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Abstract

Conceptual Blending (CB) theory describes the cognitive mechanisms behind
the way humans process the emergence of new conceptual spaces by blending
two input spaces. CB theory has been primarily used as a method for inter-
preting creative artefacts, while recently it has been utilised in the context of
computational creativity for algorithmic invention of new concepts. Exam-
ples in the domain of music include the employment of CB interpretatively
as a tool to explain musical semantic structures based on lyrics of songs or
on the relations between body gestures and music structures. Recent work
on generative applications of CB has shown that proper low-level represen-
tation of the input spaces allows the generation of consistent and sometimes
surprising blends. However, blending high-level features (as discussed in the
interpretative studies) of music explicitly, is hardly feasible with mere low-
level representation of objects. Additionally, selecting features that are more
salient in the context of two input spaces and relevant background knowledge
and should, thus, be preserved and integrated in new interesting blends has
not yet been tackled in a cognitively pertinent manner. The paper at hand
proposes a novel approach to generating new material that allows blending
high-level features by combining low-level structures, based on statistically
computed salience values for each high-level feature extracted from data. The
proposed framework is applied to a basic but, at the same time, complicated
field of music, namely melodic generation. The presented examples allow an
insightful examination of what the proposed approach does, revealing new
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possibilities and prospects.

Keywords: Conceptual Blending, Computational Creativity, Feature
Salience, Genetic Algorithms, Melody Generation

1. Introduction1

Computational creativity studies the processes and products of compu-2

tational systems when generating something new, in combination with the3

counterparts of human creativity [1]. Creativity in general is about generat-4

ing novel material either by exploring unexplored regions of a given concep-5

tual space through exploratory creativity, by using transformational creativ-6

ity to transform rules that describe concepts, or by associating and combin-7

ing diverse conceptual spaces with combinational creativity [2]. According8

to Boden [3], combinational creativity is among the hardest forms of creativ-9

ity to describe formally. The theory of Conceptual Blending (CB) is about10

combinational creativity; it was developed by Fauconnier and Turner [4] and11

it describes the cognitive mechanisms that allow creative combinations of12

elements from diverse conceptual spaces, leading to the emergence of new13

conceptual spaces that incorporate new interesting properties. In music, as14

well as in other fields, CB theory has been primarily used for interpreting15

relations between high-level musical concepts and extra-musical meaning in16

existing works, e.g. see [5, 6, 7]. For instance, Zbikowski [7] explains the re-17

lation of a concept given in lyrics of a work by Palestrina, i.e., “falling from18

heaven” with the utilised musical concept of a descending passages; this re-19

lation exists on a high-level descriptions of elements in a musical surface.20

Conceptual Blending has also been studied as a method for generating21

new concepts, rather than merely interpreting existing ones. Interesting re-22

sults have been presented in many fields, e.g. for the creation of mathematical23

concepts [8, 9]. Other notable examples are in music, specifically, where gen-24

erative implementations based on conceptual blending have been presented25

for the invention of blended cadences [10, 11], melodies [12], or the generation26

of blended harmonic spaces through blending chord transitions [13, 14]. The27

concepts describing the cadences or the chord transitions in the latter studies,28

incorporated the analytical description of specific low-level elements, e.g. the29

root notes, chord types, existence of leading note to the tonic etc. Blending,30

therefore, involved the combination of such low-level structural elements and31

not concepts describing qualitative features (e.g. emotions, ideas, concepts as32
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with Zbikowski’s [7] high-level descriptions) of the blended spaces. Addition-33

ally, the determination of which features of each input should be included in34

the blend in some studies was assigned “by hand”, in the sense that, even35

though the most salient features of the inputs were automatically selected36

by the blending algorithm, salience values were manually assigned to each37

feature.38

In the examined domain of music, statistical learning plays a significant39

role in music cognition via the exposition of listeners to available musical40

stimuli [15]. This is evident by the fact that empirical experiments on the41

perception of music structures correlate with the statistical findings in mu-42

sical corpora; the tonal centre and the mode are examples of such correla-43

tions [16, 17]. Additionally, listeners with different backgrounds are expected44

to interpret musical information differently, according to the cultural distance45

hypothesis, according to which “the degree to which the musics of any two46

cultures differ in the statistical patterns of pitch and rhythm will predict47

how well a person from one of the cultures can process the music of the48

other.” [18] Several empirical studies have been conducted that examine the49

differences in music perception between listeners as a function of their cul-50

tures, e.g. see [19, 20] among others (some of which are discussed in [21]),51

which involve listening tests for inferring the musical schemata learned by52

listeners in diverse musical cultures.53

It appears that listeners from different backgrounds develop “sensitivity”54

to different schematic/high-level attributes of music. This sensitivity to spe-55

cific feature values can be measured by a “salience value”: higher salience56

values in a feature of an object makes this feature a more decisive factor57

about recognising this object. Features are not only related with an object,58

but also with a category: e.g. humans recognise the category of zebras mostly59

by their colour feature. Inferring the salience (or prominence) of musical fea-60

tures has been studied in the computational methods as the “Unscramble”61

algorithm [22], which has been used for clustering objects [23], e.g. musical62

patterns in “Träumerei” [24].63

Enabling computers to consider the conveyed high-level features and their64

accompanying salience values in musical excerpts and their categories, is a65

direction that becomes all and more feasible, but also necessary for develop-66

ing next generations of tools for music information retrieval [25] and, sub-67

sequently, computational creativity in music. In the paper at hand it is68

maintained that the utilisation of generative CB for computational creativ-69

ity can be enhanced by introducing blending of high-level concepts instead70
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of merely blending structural elements.71

Generating music by utilising high-level features as target-features is a72

field that has received increased attention the last decades with methodolo-73

gies that pertain to evolutionary computation [26]. New ways for generating74

meaningful sets of desired target features have been researched ,e.g. for gen-75

erating rhythm variations based on variation percentage [27, 28, 29, 30, 31].76

Using CB to generate target combinations of the most salient high-level fea-77

ture of input spaces appears to be a perfect fit for such algorithms. The78

paper at hand proposes an extension of creative CB to a data-driven work-79

flow that blends higher-level features extracted from input spaces, based on80

the distinction of the most important high-level features through automati-81

cally assigned salience values. The blended features are then used as target82

features for evolutionary algorithms that combine low-level information from83

the inputs and generate output that reflects these features. The field of84

application of this methodology is melodies and specifically blending of Chi-85

nese and German traditional melodies. Previous work on blending drum86

rhythms [32] demonstrated a more basic approach of the methodology pre-87

sented herein with a large amount of employed drum rhythm features (40)88

that did not allow a clear intuitive assessment of what the algorithm really89

does. The work presented here employs 6 simple melodic features that allow90

direct intuitive insights about what the proposed methodology does.91

2. Motivation for New Approaches in Generative Conceptual Blend-92

ing93

This section defines the representation and the salience problems of the94

current framework for generative conceptual blending of low-level concepts/attributes.95

Through an intuitive discussion around basic cognitive principles, the pro-96

posed methodological step to tackle these problems are illustrated.97

2.1. Addressing the Representation Problem: High-Level Features and Con-98

ceptual Blending99

The theory of CB was first employed as a method for interpreting creative100

ideas rather than generating new ones. The interpretative (not generative)101

power of the Conceptual Blending theory has produced important results102

in providing explanations about how abstract concepts from different do-103

mains relate with each other, generating new conceptual spaces of abstract104
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concepts. There is extensive scientific work where the CB theory was em-105

ployed for interpreting creative outcomes of humans in diverse areas, with a106

common starting point in cognitive linguistics. Among many papers in many107

areas, some indicative studies present the employment of conceptual blending108

theory to explain the metaphorical expression of time [33] and the dialogues109

between beloved persons [34] in poetry, to analyse how abstract concepts have110

been blended in successful advertisements [35] and news headlines [36, 37].111

Modelling musical concepts has proven useful for studying the cognitive112

grounding of structures in music theory [38], analyse findings in empirical113

tests on the construction of elementary musical concepts [39] and compact114

musical structures (e.g. motives, themes and chords), or even complete music115

parts [7, 40]. The common idea that these studies (among many others)116

build on, is that musical ideas are related with extra-musical meaning via117

schemas [41, 42], which are abstract concepts describing general attributes118

and relations in human perception and cognition. In music, the idea of119

schemas is generally different from the one related with studies on analogy120

and is mainly associated with tools that create abstractions from musical121

excerpts and facilitate the acquisition of mental knowledge structure [43].122

Example of such abstractions, as studied in [43], are the concepts of tonal123

centre and mode [16], which humans unconsciously extract when exposed124

to musical stimuli. Those abstractions allow listers to relate and compare125

musical excerpts on more abstract levels, for example: two pieces are similar126

in terms of the emotion they elicit (e.g. both sound “happy” because they127

both utilise elements of a major scale similarly), but they are not in the128

same key (because their tonal centre differs). Similarly, those abstractions129

also allow the ordering of objects, since they are quantitative in some sense,130

for example: one can measure if a piece A adheres more to the major scale131

than piece B, or if piece C is closer to piece A than to B in terms of pitch132

class content.133

Other studies have examined quantitative descriptions of high-level con-134

cepts, in a sense that concepts are represented with a magnitude value de-135

scribing a qualitative feature. For example, the high-level feature of “rhythm136

complexity” (related with syncopation) in one-bar musical rhythms is de-137

scribed with a numerical value that ranks rhythms according to a complexity138

scale [44]. Among other musical qualities, there are successful examples in139

the literature that relate feature extraction methods and perceived qualities140

of rhythm. For instance, the empirical studies presented in [45, 46] have141

shown that there are strong correlations between a proposed quantitative142
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expression of syncopation and the sensation of groove in rhythms.143

In contrast, the current generative frameworks proposed for CB incor-144

porate analytic description of low-level properties of concepts in the input145

spaces based on structures related to formal logic. Even though some interest-146

ing results have been presented with currently studied low-level approaches,147

the scope of the results are focussed on small test-case examples. For in-148

stance, in [10] the tritone substitution cadence used in jazz music was gener-149

ated by blending the Perfect and the Phrygian cadences, which are cadences150

used centuries before the tritone substitution cadence was introduced. The151

methodology for blending cadences was combined with statistical learning152

techniques in [47], offering a way to combine entire chord transition spaces153

by blending chord transitions (successive chord pairs). Even though these154

results are very promising, the strength of the conceptual blending is dete-155

riorated in low-level structural information, disregarding high-level concepts156

that in most cases can be only approximated from low-level properties. For157

example, imagine that we have two melodies, one with high rhythm (highR)158

complexity and low harmonic complexity (lowH) and one with the oppo-159

site, low rhythm (lowR) complexity and high harmonic complexity (highH);160

those are high-level features. If we want to construct a new melody that161

has, e.g., high values for both (highR and highH), low-level blending does162

not explicitly allow for it. Blending low-level features may eventually lead163

to melodies that have the desired characteristics, but the “objective” of the164

blending process (i.e. having a result with highR and highH) cannot be ex-165

plicitly stated. Explicit blending of high-level information is not available166

in current frameworks since the representation concerns explicit definition of167

low-level attributes; we call this problem the representation problem.168

2.2. Addressing the Feature Salience Problem: Identifying Feature Impor-169

tance through Data170

The idea of creating novel concepts by “combining existing ideas and con-171

cepts in a manner useful for an intended purpose” [48] is well established in172

the cognitive science and artificial intelligence literature since many years.173

The determination of which out of many combinations of ideas and concepts174

serve an “intended purpose”, however, is a task-dependent problem. Iden-175

tifying the relevant or salient concepts from the non-relevant or non-salient176

concepts toward serving an intended purpose is a key-component according177

to Goel [49]; this segregation relates with the “frame problem” in AI [50]:178
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usually there are overwhelmingly more non-relevant elements, actions, con-179

cepts or combinations that need to be rejected. The aforementioned problem180

can be summarised in one question: how can we determine the salience of181

features that need to be combined from two input spaces in order to have182

meaningful blends? We refer to this problem as the salience problem.183

Regarding the term “meaningful”, during the process of meaning con-184

struction humans tend to focus on specific aspects that generally help us185

compress information and obtain global insight of a field (see [4], page 312).186

When meaning is constructed through conceptual blending of spaces that187

possess meaning of their own, there are several theoretic criteria, referred to188

as optimality principles [4], that have been proposed as conditions that would189

make the generated space meaningful ; the implementation of such criteria in190

specific applications depend on the “intended purpose” of each application191

(for examples where such criteria have been implemented see [51, 52]). Hu-192

mans are good at compressing information and generating abstractions by193

creating categories of objects on many levels of detail, e.g., even though there194

are exceptions, birds have wings; fishes live in the sea; zebras have black and195

white stripe patterns. Those category-related features that allow us to sepa-196

rate objects into classes are related with the concept of the salience of those197

features in their class and between classes. For example, a zebra without the198

stripe patterns would most possibly be categorised as a horse, while even a199

dog with the zebra stripe pattern would directly evoke the image of a zebra;200

therefore the stripe pattern feature is salient for the zebra category. The201

salience of features does not only allow the compression of the (input) con-202

ceptual spaces, but also facilitates the acquisition of global insight in the203

blended space by allowing the inference of the involved input spaces.204

For illustrating the way that the notion of feature salience can poten-205

tially offer global insight in the process of “meaning” construction through206

CB, let us use some intuitive and simple examples from the toy-domain of207

animal blending [53]. Let us imagine the example of blending a zebra with208

a shark. Let us also keep in mind that there exists a fish called the “zebra209

shark”, which scientists, creatively indeed, named this way because of its210

colour and shape. In this example we are going to follow the reverse process211

of “constructing” such a fish as if it did not exist. What would a good blend212

between a zebra and a shark look like? A good blend would creatively com-213

bine the elements of both inputs (zebra and shark), allowing the observer to214

distinguish as clearly as possible that a zebra and a shark are involved in215

this blend. Many blends can be constructed with those inputs and some of216
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those blends could be characterised as successful, depending on the purpose217

that the blends are expected to serve. For instance, the blend of a zebra218

with a shark fin on its back could serve the purpose of a four-leg peaceful219

earthly animal. Similarly, a shark with zebra stripes would be a good blend220

of a dangerous predator that lives in the sea and, when flocking with other221

individuals of its species, can confuse other predators because of their com-222

bined black-white colour patterns. However, the blend of a zebra with grey223

colour (colour of a shark) would not be successful, since this blend would224

look as a simple, non-blended grey horse – at least to someone who had no225

information about the fact that this is the output of a blending process with226

these specific inputs. Similarly, the blend of a shark with four legs (without227

the zebra stripes) would not be successful, since many other animals with228

four legs could have produced this blend with a shark.229

The distinctive characteristics of zebras are in general their black and230

white stripe patterns. If this element is not present in any blend that includes231

a zebra as input, then the blend would possibly fail to convey the existence232

of a zebra, since almost all the remaining characteristics of zebras are similar233

to characteristics of other animals, especially horses. Similarly with sharks:234

if we use, e.g., only the grey colour property, then the resulting blend would235

not necessarily indicate the involvement of a shark since many animals have236

grey colour. Therefore, in the aforementioned example successful blends237

need to incorporate features that are distinctive or salient for the involved238

categories – the “Zebra” and the “Shark” categories in the running example.239

Regarding the actual zebra shark, it appears that biologists have given this240

name to this type of fish by decomposing the most salient features of a shark241

and a zebra, which are naturally evoked to the observer of such a fish. Data242

play an important role in defining the salient characteristics of a class, since243

the salience of the feature is related with the “commonality” of this feature in244

the class. Even though complex cognitive processes may play significant role245

regarding how humans perceive the salience of a feature, this paper proposes246

an approach that is based on statistical learning; the formalisation of this247

data-related approach is given in Section 3.3248

3. Methodological implementation and application of high-level249

data-driven Conceptual Blending250

The aim of the proposed methodology is to incorporate high-level features251

in generative conceptual blending (addressing the representation problem),252
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Figure 1: Overview of the proposed methodology. During the initialisation phase (left),
features are extracted from the melodies in the database and the salience of each feature
in every melody is computed. After two input melodies are selected, their features are
blended (top-right), producing the target blended features for the Genetic Algorithm which
constructs the output blended melody (bottom-right).

while selecting the high-level features of inputs to be included in the blend253

according to their salience values that are computed from data (addressing254

the salience problem); the output will be new objects (blends) that reflect255

the blended input high-level features and incorporate low-level information256

inherited from the input objects. This methodology is applied to melodic257

generation in Section 4, using as background knowledge sets of melodies258

extracted from the Essen corpus [54] belonging to two styles (Chinese and259

German) with different characteristics. For each melody 6 quantitative high-260

level features are extracted, which are descriptive of some basic rhythmic261

and melodic cognitively-based qualities. Figure 1 illustrates an overview of262

the proposed methodology applied to melodies; the methodology includes263

an initialisation stage and a generation stage. In the initialisation stage (left264

side) features are extracted from each melody in the database of melodies and265

afterwards the salience values of each feature in every melody are computed266

(with a process described in Section 3.3). After the initialisation step the267

database includes melodies that are accompanied by a vector of features and268

a vector of the corresponding saliences for each feature (one salience value269

for each feature in each melody).270

The melody generation phase shown on the right side of Figure 1, results271
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in the generation of a new melody (blend) that encompasses the blended fea-272

tures of two input melodies from a database. The generation phase includes273

two steps: the feature blending and the melodic composition step. In the274

feature blending step (top right), the features of the selected melodies are275

blended, producing a set of blended target features that the blended melody276

should incorporate. The blended target features are selected through a pro-277

cess described in Section 3.3, which includes a balanced (among the two278

inputs) selection of the most salient features of selected input melodies. The279

blend of features constructed in the top-right side of Figure 1 are then em-280

ployed as fitness targets for the Genetic Algorithm (GA) (bottom-right),281

generating a melody that best matches the target features.282

Melody representation:. Melodies are represented both by low and high283

level information. Low level information for every note in the melody is284

given as pairs of pitch and onset time values. Additionally, during blend-285

ing the Markov probability matrix of pitch transitions is also considered, as286

described in Section 3.4. Regarding high-level representation, a basic set of287

six features is used that are related with cognitively-relevant rhythmic and288

pitch attributes. A greater number of such features could have been used289

(e.g. see [55]) but only a representative number of two rhythmic and four290

pitch-related features was sustained for focussing more clearly on the effects291

of high-level feature blending. These features are forming a vector that de-292

scribes each melody in the database, ~mi = {f (i)
1 , f

(i)
2 , . . . , f

(i)
6 }, where i is293

the index of the melody. A list of these features along with a short description294

is given as follows:295

1. Rhythm inhomogeneity: (rhom) Rhythm inhomogeneity can be viewed296

as an aspect of rhythm complexity in terms of length distribution of297

successive onset intervals, where more similar intervals (fewer rhyth-298

mic deviations) elicit the sensation of a less complex rhythm and vice299

versa [56, 27]. Methods for measuring rhythm complexity rhythm com-300

plexity span from simpler [57] to more complex [58, 59]; for this feature,301

rhythm inhomogeneity is approached by the value of the standard devi-302

ation of all inter-onset intervals over the value of the mean inter-onset303

interval in a melodic sequence.304

2. Pitch-class set complexity: (npcp) This feature utilises the informa-305

tion entropy [60] of the Pitch Class Profile (PCP) set distribution of a306

melody for determining the relative quantities of each pitch class (pc)307
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used in the melody; the closer a pc distributions is to the uniform308

distribution, the more complex the PCP content of the melody.309

3. Small pitch intervals: (nint) Even though there appear to be global310

cognitive mechanisms that favour small pitch intervals (semitone or311

tone) [15], different percentages of small intervals are used in different312

styles. This feature measures the percentage of small successive pitch313

intervals among all successive pitch intervals.314

4. Pitch range: (nrange) The difference between the smallest and the great-315

est midi pitch values in the melody over the ration of two octaves (24)316

– all involved melodies are within two octaves.317

5. Note repetitions: (nrep) The ratio of constant note intervals over the318

total number of intervals in a melody.319

6. Rhythm repetitions: (rcns) The ratio of consecutive constant rhythm320

intervals over the total number of rhythm intervals.321

Since the music-related part of the methodology is meant to be kept sim-322

ple (for focussing on the CB aspects), the information of tonality variability323

is “neutralised” – even though in future work “advanced” musical concepts324

related to notions of tonality variability could be used in the feature repre-325

sentation of melodies. To this end, all melodies are transposed to the keys326

of C major or A minor (depending on their initial tonality).327

3.1. Conceptual Blending of melody features328

Features blending in the proposed methodology employs a basic computa-329

tional framework of the theory of CB proposed by Fauconnier and Turner [4]330

and formalised by Goguen [51]. The employed framework is based on the331

framework developed during the Concept Invention Theory (COINVENT1)332

project [61]; in the context of this first application, however, some simpli-333

fications are applied for making the blending process more straightforward.334

According to this theory, formalisation and implementation, two input spaces335

are described as sets of properties and relations. The generic space of these336

inputs is computed, which is the conceptual space that keeps the common337

structure of the input spaces, guaranteeing that this structure also exists in338

the blended space, and generalises or abstracts over the parts of the inputs339

that are distinct. Afterwards, an amalgamation process [62, 63] generalises340

1http://coinvent-project.eu/
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the input concepts until the generic space is found and “combines” gener-341

alised versions of the input spaces to create blends that are “consistent” or342

satisfy certain properties that relate to the knowledge domain. Regarding343

blends, the term “consistent” refers to whether all logical relations in the344

blend and the background knowledge are satisfied, i.e. there are no mutually345

canceling contradictions.346

The example of the zebra shark discussed above is illustrated in Figure 2347

under the context of the COINVENT CB methodological framework. The348

two inputs considered are T1 : “Shark: a grey fish with fin” and T2 : “Ze-349

bra: a striped horse-shaped animal”. There are many possible blends and350

many possible generalisation alternatives – under the constraint imposed by351

the generic space that all blends should correspond to the generic category:352

“An organism with colour and shape”. Possible generalisations of T1 are “A353

grey organism” or “A fish with fin”. Accordingly there are many possible354

blends between T1 and T2 arising from those generalisation alternatives, e.g.355

“A grey horse-shaped animal” or “A striped fish with fin” (the actual zebra356

shark). There might be also inconsistent blends, e.g. “A grey horse-shaped357

fish” (this can be considered inconsistent since there cannot be horse-shaped358

fish), and, therefore, consistency check is necessary after a blend has been359

constructed. The value of each blend is assessed through blending optimality360

principles [4, 51, 52]. Even though there are extensive theoretical descrip-361

tions on optimality principles, e.g. see [4], the algorithmic implementations362

of such principles depend on the specific domain of application.363

The first approach to melodic feature blending proposed in this paper,364

uses a basic and simplified version of the amalgamation process where no365

relations between features are considered, i.e., the value of one feature is not366

related with the value of the other (even though this should not necessarily367

be the case). Since relations between features are not considered, the amal-368

gamation process plays the simple role of combining highly salient features369

of the input melodies, considering, however, the generic space restrictions.370

Figure 3 abstractly illustrates the feature blending process that generates371

the “target features” that are subsequently fed into the genetic algorithm372

(discussed in Section 3.4). The algorithm for this process (Algorithm 1) is373

described in Section 3.3.374

3.2. Generic space375

The generic space is the space of common features in the two input spaces;376

identifying common features is important in the conceptual blending theory377
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fish with fin“
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Figure 2: Illustration of the zebra shark example through a generative approach to concep-
tual blending based on amalgamation. The generic space is computed (1) and the input
spaces are successively generalised (2), creating new potential blends (3). Some blends
might be inconsistent or poorly evaluated according to domain specific criteria.
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since those features should be identifiable in blend as well. The role of the378

generic space is to guarantee that the blend satisfies this property. In the379

theory of CB the generic space includes common aspects of the inputs, ex-380

pressed as abstract concepts that have been approached by the utilisation of381

image schemas [42]; earlier, in Section 2, the notion of schemas and how it382

relates with high-level features was discussed.383

In the generative approaches of conceptual blending proposed in the liter-384

ature [52, 10, 13, 53, 62], the common structures and properties in the input385

spaces are forming the generic space. The generic space under the perspec-386

tive of feature blending, on the other hand, can be used to provide numerical387

limits to which feature values can be considered the same, according to a388

predefined degree of granularity. For instance, if the two input melodies in-389

corporate high levels of rhythm inhomogeneity, then the generic space should390

include the requirement that the blend should be a melody that also has a391

high value for this feature.392

The notion of the generic space for spaces represented by continuous nu-393

merical features needs to be defined, since it differs from the logical-related394

formulation of “discrete” feature terms [64] that has been hitherto utilised395

in the literature [52, 10, 13, 53, 62]. For instance, if both inputs in the car396

blending example involve a red car, then the colour feature is included in397

the generic space; in case the input cars have different colours, the colour398

property would remain empty in the generic space, allowing cars of whatever399
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Figure 3: Simplified blending of melody features.
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colour to be generated. However, in the proposed real-valued feature repre-400

sentation, the notion of whether two inputs have the “identical” feature is401

replaced by the notion of whether they have “similar” features.402

Two melodies are considered to have a “similar” value in one of their403

features if their numeric difference is smaller than a given value. By con-404

vention, the values of a feature t in two melodies ~mi1 and ~mi2 , denoted as405

f
(i1)
t and f

(i2)
t for ~mi1 and ~mi2 respectively, are considered “similar” if their406

distance is smaller than (the arbitrarily selected) 1/10-th of the range of all407

values of this feature in the dataset. In case f
(i1)
t and f

(i2)
t are similar, the408

generic space value for feature t, denoted as gj in Figure 3, is the mean value409

of these features, which is directly passed to the blended set of features. In410

the abstract example of Figure 3, f
(1)
n and f

(2)
n in the two input melodies411

are considered similar and thus this feature is represented by a fixed value412

in the generic space (gn) with a value equal to the mean of f
(1)
n and f

(2)
n ;413

subsequently this value (gn) is also used in the blend.414

3.3. Creating the “optimal” blend415

The typical amalgamation process leads to the generation of many blends416

that correspond to different combinations of feature values inherited from the417

input spaces (keeping the “reserved” feature values from the generic space).418

Through this process the number of possible resulting blends is usually large419

and the selection of the “best” blend(s) is based on domain-specific blending420

optimality principles [4, 51, 52]. Two basic qualities are utilised in the current421

study, namely the balance of features inherited from the inputs in the blend422

and the salience value of each feature discussed in Section 2.2. With the pre-423

sented blend generation process only the single best blend is retrieved, while424

extensions are possible that allow the preservation of an arbitrary number of425

highly ranked blends.426

Balance:. One important aspect of meaningful blends is that they reflect427

characteristic of both inputs; to ensure that both inputs are represented in428

the blend, the constructed set of blended features should balanced mixture of429

the features in the two inputs. The modification of the amalgamation process430

used in the presented approach produces only the blend with the “optimal431

balance”. Therefore, the resulting optimal blend of features includes an equal432

number of features (plus/minus one) from the two input spaces, keeping in433

mind that some feature values are reserved by the generic space.434
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Salience:. Selection which features will compose the “balanced” set is also435

crucial for generating blends that incorporate the most important or “salient”436

features of the inputs. Under the statistical perspective given in Section 2.2,437

the salience value of a feature value, s(f
(i)
t ), in a melody ~mi is computed438

from available data. Supposing that the considered “universe” of objects in439

the dataset (background of a listener) comprises N categories (e.g. melodic440

genres), where category cI includes the objects with indexes iI , the concen-441

tration value of feature t (the centre of the area where the feature values of442

most objects are) in each category is computed as:443

CcI (t) =
ar + ar+1

2
, where r = arg max

k
Pi(ak 6 f

(i)
t < ak+1). (1)

Pi(ak 6 f
(i)
t < ak+1) is number of individual whose t-th feature value (f

(i)
t )444

falls within the area of ak and ak+1. The concentration value of a feature in a445

category, in simple terms, is the peak of the histogram regarding this feature446

value for all individuals2. The closer an object is to the concentration value447

of its category, the more representative it is of the features in this category448

and, therefore, the greater the value of salience for its features. Conversely,449

the farther away the concentration value of a feature in a category is from450

the concentration values of other categories, the more unique and therefore451

salient it is. The salience value of feature t for object i is obtained as follows:452

453

s(f
(i)
t ) = U(CcI (t))

(
2− 2

1 + ea |CcI
(t)−f (i)

t |

)
. (2)

U(CcI (t)) is an estimation of how “unique” the concentration value is for454

the entire category, which is computed as the ratio of the minimum distance455

between this and the concentration values of all other categories (normalised456

with the maximum distance of concentration values in the database):457

U(CcI (t)) =
minJ |CcI (t)− CcJ (t)|
maxJ |CcI (t)− CcJ (t)|

, (3)

where J is the set of category indexes except index I. The later term is458

simply a normalised proximity measure between f
(i)
t and CcI (t). It has a459

2The centroid instead of the concentration value has also been examined, however, the
centroid was considered non-representative of the feature values behaviour since they did
not follow normal distributions.
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maximum value of 1 for highly salient features (f
(i)
t close to CcI (t)) and a460

minimum of zero. The factor a defines the steepness of the “slope” at which461

feature values that are more distant from the concentration value become462

less salient.463

Through this process, every feature vector describing a melody, ~f (i) is ac-464

companied by a salience vector, ~smi
, with the respective number of values rep-465

resenting the saliences of each feature in ~f (i) ( ~smi
= {s(f (i)

1 ), s(f
(i)
2 ), . . . , s(f

(i)
n )}),466

where n is the number of features – n = 6 in the examined application.467

Optimal Blend:. The algorithm for computing the single optimal blend468

of features of the two inputs is shown in Algorithm 1. The arrays of the469

two input feature vectors and their respective salience arrays are given as470

inputs along with the array that includes the generic space features. The471

algorithm outputs an array of blended features with the desired properties,472

i.e. this blended array incorporates the most balanced combination of the473

most salient features of the input spaces. The blended array of features474

generated by feature blending is then used to provide the target features in475

an evolutionary process, leading to the implementation of objects (melodies476

in the presented application) that incorporates the desired blended features.477

The idea behind the algorithm for feature blending is to first assign the478

generic space features into the blend and then fill the remaining features by479

interchangeably selecting the most salient features from the input spaces. To480

this end, the indexes of the sorted saliences of each input space are stored481

in two arrays (through the getSortedIndexes() function in lines 3 and 4)482

and then the features of the generic space are passed into the blend, while483

the corresponding indexes are removed from the aforementioned arrays (lines484

6-12). Until now the generic space requirements have been dealt with. The485

first elements of the index arrays (i
(1)
1 and i

(2)
1 ) will always correspond to the486

index of the feature with the highest saliences available in both inputs; in487

the following steps the indexes of the features that are selected for the blend488

are going to be removed from the sorted index arrays. In lines 14-18 the489

algorithm decides which input has the most salient available feature to begin490

the interchanging process in the remaining lines. During the interchanging491

process, the most salient available feature from each input space at each step492

of the loop beginning in line 20 is selected and put in the blend. Afterwards,493

the indexes of the selected features are removed from both index arrays and494

the process continues until all features of the blend have been filled up –495

which means that the index arrays have emptied.496
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3.4. Generating Melodies from Blended Features through Genetic Evolution497

Several methods for generating melodies with evolutionary algorithms498

have been proposed in the literature (e.g. [65, 55] among others). The typical499

approach that most of those methodologies follow involves the employment500

of a set of target melodic features and an initial population/generation of501

melodies, which can be random sequences of notes and rests [65]. After-502

wards, evolutionary operators are employed for producing new generations503

of melodies with features that gradually converge to the target features.504

Melodies are evolved according to the typical overall principles employed505

in evolutionary melodic generation, however specific genetic operators and506

population initialisation are examined that relate with the theory of CB.507

In the low information level, melodies are represented as pairs of pitch508

and onset-time values (disregarding duration), along with information about509

pitch transitions in a Markov probability matrix. In an attempt to preserve510

elements of low-level blending and retain “veridical” [15] aspects of the input511

melodies, the initial population of melodies are exact copies of the input512

spaces and melodies are evolved according to genetic operators that ensure513

that the new (children) melodies incorporate material only from the two514

parent melodies. Additionally, the average Markov matrix of pitch transitions515

between the two inputs is used during fitness evaluation to encourage the516

recombinations of parts from the parents that are merged with transitions517

found in the input melodies. This process leads to the generation of melodies518

that exclusively include recombined material and also transitions found in519

either of the two input spaces.520

The employed operators are different types of crossover, including: (a)521

“bar exchange” crossover, where two parent melodies exchange a bar selected522

in random; (b) “note exchange”, where a single note is exchanged between523

parents; and (c) “pitches-to-rhythm” crossover where the pitches in one bar524

of one parent are fitted to the rhythm structure of the other parent and vice525

versa. If a different numbers of notes are included in the involved bars then526

the pitches of the shorter sequence are successively repeated until they match527

the rhythm events of the longer sequence, while only the beginning pitches528

of the longer sequence are used that match the rhythm events of the larger529

sequence. The fitness value (to be minimised) of new melodies is calculated530

as the Euclidean distance between their features vector and the vector of531

blended target features constructed as the optimal blend (Section 1) plus a532

“transition penalty” derived from the Kullback-Leibler divergence between533
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the average input Markov matrix of pitch transitions and the one of the534

generated individual.535

4. Example Applications536

The effectiveness of the proposed framework for CB is demonstrated with537

examples that include two distinctive categories of melodies. These cate-538

gories include melodies from the Eastern and Western culture and specifi-539

cally a selection of pieces in four styles (two Chinese and two German) in540

the Essen corpus [66, 54]. A main set of old German songs (30 melodies the541

“altdeut1” dataset) and a set of songs from the Chinese Han culture (30542

melodies in the “han” dataset) constitute the input material for blending,543

while two secondary sets with 30 pieces each are used for representing other544

styles of Chinese (“natmin”) and German (“zuccal”) pieces. Pieces are se-545

lected from each set that reflect the unique characteristics of the respective546

styles, in terms of the employed features. Figure 4 illustrates the features547

extracted from the selected pieces in the main sets (han and altdeut1). The548

selected melodies belonging to the han set display higher rhythm inhomo-549

geneity and pitch range, while altdeut1 melodies include more often smaller550

intervals (two semitones or less) with more complex pitch class profiles (PCP551

complexity). Those features reveal some basic characteristics of those styles:552

German melodies have more robust and predictable rhythm, while Chinese553

melodies use mainly notes in the pentatonic scale (thus including many in-554

tervals larger than three semitones and smaller PCP complexity).555

For the remainder of this section, results are organised so as to demon-556

strate three possible key-applications that high-level feature blending and557

the statistical computation of salience could allow or enhance, namely (a)558

the infusion of a single high-level characteristic to an existing melody, (b)559

identification of exemplar melodies in a set according to listener background,560

leading to the generation of blended melodies based on feature salience and561

(c) the recommendation of new melodies based on blended features. For the562

(b) and (c) scenarios two “virtual” listeners are assumed with different back-563

grounds (using the secondary data Chinese and German datasets), similarly564

to the work of van der Weij et al. [67] and Pearce [21]; the Eastern listener is565

assumed to be exposed to sets of Chinese melodies (han and natmin), while566

the Western listener to German melodies (altdeut1 and zuccal).567
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Han German Han German Han German

Rhythm inhomogeneity PCP complexity Small intervals

Han German Han German Han German

Pitch range Pitch repetitions Constant rhythm

Figure 4: Extracted feature values from the “main” (Han and German) sets of pieces.

4.1. Infusion of single new characteristic through single scope blends568

Feature blending allows the infusion of a single new characteristic, or a569

high-level feature, into a given melody. The example in Figure 5 illustrates570

such a scenario, where a Chinese (han) melody, with low pitch class profile571

complexity (only two notes are played) and low percentage of small inter-572

vals (only 5 and 0-semitone intervals are employed), is given as Input 1. If573

we want to increase the pitch class complexity of the melody, we can use574

a German (altdeut1) melody with higher value in this feature (shown as575

Input 2-A) and generate a blend. This blended melody, Blend-A Figure 5576

is generated by substituting the pitch class complexity feature value of In-577

put 1 with the one of Input 2-A. Indeed the rhythm characteristics of the578

blended melody (Blend-A) are almost identical to Input 1. The pitch class579

complexity is significantly increased while the percentage of small intervals580

is retained relatively low (0.33 while in Input 1 it is zero). Similarly, if we581

want to increase the percentage of small intervals to the extreme value of 1,582

we can blend the Chinese melody (Input 1) with the German melody labeled583

as Input 2-B. The blended melody (Blend-B) retains the rhythmic structure584

as well as other characteristics (including pitch class complexity) and adopts585
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Input 1: [0.85, 0.69, 0.00, 0.21, 0.54, 0.76]

Single-scope scenario A: increasing pitch complexity
Input 2-A: [0.38, 1.91, 0.81, 0.50, 0.12, 0.91]

Target: [0.85, 1.91, 0.00, 0.21, 0.54, 0.76]
Blend-A: [0.89, 1.89, 0.07, 0.42, 0.46, 0.80]

Single-scope scenario B: increasing small intervals
Input 2-B: [0.52, 1.09, 1.00, 0.21, 0.29, 0.52]

Target: [0.85, 0.69, 1.00, 0.21, 0.54, 0.76]
Blend-B: [0.85, 0.68, 1.00, 0.13, 0.54, 0.76]

Figure 5: Two examples of “single scope” blends using as the first input (Input 1) a Chinese
(han) melody with low pitch class complexity and low percentage of small intervals. In
the first example, the other input is a German melody (altdeut1) with higher pitch class
complexity (Input 2-A) and in the second (Input 2-B) is a German melody (altdeut1)
with high percentage of small intervals. In both cases the blended melodies retain the
rhythm features of the Han melody while adjusting to increased pitch class complexity
and percentage of small intervals.

the extreme value for the feature of small intervals.586

4.2. The Role of Feature Salience: Exemplar Objects, Double-Scope Blends587

and Listener Background588

The salience value of a feature, according to the employed statistical ap-589

proach, depends on the available background knowledge. Different interpre-590

tations might be given regarding which features are more salient in a specific591

object. In the shark-zebra example, if an isolated tribe of people never had592

witnessed another grey animal but the shark, then the grey zebra would be a593

meaningful blend for them, since it would encompass the grey colour which594
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would be extremely “salient” for the shark category. The qualitative char-595

acteristics of the proposed statistical definitions of salience are examined on596

melodies through simple scenarios that involve the Eastern (with background597

the han and natmin styles) and Western (altdeut1 and zuccal) “virtual”598

listeners. The Eastern and Western listeners are assumed to be exposed to599

a “new” style of the other culture: the Eastern is exposed to the altdeut1600

style and the Western to han style melodies. After being exposed to the601

new styles, listeners are assumed to adjust their understanding about what602

feature values are unique for each style. Figure 6 shows the concentration603

value uniqueness as computed in Equation 3.604

For the Eastern listener (top row of figures) the most unique feature of the605

new style (altdeut1) is the PCP complexity (highest bar in the right-most606

figure). This means that the concentration value, as computed using Equa-607

tion 1 on the respective datasets, in the altdeut1 set (1.87) is distinctively608

higher than the respective concentration values in the Eastern sets (1.57 and609

1.58 in the han and natmin sets respectively). It should be noted that the610

Shannon Information Entropy of a discrete uniform distribution with 7 out611

of 12 possibilities is 1.95 and with 5 out of 12 is 1.61, which is a good indica-612

tion about the fact that the Eastern styles incorporate pentatonic scales and613

Western diatonic; therefore Eastern listeners familiar with pentatonic scales614

would find the diatonic nature of Western melodies unique. The high unique-615

ness value for this feature constitutes German melodies categorically salient616

regarding their PCP complexity and melodies with the PCP complexity fea-617

ture closer to 1.87 (concentration value) are highly salient for the German618

idiom to the ears of an Eastern listener. On the other hand, the Western619

listeners in this hypothetic example find most aspects of the han melodies620

unique (except from the note range and note repetition) and should therefore621

find most aspects of the han melodies salient.622

Before examining how salience values affect blending in the presented623

framework, we note that the concept of salience can be employed for iden-624

tifying the “exemplar” object in a category. The “exemplar” object is the625

one that gathers the most typical characteristics of the category it belongs to626

and, according to psychology theories, “when an unfamiliar stimulus is en-627

countered, its similarity is computed to the memory representation of every628

previously seen exemplar from each potentially relevant category” [68]. An629

alternative to the exemplar categorisation model is the “prototypical” model,630

where objects are categorised according to whether their features are close631

enough to some “prototypical” feature values that do not necessarily describe632
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Figure 6: Salience uniqueness values for a new style presented to the “virtual” Eastern
(top) and Western (bottom) listener. Eastern listeners, assumed “trained” two sets of
Eastern melodies are exposed to one set of Western melodies of pieces and vice versa.
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a concrete object; humans use either or both models in different classification633

tasks [69]. The exemplar object of a category can be assumed as the one that634

encompasses the highest sum of categorical salience in its category. Based on635

the definition of concentration value uniqueness ( U(CcI (t))) in Equation 2,636

the “exemplar” object could be the one that encompasses features with high637

proximity to the respective unique concentration values of the category3.638

Figure 7 shows the placement of the melodies computed as exemplars for639

the han and altdeut1 styles according to the background of the assumed640

Eastern (left) and Western (right) listeners. This illustration is produced by641

projecting the six melodic features on the 2-dimensional plane of maximum642

variance produced by Principle Component Analysis (PCA) on the main643

sets of melodies; the explained variance accounts for the 85.9% of variance in644

these two sets. Even though this graph does not show precise information, it645

illustrates how the background knowledge influences the perception of what646

an exemplar is. For example, for the Eastern listener (left graph in Figure 7),647

the exemplar in the altdeut1 style is a melody placed higher on the y-axis648

in comparison to the Western listener (right). The location of the altdeut1649

exemplar for the Eastern listener is “occupied” by melodies in the zuccal650

style in the background of the Western listener (light-grey circles), therefore,651

for the Western listener the exemplar melody is placed further down – further652

away from the zuccal area.653

According to Algorithm 1, using the computed salience values for the in-654

put melody features generates target-feature blends that incorporate a bal-655

anced combination of the most salient features from both blends. Figure 8656

shows the blended melodies generated by using the aforementioned algorithm657

on Input 1 and Input 2-A in Figure 5. It is reminded that in Figure 5 only the658

increased pitch class profile complexity feature was taken from the German659

melody and used to generate a Chinese melody with increased pitch class660

profile complexity. In the current example of Figure 8, the salience perceived661

by the Eastern and Western listeners are used to generate the “best” blend662

accordingly. As shown in the “Target” feature vector, the Eastern listener663

is primarily attracted by the increased pitch class complexity of the Ger-664

3In fact, summing the categorical salience values in Equation 2 for all features (for
t ∈ {1, 2, · · · , 6} in the melodies example) produces the inner product between the feature
uniqueness vector and the respective feature-to-concentration value proximities for an
object; higher values of this inner product means better “alignment” between uniqueness
of features and proximities to the respective concentration values.
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Figure 7: Exemplar melodies in the main styles for the Eastern (left) and Western (right)
listeners, based on the a 2-dimensional PCA. The melodies in the background knowledge
of the Eastern and the listeners are shown with a lighter grey shade.

man melody (value 1.91 of the second feature) and secondarily, based on the665

feature balancing that Algorithm 1 attempts, by the percentage of note rep-666

etitions (fifth feature – 0.12) and note range in the German melody (fourth667

feature – 0.50). Similarly, the Western listener finds salient for the Chinese668

melody the decreased pitch class profile (0.38 in the “Target” features), the669

non-existence of small intervals (third feature) and the percentage of constant670

intervals (0.76 in the sixth feature).671

In both aspects of double-scope blends (for the Eastern and the West-672

ern listeners) in Figure 8, the underlying genetic algorithm materialised the673

blends (“Target” features and accompanied average Markov matrix of pitch674

transitions) into melodies that to some extent encompass the desired blended675

features (shown in the “Blend” arrays for the respective listener). A notable676

deviation concerns the blend generated for the Western listener, where the677

“target” 0.38 value in the rhythm inhomogeneity percentage (first feature)678

was not achieved and the melody that was actually generated had a value of679

0.74 for this feature, which is closer to the feature value of the Chinese input.680

This could have happened in order to approach the desired value (0.76) for681

the conflicting feature of constant rhythm (feature 6)4. Even though this682

4The problem of finding a melody that optimally satisfies all (potentially conflicting)
criteria is a multi-objective optimisation problem that can be more efficiently addressed
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Input 1 [0.85, 0.69, 0.00, 0.21, 0.54, 0.76]
Input 2 [0.38, 1.91, 0.81, 0.50, 0.12, 0.91]

Eastern
Target: [0.85, 1.91, 0.00, 0.50, 0.12, 0.76]
Blend: [0.83, 1.92, 0.13, 0.50, 0.12, 0.68]

Western
Target: [0.38, 0.69, 0.00, 0.50, 0.12, 0.76]
Blend: [0.74, 0.76, 0.05, 0.54, 0.21, 0.78]

Figure 8: Double-scope blending between Input 1 and Input 2-A in Figure 5 for the
“virtual” Eastern and Western listeners.

is a strictly case-dependent situation, it should be noted that the targeted683

features generated in double-scope blends (through Algorithm 1) will not684

necessarily be satisfiable by a melody since features can be directly conflict-685

ing or even, in some cases, the genetic algorithm might fail to capture the686

targeted features.687

4.3. Blending-based recommendation688

Music recommendation has been extensively studied during the last years689

and it is employed in services offered by big companies for recommending new690

content (specifically music) to wide audiences every day. Purpose of music691

recommendation is to recommend to users new musical pieces they have never692

heard before and they may like. The approaches to music recommendation693

that have been studied can be divided in two broad categories: collaborative694

filtering [70] and content-based recommendation [71]. Collaborative filtering695

is based solely on user preferences, aiming to implicitly group users based on696

their preferences, regardless of content, and recommend new material accord-697

ing to the estimated group of each user: users placed closer together in the698

space of preferences are assumed to have similar preferences. Content-based699

using pertinent techniques (e.g. employing the notion of the Pareto front); in this paper
we intent to focus on the general ideas presented and detailing such techniques extend
beyond the scope of this paper.
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recommendation involves recommending new material to a user regardless700

of what other users prefer, based on the assumption that the new material701

should incorporate similar features to the material that this user prefers [72].702

Content-based music recommendation employs distance measures between703

features of music pieces and proposes new music that belongs to the same704

“cluster of preference” of a user.705

Feature blending potentially offers new possibilities for content-based mu-706

sic recommendation. Hitherto proposed approaches aim to recommend new707

music based on which unknown pieces are clustered together with highly-708

rated pieces of the user. This task shares the basic principles with genre709

or style classification [73], since both cluster pieces according to their con-710

tent. However, in many occasions users prefer more than one styles which711

potentially incorporate completely different features; current content-based712

approaches are able to propose new music within the cluster of each user-713

preferred style but are unable to allow exploration to new styles. According714

to the hypotheses made about the computation of salience, this value for715

music features can be computed for listeners based on the music pieces and716

genres they prefer. The most salient features in user-preferred pieces reflect717

the most common and special characteristics of the categories that the user718

prefers. Therefore, by blending the most salient features of preferred pieces,719

new pieces can be retrieved and recommended that are not necessarily in-720

cluded in the styles known to the user.721

If we suppose that an Eastern and a Western listener have rated high the722

Chinese and German melodies used as Input 1 and Input 2-A in Figure 5,723

then, based on the computed salience values and by applying Algorithm 1,724

we would get the blended target blended features demonstrated for each725

listener in Table 1 (which are the same blends used as target features in the726

examples shown in Figure 8). For the recommendation example, the most727

basic form of content-based recommendation is used: recommendations are728

new pieces with features close to the target (blended) features in terms of729

the Euclidean distance. The best five results (five new pieces closest to the730

target features) are returned for each listener, as shown in Table 1. Even731

though the Essen dataset is biased towards Western and Chinese melodies,732

it is obvious that this simple recommendation approach returns pieces in733

new styles to the listener. The Eastern listener receives recommendations for734

Austrian and zuccal-style melodies, while the Western listener gets natmin-735

style melodies.736
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Table 1: Recommendations based on blended features for the Eastern and Western listener.
Input 1 [0.85, 0.69, 0.00, 0.21, 0.54, 0.76]
Input 2 [0.38, 1.91, 0.81, 0.50, 0.12, 0.91]

Eastern

Target: [0.85, 1.91, 0.00, 0.50, 0.12, 0.76]
Recommendations

oesterrh/oestr039 [0.82, 1.86, 0.08, 0.58, 0.07, 0.46]
han/han0719 [0.89, 1.71, 0.23, 0.58, 0.02, 0.20]

zuccal/deut5021 [0.51, 1.84, 0.08, 0.42, 0.17, 0.75]
oesterrh/oestr058 [0.67, 1.83, 0.22, 0.71, 0.31, 0.68]
oesterrh/oestr041 [0.75, 1.66, 0.12, 0.71, 0.26, 0.32]

Western

Target: [0.38, 0.69, 0.00, 0.50, 0.12, 0.76]
Recommendations

han/han0791 [0.43, 0.97, 0.00, 0.50, 0.34, 0.48]
natmin/natmn010 [0.46, 1.00, 0.00, 0.67, 0.18, 0.35]

zuccal/deut4637 [0.51, 1.07, 0.00, 0.50, 0.54, 0.64]
han/han0529 [0.42, 1.07, 0.17, 0.50, 0.33, 0.73]

natmin/natmn204 [0.35, 1.09, 0.00, 0.38, 0.20, 0.76]

5. Conclusions737

In this paper a new framework for generative Conceptual Blending (CB)738

has been presented that allows blending quantitative high-level features along739

with low-level information employing feature salience values for determining740

which features of the inputs should be included to the blend. Current ap-741

proaches for generative CB act only on a low level of information, combining742

basic elements of the inputs and disregarding high-level information that743

captures meaning; we have referred to this problem as the representation744

problem. Additionally, in current approaches the identification of which fea-745

tures are important for each input is either performed ad-hoc during the746

definition of the input spaces, or is not considered at all, leading to the gen-747

eration of many blends that need to be filtered at subsequent steps. This748

is problematic since it raises scalability issues: either all objects need to get749

hand-crafted annotations regarding the importance of their features, or over-750

whelmingly many blends will be generated; we have referred to this problem751

as the salience problem. The aforementioned problems have been addressed752

in the paper at hand by developing a simple methodology that blends high-753

level features of objects and employs Genetic Algorithms (GA) to combine754
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low level information, leading to the construction of blends that adhere to the755

blended high-level features. Each feature is accompanied by a salience value756

that is computed based on the statistical layout of feature values in a dataset757

that represents the background of the listener. The proposed framework re-758

lies on (a) the availability of data in different categories; (b) a basic low-level759

representation of objects that GA can manipulate; (c) and the definition of760

some meaningful features that quantify high-level aspects of objects.761

Three test-cases have been presented based on melody blending, with762

melodies derived from the Essen Corpus: (a) generation of single-scope763

blends, where a single characteristic from a melody is imported to another764

(two examples: increase in pitch class profile complexity and increase in small765

intervals); (b) examination of the role of the proposed statistical approach766

to salience in identifying “exemplar” objects in a category and in generating767

double-scope blends; and (c) recommendation of new music based on blended768

features from preferred music in different styles. The latter two cases present769

results based on assumptions about the background of two “artificial” lis-770

teners, an Eastern and a Western, who are assumed to have acquaintance771

only with sets of Chinese and German melodies respectively. The computed772

feature salience values for the two listeners is affected by their background773

according to the proposed model, while the presented examples verify, on an774

intuitive level, that the proposed framework makes sense.775

Intuitive insights have been presented that support the plausibility of the776

proposed methodology; empirical experiments, however, will be necessary777

to reveal whether human listers indeed perceive blending and salience as778

the system predicts. Even though it is outside the scope of this paper to779

discuss evaluation in detail, we briefly refer to previous work that on empirical780

evaluation of blending methodologies that might be pertinent. In [74] listers781

rated how dissimilar pairs of cadences were, where cadences where either782

the two inputs or their blending products, leading to a space of perceived783

distance among all cadences. In a similar manner, the perceived distances of784

a set of blended melodies could be estimated, leading to conclusions regarding785

which features play a more important role in defining melodic distance; such786

tests could allow estimations of feature salience for specific groups of listeners787

when rating melodic distances. Another methodology for empirical testing788

could be similar to [75], where harmonisations (blends or non-blends) were789

given as stimuli and listeners had to rate whether they sounded like tonal790

or jazz. Such tests could reveal whether some feature values are decisive for791

classifying melodies as Chinese or German, leading to assumptions about the792
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importance of features. It has to be noted that listers with diverse, possibly793

non-Western, backgrounds should be included in such test, which is all the794

more difficult with the current global abundance of Western-related music.795

Future projection of this work may be relevant for a recent paradigm of796

methodologies for human-computer communication: argumentation systems.797

Such systems engage in “dialogues” with the user, exchanging arguments798

toward creating a satisfactory output. Argumentation systems have been799

studied in the context of conceptual blending in [13], but the level of commu-800

nication was deteriorated by the fact that user choices concerned only low-801

level properties. Enabling high-level concepts and relations between them802

will allow more intuitive queries by the user and more informative responses803

by the system, leading to more meaningful dialogues. The methodology804

proposed in the paper at hand allows the incorporation of such high-level,805

quantitatively-expressed concepts in the framework of generative Concep-806

tual Blending, allowing the aforementioned improvement and expansion of807

the current framework.808
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[57] F. Gómez, A. Melvin, D. Rappaport, G. Toussaint, Mathematical mea-980

sures of syncopation, in: BRIDGES: Mathematical Connections in Art,981

Music and Science, 2005, pp. 73–84.982

[58] H. C. Longuet-Higgins, C. S. Lee, The rhythmic interpretation of mono-983

phonic music, Music Perception: An Interdisciplinary Journal 1 (4)984

(1984) 424–441.985

[59] G. Sioros, C. Guedes, Complexity driven recombination of midi loops.,986

in: Proceedings of the 12th International Society for Music Information987

Retrieval Conference (ISMIR), University of Miami, Miami, USA, 2011,988

pp. 381–386.989

[60] C. E. Shannon, Prediction and entropy of printed english, Bell Labs990

Technical Journal 30 (1) (1951) 50–64.991

[61] M. Schorlemmer, A. Smaill, K.-U. Kühnberger, O. Kutz, S. Colton,992

E. Cambouropoulos, A. Pease, Coinvent: Towards a computational con-993

cept invention theory, in: 5th International Conference on Computa-994

tional Creativity (ICCC) 2014, 2014.995

[62] M. Eppe, E. Maclean, R. Confalonieri, O. Kutz, M. Schorlemmer,996

E. Plaza, ASP, Amalgamation, and the Conceptual Blending Work-997

flow, in: Logic Programming and Nonmonotonic Reasoning, Vol. 9345 of998

Lecture Notes in Computer Science, Springer International Publishing,999

2015, pp. 309–316.1000

[63] R. Confalonier, M. Schorlemmer, E. Plaza, M. Eppe, O. Kutz,1001
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[66] H. Schaffrath, D. Huron, The essen folksong collection in kern for-1012

mat.[computer database], Menlo Park, CA: Center for Computer As-1013

sisted Research in the Humanities.1014

[67] B. van der Weij, M. T. Pearce, H. Honing, A probabilistic model of1015

meter perception: Simulating enculturation, Frontiers in psychology 81016

(2017) 824.1017

[68] F. G. Ashby, W. T. Maddox, Human category learning, Annu. Rev.1018

Psychol. 56 (2005) 149–178.1019

[69] M. L. Mack, A. R. Preston, B. C. Love, Decoding the brains algo-1020

rithm for categorization from its neural implementation, Current Bi-1021

ology 23 (20) (2013) 2023–2027.1022

[70] X. Su, T. M. Khoshgoftaar, A survey of collaborative filtering tech-1023

niques, Advances in artificial intelligence 2009.1024

[71] Y. Song, S. Dixon, M. Pearce, A survey of music recommendation sys-1025

tems and future perspectives, in: 9th International Symposium on Com-1026

puter Music Modeling and Retrieval, Vol. 4, 2012.1027

[72] J. Kaitila, A content-based music recommender system, Master’s thesis,1028

University of Tampere (2017).1029

[73] G. Tzanetakis, P. Cook, Musical genre classification of audio signals,1030

IEEE Transactions on speech and audio processing 10 (5) (2002) 293–1031

302.1032

[74] A. Zacharakis, M. Kaliakatsos-Papakostas, C. Tsougras, E. Cam-1033

bouropoulos, Creating musical cadences via conceptual blending: empir-1034

ical evaluation and enhancement of a formal model, Music Perception:1035

An Interdisciplinary Journal 35 (2) (2017) 211–234.1036

[75] A. Zacharakis, M. Kaliakatsos-Papakostas, C. Tsougras, E. Cam-1037

bouropoulos, Musical blending and creativity: An empirical evaluation1038

of the CHAMELEON melodic harmonisation assistant, Musicae Scien-1039

tiae 22 (1) (2018) 119–144.1040

37



Algorithm 1 Computation of the best blended set of features of two input
spaces.

Require: arrays of the two input features, ~m1 and ~m2, the arrays of their cor-
responding saliences, ~sm1 and ~sm2 and an array of the generic space features,
~g.
Ensure: array, ~b, including the optimal set of blended features.

1: ~b← ~∅ {% initialise best blend as an empty array}
2: {% get the sorted indexes of the saliences in both inputs}
3: ~i(1) ← getSortedIndexes( ~sr1)
4: ~i(2) ← getSortedIndexes( ~sr2)
5: {% clear out the indexes that correspond to features of the generic space}
6: for j ∈ {1, 2, . . . , 32} do
7: if gj 6= ∅ then
8: bj ← gj
9: ~i(1) ← removeElement(j,~i(1))

10: ~i(2) ← removeElement(j,~i(2))
11: end if
12: end for
13: {% select input with the highest salience in any feature}
14: if ~sr1(i

(1)
1 ) > ~sr2(i

(2)
1 ) then

15: c← 1
16: else
17: c← 2
18: end if
19: {% fill the non-generic space features by picking up the most salient ones

from each input interchangeably}
20: while isNotEmptyArray(~i(1)) do
21: if c == 1 then
22: b

i
(1)
1

= f
i
(1)
1
{% get most salient feature available from input space 1

and remove its index from both arrays of indexes}
23: ~i(1) ← removeElement(i

(1)
1 , ~i(1))

24: ~i(2) ← removeElement(i
(1)
1 , ~i(2))

25: c← 2
26: else
27: b

i
(2)
2

= f
i
(2)
2
{% get most salient feature available from input space 2

and remove its index from both arrays of indexes}
28: ~i(1) ← removeElement(i

(2)
1 , ~i(1))

29: ~i(2) ← removeElement(i
(2)
1 , ~i(2))

30: c← 1
31: end if
32: end while
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