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In the first part of this article, the notions of identity, similarity, categori-
zation, and feature salience are explored; musical examples are provided
at various stages of the discussion. Then, formal working definitions are
proposed that inextricably bind these concepts together. These defini-
tions readily lend themselves to the development of a formal model for
clustering—the Unscramble algorithm—which, given a set of objects and
an initial set of properties, generates a range of plausible categorizations
for a given context. Finally, as a test case, the clustering algorithm is used
to organize a number of melodic segments, taken from a monophonic
piece by J. S. Bach, into motivic categories; the algorithm also deter-
mines a prototype for each cluster and uses these prototypical descrip-
tions for membership prediction tasks. The results of the computational
system are compared with the empirical results obtained for the same
data in two earlier studies (I. Deliège, 1996, 1997).

ONE significant component of musical understanding is the ability of
listeners to cluster musical materials together into categories such as

motives, themes, and so on. Salient musical cues enable listeners to make
similarity judgments between various musical materials and to organize
these into meaningful groups. In this study, the notions of feature salience,
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similarity, and categorization are discussed, and then working formal defi-
nitions are presented. It is herein maintained that cue abstraction, similar-
ity judgments, and categorization processes are inextricably bound together
in such a way that each of these can be defined only in relation to the
others.

A formal model for clustering has been developed on the basis of these
definitions. Given a segmentation of a melodic surface and an initial repre-
sentation of each segment in terms of a number of attributes (these reflect
melodic and rhythmic aspects of the segment at the surface and at various
abstract levels), the Unscramble algorithm organizes these segments into
“meaningful” categories. The proposed clustering algorithm automatically
determines an appropriate number of clusters and also the characteristic
(or defining) attributes of each category. A limited number of attempts
have been made to use clustering techniques to organize melodic segments
into motivic categories. A brief survey and comparison of some existing
algorithms is presented in Hötheker, Hörnel, and Anagnostopoulou (2001).

A number of psychological studies have attempted to examine the no-
tions of melodic similarity, categorization, and cue abstraction by using
real melodic material (e.g., Carterette, Hohl, & Pitt, 1986; Deliège, 2001;
Eerola, Järvinen, Louhivuori, & Toiviainen, 2001; Koniari, Predazzer, &
Mélen, 2001; Lamont & Dibben, 1997, 2001; Mélen & Wachsmann, 2001;
Pollard-Gott, 1983). The most extended studies, however, have been per-
formed by Deliège (see overviews in Deliège, 1997, 2001, and Deliège &
Mélen, 1997), wherein issues of feature salience (cue abstraction), musical
similarity, and prototypical description of categories (imprint formation)
in musical listening are empirically examined.

It is interesting to compare the performance of a computational model
against the results given in empirical studies. A computational approach
requires explicit representations of the musical materials and detailed for-
mal descriptions of similarity and categorization processes. The various
processes can thus be traced and analyzed step-by-step in a way that usu-
ally is not possible in empirical studies.

This study attempts to replicate, by means of computational modeling,
two psychological experiments on cue abstraction and categorization per-
formed on a monophonic piece by J. S. Bach (Deliège, 1996, 1997). The
results of the computational approach are compared with the empirical
results, and convergences and deviations are reported. The clusters pro-
duced by the algorithm correspond closely to the categories provided in the
empirical study. The application of the algorithm confirms most of the
suggestions presented in the psychological studies regarding which cues
play the most significant role in categorization tasks and how similar me-
lodic segments are organized into categories.
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In the following sections, initially the concepts of identity, similarity, and
categorization are discussed. Then, the Unscramble algorithm is described.
Finally, results of the application of the algorithm on motivic segments of J.
S. Bach’s Allegro Assai of the Sonata for Solo Violin in C major BWV 1005
is presented, and various interesting aspects of the computational experi-
ment are discussed.

Theoretical Concepts

IDENTITY

Before attempting to describe the notion of similarity, it is important to
discuss briefly the principle of identity and to try to clarify its usage within
this text. Without getting into a deep ontological discussion, an entity is
herein taken to refer to a complete and distinct thing—concrete or ab-
stract—such as an object, an event, a structure, a function, a goal, and so
on (e.g., a pencil, a robin, a song, an emotion, an action such as running or
sleeping). A property is any predicate that may be used to describe an en-
tity.

Is it possible for two different entities (that have different spatiotempo-
ral properties) to be identical? For example, is it possible that two drops of
water or two middle-C notes played on the same instrument may be iden-
tical? Leibniz’s response to such a question would be that “there are no
two individuals indiscernible from one another” (Fourth paper to Clarke,
Sec. 4, quoted in Stroll, 1967, p. 122) or “there are not in nature two
individuals indiscernible from one another” (G. VII. 393 (D. 258) in Ex-
tracts from Leibniz in Russell, 1949, p. 219). This principle is referred to as
the principle of the identity of indiscernibles. Stroll (1967) states that
“Leibniz’s language suggests that he considered this principle to be an em-
pirical law; that if we were to find two items (say, two drops of water)
apparently possessing exactly the same set of internal features, further in-
vestigation (by means of a microscope, for instance) would show that they
differed from one another.” (p. 122). He then continues: “But reflection
upon [Leibniz’s] use of the expressions ‘intrinsic quality’ and ‘internal dif-
ference’ suggests that he covertly employed the principle as if it were a
logical truth, to which no empirical finding would be a counter-instance.”
(p. 122). Many philosophers have rejected this principle when presented as
logically necessary (Black, 1952), but it is accepted when seen as an empiri-
cal law.

This principle is connected, according to Russell, to Leibniz’s implied
assertion “that every substance has an infinite number of predicates”
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(Russell, 1949, p. 60). “[I]ndividuality involves infinity, and only he who is
capable of understanding it [infinity] can have knowledge of the principle
of individuation of such or such a thing” (G.V. 268 [N.E. 309] in Extracts
from Leibniz in Russell, 1949).

According to Russell’s definition of identity, two entities x and y are
identical if and only if the same properties (predicates) are satisfied by both
(Russell & Whitehead, 1964, vol. i, def. 13.01). The identity relation is an
equivalence relation, that is, it is reflexive, symmetric, and transitive. But,
is this definition of any use if two entities have an infinite number of prop-
erties? How is it that one says that two different drops of water or two
middle-C notes are identical?

The key to answering these questions is that two entities are judged iden-
tical only when a finite number of properties that are considered salient for
a given domain of discourse are demarcated. When we say that two objects
are identical we mean that all the properties (predicates) that describe the
two objects—taken from a set of predefined properties that are considered
to be pertinent in a given context—have the same values. Quine (1950)
emphasizes the importance of a domain of discourse: “In general we might
propound this maxim of the identification of indiscernibles: Objects indis-
tinguishable from one another within the terms of a given discourse should
be construed as identical for that discourse.” He continues that this maxim
“is relative to a discourse, and hence vague in so far as the cleavage be-
tween discourses is vague. It applies best when the discourse is neatly closed,
like the propositional calculus; but discourse generally departmentalizes
itself to some degree, and this degree will tend to determine where and to
what degree it may prove convenient to invoke the maxim of identification
of indiscernibles” (p. 626).

The most crucial factor in establishing “meaningful” identities is select-
ing the set of properties that are pertinent in describing a set of entities in a
given situation. This set of properties is not absolute but depends on the
task at hand. For instance, two tunes may be most commonly considered
identical in the Western tradition if they both are composed of the same
sequence of diatonic pitch intervals and duration ratios, that is, the same
musical surface. If, on the other hand, in a different domain their expres-
sive or spectrographic properties are considered to be most pertinent, then
they may be judged as being nonidentical.

SIMILARITY

Similarity is a difficult and obscure notion. How does it relate to iden-
tity? What are the conditions and limits under which two entities may be
considered similar? For a given set of pertinent properties and following
from Russell’s definition of identity, similarity is very often defined as par-
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tial identity, that is, two entities are similar if they have some properties
(predicates) that are the same but not necessarily all. Pairs of entities may
be compared, and one pair may be judged as being more similar than an-
other if its members share more common properties than the members of
the other pair.

Similarity between two entities may be calculated by simply counting
the number of matches between their properties. Alternatively, similarity
may be defined as a function of the differences between all the pairs of
properties these objects possess. For example, according to the traditional
multidimensional scaling model (Shepard, 1962a, 1962b), similarity be-
tween objects x and y is a monotonic decreasing function f of interpoint
distance:

s(x,y) = f[d(x,y)]

where s(x,y) is a similarity rating between x and y, d(x,y) is the distance
between the two points of the objects’ attribute vectors in a multidimen-
sional attribute space. (For a brief summary of commonly used metrics, see
Murtagh, 1993, pp. 228–230).

If all properties receive equal weights for the metric d(x,y), then this
definition of similarity is equivalent (for binary features and Hamming dis-
tances) to the former definition (i.e., partial matching of properties). If, on
the other hand, properties are given different weights reflecting the intu-
ition that not all properties are equally important for a given object, then
there is a significant departure from the former traditional definition of
similarity. For instance, the members of a pair of objects that have in com-
mon only one important property may be judged as being more similar
than the members of another pair that share two or more less salient prop-
erties.

The similarity definitions just given imply that the similarity relation is
reflexive and symmetric but not transitive. There exist, however, other
models that allow asymmetric definitions of similarity. For example, Tversky
(1977) proposed that similarity between two entities may be defined as a
function of their common properties minus the properties that are distinc-
tive to either of them:

s(x,y) = q  ·f(X Ç Y) – a  ·f(X–Y) – b  ·f(Y–X),

where s(x,y) is the similarity between two objects; X and Y are the feature
sets of x and y, respectively; and q , a ,  and b  are parameters that are used to
reflect prominence of common and distinctive features. Tversky’s model of
similarity has been proved to be very useful in describing (empirically) ob-
served similarities but is rather impractical if used to predict similarities
between entities because it requires a very elaborate representation of each
individual entity. That is, the model requires that the individual sets of all



352 Emilios Cambouropoulos

the features that are important for the description of each object be pre-
cisely defined (rather than using only one general set of features that ac-
counts for all the objects) and/or all three parameters q , a ,  and b  be given
in advance for each ordered pair of objects. Tversky’s model fails to ad-
dress the question of how people determine which properties are relevant
for a similarity comparison (see Barsalou, 1992, pp. 282–284).

Alternatively, Krumhansl (1978) proposes an extension of the multidi-
mensional similarity definition, namely the distance-density model, that
accounts for asymmetric judgments and contextual aspects of similarity.
The distance-density model is based on the assumption that “two points in
a relatively dense region of a stimulus space would have a smaller similar-
ity measure than two points of equal interpoint distance but located in a
less dense region of the space” (Krumhansl, 1978, p. 446). According to
this model, the distance d(x,y) in the similarity function of the multidimen-
sional scaling model—s(x,y) = f[d(x,y)]—is replaced by a modified distance
function d´(x,y): d´(x,y) = d(x,y) + a  · d (x) + b  · d (y), where d(x,y) is the
interpoint distance, d (x) and d (y) are measures of spatial density in the
neighborhoods of x and y, and a  and b  are constants that reflect the rela-
tive weight given to the densities d (x) and d (y). For instance, “if a  < b , then
s(x,y) > s(y,x) if and only if d (x) < d (y), that is, in directional similarity
tasks, asymmetries would be expected to be associated with differences in
the densities in the regions surrounding the two points in the geometric
configuration” (Krumhansl, 1978, p. 453). This definition of similarity
augments the traditional definition by incorporating a density factor that
relies on local context.

A common characteristic of all the above definitions is that none of them
incorporates a notion of categorization. These definitions of similarity (usu-
ally the symmetric ones) are commonly used as prerequisites for other cat-
egorization models that predict possible clusterings of objects but they are
not explicitly linked to a notion of categorization.

CATEGORIZATION

In the course of this text, the word category will be taken to refer to a set
of entities that are grouped together on the basis of some criteria. The
conditions for classification are commonly referred to as the intention of a
concept and the set of entities that are members of a category the extension
of the concept. The term concept “refers to the idea or notion by which an
intelligence is able to understand some aspect of the world” (Hampton &
Dubois, 1993, p. 13).

According to the classical monothetic definition, a category is consti-
tuted of all the entities that posses a set of properties or satisfy a set of
conditions (see Sutcliffe, 1993). Most commonly, these conditions are taken
to be singly necessary and jointly sufficient.
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A different approach to formalizing the notion of categories has emerged
following Wittgenstein’s approach to the notion of “family” and “family
resemblance” (Wittgenstein, 1953). According to the polythetic view, a
category consists of individuals that have a large number of properties from
a given set P, and each property is possessed by a large number of members
but no property is possessed by all the members of the category (Beckner,
1959, p. 21). The problem with this definition is to determine when a “large
number” is large enough, that is, to define a limit above which entities
share enough properties so as to be considered members of a category.

The polythetic definition of categories underlies prototype models (Rosch,
1975; see Hampton, 1993 for an overview) and exemplar models of cat-
egorization (Estes, 1994). According to the prototype view, members of a
category are determined by their similarity to the category’s prototype and
“a prototype concept is constituted by a set of attributes with associated
values (where a particular attribute-value pair corresponds to a property),
each with a particular weight corresponding to its ‘definingness’ or contri-
bution to the concept’s definition.” (Hampton, 1993, p. 73). Membership
and typicality of an instance are judged in relation to a similarity measure-
ment of the individual to the category’s prototype (i.e., the weighted at-
tribute-value set), or to the exemplars for exemplar models. There exists a
criterion on the similarity scale over which individuals are considered to be
members of the category and their typicality is proportional to the similar-
ity rating (i.e., the higher the rating for an instance, the higher its typical-
ity).

Prototype models account for many phenomena observed in the way
humans make categorizations in everyday situations, such as flexibility of
category boundaries, gradedness and typicality of members, ambiguity of
membership (e.g., is a tomato a fruit or a vegetable?), and so on.

The prototype of a concept and the similarity criterion can be deter-
mined by direct experimentation and then used for further predictions. If
one, however, wants to determine prototypes and similarity criteria for a
set of entities so that these entities may be organized into categories, then
the prototype definition of a category reveals its weaknesses. How can one
discover a relevant similarity threshold for determining the membership of
objects in a category if the prototype is not known? How can the prototype
(i.e., a weighted set of characteristic attribute values) be determined? If the
extension of a category is given, then a prototype can be defined (by find-
ing the most characteristic properties that are possessed by most mem-
bers), but that means that one knows in advance the category members.
But how could the category be determined without reference to the proto-
type when it is defined in terms of the prototype? Sutcliffe remarks that
“there must first be a family before one can observe any family resem-
blances, and thus one cannot define a family by reference to family resem-
blances!” (Sutcliffe, 1993, p. 46).
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The prototype view on categorization relies to some extent on either
some form of independent bottom-up, data-driven, clustering-like analysis
(see Mechelen et al., 1993, part II) or on top-down theory-based approaches
(e.g., Murphy, 1993; Murphy & Medin, 1985) or a mixture of the two.

Both of the preceding descriptions of categories can accommodate con-
junctive as well as disjunctive intensional descriptions (especially for
monothetic categories, Sutcliffe [1993, p. 59] argues that disjunctive con-
cepts have a sound logical basis). It is asserted herein that disjunctive con-
cepts are hard to work with when dealing with unsupervised category for-
mation tasks. The reason for this assertion is that the space of all possible
conjunctive descriptions (for a given set of entities) through which a search
has to be pursued is augmented explosively if disjunctive concepts are con-
sidered as well. If instances, though, of a category are known in advance—
as in supervised learning—then disjunctive descriptions may be convenient
(e.g., if “couples” are represented on an instance space by the “color” of
each partner, then categories such as “mixed couples” and “same-color
couples” are not possible unless either disjunctive concepts are accommo-
dated or the initial representation is altered).

The debate between the “classical” and the “modern” view is heated.
Hampton (1993, p.76) argues that “classical monothetic concepts can be
treated as special cases of prototype models in which the membership crite-
rion has been set very high on the similarity scale, so that the criterial level
of similarity cannot be achieved without the core properties.” Contrastingly,
Sutcliffe argues that “the ‘modern view’ developed by Rosch on the basis
of Wittgenstein’s and Beckner’s notion of polythetic class, is incoherent
and unworkable” (Sutcliffe, 1993, p. 62).

In this study, it is suggested that the distinction between the monothetic
and polythetic views on categorization is not as sharp as many would ar-
gue (e.g., Lakoff, 1987). For instance, if an exact threshold is set for a
polythetic category, then a sharp boundary is defined (some form of bound-
ary is necessary in any case: it doesn’t make much sense to say, for instance,
that a chair is a very atypical member of the category “bird”—it simply
isn’t a bird). If overlapping of categories is allowed, then ambiguity and
gradedness is introduced (for both monothetic categories and polythetic
categories with sharp boundaries), that is, the more categories an entity
belongs to, the more ambiguous it is and the less typical a member of a
category it is. If the two definitions of category are dissociated from meta-
physical claims and are seen simply as formal descriptions of the notion of
category, then there can be only pragmatic criteria as to their usefulness
and efficiency.

It is clear from the preceding discussion that all the members of a cat-
egory are necessarily pairwise similar because they necessarily share some
common properties (they share at least the property of belonging in the
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same category!), but the converse is not necessarily true, that is, similar
entities are not necessarily members of the same category. The notions of
similarity and category can be brought into a close relation if a threshold is
introduced in the definition of similarity (see section titled “A Working
Formal Definition of Similarity and Categorization”).

Asymmetric definitions of similarity are avoided in clustering models
because such definitions would make it possible for an object to be both a
member and a nonmember of a category according to the two different
asymmetric similarity measures (a commonly hypothesized property of a
category is that it either includes or excludes a certain object).

SIMILARITY AND CATEGORIZATION  BOUND TOGETHER

A commonly encountered hypothesis on which many categorization
models are grounded is that categorization is strongly associated with the
notion of similarity, that is, similar entities tend to be grouped together
into categories.

However, there are different views on the relation between similarity
and categorization (Goldstone, Medin, & Gentner, 1994; Medin, Gold-
stone, & Gentner, 1993). On the one hand, similarity is considered to be
too flexible and unwieldy to form a basis for categorization, that is, any
two entities may be viewed as being similar in some respect (e.g., a car and
a dog are similar in that both weigh less than 10 tons, but these objects are
not normally considered to be members of the same category!). On the
other hand, similarity is regarded to be too narrow and restricting to ac-
count for the variety of human categories (e.g., a whale is considered a
mammal even though it appears to be more similar to fish). Goodman
(1972) doesn’t hesitate to reject altogether the notion of similarity, claim-
ing that “similarity tends under analysis either to vanish entirely or to re-
quire for its explanation just what it purports to explain” (p. 446). Rips
(1989) claims that “there are factors that affect categorisation but not simi-
larity and other factors that affect similarity but not categorisation. . . .
there is a ‘double dissociation’ between categorisation and similarity, prov-
ing that one cannot be reduced to the other” (p. 23).

This debate is directly linked to a further issue; that is, how entities and
their properties are represented. If objects are described in terms of mainly
perceptual (e.g., visual or auditory) properties, then, obviously similarity is
insufficient for many categorization tasks, whereas, if any sort of proper-
ties—perceptual or abstract or relational—are considered, then similarity
becomes too flexible.

It seems that the notions of categorization, similarity, and the represen-
tation of entities/properties are strongly interrelated. It is not simply the
case that one starts with an accurate description of entities and properties,
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then finds pairwise similarities between them and, finally, groups the most
similar ones together into categories (Figure 1a). It seems more plausible
that as humans organize their knowledge of the world, they alter their
representations of entities concurrently with emerging categorizations and
similarity judgments (Figure 1b).

One of the main assumptions made in this study is that similarity always
depends on context (i.e., it is contextually defined), and when similarity
seems to be relatively stable, this is so simply because the context (e.g., the
structure of the natural world or a specific cultural system) tends to be
quite stable. Of course, there are some general perceptual constraints as to
what is perceptible in the first place, but from there on different properties
of entities become more prominent in a given context for a specific catego-
rization task or for a similarity judgment. Tversky (1977) has highlighted
the importance of context in similarity judgments and has shown how prop-
erties of objects become diagnostic within a specific context; he treats, how-
ever, these contextual effects on similarity as specific cases/exceptions rather
than the norm (his definition of similarity is independent of categoriza-
tion). Context dependency of musical similarity and categorization is sup-
ported by the empirical work of Lamont and Dibben (2001).

As a first general example, consider Figure 2. Which of objects b, c, and
d is most similar to object a? One might, cautiously, select one of these
objects or refuse to answer the question altogether. If, though, these objects
are placed in a context such as a barber shop or an office or a surgical
operating room, then it becomes apparent which objects are more similar
and are actually categorized together, and which properties of the objects
are more prominent and diagnostic in that specific context—for instance,
within the context of a barber’s shop, objects a and c are more similar and
they tend to be categorized together because they share barber-related prop-
erties (e.g., “hair-cutting”).

A second example from the musical domain that highlights the contex-
tual nature of similarity and categorization is presented next. A musical
work may be considered as a local context within which things like mo-
tives, themes, harmonic progression groups, and so on emerge. Trying to
discover the similarity of two isolated musical passages will usually pro-

Fig. 1. Relations among entities/properties, similarity, and categorization.

a.  Entities/Properties Similarity Categorization

     Entities/Properties

Similarity Categorization

b.

«« «
® ®
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duce dubious or relatively uninteresting results. Consider, for instance, the
musical passages in Figure 3. In which of the two pairs are the two pas-
sages more similar? Some might select the first pair, others the second pair,
and still another group might refuse to make a judgment. It is suggested
that perhaps this similarity experiment is simply poorly designed in the
first place, and perhaps subjects of the third group are right in refusing to
make a judgment. The problem seems to be that these excerpts are taken
out of their context. As it happens, the first two passages are very dissimi-
lar—actually contrasting—within the homogeneous minimal context of
Steve Reich’s Electric Counterpoint, whereas the second two are very simi-
lar within the very diverse context of Iannis Xenakis’ Keren. Context seems
to be paramount in our establishing similarities and categories between
musical passages, and it is asserted that it is not possible to find an absolute
criterion for defining what things are similar in general.

As a further musical example, consider the following two rhythmic fig-
ures:  and . Are these two similar or dissimilar? Again the problem
in answering this question seems to be that these excerpts are out of con-
text. For instance, these two figures are rather dissimilar—actually con-
trasting—within the homogeneous rhythmic context of J. S. Bach’s Allegro
Assai of the Sonata for Solo Violin in C major BWV 1005 (the eighth-note
figure may be seen as a distinctive feature characterizing one of the two
main motives; see Figure 4), whereas they are more similar within a more

Fig. 2. Which of objects b, c, and d is most similar to object a?

Fig. 3. In which of the two pairs are the two passages more similar?
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diverse melodic context in which, for instance, sixteenth-note triplets are
quite common. Again context seems to play a significant role in the way we
perceive similarities between musical entities.

The psychological theory of musical form proposed by Deliège (see
Deliège, 1996, 2001; Deliège & Mélen, 1997) empirically examines issues
of property prominence (cue abstraction), musical similarity, and proto-
typical description of categories (imprint formation) in musical listening.
Deliège’s work seems to be in line with the description of entities/proper-
ties, similarity, and categorization in the current proposal; however, the
model presented in this article establishes direct formal links between these
notions in a way not encountered explicitly in other cognitive accounts of
musical understanding.

In the light of the preceding discussion, formal definitions of similarity
and category will be given wherein the two notions are interdependent,
that is, changes in similarity result in category changes, and vice versa.

The Unscramble Clustering Algorithm

In this section, first, formal definitions are proposed for the notions of
property salience, similarity, and category, and, then, a brief description is
given of the Unscramble clustering algorithm that was developed primarily
for dealing with clustering problems in the musical domain. (A detailed
description that includes also issues of computational complexity and more
musical examples is given in Cambouropoulos, Smaill, & Widmer, 1999,
and Cambouropoulos & Widmer, 2000).

A WORKING FORMAL DEFINITION OF SIMILARITY AND CATEGORIZATION

Let T be a finite set of entities and P the union of all the sets of properties
that are pertinent for the description of each entity. If d(x,y) is the distance
between two entities x and y, and h is a distance threshold, we define simi-
larity s

h
(x,y) as follows:

1 iff d(x,y) £  h (similarity)
0 iff d(x,y) > h (dissimilarity)

In other words, two entities are similar if the distance between them is
smaller than a given threshold and dissimilar if the distance is larger than
this threshold.

The preceding definition of similarity is brought into a close relation
with a notion of category. That is, within a given set of entities T, for a

(1){sh(x,y)
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set of properties P and a distance threshold h, a category Ck is a maxi-
mal set:

Ck = {x1,x2,  . . . xn|xiÎ  T} with the property:

 "  i,j Î  {1,2, . . . n}, sh(xi,xj) = 1

In other words, a category C
k
 consists of a maximal set of entities that are

pairwise similar to each other for a given threshold h.
A category, thus, is inextricably bound to the notion of similarity; all the

members of a category are necessarily similar and a maximal set of similar
entities defines a category. According to Definition 1, similarity is not merely
the inverse of distance, but additionally requires a threshold that can be
determined in relation to a specific categorization description for a given
context.

As the similarity function sh is not transitive, that is, sh(x,y) and sh(y,z)
does not imply sh(x,z), the resulting categories need not be disjoint (i.e.,
equivalence classes). In other words, overlap between categories is permitted.

The distance threshold may take values in the range of 0 £  h £  dmax,
where the distance dmax is defined as the maximum distance observed be-
tween all the pairs of entities in T. For h = 0, every object in T is a monadic
category; for h = dmax all the objects in T define a single category.

PROPERTY SALIENCE

The salience of a certain property will be represented herein by a weight
value; higher values are given to more salient properties. For a given clus-
tering description of a set of entities, the initial weights of properties can be
altered in relation to their “diagnosticity,” that is, properties that are unique
to members of one category are given higher weights, whereas properties
that are shared by members of one category and its complement are attenu-
ated. A function that calculates the weight of a single property p could be:

w = ú  m/n – m´/(N – n)ú ,

where m = number of objects in category Ck that possess property p, m´ =
number of objects not in category Ck that possess property p (i.e., objects in
T – Ck), n = number of objects in Ck, and N = number of objects in T. The
maximum weights of each property calculated for each category are then
selected for a given clustering.

In order to calculate weights according to this function (Eq. 3), category
information is necessary. This way, property salience, similarity, and cat-
egorization are interrelated and linked together. The preceding definitions
form the basis for the development of the Unscramble algorithm described
in the next section.

(2)

(3)
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THE UNSCRAMBLE ALGORITHM

The Unscramble algorithm is a clustering algorithm that, given a set of
objects and an initial set of properties, generates a range of plausible clus-
tering descriptions for a given context. During this dynamically evolving
process, the initial set of properties is adjusted so that a satisfactory de-
scription is generated. There is no need to determine in advance an initial
number of clusters, nor is there a need to reach a strictly well-formed (e.g.,
nonoverlapping) categorization. At each cycle of the process, weights are
calculated for each property according to how characteristic each property
is for the emergent clusters.

The input to the Unscramble algorithm is a set of objects each described
by an m-dimensional property vector. Each property has a corresponding
initial weight (usually wp = 1). The distance between two objects can be
calculated by various distance metrics. (A variation of the Hamming dis-
tance that takes into account the weights of objects has been used for the
experiments in the final section of this article.)

The algorithm proceeds in cycles; each cycle comprises of the following
sequence of steps:

Step 1. All the possible threshold values are calculated.
Step 2. For each of these thresholds, all the pairs of similar objects

are determined.
Step 3. All the maximal sets of entities (categories) that are similar

to each other are computed.
Step 4. For each of the clustering descriptions corresponding to

each threshold, a “goodness” value is calculated according
to a “goodness” function (see following)

Step 5. The clustering that rates highest according to the “good-
ness” function is selected and new weights are calculated
according to function (3).

Step 6. The algorithm is repeated from Step 1 for the new weights.
Step 7. The algorithm terminates when the newly selected “good-

ness” value is less than or equal to the value that resulted
during the immediately preceding run.

As the Unscramble algorithm generates a large number of clusterings
(one for each possible similarity threshold), it is necessary to define some
measure of “goodness” for each clustering so as to select the best. Two
such measures have been considered:

1. Overlap Function. This simple function provides a measure for
the degree by which clusters overlap; the less overlapping be-
tween clusters, the better.
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2. Category Utility. This function favors categorizations with high
uniformity (in terms of properties) within individual clusters
(“intraclass similarity”) and strong differences between clusters
(“interclass dissimilarity”). Another way of interpreting this is
that category utility measures the prediction potential of a cat-
egorization: it favors clusterings where it is easy to predict the
properties of an entity, given that one knows which cluster it
belongs to, and vice versa.

In the experiments reported in the final section, category utility has been
used. The main advantages of this measure are its firm grounding in statis-
tics, its intuitive semantics, and the fact that it does not depend on any
parameters. These measures are discussed in detail in Cambouropoulos &
Widmer (2000).

Using the weighting function (Eq. 3), a prototype for each cluster can be
computed by selecting the most salient properties (values with highest
weights). The threshold criterion for each cluster is simply the maximum
distance of the prototype to all of the members of the cluster. A new object
is a member of a cluster if its distance to the cluster’s prototype is less than
or equal to the threshold criterion. If a new object has a new attribute
value, this receives a zero initial weight (i.e., it is nondiagnostic). This way
Unscramble can be used not only for clustering but also for membership
prediction tasks.

The most useful characteristics of the Unscramble algorithm—depend-
ing on the task at hand—are as follows:

� there is no need to define in advance a number of categories
� the prominence of properties is discovered by the algorithm
� categories may overlap
� the description of emerging categories is explicit and can readily

be used to predict membership of new objects.

Some examples of the usefulness of such clustering characteristics are pre-
sented in the test case given in the next section.

Applying the Clustering Algorithm to a Monophonic Piece by
J. S. Bach

In a series of experiments, Deliège (1996, 1997) has studied melodic cue
abstraction and categorization processes. For these experiments J. S. Bach’s
Allegro Assai of the Sonata for Solo Violin in C major BWV 1005 has been
used. This monophonic piece is segmented manually into a number of seg-
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ments, namely, 26 instances of the two main motives (Figure 4) and 42
one-bar-long motives (for the transitional sections). A more detailed ana-
lytic description of this piece is presented in Deliège (1996).

From the various experiments reported in the aforementioned two stud-
ies, only two that relate to the current computational experiments are briefly
described here (referred to as Experiments 1 and 2 in this paper). In Experi-
ment 1 (Deliège 1996), subjects are asked to listen repeatedly to the two
main reference motives (instances 1 and 12 in Figure 4) and then classify
the rest of the derivative motives (instances 2–11 and 13–26) into two motive
categories (A and B). Musicians perform this task without any mistakes,
whereas nonmusicians have a lower success rate.

In Experiment 2 (Deliège 1997), subjects listened only to the first sec-
tion of this piece (dotted line in Figure 4 separates motive instances of the
two sections); then they were presented with items from the first section
(Heard), second section (Unheard) and modified items that do not appear
in the piece (Modified) and were asked to state whether they had heard
these items or not. “Evidence for the formation of an imprint will be con-
sidered to be present if, at the end of this incomplete listening, the subjects
‘erroneously recognise’ as having heard excerpts coming from the as-yet-
unheard section of the piece” (Deliège 1997, p. 61). In addition, the spe-
cific modified items of this experiment should be singled out as being
unheard if the hypothesis that “an imprint will reflect the style of the
piece” is correct. The results supported these assumptions (the best re-
sults, that is, correct responses, were given for the Heard and the Modi-
fied items).

The preceding two experiments prompted the design and realization of
two similar computational experiments. These are not exact replications of
the empirical experiments for reasons that will be explained.

COMPUTATIONAL EXPERIMENT 1

Representing melodic segments is a complex issue (see Cambouropoulos,
Crawford, & Iliopoulos, 2001). In the following experiments, motives are
represented as lists of musical attributes that reflect melodic and rhythmic
aspects of the musical surface. (These representations are kept very simple
so that the employment of the algorithm remains as intuitively intelligible
as possible.) According to Deliège’s analytic description of the piece, each
motive can be subdivided into two 1-bar-long cells, a and b. The following
set of very simple representations was used in this study:

R1: diatonic pitch, contour, and duration patterns for full-length
motive (three attributes)

R2: diatonic pitch, contour, and duration patterns for full-length
motive, for cell a and cell b (nine attributes)
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R3: same as R2, but additionally cells of motive 3 are reversed1

R4: same as R3 plus 3 extra statistical attributes (leap, rep, cdir)
that are meant to reflect melodic properties such as “smooth-
ness,” “repetitiveness,” and “change of direction” (the thresh-
olds below were determined in an ad hoc manner—further
research would be necessary to establish a more cognitively
pertinent and computationally useful description of such me-
lodic properties):

leap: if number of leaps in motive £  30% then attribute value
1; otherwise value 2

rep: if number of maximally repeated note £  30% then value
1; otherwise value 2

cdir: if number of changes in direction £  50% then value 1;
otherwise value 2

Experiment 1 was rather straightforward to replicate on the computer.
The distance of each of the motive derivatives (2–11 and 13–26 in Figure
4) to the two main reference motives (1 and 12) was calculated and, then,
each derivative was grouped with the reference motive that was closest.
The distance metric used is based on the Hamming distance and takes into
account the weights of each attribute value (all weights equal to 1 initially
in this experiment). For representations R3 and R4, this task was performed
correctly for all the instances; for R1 motives 3, 6, and 11, and for R2
motive 3 could not be placed in either category because they have no com-
mon attributes (i.e., equal maximum distance) with the two reference mo-
tives.

A more complicated and interesting, in computational terms, experi-
ment was also designed. This involved using the Unscramble algorithm for
clustering all the motives of Figure 4. The Unscramble algorithm is used to
organize these motives into categories. The algorithm does not know in
advance how many clusters it has to construct—it has to determine this
automatically. Additionally, it has to determine the most characteristic (di-
agnostic) attributes and the prototypes for each cluster.

The Unscramble algorithm gives the following results for each of the
preceding representations (the numbers in each cluster indicate the motives
of Figure 4):

R1: {1,2,4,5,7,8,9,10}, {3}, {6,11}, {12,13,14,15,16,17,18,19,20,
   21,22,23,24,25,26}

1. A more sophisticated representation would be required to account for “inclusion”
relations that are independent of the order of cells. As there is only one instance (motive 3)
where such a relation would be useful, a more sophisticated representation was avoided as
this would complicate the description of the motives; instead, the two cells of the specific
motive were manually reversed.
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R2: {1,2,4,5,7,8,9,10}, {3}, {6,11}, {12,13,14,15,16,17,18,19,20,
   21,22,23,24,25,26}

R3: {1,2,4,5,7,8,9,10}, {1,2,6,7,8,11}, {12,13,14,15,16,17,18,19,
   20,21,22,23,24,25,26}—first cycle
{1,2,3,4,5,6,7,8,9,10,11}, {12,13,14,15,16,17,18,19,20,21,
   22,23,24,25,26}—final

R4: {1,2,3,4,5,6,7,8,9,10,11}, {12,13,14,15,16,17,18,19,20,21,
   22,23,24,25,26}

As the representation of the motives in terms of attributes becomes richer,
the resulting cluster descriptions improve (they actually give the correct
results for R3 and R4). For R1 and R2, motive 3 is a monadic category
(this is because its two component cells are reversed) and motives 6 and 11
are clustered together (these two motives end with a quarter-note—actu-
ally they end the first and second sections of this piece). It is also clear that
the motive B cluster is much “sharper,” that is, the resemblance of its mem-
bers is much stronger, as it appears even for the simplest representations,
R1 and R2.

For each of these clusters, a prototype is computed that comprises the
most characteristic attribute values. This prototype may not coincide with
any of the existing motives. Of course, anteriority (i.e., the temporal order
in which motives appear) is not taken into account, so the reference mo-
tives 1 and 12 are not expected to be the prototypes given by the algorithm.
For the clustering description produced for R4, the most characteristic at-
tributes are the following:

Cluster {1,2,3,4,5,6,7,8,9,10,11}: rhythmic pattern of the cell that
contains the two eighth-notes, and the three statistical attributes.

Cluster {12,13,14,15,16,17,18,19,20,21,22,23,24,25,26}: rhyth-
mic pattern of the full-length motive, contour of the first cell and
the three statistical attributes.

It can be seen from this experiment that Unscramble is successful in
clustering the given motives correctly. It finds the correct number of clus-
ters for R3 and R4 and also highlights the most prominent cues that are
responsible for clustering the motives together. Some of these cues, such as
rhythmic pattern and contour, correspond closely to the cues suggested in
the empirical study.

COMPUTATIONAL EXPERIMENT 2

In Experiment 2, described earlier, listeners are merely exposed to the
first section of this piece and then asked whether they have heard a number
of motivic items presented to them. The task of making sense of a mono-
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phonic section by breaking it down into constituent parts is a very complex
process at least as far as computational models are concerned. A computa-
tional model for melodic segmentation has been developed by
Cambouropoulos (1997, 1998b). For practical reasons, in this study, the
melodic segments of Section 1 presented in Figure 4 (above the dotted line)
are taken as a given (rather than being extracted automatically from the
musical surface). These segments (instances 1–6 and 12–18) are presented
to Unscramble for clustering. Then, a prototype and a threshold criterion
are computed for each category. Finally, the Heard items of section 1, the
Unheard items of section 2, and the Modified items of Figure 5 are catego-
rized into the existing clusters.2

For this clustering experiment, only representation R4 was used as this
was shown to be appropriate in Experiment 1. For this representation, the
Unscramble algorithm gives the following results:

R4:{1,2,3,4,5,6}, {12,13,14,15,16,17,18}

For each cluster, a prototype is computed and also a threshold criterion is
calculated that gives its outermost boundaries.

Then, the distance of each of the Heard, Unheard, and Modified motives
to each prototype is calculated; if the distance is less than the threshold
criterion, then a motive is said to be a member of that category.

All the Heard motives are classified correctly (trivial), the Unheard mo-
tives are classified as expected (i.e., instances 7, 8, 9, 10, and 11 are mem-
bers of Motive A, and instances 19, 20, 21, 22, 23, 24, 25 and 26 are
members of Motive B), and the Modified motives (Figure 5) are not mem-
bers of either category (as their distance to the prototypes is greater than
the threshold criterion).

2. In the empirical study, full-length motives are only one third of the tested motives—
and these are considered to be easier to classify than shorter one-bar-long motives.

Fig. 5. Four modified instances of Motive B used in Deliège’s experiment (see text).
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Even though Experiment 2 is more difficult to replicate and the pre-
ceding computational experiment is a gross simplification, it is still very
interesting to see that Unscramble is capable of inducing descriptions
of the emerging categories that can be used successfully both to classify
“incorrectly” Unheard instances supporting the hypothesis of imprint
formation and to exclude Modified motives that don’t fit in these cat-
egories for the particular stylistic context (mainly because of the rhyth-
mic differences).

It would be very interesting to attempt a more sophisticated compu-
tational replication of the preceding experiment. Ideally, the system
should be able to break down automatically the musical surface into
meaningful segments, then construct sophisticated representations for
each segment, and finally organize these into motivic categories
(Cambouropoulos, 1998a, describes preliminary attempts of this type
on other melodic data).

Conclusions

In this article, a theoretical discussion was presented on the various ways
the notions of similarity and categorization have been treated by a number
of theorists and researchers. Based on this discussion, working formal defi-
nitions were given that inextricably bind together similarity and categori-
zation. These definitions readily lend themselves to developing a computa-
tional model (the Unscramble algorithm) for melodic clustering and
membership prediction.

An attempt was made to apply this model to melodic data used in two
psychological experiments. Despite the simplifications for the needs of the
computational experimentation, it is clear that the results obtained by the
application of the proposed algorithm support the underlying hypotheses
of the empirical studies on cue abstraction, imprint formation, and catego-
rization (e.g., from various different attributes, Unscramble abstracted a
number of cues that were appropriate for the specific categorization tasks,
organized the given melodic segments into plausible categories, and suc-
cessfully categorized new melodic material into the previously determined
motivic groups). Such computational experiments are interesting because
the various stages of the analytic process are transparent to the researcher
and the initial hypotheses can be systematically studied.3

3. This research is part of the project Y99-INF, sponsored by the Austrian Federal Min-
istry of Education, Science, and Culture in the form of a START Research Prize. The Aus-
trian Research Institute for Artificial Intelligence is supported by the Austrian Federal Min-
istry of Education, Science, and Culture.
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