discovery algorithm is applied to
short melodic sequences that can be considered to fit
into the short perceptual window suggested above;
the possibility of applying this algorithm to longer
sequences is discussed further in the last section.

Pattern similarity assists metrical induction (e.g.,
Temperley & Bartlette, 2002). However, meter assists
musical segmentation (e.g., Temperley, 2001), which
enables further pattern processing of the segments. It is
asserted in this study that pattern induction contributes
significantly to the establishment of metrical structure
by means of segmentation, especially at the beginning
of a musical work or section where new musical mate-
rial is introduced. Once meter is established it can assist
further segmentation of the musical surface (assuming
that metrical and grouping structures are coextensive;
Lerdahl & Jackendoff, 1983). See the last section for
more on the relation between meter and parallelism.

It is assumed that similarity processes for melodic seg-
mentation tasks are confined essentially to the melodic
surface in contrast to melodic categorization tasks (i.e.,
creating motivic/thematic categories after segments have
been defined), which require similarity measurements
at deeper levels of musical structure as well (see
Cambouropoulos & Widmer, 2000; Cambouropoulos,
2001b, for a computational model of melodic categoriza-
tion). Because extracting patterns at reduced versions of
the melodic surface would result in ambiguous segmenta-
tions, as it would not be possible to define exactly where
the boundaries of the repeated patterns should be placed
(since notes are missing from the reduced version). This
problem, in some sense, defeats the point of using pat-
tern extraction at reduced versions of the surface for
melodic segmentation. Of course, musical similarity
appears in many guises at deeper levels of musical struc-
ture, but in these cases this sort of abstract similarity is
not the most crucial factor in segmentation tasks; other
factors, like Gestalt-based local boundary detection fac-
tors or learned schemata (e.g., harmonic cadences), are
responsible for segmenting the surface and only then are
more sophisticated comparisons of segments made pos-
sible at more abstract levels of description.

The present musical examples for testing the pro-
posed algorithms have been selected because the seg-
mentation process for these cases relies primarily on
melodic parallelism and not on local detail grouping
factors (local Gestalt-based factors provide clearly

incorrect boundaries). These two segmentation compo-
nents (i.e., local Gestalt-based factors and parallelism)
commonly reinforce each other, but for the sake of
clarity, examples that illustrate a conflict between the
two approaches and a clear predominance of the paral-
lelism factor have been selected. Also noteworthy, these
melodic figures represent the melodic surface that is pre-
sented as input to the algorithms. It is assumed that the
melodic surface does not include explicit metric infor-
mation (i.e., the listener does not have direct access to
such information); to stress this point, bar lines have
been omitted from all examples.

In this study, the pattern extraction algorithm is
applied to parametric profiles of the melodic surface for
pitch intervals (diatonic intervals, a step-leap represen-
tation, and some further, more refined representations)
and for inter-onset intervals (IOI ratios). One signifi-
cant objective is to discover which of these parameters
(or combination of them) is more appropriate for the
segmentation task and to show how a “balanced” repre-
sentation that is neither too specific nor too general
may yield better results in more cases. However, the
issue of representation is examined primarily to show
its importance and how better representations can be
devised rather than to propose a “best” solution.

The PAT Algorithm

The pattern extraction model described in the section
Pattern Extraction, which consists of the exact pattern
extraction algorithm and selection function, provides a
means of discovering “significant” melodic patterns.
There is still a need for further processing leading to a
“good” description of the surface (in terms of exhaus-
tiveness, economy, simplicity, etc.). It is likely that some
instances of the selected pitch patterns should be
dropped, or a combination of patterns that rate slightly
lower than the top rating patterns may give a better
description of the musical surface (for instance, in
Figure 1, each pitch pattern, a or b, cannot explain the
melodic structure—some instances of each of these pat-
terns should be dropped and a combination of the two
selected, namely a-a-b-b).

To overcome this problem, a simple method has been
devised (see Table 1).

In the melodic example of Frére Jacques (Figure 2),
the pattern boundary strength profile (PAT) has been
calculated by applying the pattern extraction model to
the diatonic pitch interval profile: notice the strong pat-
tern boundaries at the points indicated by asterisks
where no local boundaries are detected by LBDM or
other local detail grouping models.
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TABLE 1. The PAT Algorithm—construction of the pattern boundary strength profile.

A pattern extraction algorithm is applied to one (or more) parametric sequences of the melodic surface as required. No pattern is
disregarded, but each pattern (both the beginning and ending of pattern) contributes to each possible boundary of the melodic
sequence by a value that is proportional to its selection function value. That is, for each point in the melodic surface all the patterns
are found that have one of their edges falling at that point and all their selection function values are summed. This way a pattern
boundary strength profile is created (normalized from O to 1). It is hypothesized that points in the surface for which local maxima
appear are more likely to be perceived as boundaries because of musical similarity.

0

PAT

FIG. 2. Frére Jacques—-Segmentation profile according to the Local Boundary Detection Model (LBDM) and the Pattern Boundary Detection Model
(PAT) for the diatonic pitch interval profile; local maxima indicate positions that may be considered as points of segmentation (NB: strong pattern
boundaries are detected at the points indicated by asterisks where no local boundaries are discovered by LBDM).

The PAT Algorithm (Revised)

The above example consists only of exact full repeti-
tions, although it is not a usual case. A frequently
encountered situation occurs when two patterns
diverge toward their ends (see examples in Figures 3, 4,
and 5). Lerdahl and Jackendoff have incorporated this
intuition in their parallelism grouping preference rule
GPR6. This rule “says specifically that parallel passages
should be analyzed as forming parallel parts of groups
than entire groups. It is stated in this way to deal with
the common situation in which groups begin in parallel
fashion and diverge somewhere in the middle, often in
order for the second group to make a cadential formula.
(More rarely, parallelism occurs at ends of groups.)”
(Lerdahl & Jackendoff, 1983, p. 51). Ahlbick maintains
that “grouping by similarity is start-oriented, since sim-
ilarity in a temporal context is recognized through
recurrence; repetition of what is already heard which
promotes identification by start” (Ahlbdck, 2004,
p. 251). Empirical research by Deliége (2001) supports
the claim that beginnings of patterns play a special role
in pattern recognition: “Pattern recognition was thus
made on the basis of this very beginning [of melodic
sequences], and subjects did not pay attention to what
happened afterward” (Deliege, 2001, p. 400).

In general, the beginning of melodic patterns is para-
mount in discovering parallel passages. This intuition
has been incorporated into the current model by mak-
ing a very simple modification to the method described
in Table 1: only the beginnings of patterns contribute to
the strength of the pattern boundary profile.

In the examples of Figures 3, 4, and 5, the revised PAT
model detects correctly the beginning of the repeated
phrases. (The initial PAT model inserts spurious peaks
at the endings of the exactly repeating parts of the
phrases.) For the Chorale St. Antoni it should be noted
that the repeated phrases are five (i.e., 3 + 2) bars long,
which is very unusual; Lerdahl and Jackendoff (1983, p.
206) take this five-bar grouping structure for granted
(no systematic procedure for detecting it is given), but
the revised PAT algorithm correctly identifies the
beginning of the second phrase.

Representation of the Melodic Surface

The pattern boundary detection model, as described to
this point, can discover repeating patterns in the dia-
tonic pitch interval domain that may or may not diverge
toward their endings (patterns may be transposed).
What happens if some intervals are not exactly the same
(as, for instance, the first intervals of the repeating
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PAT

FIG. 3. Beginning of the finale theme from Beethoven's Ninth Symphony. Segmentation profile according to the Local Boundary Detection Model
(LBDM) and the Pattern Boundary Detection Model (PAT) for the diatonic pitch interval profile. The strong pattern boundaries that indicate the end
points of the exactly repeating parts of the two phrases (indicated by asterisks) are eliminated in the version of the model that takes into account
only the beginnings of patterns.
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FIG. 4. Chorale St. Antoni (arranged by Brahms in his “Haydn Variations,” op. 56). Segmentation profile according to LBDM and the Pattern
Boundary Detection Model (PAT) for the diatonic pitch interval profile. NB: the strong pattern boundaries that indicate the end points of the exactly
repeating parts of the two phrases (indicated by asterisks) are eliminated in the version of the model that takes into account only the beginnings of

patterns.
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FIG. 5. Opening melody of Mozart's A-Major Sonata, K. 331. Segmentation profile according to LBDM and the Pattern Boundary Detection Model
(PAT) for the diatonic pitch interval profile (beginning of patterns only). The PAT model correctly detects the beginning of the repeated phrase
(LBDM fails) and also indicates the beginnings of the smaller one-bar length motives.

)
P

l
D

-] [l ” i 1]
1 ] T 1 o
F 4N Y ] T T
im " I | -

e

hNaY

)
diatonic pitch interval profile
1 —

PAT

PAT

FIG. 6. Theme from Mozart's G-Minor Symphony, K. 550, movement Ill. Segmentation profile according to LBDM and the Pattern Boundary
Detection Model (PAT), first, for the diatonic pitch interval profile and, second, for the combined step-leap and duration ratio profile. The diatonic
pitch interval matching fails as the first interval of the repeating phrase is a third interval rather than a fourth interval. The combined step-leap and
duration ratio encoding enables the correct segmentation of the two phrases; local boundaries are not capable of providing a correct segmentation.

phrases in Figure 6)? How can rhythmic information
also be taken into account?

A more abstract representation for pitch intervals may
be useful, such as a step-leap profile, especially if coupled
with duration information. The step-leap encoding con-
sists of five distinct symbols (+step, +leap, -step, -leap,
same)—a rather too limited alphabet. If it is combined
with duration symbols (or duration ratios), the alphabet
becomes rich enough to capture all the necessary infor-
mation so that the pattern boundary detection model
may operate effectively. In this encoding, each interval of

a melody is represented as a tuple (step-leap interval,
duration ratio). This further adjustment to the model
enables it to segment correctly more difficult cases as
those in Figures 6 and 7, giving correct results also for
the previous examples presented in this article.

A Variant of the PAT Algorithm for Further Flexibility
As mentioned above, approximation can be introduced

into an exact pattern-matching process by using a more
abstract representation at the level of the initial string of
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FIG. 7. Opening melody of Chopin's Waltz, op. 18. Segmentation profile according to LBDM and the Pattern Boundary Detection Model (PAT) for the
combined step-leap and duration ratio profile. PAT correctly finds the motivic structure of this melody, especially in the second half where local
detection models are not successful.
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FIG. 8. The step-leap representation allows the extraction of two patterns repeating twice each (single- and double-line underlined patterns in
representation A). The proposed representation that allows overlapping of pitch categories—in this case, a third interval can be a member of either
step or leap (s/N—allows the matching of the second half of the sequence to the first half (see representation B).

symbols. For instance, a pitch interval representation
like the step/leap representation (or even step/small-
leap/medium-leap/large-leap, etc.) allows different size
leaps to be matched. One problem, however, is that the
abstract categories in the representation have sharp
boundaries, and no instance may belong to more than
one category; this way, borderline members can never
be matched to other “similar” members of other cate-
gories (e.g., a third interval as a member of leap can
never be matched to a second interval, which is a step).

Consider, for instance, the sequence of pitch intervals
in Figure 8. The step-leap representation allows the
extraction of the two different underlined patterns (see
representation A in Figure 8). A musician, however,
would consider the second half of the sequence as a
(near-exact) repetition of the first half (the pitches of
this example are taken from Bachs Well-Tempered
Clavier, Book I, Fugue in D# Minor; see Figure 12).
This match can be achieved only if the first third
interval in the second half of the pitch sequence can be
matched with the corresponding second interval of the
first half.

An abstract symbolic representation can become
more flexible in terms of category gradedness and mem-
bership if instances are allowed to be members of more
than one category. In the following examples, a third
interval is allowed to be an instance of either step or leap

(s/I)—see representation B in Figure 8. The alternative
abstraction (step or leap) that allows the longest patterns
to emerge is selected. (The first third interval of the
melody’s second half is taken to be a member of step and
is thus matched to the corresponding second interval of
the first half, as this gives a longer melodic repetition.)

The case where a second and a third interval should
be considered similar is not simply a rare exception in
music, but a common phenomenon, especially when
themes appear in their dominant key (see, for instance,
the tonal answers of almost half of Bach’s fugue themes
from the two books of the Well-Tempered Clavier). See
Figures 10, 11, and 12 for selected examples (NB: Bach
fugue themes and their tonal answers are presented as
belonging to the same auditory stream; this is not musi-
cally correct but is cognitively plausible—a streaming
algorithm could generate tentative streaming options
including ones presented in the examples).

The problem set forth in this section can be solved by
matching techniques that measure the distance between
pitch numbers; however, in some cases the ability to use
symbols rather than numbers is crucial to represent a
musical sequence.

For the sake of testing the proposed more flexible rep-
resentation on the examples of this study, the exact pat-
tern-matching algorithm (Appendix 1) that extracts all
repeating patterns was adjusted to cope with alternative
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FIG. 9. A possible abstract representation for pitch intervals. In this representation overlap between categories is allowed; this is an arbitrary pro-
posal to show the possibility of overlapping categories—further research is required to define a more cognitively plausible scheme (see proposal for
seven partially overlapping classes by Lemstrém and Laine (1998)). Such a representation might be more powerful than the more standard step-leap
or contour representations as it allows rather high discriminability between intervals and also significant flexibility. It was tested on all the examples
in this article giving correct results.
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FIG. 10. Upper voice (theme and tonal answer as one melodic “stream”) from the opening of Bach's Well-Tempered Clavier, Book |, Fugue in D#
Minor. Segmentation profile according to LBDM and the Pattern Boundary Detection Model (PAT), first, for the combined step-leap and duration
ratio profile and, second, for the same representation that allows additionally a third interval to be a member of either step or leap (in this case the
repeated pattern is correctly identified).

symbols for elements of the initial string.’ This variant
is not efficient, but it gives correct results for the short
test melodies here. An efficient algorithm for a similar
pattern extraction problem has been recently developed
using don’t care symbols for elements that may belong
to two categories—for example, a * symbol signifies an
upward step or leap (Cambouropoulos et al., 2005).
Further research, however, is required to incorporate
this efficient algorithm in the proposed model.

*The main difference between the algorithm variant implemented
here and the algorithm described by Crochemore (1981) is that at
each level of the algorithm (i.e., for the start-sets corresponding to
the different lengths of patterns) start-sets that are subsets of other
larger start-sets have to be deleted.

Examples of the application of the new version of the
PAT algorithm are given in Figures 10, 11, and 12. This
new version of the pattern extraction algorithm makes
it possible to adopt more sophisticated representations
of the melodic surface that allow overlapping among
abstract categories (e.g., the third interval being either
step or leap, or a more “sophisticated” pitch interval rep-
resentation like that shown in Figure 9).

Additional Examples

The PAT algorithm was tested against the empirical
data obtained in a segmentation experiment conducted
by Koniari et al. (2001). In the specific experiment (one
of the two segmentation experiments in this study),
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—PAT

FIG. 11. Opening melody from Beethoven's Piano Sonata, op. 10, no. 2. Segmentation profile according to LBDM and the Pattern Boundary
Detection Model (PAT) variant for the combined step-leap and duration ratio profile that allows additionally a third interval to be a member of either
step or leap (in this case the repeated pattern is correctly identified—the two intervals indicated by the asterisks are matched).

PAT correct

PAT correct

FIG. 12. Upper-voice “stream” (theme and tonal answer) from the opening of Bach's Well-Tempered Clavier, Book |, Fugue in C Minor. The Pattern
Boundary Detection Model (PAT) variant correctly detects the beginning of the repetition (tonal answer) for the combined step-leap and duration
ratio profile that allows additionally a third interval to be a member of either step or /eap (NB: the two intervals indicated by the asterisks are

matched).
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FIG. 13. Rondo, finale from the Sonatina No. 2 in C Major, by Anton Diabelli; numbers indicate the segmentation points presented in Koniari et al.
(2001).

children listened to the rondo from the finale of the
Sonatina No. 2 in C Major by Anton Diabelli
(Figure 13) and indicated positions of punctuation
(referred to as “segmentations”) by pressing the space
bar of a keyboard; a familiarization factor was intro-
duced by allowing one group of children to listen to the
piece one time and another group three times before
doing the task. The results show that a maximum of 14
segmentations were given for this piece, but all of these
were not necessarily marked by each listener. (White

columns in Figure 14 indicate the average number of
segmentations given by children musicians and non-
musicians for the two different familiarization condi-
tions—the average values have been normalized from 0
to 1 to be comparable to the output values of the PAT
model.) “It is worth noting that all the segmentations
that were recorded corresponded to the main articula-
tions of the piece, as they would appear in a classical
morphological analysis: that is, as ends of musical
phrases and motifs” (Koniari et al., 2001, p. 313).
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Despite the fact that Koniari et al. do not explicitly focus
on the role parallelism plays in segmentation, it is
apparent that repetitions and variations clearly con-
tribute to the understanding of the musical work and to
the way listeners segment it. (Expressive performance
also plays a role—one wonders if listeners would give
the same segmentations while listening to a mechanical
performance without any articulations.)

The melody of Diabelli’s Rondo—only the sequence
of notes—was given as input to the PAT algorithm (the
accompaniment was omitted as the algorithm can be
applied only to melodies). The algorithm produced 14
peaks that coincide with the listeners’ segmentations
(the algorithm gives one additional strong segmenta-
tion point at the very beginning of the piece but misses
the boundary at the end of the piece as it accounts for
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FIG. 14. Segmentation results on a Rondo by Diabelli, by children-lis-
teners (white columns) and by the PAT algorithm (black columns)—seg-
mentation points are indicated in the horizontal axis and segmentation

“strengths” in the vertical axis (see text for details).

only the beginnings of patterns)—see black columns in
Figure 14. Not only are all the “correct” boundaries dis-
covered by the model but the main segmentation posi-
tions at the middle of the Rondo (segmentation 7 in
Figure 14) and its subperiods (segmentations 4 and 11)
come out relatively stronger in accordance with the
experimental results and the morphological analysis.
The strength values of the segmentations, however, are
quite different from the experimental values, especially
in relation to the smaller phrases and subphrases; this is
partly due to the fact that the algorithm does not explic-
itly account for musical symmetry and hierarchy.

As mentioned earlier, parallelism affects metrical
structure, and the reverse. What happens, however, if
a piece of music does not have metrical structure?
The PAT algorithm has been applied to the opening
melody of Mussorgsky’s Pictures at an Exhibition,
Promenade (Figure 15). One can see that the exact
repetition determines a clear boundary in the middle
of this melodic excerpt; the PAT algorithm identifies it
correctly. In this case, the melody has a clear tactus but
not a higher-level regular metrical structure (see
Figure 16). Segmentation models that rely on metrical
structure would have a problem in this and other cases
of nonmetrical music. The relationship between seg-
mentation, parallelism, and metrical structure requires
further investigation (see also the next section).

Further Improvements and Conclusion
In this study, the computational attempt for capturing

melodic similarity with a view to achieving melodic
segmentation is still a long way from providing a robust,
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FIG. 15. The opening melody of Mussorgsky's Pictures at an Exhibition, Promenade. The Pattern Boundary Detection Model (PAT) correctly detects
the beginning of the repetition.

FIG. 16. The opening melody of Mussorgsky's Pictures at an Exhibition, Promenade. Score including bar lines and time signature indications as
notated by the composer.
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PAT wrong

PAT wrong

FIG. 17. Theme from Schubert’s Symphony in B Minor, “Unfinished,” D. 759. None of the versions of the Pattern Boundary Detection Model (PAT)
described in this article can correctly detect the beginning of the repetition, as the intervals, indicated by asterisks, have different directions
(ascending—descending).

flexible, and general model of melodic parallelism. Yet
the model shows potential; further research is necessary
to improve the model and to evaluate it on a much
larger scale.

Further investigation is required for finding the most
adequate way(s) to represent melodies so that patterns
can best be extracted. I have proposed that a linked
step-leap interval and duration ratio representation is
better than either representation alone or the most
commonly used diatonic pitch interval representation.
The step-leap representation was enhanced by allowing
overlapping between the step and leap categories; other
more general representations than the diatonic pitch
interval representation and more specific ones than the
step-leap representation are possible (e.g., see Figure 9).
Such representations are also possible for the dura-
tion/IOI domain, which requires further exploration.
Additionally, some limited reduction of the surface may
be necessary, such as consolidation of repeating notes.
A good representation is paramount in devising pattern
extraction models that are more general and that can
cope with a larger number of cases. However, there will
always be cases for which a representation is inade-
quate. See, for instance, in Figure 17 the example for
which the proposed representation is not appropriate—
there is a mismatch in interval direction at the points
indicated by asterisks. (An approximate pattern-match-
ing algorithm, however, can cope with this case.) A sin-
gle representation and a single pattern extraction
algorithm will probably never be sufficient for all cases;
a combination of representations and algorithms may
be required. Yet it is interesting to take a certain
methodology to its limits to discover its shortcomings.

The boundaries discovered by the pattern boundary
detection model may complement the segmentation
given by the model LBDM in defining a total boundary
strength profile. The total boundary strength profile
can be calculated as a weighted average of the local
boundary and pattern boundary strength profiles even
though more sophisticated methods for combining the
two should be explored. The local maxima in the total
boundary strength profile can be used as a guide for the
final segmentation of the musical surface.

Can the proposed model be applied to long melodic
sequences? The answer is positive in terms of the algo-
rithm employed (there is no limit on the length of the
input melodic sequence), prompting another question:
would this be of value or at least useful? From a cogni-
tive point of view, computationally intense pattern
extraction processes are likely to be applied to relatively
short melodic excerpts. (Extracted patterns can then be
used in different more economic pattern-processing
strategies.) In terms of formative repetition (i.e.,
immediate near-exact repetition), musical similarity is
contained within relatively short melodic passages.
Obviously, PAT can be applied to long melodic
sequences using a shifting overlapping windowing tech-
nique whereby the analysis is done gradually for rela-
tively short melodic fragments. Alternatively, if the
algorithm is primarily aimed at modeling musical ana-
Iytic tasks, the pattern extraction process can be applied
to a long melodic sequence, but the selection process
has to be modified to give additional emphasis on
recency (i.e., immediacy of repetition). A pattern that
repeats often in a musical piece does not necessarily
imply more significance for melodic segmentation than
an equal-length pattern that repeats just twice in imme-
diate succession. (If the PAT model is applied to such a
melodic sequence, the pattern that repeats twice would
have very small boundary peaks compared to the one
repeated many times.) Additional study is required to
establish the most appropriate means for the proposed
model’s application on long melodic sequences.

Another study might implement an online version of
the pattern extraction algorithm. (Crochemore’s algo-
rithm is inherently an off-line algorithm.) This dynamic
algorithm would be closer to the way listeners perceive
patterns as these build gradually during listening.
However, one should note that a pattern-relating
boundary can appear only in retrospect. That is, only
after a repetition has started to unfold in time can one
realize that its beginning appeared a few moments
earlier; real-time segmentation based on the discovery
of patterns is not possible. In this respect, the imple-
mentation of the above sliding window pattern extrac-
tion technique may be a relatively good candidate for
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the exploration of the cognitive processes that relate to
perception of boundaries due to parallelism.

The metrical structure of a musical work can play an
important role in establishing an overall final segmen-
tation. Temperley (2001) explicitly incorporates in his
metrical structure model a preference rule according to
which strong beats are located near the beginnings of
groups. In this sense, if metrical structure is known,
segmentation points can be determined at parallel
points of the metrical structure. (Almost every example
in this study could be correctly segmented according to
this rule.) However, here it is assumed that metrical
structure is not known. It is hypothesized that, at the
beginning of a musical work or at points where new
musical materials are introduced, a listener attempts to
segment the musical surface based on local detail
grouping rules and by using pattern extraction methods
(not metrical structure). Once this result is achieved,
metrical structure can be induced and, in turn, can be
used to facilitate further segmentation processes. A
model of parallelism, as proposed here, cannot provide
a final segmentation of a melody on its own. This
model, however, can discover significant positions of
strong pattern boundaries, especially at the beginning

of a piece, which can assist in selecting a certain metri-
cal structure; the induced metrical structure, in turn,
can reinforce relatively weaker segmentation bound-
aries and assist in breaking down a melody into smaller
groups.

Overall, the methods and results in this article pro-
vide information in an attempt to address the difficult
issue of musical parallelism and its links to melodic seg-
mentation. The examples against which the proposed
algorithm was tested were known to pose serious prob-
lems for local detail grouping algorithms; additionally
these examples contain increasing difficulties regarding
melodic similarity. The proposed model is quite suc-
cessful in tackling all of these problems, but it requires
future experimentation and development for its inte-
gration in a comprehensive model of melodic segmen-
tation.*
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APPENDIX 1

Informal description of Crochemore’s pattern extraction
algorithm

Let’s assume we have a string of symbols (e.g., letters
of the alphabet, pitches, pitch-duration tuples, etc.).
Each symbol in the string has a corresponding start
position in the string (e.g., the start position of the 3rd
symbol is 3). The start positions are split into start-sets
where each start-set contains the start positions of all
the occurrences of each symbol. In the next step, each
start-set is split into subsets in relation to itself and the
other start-sets of the same level (for instance, in Figure
18, start-set a={1,3,7,9,12,16} is split in relation to
b={2,4,8,11,13}, into {1,3,7,12} & {9,16} because each
start position {1,3,7,12} has a corresponding start posi-
tion in start-set b that is greater by 1, which essentially
means that pattern ab occurs in these start positions:
ab={1,3,7,12}.) This procedure repeats for each level of
pattern lengths until the largest possible recurring pat-
tern is found; then the algorithm stops. The algorithm
employs a technique to reduce the aforementioned pro-
cedure from O(n?) to O(n-logn): each start-set need only
be split in relation to all the other start-sets with the
exception of the largest start-set (e.g., for the three sym-
bol alphabet {a,b,c} of Figure 18, if the start-set for pat-
tern a has been split in relation to start-sets b and ¢
giving ab and ac start-sets it need not be split in relation
to itself—being the largest start-set—as the remaining
start positions correspond obviously to pattern aa)—in
the case of a binary alphabet the technique is also called

the “smaller-half trick” whereas for a larger alphabet the
“larger-part trick".

A formal description of Crochemore’s algorithm is
presented in (Crochemore 1981); see also description
by Iliopoulos et al. (1996).

APPENDIX 2

The Local Boundary Detection Model (LBDM) is
based on the two following rules:

Change Rule (CR): Boundary strengths proportional
to the degree of change between two consecutive inter-
vals are introduced on either of the two intervals (if
both intervals are identical no boundary is suggested).

Proximity Rule (PR): If two consecutive intervals are
different, the boundary introduced on the larger inter-
val is proportionally stronger.

The Change Rule can be implemented by a degree-of-
change function (see suggestion below). The Proximity
Rule can be implemented simply by multiplying the
degree-of-change value with the absolute value of each
pitch/time/dynamic interval. This way, not only rela-
tively greater neighboring intervals get proportionally
higher values but also greater intervals get higher values
in absolute terms.

In the description of the algorithm below only the
pitch, IOI and rest parametric profiles of a melody are
mentioned. It is possible, however, to construct profiles
for dynamic intervals (e.g., velocity differences) or for
harmonic ‘intervals’ (distances between successive
chords) or any other relevant parameter.

start

position 1 2 3 4 9 10 11 12 13 14 15 16
sting [a |[b [a [b Jc [c Ja [a |c |b Ja |b Jc Jc Ja |
1 a={1,3,7,9,12,16} b={2,4,8,11,13} c={5,6,10,14,15}

2 ab={1,3,7,12} ba={2,8,11} bc={4,13}  ca={6,15}  cc={5,14}
3 aba={1,7} abc={3,12} bab={2,11} bce=({4,13} cca={5,14}
4 abcc={3,12} babc={2,11} bcca={4,13}

5 abcca={3,12} babcc={2,11}

6 babcca={2,11}

FIG. 18. An example of the application of Crochemore's exact pattern extraction algorithm on a string of symbols from alphabet {a,b,c}. (Numbers
on the left column indicate pattern lengths—the equal sign indicates the corresponding start-set for each pattern—patterns that occur only once are
not reported).



Musical Parallelism and Melodic Segmentation: A Computational Approach 267

The LBDM algorithm

A melodic sequence is converted into a number of independent parametric interval profiles Py for the parame-
ters: pitch (pitch intervals), ioi (interonset intervals) and rest (rests—calculated as the interval between current
onset with previous offset). Pitch intervals can be measured in semitones, and time intervals (for IOIs and rests)
in milliseconds or quantized numerical duration values. Upper thresholds for the maximum allowed intervals
should be set, such as the whole-note duration for IOIs and rests and the octave for pitch intervals; intervals that
exceed the threshold are truncated to the maximum value.

A parametric profile Py is represented as a sequence of n intervals of size x;;:
P =[x}, x5, ... x,,] where: k e {pitch, ioi, rest}, x;20and i € {1,2,...n}

The degree of change r between two successive interval values x; and x;,, is given by:

‘x' - x'+1| .
=" iff x;+ x;,,; # 0and x;, x;,, > 0
X+ X

Tii+1
Tiis1 =0 iffx; = x;,, =0

(N.B. A small value should be added to the size of all intervals, such as 1 semitone to pitch intervals, so as to avoid
irregularities introduced by intervals of size 0).

The strength of the boundary s; for interval x; is affected by both the degree of change to the preceding and fol-
lowing intervals, and is given by the function:

$i=%; (rioy;i+Tii)
For each parameter k, sequence S; = [s, s,, ... s,] is calculated, and normalized in the range: [0, I].

The overall local boundary strength profile for a given melody is a weighted average of the individual strength
sequences Sy (weights used in current experiments: w,;;;,=0.25, w;,=0.50, w,.,=0.25). Local peaks in this overall
strength sequence indicate local boundaries.







