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Abstract. The difficulty of modelling musical structure in a general and cogni-

tively plausible manner is due primarily to music’s inter-dependent multi-para-

metric and multi-level nature that allows multiple structural interpretations to 

emerge. Traditional AI symbolic processing methods, however, can be used ef-

fectively for modelling particular analytic and creative aspects of musical struc-

ture. In this paper three specific problems of music structure, namely, segmenta-

tion and streaming, pattern extraction, harmonic abstraction and generation, will 

be addressed with a view to highlighting the importance of problem definitions, 

music representation and multi-parametric hierarchical cognitively-inspired pro-

cessing methodologies. Existing proof-of-concept models are used as a basis for 

a theoretical discussion. 
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1 Introduction 

Understanding music means being able to make sense of musical structure. Musical 

structure does not simply contribute to musical meaning but is at the heart of musical 

meaning as basic musical concepts are in essence concepts relating to musical structure. 

Listeners are capable of discerning, encoding and remembering diverse aspects of mu-

sical structure when exposed to musical stimuli, such as scales, keys, tonal centers, 

motives, themes, metre, rhythmic patterns, harmonic progressions, cadences.  

Through the centuries, music theorists, analysts, philosophers have attempted to de-

scribe and formalise, core musical concepts and processes. More recently, computa-

tional methodology (assisted by research in music cognition, linguistics, logic reason-

ing, neuroscience and so on), has offered new means of precision and formalisation, 

enabling the development of sophisticated representations and models of musical struc-

ture. Progress in this domain, however, has been much slower than expected and 
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researchers are still striving for general powerful theories that can describe the complex 

and multifaceted nature of musical structure. 

In this paper, first, we will briefly discuss why it is more difficult, than one initially 

believes, to model musical structure in a general and comprehensive manner. Current 

computational methodologies will be mentioned, and it will be maintained that tradi-

tional AI symbolic processing methods are still relevant and advantageous in certain 

respects, especially when drawing on general cognitive principles of human perception.  

Then, three specific problems of music structural modelling, namely, segmentation 

and streaming, pattern extraction, harmonic representation, learning and generation, 

will be addressed. The aim is to present rather ‘unconventional’ definitions of the prob-

lems themselves, as well as the proposed representations and methodologies. Emphasis 

is given to common underlying fundamental mechanisms and interconnections that ap-

ply to seemingly disparate domains. All these suggestions draw on previous proof-of-

concept models by the author that require further development and investigation.   

2 Symbolic processing and general cognitive principles  

Perhaps, the main reason musical structure is difficult to model is its inter-dependent 

multi-parametric and multi-level nature that allows multiple structural features to 

emerge. Moreover, there exist diverse musical styles and idioms each with their own 

representational and processing schemes. For instance, in a musical surface for western 

music (in this paper we assume a piano-roll-like encoding), pitch, rhythm and harmony 

are basic structural features that shape the music and interact with each other on multi-

ple levels of abstraction. Studying, for instance, patterns solely in the pitch domain, one 

soon discovers that absolute pitch is probably too elementary (not transposition invari-

ant), but, then, to deal with relative pitch, a tonal center is required and emergent tonal 

hierarchies play a significant role depending on the structure of keys, which emerge 

within specific metrical and grouping structures influenced by hierarchic structures of 

harmony. And, soon one realizes that a fully-fleshed theory of musical structure is re-

quired to deal with ‘mere’ pitch patterns.  

Let us briefly examine another example, namely the extraction of the musical surface 

itself from audio (transcription) which in the minds of many is essentially a bottom-up 

process. It is now accepted that higher-level aspects of musical hierarchical organisa-

tion are necessary to transcribe music in some form of symbolic notation ([3], [29]); a 

purely bottom-up approach to score extraction has been shown to be untenable. Apart 

from multipitch analysis and instrument recognition, broader information is necessary 

such as beat tracking, rhythmic organisation, chord recognition and harmonic analysis, 

along with notational conventions, and, even, high-level musical structure analysis and 

knowledge of expressive performance. For instance, a human transcriber can fill in gaps 

in the audio signal (due to recording defects or noise) based on knowledge of structure 

(e.g., even though one or more tones may be absent from the audio input, they can be 

recovered due to knowledge of key or motivic structure or harmonic expectation, and 

so on). In essence, a comprehensive computational theory of musical structure is re-

quired for full blown score transcription. Abstraction, categorisation, hierarchic 
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organisation and prior knowledge are all at full play in the task of music transcription. 

A seemingly ‘simple’ task is complex and significant progress in this domain will occur 

when high-level music analysis models mature. 

The complex multi-parametric and multi-level nature of the structure of diverse mu-

sical styles renders efforts to built hand-crafted rule-based models impractical and often 

unworkable. For this reason, deep learning techniques have drawn the attention of re-

searchers in recent years (e.g., [5], [13]). Often such methods are considered as the 

obvious, if not the only, way to deal effectively with modelling musical tasks. Deep 

neural networks present the important ability to abstract knowledge on higher-levels of 

representation, based on sample data; they are flexible, adaptive, easy to build as they 

do not require fully fleshed-out models, and they are resilient to noise or incomplete 

information. So, why bother follow a symbolic rule-based approach that requires man-

ual coding, does not allow dynamic change and it cannot capture the complexity of the 

real world?  

Traditional symbolic AI modelling enables the development of music models that 

may have both theoretical and practical advantages. In terms of theory, our understand-

ing of music per se is enriched, traditional assumptions are tested, empirically-derived 

cognitive principles evaluated and new musical knowledge is acquired. As knowledge 

is explicit in such AI models, sophisticated practical systems can be created that allow 

intelligent interaction with musicians / users though the manipulation of meaningful 

symbolic representations (e.g., educational systems, compositional assistants, interac-

tive performers, content-based music search engines, and so on). Such systems make 

use of prior knowledge acquired through years (or even centuries) of experience and 

introspection, and, also, capitalize on findings resulting from empirical work in music 

cognition. This way sophisticated models can be built relatively quickly combining di-

verse components on different hierarchical levels of organisation. Additionally, sym-

bolic systems reinforced with simple statistical learning capacities, can adapt to differ-

ent contexts based on relatively small training datasets allowing this way a certain de-

gree of flexibility. Furthermore, such models can bridge different conceptual spaces 

enabling the invention of novel concepts not present in the initial input spaces. 

A debate on the pros and cons of traditional symbolic AI methods vs deep neural 

network learning techniques can be found in studies such as [21], [23], (see also [6] for  

a defense of the symbolic AI approach in music modelling). Recently, attempts are 

made to combine the strengths of both approaches reconciling symbolic systems, that 

are strong in abstraction and inference, with deep learning techniques that excel in per-

ceptual classification [10]. 

Our mind continuously groups sounds together based on their similarity and by try-

ing to find simple ecological patterns that can describe them ([2], [4]). The fundamental 

principles of perception, first studied by the Gestalt psychologists [19], give an account 

of the basic rules that account for such grouping. A common notion underlying many 

of these principles is similarity (which is directly linked to change). For instance, in 

music, many models that attempt to break the musical continuum into smaller constit-

uent parts (e.g., segments, voices) have relied on principles such as pitch similarity, 

temporal proximity, parallel motion, i.e., similarity in the pitch, time and pitch interval 

domains respectively. Similarity is also at work on higher levels of cognition whereby 
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learnt patterns (e.g. a fugue theme) can be recognised in a rather complex musical con-

tinuum. More generally, learning techniques are based on finding regular patterns in 

data, and commonly a distance function (similarity measure) is used somewhere in the 

learning process (training or classification or clustering stage).  

Symbolic models in computational musicology that strive for generality (i.e., ap-

plicability in a broad spectrum of musics) often rely on general cognitive principles 

such as similarity / change. Additionally, specific acoustic or auditory principles are 

employed as constraints that help narrow down the usually large search spaces. Such 

auditory-specific constraints rely on aspects of sound perception that have to do with 

properties of sound sources, the auditory system and typical sound environments lis-

teners are exposed to (e.g., harmonicity, octave equivalence, dissonance, masking, on-

set simultaneity thresholds). The use of such perceptual principles, accompanied by 

probabilities of features and patterns (learned from data) that reflect regularities and 

tendencies of specific musical environments, can give rise to rather sophisticated mu-

sical systems.  

In the next three sections, three different musical problems will be presented exam-

ined from relatively unusual angles, redefining the problems themselves or suggesting 

novel solutions so as to be more general and idiom independent. The presentation below 

is mostly theoretical; it is, however, grounded on earlier proof-of-concept implementa-

tions by the author. It is suggested that further research in the proposed line of inquiry 

may produce new more flexible and adaptive models of musical structure.  

3 Stream Segments 

Voice or stream separation algorithms attempt to model computationally the segrega-

tion of polyphonic music into separate voices [12]; music segmentation algorithms on 

the other hand, segment music voices/streams into smaller coherent groups [27]. Both 

segmentation and streaming rely on fundamental Gestalt principles such as temporal 

and pitch proximity. In principle, firstly, voices / streams are determined and then 

voices / streams are segmented into smaller groups. Is it possible to develop a model 

that separates notes vertically into streams and, at the same time, locates segment 

boundaries? In other words, is it possible to parse a general two dimensional pitch-time 

space into stream segments? The main advantage of adopting the concept of stream 

segments is that they are meaningful in any type of music, not only when music has a 

rather ‘fixed’ number of independent voices (e.g., fugues) - see stream segment illus-

tration in Fig. 1.  

An algorithm that makes use of a single set of auditory principles for the concurrent 

horizontal and vertical segregation of a musical texture into stream segments has been 

proposed by [26]. This algorithm groups together in the same stream segment notes that 

have proximal onsets (synchronous onsets for quantised data), similar durations (same 

for symbolic data) and similar pitch interval direction (parallel/similar motion), and, 

additionally, successive (non-overlapping) notes that are temporally proximal and sim-

ilar in pitch; non-synchronous overlapping notes belong to different stream segments 

along with successive (non-overlapping notes) that are temporally distant and dissimilar 
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in pitch. This prototype algorithm was tested against a small manually-annotated da-

taset of musical excerpts, and preliminary results were encouraging. An example of 

stream segmentation parsing (coherent groups of notes such as melodic segments, har-

monic accompanimental fragments, homophonic passages) is presented in Fig. 1 – 

problems and shortcomings of the algorithm are discussed in [26]. 

Models that can detect stream segments can be very useful as they enable the organ-

isation of the low-level musical surface into coherent groups that are musically mean-

ingful; such organisation facilitates more efficient and higher-level analytic processing. 

For instance, in searching for instances of the pitch pattern descending-perfect-fifth -

followed-by-unison [-P5, unison] in the example of Fig. 1, a general polyphonic pattern 

identification algorithm would correctly detect the melodic instances in mm. 10, 11, & 

18 but would also (incorrectly in perceptual terms) detect this pattern in (at least) the 

homophonic textures of mm. 12 and 14; being able to separate melodic from homo-

phonic / accompanimental textures may contribute to more accurate and efficient 

search. This line of research into stream segments does not seem to have been taken on 

by the MIR research community (a possible problem is the lack of annotated ground 

truth data against which to test algorithms). However, it is herein maintained that it is 

a worthwhile research project in the direction of building a more general model for 

breaking down the musical surface into perceptually meaningful subgroups.  

 

 

Fig. 1. Stream segments detected by algorithm in the opening of Beethoven’s Sonata Op.31, No.3 

(Fig.4, [26]) 

4 Pitch interval patterns 

The capacity of listeners to ‘match’ varied musical materials is essential to the pro-

cess of identifying meaningful musical entities such as interesting motifs, themes, me-

lodic and rhythmic patterns, characteristic harmonic progressions, and other memorable 

musical entities. In recent years, a number of computational systems have been devel-

oped that describe symbolic melodic similarity (see overviews in [7], [30]). Such algo-

rithms address different perspectives of this multi-faceted similarity task, such as rep-

resentation, scope, similarity function, polyphony and so on. For instance, most algo-

rithms are applied on monophonic strings of symbols, whereas few employ geometric 

models on two-dimensional point-set representations. The latter are more powerful in 

the sense that they can identify melodic patterns directly in unprocessed polyphonic 

music, at the expense, however, of retrieving higher numbers of false positives. It is 

known that listeners cannot identify patterns across auditory streams [4]; in this sense, 

it is more practical to segregate a musical surface into distinct voices / streams, and then 

to apply string matching algorithms (that are computationally simpler and more 
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efficient) on (melodic) strings of symbols identifying patterns that are more likely to be 

musically interesting and cognitively plausible. 

Dynamic programming techniques, often based on various types of edit distance, are 

commonly used to find approximate matches in melodic strings. Edit distance is a very 

useful technique commonly applied to strings of pitches [22]. Techniques, however, 

using standard edit distance operations (replacement, insertion, deletion, along with 

consolidation and fragmentation) applied on strings of notes have limitations and in-

herent shortcomings such as defining a similarity threshold (any sequence can match 

with any sequence if enough edit operations are applied) and lack of transposition in-

variance. If edit distance is applied to strings of pitch intervals, problems occur, such 

as the fact that the insertion or deletion or replacement of a single interval changes 

drastically the rest of the pitch sequence – see, however, proposal by [20].  

In [1] the problem of matching is redefined in a way that is appropriate for strings of 

melodic intervals (not notes). Matching can be applied directly to strings of intervals 

(in semitones) without any preprocessing (as is required in [20]). To this aim, the re-

placement, insertion and deletion operations are abolished, and only consolidation and 

fragmentation operations are retained, adapted to the interval domain. Two or more 

intervals of one string may be matched to an interval from a second string through con-

solidation (i.e., the sum of one or more intervals of the first string should be equal to an 

interval of the second string) – this is the many-to-one matching problem; in a similar 

fashion, fragmentation is defined, i.e., one-to-many interval matching. The general case 

is many-to-many interval matching (the sum of two or more consecutive intervals from 

the first string is equal to the sum of two or more intervals of the second string) – see 

example in Fig. 2. Working with intervals means melodic matching is transposition-

invariant. Additionally, matching is confined by equality in the consolidation and frag-

mentation operations (the only threshold necessary in the pitch domain is the maximum 

number of intervals allowed in consolidation / fragmentation). 

 

 
 

melody 1 5 -1 1 -3 2 -4 

melody 2 2 2 1 2 -3 -2 -2 

reduction 5 -1 -2 -2 



7 

Fig. 2. The two melodic segments can be matched via the proposed pitch interval consolidation-

fragmentation operations as seen in the first two rows of the table where the sum of the intervals 

in corresponding cells is equal. The melodic reduction pattern can be matched to each of the 

melodies via fragmentation (each cell in the last row of the table is equal to the sum of two or 

more intervals in each corresponding cell of the two melodies). 

The implementation of interval matching via fragmentation / consolidation pre-

sented in [1], allows only one-to-many and many-to-one matches; the algorithm was 

tested only on one piece by W. A. Mozart (Sonata in A major KV331) searching for 

reduced versions of the theme (one-to-many problem); preliminary results were very 

encouraging.  
Listeners are capable of discerning common elements between varied musical ma-

terial primarily through hierarchic reduction, i.e., identifying ‘essential’ common char-

acteristics, such as interval patterns between disjunct salient notes. The one-to-many 

implementation of the proposed algorithm allows such patterns to be retrieved. An ex-

ample (handmade) is presented in Fig. 3 to illustrate the kinds of themes that may be 

retrieved by such an algorithm from a theme database (such as the database in 

themefinder.org) given a reduced pitch sequence query. A variant of this algorithm that 

additionally takes into account rhythmic durations is presented in [11, 10], tested on 

four classical theme-and-variation pieces.  

 
          Pitch interval sequence query 

          
J. S. Bach, Well-tempered Clavier, Book I, Fugue No. 8 

 
J. S. Bach, Musikalische Opfer, 3rd Movement 

 
F. Schubert, Sonatina in G Minor, Op.137, No.3, 1st Movement 

 

F. Liszt, Hungarian Rhapsody No.14 in F Minor 

 
J. Brahms, Sonata in E Minor, Op.38, 1st Movement 
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Fig. 3. Example of incipits of themes that may be matched to a given pitch interval query (top) 

employing the proposed melodic matching via interval fragmentation methodology. Each inter-

val of the query can be fragmented up to (this this case) four intervals; the intervals matched to 

the query are designated by horizontal brackets. 

It is suggested that this new definition of the problem of melodic matching,  requires 

no preprocessing and is reliable in capturing hierarchically related pitch patterns (i.e., 

underlying salient pitches) that are transpositionally invariant. Rethinking representa-

tion and hierarchic structure issues is sometimes useful to overcome problems and 

shortcomings of more standard approaches. 

5 Chords and Harmony 

Representing chords and harmony is the last area to be discussed in this paper. Multiple 

notes occurring simultaneously are grouped by listeners into a ‘chord’, which is an en-

tity in its own right, carrying functions, expectations, meaning, even emotions. Note 

simultaneities are often perceived as ‘wholes’ prior to establishing finer elaborations 

such as individual constituent pitches, octave information, note doubling, note omis-

sion, chord inversion, roots, and so on (for instance, chords in different positions are 

essentially equivalent as shown by [14]).  The notion of the root of a chord is attributed 

to a note (often missing from the simultaneity that constitutes the chord) depending on 

psychoacoustic phenomena and tonality hierarchies (see perceptual root calculation 

model by [25]).   

How can the infinite variety of possible simultaneities (in terms of octave position, 

note doubling, note omissions, note extensions, inversions) be reduced to a cognitively 

manageable number of abstract chord types/families? How can note verticalities be rep-

resented? Additionally, can we represent chords in different ways (using a common 

cognitively-inspired mechanism) depending on different qualities of diverse harmonic 

systems? The standard encoding of chords for tonal music is appropriate for tonal mu-

sic, but not for other non-tonal idioms; pc-set encodings, on the other hand, are useful 

for atonal music but have weaker explicatory power for tonal music. Is an adaptive 

representation possible?  

The General Chord Type (GCT) representation ([8], [9]), allows the re-arrangement 

of the notes of a harmonic verticality such that abstract idiom-specific types of chords 

may be derived. Given a consonance-dissonance classification of intervals (that reflects 

sensory and/or culturally-dependent notions of consonance / dissonance), the GCT al-

gorithm finds the maximal subset of notes of a given note simultaneity that contains 

only consonant intervals; this maximal subset forms the base upon which the chord type 

is built and the lowest note of the base is the root of the chord. This encoding is inspired 

by the standard roman numeral chord type labeling, but is more general and flexible (it 

can encode, for instance atonal normal order pc-set types). Currently the GCT is revised 

to account for a multi-valued ranking of dissonance that enables the disambiguation of 

certain ambiguities that appear in the original version that is based on a binary disso-

nance vector. 



9 

In the example of Fig. 4, a standard roman numeral analysis is presented along with 

the GCT encoding for a tonal context.  The GCT analysis is given for every vertical 

slice of the excerpt. For instance, [0, [0,4,7]] represents a tonic major chord in the C 

major key, whereas [7, [0,4,7]] a dominant chord. The second beat of the second meas-

ure comprises of two vertical slices, both of which have the same chord type base [2, 

[0, 4, 7]]; the two chords can be merged into a single more abstract chord type (in this 

case a secondary dominant to the dominant). The last beat of the second measure and 

the first beat of the third measure correspond to two vertical slices each; choosing one 

of the two (following the underlying harmonic rhythm) is possible if prior knowledge 

regarding the Bach chorale idiom is employed (e.g., acquired via corpus-based learn-

ing), such as chord typicality (e.g., a minor dominant chord [7,[0,3,7]] is very rare) or 

chord progression typicality (e.g., IV→viio more common than vi7→viio). The GCT 

representation can be used, not only to encode any note simultaneity (in tonal or atonal 

or other contexts) but additionally to determine broader more abstract families of chords 

based on similarity and/or functionality (see [17]). It is suggested that such chord rela-

tions can be employed in the context of automated harmonic analysis, enabling not only 

the encoding of chords but the reduction of musical surfaces to underlying harmonic 

progressions; this can be done in both tonal and non-tonal musics, as the GCT can be 

adapted to different harmonic idioms.  

 

 

Fig. 4. Roman numeral analysis and GCT encoding of the opening of J. S. Bach’s, Chorale 40 

(Ach Gott und Herr) BWV255. 

Representing and processing harmonic structure involves developing sophisticated 

hierarchical representations (e.g., [28]).  A simple approach for composing melodic 

harmonisations in relation to the GCT scheme was presented by [18], where chords are 

labelled employing the GCT representation, and corpus-based learning (from annotated 

harmonic reductions) involves learning chord transitions at the lowest chord-to-chord 

level and at the level of phrase boundaries (cadences). In the context of a generation 

(harmonisation) framework, constraints are inserted at phrase boundaries ensuring ap-

propriate cadential schemata at structurally important positions, and, then, intermediate 

chord progressions are filled in according to the learned chord transition matrices. This 

method is incorporated in the Chameleon melodic harmonisation assistant ([16], [17]) 

that is adaptive (learns from data), general (can cope with any tonal or non-tonal 
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harmonic idiom) and modular (learns and encodes explicitly different components of 

harmonic structure: chord types, chord transitions, cadences, bass line voice-leading). 

The harmonic knowledge acquired by this system, can be used creatively in a cog-

nitively-inspired conceptual blending model that allows the creation of combinational 

components between disjoint spaces, with very little (if any) training and with trans-

parent access to what concepts are combined. The Chameleon melodic harmonisation 

assistant is essentially a proof-of-concept creative model that demonstrates that new 

harmonic concepts can be invented that transcend the initial harmonic input spaces. It 

is argued that such original creativity is more naturally accommodated in the world of 

symbolic reasoning that allows links and inferences between diverse concepts at high 

abstract levels [6, 15]. Moreover, symbolic representation and processing facilitates in-

terpretability and explanation that are key components of musical knowledge advance-

ment. Overall, a symbolic hierarchical modular representation coupled with basic sta-

tistical learning of harmony, not only, gives rise to a rather sophisticated description of 

harmonic structure but, additionally, allows generation of new harmonisations in cer-

tain styles and, even, production of more adventurous creative cross-idiom harmonisa-

tions. 

6 Conclusions 

In this paper, three areas of music modelling, namely, segmentation and streaming, 

pattern extraction, harmonic abstraction, learning and generation have been examined 

in terms of fundamental principles of perceptual hierarchic organisation that can form 

the basis for general computational systems of musical structure. Emphasis has been 

given to approaching these problems from somewhat ‘unconventional’ viewpoints that 

give rise to relatively new definitions, representations and methods.  Common under-

lying fundamental mechanisms and interdependencies that apply to seemingly irrecon-

cilable areas have been highlighted. It is maintained that cognitively-inspired compu-

tational models of musical structure should take into account psychoacoustic / percep-

tual constraints, fundamental cognitive principles, logical principles, and should strive 

for generality and parsimony. Traditional AI symbolic representations and methodolo-

gies (despite a number of drawbacks discussed above) allow building sophisticated 

models relatively quickly, combining diverse components on different hierarchical lev-

els of organisation. As knowledge is explicit in such AI models, sophisticated practical 

systems can be created that allow intelligent interaction with musicians / users though 

the manipulation of meaningful symbolic representations. At the same time, such sys-

tems can be used for testing various hypotheses and acquiring new insights into our 

understanding of music.  
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