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Abstract

In computational creativity, new concepts can be invented through conceptual blending of
two independent conceptual spaces. In music, conceptual blending has been primarily used
for analysing relations between musical and extra-musical elements in composed music rather
than generating new music. This paper presents a probabilistic melodic harmonisation assistant
that employs conceptual blending to combine learned, potentially diverse, harmonic idioms
and generate new harmonic spaces that can be used to harmonise melodies given by the user.
The key feature of this system is the application of creative conceptual blending to the most
common chord transitions (pairs of consecutive chords) of two initial harmonic idioms. The
proposed methodology integrates newly created blended chords and transitions in a compound
probabilistic harmonic space, that preserves combined characteristics from both initial idioms
along with those new chords and transitions within a unified setting. This methodology enables
various interesting music applications, ranging from problem solving, e.g. harmonising melodies
that include key transpositions, to generative harmonic exploration, e.g. combining major-minor
harmonic progressions or more extreme idiosyncratic harmonies.

1 Introduction

New concepts may be invented by traversing previously unexplored regions of a given conceptual
space (exploratory creativity), transforming established concepts (transformational creativity), or by
making associations between diverse conceptual spaces (combinational creativity); Boden maintains
that the latter, i.e., combinational creativity, has proved to be the hardest to describe formally (Bo-
den, 2009).

Conceptual blending is a cognitive theory developed by Fauconnier and Turner (Fauconnier and
Turner, 2003) whereby elements from diverse, but structurally-related, mental spaces are combined,
giving rise to new conceptual spaces: such spaces often possess new powerful interpretative proper-
ties allowing better understanding of known concepts or the emergence of altogether novel concepts.
Conceptual blending is a process that allows the construction of meaning by correlating elements and
structures of diverse conceptual spaces. It relates to Boden’s notion of combinational creativity (Bo-
den, 2009). A generative computational framework that incorporates the conceptual blending theory
in its core model has been developed in the context of the Concept Invention Theory (COINVENT)
project1 (Schorlemmer et al., 2014).

With regards to music, conceptual blending has been predominantly theorised as the cross-
domain integration of musical and extra-musical domains such as text or image (e.g. Tsougras and
Stefanou (2015); Zbikowski (2002, 2008); Cook (2001); Moore (2013)), and primarily discussed
from a musico-analytical perspective focusing on structural and semantic integration. Blending
as a phenomenon involving ‘intra-musical’ elements (Spitzer (2004), Antovic (2011)) has received
less attention. In principle, one of the main differences of blending theory from the theory of
Conceptual Metaphor (CMT) is that it may involve mappings between incongruous spaces within a
domain (e.g. conflicting tonalities in a musical composition). In this case, ‘intra-musical’ conceptual
blending is often conflated in music with the notion of structural blending (Goguen and Harrell,
2010), and Fauconnier and Turner’s theory is primarily applied to the integration of different or

1http://www.coinvent-project.eu/en/home.html
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conflicting structural elements, such as melody notes of different pieces according to their time-span
reduction (Hirata et al., 2014) chords, harmonic spaces, or even melodic-harmonic material from
different idioms (e.g. Kaliakatsos-Papakostas et al. (2014); Ox (2014)). A more extended discussion
and critical examination of conceptual blending processes in music is presented in (Stefanou and
Cambouropoulos, 2015).

Different musical styles/idioms establish independent harmonic spaces that involve a network of
inter-related constituent concepts such as chord, root, scale hierarchy, tonality, harmonic rhythm,
harmonic progression, voice-leading, implied harmony, reduction, prolongation, and so on. Concep-
tual blending is facilitated when a rich background (Schorlemmer et al., 2014) of concepts is available
and when these concepts are structured in such ways that creative mappings are supported. Thereby,
the existence of a rich background that includes formal descriptions of diverse harmonic elements
is required; the combination of concepts from different idioms injects novelty and creativity to the
melodic harmonisation process.

Harmony has been modelled either with mathematical/geometrical models that provide extra-
musical perspectives (Tymoczko, 2006; Callender et al., 2008), or, in the case of tonal and jazz
harmony, effective models have been proposed that utilise grammar-related structures (Rohrmeier,
2011; Koops et al., 2013; Granroth-Wilding and Steedman, 2014). The concepts in the aforemen-
tioned mathematical/geometrical spaces can be used in a theory-driven approach to create new
combinations of harmonic transformations (Callender et al., 2008), leading to new combined har-
monic possibilities. However, for the data-driven purposes of blending different musical styles learned
from data, it is necessary to utilise harmonic representations that are substantially different from
the aforementioned ones. Toward this end, an idiom-independent representation of harmonic con-
cepts, such as the General Chord Type representation, or GCT (Cambouropoulos et al., 2014)2, is
more adequate. This representation has already been used as the basis of a modular hierarchical
representation of harmonic structure (Kaliakatsos-Papakostas et al., 2016b) that allows ‘meaningful’
blends at various hierarchic levels of harmony for practically any musical idiom. Knowledge ex-
tracted from a large dataset of more than 400 harmonically annotated pieces3 (manually produced
harmonic reductions) from various diverse musical idioms (from medieval to 20th century styles)
comprise the rich background required for interesting and creative blends. More specifically, from
a set of harmonic reductions for a given idiom (e.g. Bach chorales, tango songs, jazz standards,
etc.) the following structural characteristics are learned/extracted: chord types, chord transitions
(probabilistic distributions), cadences (i.e. chord transitions on designated phrase endings at differ-
ent hierarchic levels), and voice-leading (i.e., bass line motion in relation to melody, bass-melody
distance, chord inversion). Such features from diverse idioms may be combined giving rise to new
harmonic blended styles; for instance, tonal cadences may be assigned to phrase endings and modal
chord transitions may be employed for filling in the rest of the phrase chords – examples may be
found in Cambouropoulos et al. (2015).

This paper focuses on the following questions: Can chord transitions per se be blended? Can
two different chord transitions (e.g. cadences) from different idioms be combined to give rise to novel
transitions that do not appear in any of the input harmonic spaces? Additionally, can whole chord
transition matrices from different harmonic styles be amalgamated so as to generate new chord
transition spaces? The developed methodology presented in this paper4 proposes a new approach
to creative musical systems that incorporates learning from data and blending of learned elements
to create new harmonic spaces. In contrast to systems that are able to mimic specific musical styles
by learning from data (e.g. see Raphael and Stoddard (2004); Dixon et al. (2010); Whorley et al.
(2013)), or by encoding musical knowledge of specific musical idioms by expert-designed rules (e.g.

2For instance, in a C major scale, the GCT representation of a C major chord is [0, 0 4 7], meaning that pitch
class 0 is the root and chord notes are obtained as 0 + 0, 0 + 4 and 0 + 7; a G7 chord is [7, 0 4 7 10], revealing
the underlying structure [0 4 7] of any major chord simply shifted to the root 7, whereas a B full diminished chord
is easily seen to correspond to the GCT representation [11, 0 3 6 9]. The reader interested in the use of the GCT
representation in idiom-independent music contexts is referred to (Cambouropoulos et al., 2014) for more details.

3http://ccm.web.auth.gr/datasetdescription.html
4This methodology is incorporated in the CHAMELEON (Creative Harmonisation of Melodies via Learning and

Blending of Ontologies) melodic harmonisation assistant. The interested reader is referred to the following webpage:
http://ccm.web.auth.gr/chameleonmain.html.
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see Ebcioglu (1988); Phon-Amnuaisuk et al. (2006)), the presented melodic harmonisation assistant is
able to ‘extrapolate’ from the learned structures by blending elements learned from data. Thereby,
new structures are created that preserve the most meaningful structural relations of the blended
styles, generating new spaces that incorporate new characteristics. These structures incorporate
information about the pitch classes of chord transitions. The core mechanism described in this paper
is incorporated in a melodic harmonisation assistant that provides the user with harmonisations
that come out from blended harmonic spaces with rudimentary voice leading, which requires human
interventions (more or less severe) for becoming a ‘correct’ harmonisation, according to the voice
leading rules of a specific musical style.

The core mechanism for blending harmonic styles is a methodology that blends isolated learned
chord transitions, in order to create new harmonic spaces that can be used to harmonise melodies.
Chord transition blending in the special case of cadence blending, has been explored in previous
studies (Eppe et al., 2015a; Zacharakis et al., 2015). In these studies, two cadences (e.g. the tonal
Perfect cadence and the modal Phrygian cadence) that share the same final tonic chord are blended
giving rise to new chord progressions (e.g., the Tritone Substitution cadence that is commonly
employed in jazz); the generated new cadences feature important characteristics from both of the
input cadence spaces, namely ascending and descending leading notes to the tonic, preserving thus
the closure effect of the resulting ‘new’ cadential formulae. In this paper, the cadence blending
process (which is based on the COINVENT conceptual blending mechanism – see Section 2 for a
brief description) is generalised to any two input chord transitions, allowing the creative blending of
entire chord transition matrices from different idioms.

Let us attempt to illustrate the above chord transition blending processes by employing a sim-
plistic harmonic blending example, whereby the blended spaces are merely different diatonic major
tonalities. Suppose one has available (manually constructed or learned) a purely diatonic hidden
Markov model on the C-major scale, with a first order chord (state) transition matrix and diatonic
observed melodies. If a newly given C major melody contains a harmonically structural F] note,
then the Markov model reaches a dead-end as it does not know of any diatonic C major chord that
can harmonise this chromatic note. If two neighbouring tonalities, however, are blended, i.e. C major
and G major, then the resulting composite transition matrix contains the D major chord that leads
as the dominant to the tonic in G major or as secondary dominant to the dominant in C major
(see Section 3 below). For a major tonality, borrowed chords from the relative or parallel minor
keys and from neighbouring tonalities can be seen as single-scope blends (following the terminology
of Fauconnier and Turner (2003)), i.e., blends in which one primary input space remains mostly
intact and specific features are imported from the secondary space.

A more extreme blend would occur for instance between the C major and F] major tonalities
represented by purely diatonic Markovian spaces. Since these spaces have no common diatonic
chords, the two transition matrices for these tonalities do not ‘overlap’ at all, and there is no way
to make the transition from one space to the other. In such a case, chord transition blending may
be employed to try to find new potential chord transition candidates that may allow an ‘acceptable’
transition between the two spaces. Let us assume that only three basic chords for each space are
available, namely the tonic, subdominant and dominant seventh major chords of each tonality; the
transition matrices for these two ‘toy’ spaces do not communicate, since there is no path for transiting
form chords of one space to the chords of the other. This is indicated by the zero probability values
on top-right and bottom-left squares in Figure 1 (a) (where the colour of each box corresponds to
a probability value and zero probability is indicated by white colour; darker colours indicate higher
probability values). Can the proposed chord transition methodology ‘invent’ new transitions and
potentially new chords that may connect the two spaces in a meaningful way?

The chord transition blending methodology is applied to all the chord transitions in the C ma-
jor and F] major tables, i.e. each chord transition in the first matrix is blended with each chord
transition in the second matrix producing a list of resulting blends. The resulting blends are ranked
according to certain criteria that take into account the number of common features shared by the
input chord transitions preserved in the blend. The features that are taken into account include
common pitch classes in the first and/or second chords of the blend in relation to the two input
transitions, common ascending and/or descending semitone movements in the transitions, and as-
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Figure 1: Simple C major and F] major harmonic transition spaces with (b) no transition blends
involved and (b) incorporating some of the topmost blending transitions.

cending and/or descending semitone movements to the root of the final chord of each transition (see
detailed description in Section 2). For instance, the transition G7 → C and C]7 → F] share the
same pitch classes (pcs) 5 and 11 in the first chord, have similar ascending and descending semitone
movements between the two chords and contain an ascending semitone movement to the root of the
final chord.

By learning GCT and chord transition representations from datasets and generalising on proper-
ties representing chords and chord transitions, this methodology is able to produce novel harmonic
structures: e.g. by generalising on the root property while keeping a given chord type, one eas-
ily obtains all 12 circular shifts of that chord type (many of which might not appear in the input
dataset); and this is just one of the possible generalisations. Chord structure dictionaries can thus
be learned from data and used to produce new blended chord transitions. Returning to the C major
and F] major example, and assuming that we have available a palette of basic chord types, e.g.
major, minor, major seventh, diminished and diminished seventh chords, a chord transition blend
that ranks high is a transition in which the first chord is a diminished seventh (pcs: 2 5 8 11) and the
second chord is either of C or F] (among other things the diminished seventh shares two common
pcs with each of the first chords of the input transitions). The system is indeed able to ‘invent’ this
diminished chord (pcs: 2 5 8 11), even if the initial harmonic spaces do not include it, and rate some
blended transitions that incorporate this chord as good blends. Another good blend is one where
the first chord is a major seventh chord a semitone above the tonic of each space (e.g. 1 5 8 11),
which is a kind of tritone substitution transition; in this blended transition both chords found in the
initial spaces before blending, but no transition between them existed in the original models. These
newly invented transitions are illustrated in the new grey boxes added in the matrix of Figure 1 (b).

As seen in the above example, chord transition blending can be employed to create new transitions
(and potentially new chords in these transitions) that preserve important features of the input
transitions. When only the top ranking blends are preserved, then the system has introduced a way
to connect the two input chord spaces. If more blends are selected then the composite transition
matrix becomes more populated allowing more connections between the spaces. If the probabilities
of the new ‘invented’ transitions are low, then the chord generation system creates chord sequences
mostly within each of the constituent input spaces occasionally allowing passage from one to the
other. If the probabilities of the new blended transitions are increased, then the whole space becomes
unified and movement between most or all of the chords of both spaces is enabled. This latter strong
blending between input spaces can generate new harmonic spaces that are radically different from
the initial input spaces (e.g. blending two diatonic major tonalities in different keys may give rise to a
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composite blended space that features strong chromaticism reminiscent of music appearing centuries
after diatonic tonality – see examples in Section 4).

The proposed blending paradigm seems to introduce an intelligent way to address the tradi-
tional problem of zero probability transitions in Markov models (Cleary and Teahan, 1995). Rather
than assigning arbitrary non-zero ‘escape’ probability values (Chordia et al., 2010) or enforcing arc-
consistency (Pachet et al., 2011) to allow a Markov process to cope with cases it has not seen in the
training data, different transition matrices can be blended (or even a single matrix can be blended
with itself) in order to introduce transitions that preserve qualities of the already existing transi-
tions. At least for music, this seems to be a reasonable way to bypass the problem of sparse input
data (e.g. learning transitions of pitch or chords or rhythmic values from a single piece rather than
from a large homogeneous dataset).

In the sections below, the COINVENT blending core model will be first presented, in order
to show how it is applied to chord transition blending. Then, the chord transition matrix blending
methodology will be described. Afterwards, a number of potentially interesting examples illustrating
harmonic blending in melodic harmonisation will be given, through the presentation and discussion of
melodies harmonised in different idioms and blends between these idioms. These results present dif-
ferent cases where harmonic blending can be useful, either as a problem solving or as a creative tool.
The new possibilities offered in automated melodic harmonisation by the presented system indicate
the overall usefulness of the COINVENT framework for inventing new concepts through conceptual
blending. Finally, a brief overview of methods developed to evaluate the proposed methodology is
given; evaluation of the methodology is performed both under the scope of how the resulting harmon-
isations are perceived, and to what extent these results are capable of enhancing human creativity.
Specifically, results obtained on the perceptual characteristics of the products of this methodology,
presented in (Zacharakis et al., 2017), indicate that blending two harmonic spaces results in melodic
harmonisations that are either perceived as belonging to a harmonic style lying in between the two
combined spaces, or as belonging to a new yet intrinsically related harmonic style, fulfilling the
intended purposes of blending.

2 A computational framework specialised for blending chord
transitions

In computational creativity, conceptual blending has been modelled by Goguen (2006) as a generative
mechanism, by describing input spaces as algebraic specifications and computing the blended space
as their categorical colimit. A computational framework that extends Goguen’s approach has been
developed in the context of the COINVENT5 (Concept Invention Theory) project (Schorlemmer
et al., 2014). According to this framework, two input spaces are described as sets of features,
properties and relations and after their generic space is computed, an amalgamation process (Eppe
et al., 2015b; Confalonier et al., 2015) leads to the creation of several blends, which can be ranked
in terms of value according to some criteria that relate to the knowledge domain of the modelled
spaces.

In conceptual blending the properties of two input conceptual spaces are combined to create new
spaces. The input spaces share some common structure along with differences. The intended goal of
conceptual blending is to achieve a ‘meaningful’ combination of the non-common structural parts so
that new structure emerges, giving novel properties to the generated blended space. An important
aspect of the blended space is to preserve the common parts of the input spaces. The generic space
is the conceptual space that keeps the common structure of the input spaces, guaranteeing that this
structure also exists in the blended space, and generalises or abstracts over the parts of the input
spaces that are distinct. In case-based reasoning the generic space is described as ‘the most specific
generalisation’ (Ontañón and Plaza, 2012) of the input spaces, in the sense that the generic space
is obtained as the first common element in a hierarchy of generalisations built on top of each input
space, so that the inputs are generalised by the least possible ‘amount’ and only their common parts

5http://www.coinvent-project.eu
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Figure 2: Conceptual blending based on amalgamation. The generic space is computed (1) and the
input spaces are successively generalised (2), creating successively new potential blends (3). Some
blends might be inconsistent or poorly evaluated according to ranking criteria or domain specific
criteria.

remain in this generic space (i.e. generalising more would also remove parts that are common to
both input spaces).

2.1 The COINVENT framework for conceptual blending

The COINVENT framework for generative conceptual blending is based on the notion of amalgama-
tion and is illustrated in Figure 2. This process generates amalgams or blends of two input spaces,
which are roughly new spaces that contain parts from the initial ones (Confalonier et al., 2015). For
reasons of clarity and text consistency, in the following paragraphs the term ‘blend’ will be used for
referring to the products of amalgamation. The amalgam-based workflow generalises input concepts
until a generic space is found and ‘combines’ generalised versions of the input spaces to create blends
that are ‘consistent ’ or satisfy certain properties that relate to the knowledge domain. Regarding
blends, the terms ‘consistent’ and ‘inconsistent’ refer to whether all logical relations in the blend
and the background knowledge are satisfied, i.e. there are no mutually cancelling contradictions.
Figure 2 illustrates the amalgam-based COINVENT algorithmic model for conceptual blending.

Amalgam-based conceptual blending has been applied to invent chord cadences (Eppe et al.,
2015a; Zacharakis et al., 2015). In this setting, cadences are considered as special cases of chord
transitions – pairs of successive chords, occurring before a phrase/section boundary – that are
described by means of properties such as the roots or types of the chords, or specific voice motions.
When blending two transitions, the amalgam-based algorithm first finds a generic space between
them (point 1 in Figure 2). For instance, in the case of blending the tonal perfect cadence with the
renaissance Phrygian cadence (see Eppe et al. (2015a); Zacharakis et al. (2015)) — described by the
transitions (Input 1) I1: G7 → C and (Input 2) I2: B[m → C5 respectively — their generic space
would consist of any transitions that have a first chord with pitch class 5 (common to G7 and B[m),
a second chord with pitch class 0 and 7, where the first chord has a pitch class a semitone higher or
lower than the second chord’s root, possibly along with other properties generalised from the given
description of the input transitions.

After a generic space is found, the amalgam-based process computes the blend of two input spaces
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by unifying their content. If the resulting blend is inconsistent, then it iteratively generalises (On-
tañón and Plaza, 2012) the properties of the inputs (point 2 in Figure 2), until the resulting unifica-
tion is consistent (point 3 in Figure 2). For instance, trying to unify directly the transitions I1: G7
→ C and I2: B[m → C5 would yield an inconsistent blend, since a transition cannot both include
and not include an upward leading note to the second chord’s tonic (which are features of I1 and
I2 respectively, as discussed in more detail later). Therefore, the amalgam-based process generalises
the clashing property with respect to one of the inputs (e.g., the property describing the absence
of leading note in I2 would be excluded) and tries to unify the generalised versions of the inputs
again. After a number of generalisation steps are applied (point 2 in Figure 2), the resulting blend
is consistent (point 3 in Figure 2). In this specific cadence blending example, one novel blend that
arises from the perfect and Phrygian cadences is the Tritone Substitution progression/cadence (that
is commonly used in jazz). However, it may be the case that the blend is not complete, in the sense
that this process may have generated an over-generalised term. For instance, the A[ note in the
tritone substitution invention example discussed in Eppe et al. (2015a) and Zacharakis et al. (2015)
is imported through completion since the C]7 chord is required to have a perfect fifth according to
their cadence formalisations, where both input chord types have a perfect fifth.

The methodology for transition blending described in the paper at hand uses an equivalent to the
aforementioned methodology that combines amalgamation and completion. Chords are represented
using the General Chord Type (GCT) representation (Cambouropoulos et al., 2014). The proposed
methodology is adjusted for the specific harmonic ontology (with the GCT representation), using a
dictionary of chord types that are allowed in the emerging blends. This dictionary depends on the
idioms that take part in the blending process and is learned from data, representing a part of the
“background knowledge” that these idioms incorporate. Therefore, based on the assumption that
only certain chord types are allowed, the search space of possible chords in blended transitions is
not overwhelmingly large, thus for the specific task of transition blending the importance of the
amalgamation process is reduced and can be omitted altogether. This modification is presented in
detail in Section 2.2.

After several blends have been computed, an evaluation process ranks them according to criteria
that reflect the importance of the properties that blends inherit from the input spaces. Blending
quality is a necessary aspect of conceptual blending since it allows the identification of better blends
among the many (potentially too many) possible ones6. In the general context of conceptual blending,
several blending optimality principles have been proposed for rating and ranking blends (see e.g.
Chapter 16 of Fauconnier and Turner (2003)), but a detailed description of optimality principles is
unnecessary for the transition blending methodology here presented (the reader is referred to Goguen
and Harrell (2010) for applications of several such principles in the Alloy algorithm). The proposed
methodology for rating and ranking blends used in this paper is based on criteria concerning the
salience of transition features within their idioms and is described in detail in Section 2.3.

2.2 Formal description and chord transition blending

A formal ontology of transitions is required for blending according to the COINVENT framework. A
chord transition (a sequence of two chords) is described as a set of properties that involve each chord
independently and the chord transition as a whole (relations between the two chords). In Kaliakatsos-
Papakostas et al. (2016a), an argument-based system was presented that allowed music experts to
define which transition properties should be considered, through observation of blending results
obtained in various harmonic setups. Using the aforementioned argument-based system and after
examination of several produced outcomes, a (non-conclusive) list of nine important properties was
maintained:

1. fromPCs: the pitch classes included in the first chord,

2. toPCs: the pitch classes included in the second chord,

3. DIChas0 : Boolean value indicating whether the Directed Interval Class (DIC) vector (Cam-
bouropoulos, 2012; Cambouropoulos et al., 2013) of the transition contains a 0 (i.e. that both

6The amalgamation process produces many blends by following alternative generalisation paths.
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chords have at least one common pitch class),

4. DIChas1 : as above but for DIC value 1 (i.e., the transition contains at least one ascending
semitone),

5. DIChasMinus1 : as above but for DIC value −1 (i.e., the transition contains at least one
descending semitone),

6. ascSemNextRoot : Boolean value indicating whether the first chord has a pitch class with
ascending semitone relation to the pitch class of the second chord’s root,

7. descSemNextRoot : as above but with descending semitone, and

8. semNextRoot : as above but with either ascending or descending semitone.

9. 5thRootRelation: Boolean value indicating whether the first chord’s root note is a fifth above
the root of the second. Root notes of chords are computed with the General Chord Type
(GCT) (Cambouropoulos et al., 2014) algorithm.

Table 1 demonstrates the property values (also referred to as features) for the three transitions
(namely the perfect, Phrygian and tritone substitution cadences) of the example discussed above.
In this example, the tritone substitution cadence has been produced as a result of blending between
the perfect and the Phrygian cadential progressions, with a process that is described below.

Table 1: Blending the chord transitions of the minor-mode perfect cadence (GCT notation of Input
1: [7, 0 4 7 10] → [0, 0 3 7]) and the Phrygian cadence (GCT notation of Input 2: [10, 0 3 7] →
[0, 0 3 7]). The common elements of both input spaces that are included in the generic space are
depicted in boxes, while the other common elements are shown in circles. Many blends are produced
by blending these cadences; the tritone substitution blend is shown in the last column of the table
as an illustrative example.

Property name Input 1 (Perfect) Input 2 (Phrygian) Possible blend

fromPCs {7, 11, 2, 5 } {10, 1, 5 } {1, 5, 8, 11}
toPCs { 0 , 3 , 7 } { 0 , 3 , 7 } {0, 3, 7}
DIChas1 1 0 1
DIChasMinus1 0 1 1
DIChas0 1 0 0
ascSemNextRoot 1 0 1
descSemNextRoot 0 1 1

semNextRoot 1 1 1
5thRootRelation 1 0 0

In the COINVENT framework for computational conceptual blending, the role of the generic
space, which includes all common elements of the input spaces, is to reject possible blends that do
not incorporate these common elements. After extensive experimentation during the development
of the presented transition blending methodology, it became obvious that a richer representation
of transitions (i.e. one that incorporates many properties) potentially led to stricter generic space
demands (i.e. generic spaces with more fixed properties), allowing a smaller number of ‘surprising’
blends to be generated. The generic space requirements are necessary for discarding blends that
do not capture the important common features from the input spaces. To this end, two types
of properties are distinguished: the necessary and the desired properties of transition blending.
Necessary properties are elements incorporated in the generic space, i.e. if a necessary property is
common in both inputs, then blends that don’t have it are rejected. Desired properties are properties
that characterise the input spaces and are preferred to be part of a blend, but do not belong to the
generic space (i.e. they are not necessarily included in every blend). Both necessary and desired
properties play an important role in rating and ranking the blends as described in Section 2.3.

In the context of the current study, among the nine properties that describe transitions, only
two that concern the pitch classes of the involved chords are considered as necessary, namely the
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fromPCs and toPCs. The example in Table 1 demonstrates the role of the necessary and desired
properties in transition blending. Therein, boxed items indicate the common elements in the input
transitions regarded as necessary properties. For instance, all the pitch classes of the second chord as
well as pitch class 5 in the first chord are present in both inputs and, therefore, are also included in
all possible blends. On the other hand, the desired property semNextRoot is common in both inputs
(indicated by circled numbers in Table 1); blends that do not include this property are allowed, but
their rating will probably be low, depending on the salience value of this property in the inputs, to
be discussed later.

So far, the discussion revolved around describing transitions with necessary and desired proper-
ties, but how are blends actually created? According to the amalgamation process, features from
the input spaces should be successively generalised up to the point where no contradicting material
is included (see Section 2.1 and Figure 2). This process is computationally expensive, since there
are multiple generalisation paths that can be followed. Furthermore, additional musical criteria
are required to check whether the generated blends are transitions that include ‘acceptable’ chord
types – it is possible for the algorithm to generate note clusters or trivial single-note chords that
haphazardly satisfy the generic space requirements and achieve high rating value.

Employing a dictionary of acceptable chord types automatically learned from data, it is possibly
to omit the amalgamation process in order to explore more efficiently the space of possible blends.
By assuming that the dictionary of chord types, denoted by T , consists of N chord types, then all
the possible chords that have to be examined are 12 N – every chord type with every pitch class
as a root note (i.e. all transpositions). Thereby, the ‘universe’ of all transitions between acceptable
chords are 144 N2. The number of acceptable types (N) is not overwhelmingly large for most musical
idioms. For instance, by considering major and minor chords along with their sevenths, plus the half
and full diminished chords (6 types in total), 5184 possible transitions can be generated. Therefore,
producing valid blends is not a matter of constructing the proper chord types, but finding the already
existing types that when assigned a proper root, satisfy the necessary and desired attributes. The
algorithm for constructing the list of all valid blends is described in Figure 3. For computing all
possible valid blends between two input transitions, first the generic space of the inputs is computed
(getGenericSpace(I1,I2) in line 2, as described in section 2.1); then all acceptable chords are
constructed (in line 4, as explained in section 1); all transitions between all possible chords are formed
(in line 10 by considering all pairs of acceptable chords); and finally, each transition is examined
(satisfies(tr, g) in line 13) in terms of its compatibility with the generic space produced by the
input transitions, in order to verify all generalised properties defining the generic space so that this
transition can be inserted in the list of acceptable blends. If a transition does not satisfy the generic
space requirements, i.e. if it fails to verify a property common to both inputs, it is rejected as a
possible blend. Section 2.3 analyses the process of rating and ranking all transitions in the list of
acceptable blends.

As an example of running the algorithm in Figure 3, let us consider that the input transitions to
the algorithm are the following:

I1 = [7, 0 4 7 10]→ [0, 0 4 7]

I2 = [1, 0 4 7 10]→ [6, 0 4 7]

and the dictionary of acceptable chord types is:

T = {[0 4 7], [0 4 7 10], [0 3 6 9]}.

Running the function in line 2, we get the following properties for the generic space of those inputs:

{ fromPCs= {5, 11}, toPCs= ANY } ← getGenericSpace(I1,I2).

Therefore, it is necessary for every possible transition blend to incorporate the pitch classes 5 and
11 in the first chord, while it may incorporate any pitch class in the second chord (since there are
no pitch class overlaps in the second chords of the inputs). Running the loop in line 4 creates the
list of chords with all 12 possible pitch classes as roots and types that are included in T . The
loop in line 10 creates all the transitions between them. In order to examine whether two example
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Algorithm 1 Computation of all possible blends

Require: (i) two input transition, I1 and I2, (ii) a dictionary of all acceptable chord types T
Ensure: List of all possible blends (B) of I1 and I2

1: B ← ∅ {% initialise and empty set of blends}
2: g ← getGenericSpace(I1,I2) {% get the generic space of inputs}
3: C ← ∅ {% initialise the set of all possible acceptable chords}
{% make the set of all possible acceptable chords}

4: for t ∈ T do
5: for r ∈ {0, 1, . . . , 11} do
6: c = makeChordWithRootAndType(r,t) {% create a new chord with the currently selected

root and type}
7: C = append(C,c) {% put this chord in the current list of chords}
8: end for
9: end for
{% for all chord pairs}

10: for c1 ∈ C do
11: for c2 ∈ C do
12: tr = formTransition(c1,c2) {% form the transition from c1 to c2}

{% check if transition satisfies generic space}
13: if satisfies(tr, g) then
14: B = append(B,tr) {% if transition satisfies generic space, put it in the blends list}
15: end if
16: end for
17: end for

Figure 3: Algorithm for obtaining all possible transition blends of two input transitions, given a
dictionary of learned acceptable chord types.
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transitions/possible blends (tr1 and tr2) among the ones in the constructed list satisfy the generic
space space requirements in line 13, let us consider the following two generated transitions as an
example:

tr1: [2, 0 3 6 9]→ [0, 0 4 7]

tr2: [4, 0 4 7]→ [0, 0 4 7].

The property values of these transitions that are examined for generic space inclusion (fromPCs and
toPCs properties) are the following:

tr1: { fromPCs= {2, 5, 8, 11}, toPCs= {0, 4, 7} }

tr2: { fromPCs= {4, 8, 11}, toPCs= {0, 4, 7} }.

We can see that the tr1 includes all the necessary generic space elements (shown in bold) while tr2
fails to include the necessary pitch class 5 in its first chord. Therefore, tr1 is included in the final
list of possible blends (B), while the tr2 is discarded.

2.3 Rating a blend

The algorithm described in Figure 3 produces a list, B, that includes all possible acceptable transi-
tions that are potential blends of two given input transitions (I1 and I2). All blends in B need to be
rated and ranked so that meaningful blends are distinguished and considered with higher priority for
the next steps described in Section 3. When blending two transitions taken from two different har-
monic spaces, the most meaningful blends would expectedly include a combination of all the salient
features that the input transitions encompass. The salience of a feature of a transition, however,
depends on the idiom that this transition belongs to. For a set of transitions in a certain harmonic
context, the more rare or characteristic a feature is, the more salient/prominent it is considered. For
instance, in C major the note transition B→C (11 → 0) appears in and characterises fewer chord
transitions (namely G→C and Bdim→C), than e.g. note transition G→A (7→ 9) which appears in
more transitions (e.g. G→Am, C→Am, C→F, C→Dm, G→F).

To compute the salience of a feature in a transition taken from an idiom, the above mentioned
‘uniqueness’ of this feature needs to be quantified. To this end, let us consider the set of all transitions
in an idiom, denoted by TI , where I is the set of indexes of all transitions in the examined idiom.
Also let Ti, i ∈ I be a transition from the examined idiom. Each transition property is considered as
a function of a transition, Fp(Ti) = vp, returning the value of this property in a specific transition –
denoted by vp. For instance, if Ti is the perfect cadence transition (G7 → C) and FascSemNextRoot is
the binary function returning the ascSemNextRoot property value (0 or 1 for not having or having
an ascending semitone to next root, respectively), then the value of this property in the perfect
cadence transition is obtained by FascSemNextRoot(Ti) = 1. We define the set of all transitions having
a property p with a value vp as

Pp=vp(TI) = {Ti, i ∈ I;Fp(Ti) = vp},

while the cardinality (number of elements) of this set is denoted as C(Pp=vp(TI)). The salience of a
property value vp in a transition is therefore inversely proportional to the number of all transitions
in the idiom that also include this property value. Hence, the salience, denoted by Sp=vp(Ti), of a
property value vp of a transition Ti is computed as

Sp=vp(Ti) =
1

C(Pp=vp
(TI))

.

This salience is only defined for values vp appearing in some transition in the idiom, from which it
is immediate that the denominator above does not vanish and the feature is well-defined.

An example of applying this methodology for computing saliences is given in Table 2. The
considered training idiom in this example is a set of Bach chorales in major mode, after performing
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GCT-based grouping (Kaliakatsos-Papakostas et al., 2015) of chords. Specifically, only the 10 most
frequently used transitions of this idiom are considered, which represent each idiom as analysed in
Section 3. The transitions incorporated in the example are [7, 0 4 7] → [0, 0 4 7] and [11, 0 3 6] →
[0, 0 4 7] and the examined saliences concern the values of the fromPCs property. Both transitions
include pitch class 11 as a fromPCs property value, but since they are the only transitions among the
10 ones representing the idiom that have it, the total salience of this feature is equally distributed
among these two transitions (the 11 value of their fromPCs property has salience 0.5). Contrarily, the
other fromPCs values are given smaller salience values, since they are also found in other transitions.
For instance, fromPCs value 7 is assigned a value of 0.20 since it is shared in the first chords of five
transitions in total (i.e. C(Pp=vp(TI)) = 5 in the previous equation); except from [7, 0 4 7] →
[0, 0 4 7], it is also found in 4 additional transitions that include [0, 0 4 7] as a first chord (leading
to [7, 0 4 7], [5, 0 4 7], [2, 0 3 7] and [9, 0 3 7]). Similarly fromPCs value 2 is shared by three and
value 5 is shared by four transitions.

Table 2: Example of saliences in the respective fromPCs property values of two transitions in a set
of major mode Bach chorales: [7, 0 4 7] → [0, 0 4 7] and [11, 0 3 6] → [0, 0 4 7]. Since pitch class
11 appears as a member of the first chord only in these two transitions, the total salience of pitch
class 11 in the entire idiom is equally distributed among them.

Idiom trained on a set of major-mode Bach chorales
example transition: [7, 0 4 7] → [0, 0 4 7] [11, 0 3 6] → [0, 0 4 7]

fromPCs property values: {7, 11, 2} {11, 2, 5}
respective saliences within idiom: {0.20, 0.5, 0.33} {0.5, 0.33, 0.25}

A rating value is attributed to each blend in B for ranking them. The rating value of a blend
in B is computed by summing all the saliences of features that this blend inherits from the input
spaces. This sum is related to the harmonic mean of the cardinalities C(Pp=vp(TI)) above; in fact it
is precisely its reciprocal times the number of common features. Therefore, blends that incorporate
a larger total of salience values inherited from the inputs are ranked as better blends, while blends
that inherit either fewer or less-salient features are ranked as worse blends.

3 Blending harmonic spaces via chord transition blending

The chord transition blending methodology described in Section 2 is integrated into the melodic
harmonisation assistant presented in Kaliakatsos-Papakostas et al. (2016b). This assistant combines
several probabilistic modules that learn musical structures from data, including chord transitions and
cadences; chords are encoded using the GCT algorithm (Cambouropoulos et al., 2014), transitions
are learned and composed with the constraint hidden Markov methodology (cHMM) (Kaliakatsos-
Papakostas and Cambouropoulos, 2014), statistical models define the bass line voice leading (Makris
et al., 2015) and a module fills the inner chord voices. The problem of assigning voice leading in
chords with arbitrarily many voices, in an idiom-independent manner, has not yet been studied
thoroughly in the literature, and is a problem that incorporates extensive combinatorial complexity.
The method proposed in Kaliakatsos-Papakostas et al. (2016b) and utilised in this paper focuses
mainly on fixing the bass voice given the melody, leaving relatively few possible combinations for
the inner voices, given that these voices need to instantiate given pitch classes. Therefore, the
probabilistic methodological attempt to solve the difficult and relatively unexplored problem of
assigning voice leading on chords with arbitrary number of voices potentially leads to harmonisations
that at some points might not adhere to strict voice leading rules; however, this method has the
advantage of idiom-independency. It should be remarked that the focus of this paper is to explore the
possibilities opened by using blending on the more abstract level of chord transitions, when chords
are viewed in the form of pitch classes (through the General Chord Type), and so voice leading issues
have been treated as a side aspect and dealt with as means to better illustrate the applications of
transition blending.
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This study attempts to employ chord transition blending in the context of the cHMM algorithm,
with a view to combining creatively the independent chord transition matrices of two different
harmonic idioms; the term ‘creatively’ here is used to indicate that the result of this process is
a novel and consistent (in terms of musical criteria incorporated in chord transitions and in the
learned harmonic spaces) composite harmonic space. To this end, GCT chord Markov transition
tables learned from two initial idiom datasets are employed and most common chord transitions are
indicated. Afterwards the transition blending methodology is applied on pairs of the most common
transitions across the initial idioms, producing new blended transitions that connect and extend the
possibilities of the initial idioms, generating a compound idiom that preserves some characteristics
(in terms of transition probabilities) of the input idioms. Before transition blending is applied, a
methodology for identifying common or similar chords of the initial idioms is employed; this enables
potential connections between the two transition tables, making common-sense musical connections
between the initial idioms (see Section 3.2).

The cHMM methodology used in Kaliakatsos-Papakostas et al. (2016b) incorporates a first order
Markov model, indicating the probabilities of transitions from one chord to all possible next ones,
and is here extended to include probabilities for chord-to-pitch classes relations and a method for
dealing with intermediate chord constraints. Focusing only on transition probabilities, a convenient
way to represent a first order Markov model uses transition matrices, including one row and one
column for each chord in the examined idiom. The value in the i-th row and j-th column corresponds
to the probability of the i-th chord transitioning to the j-th chord – the probabilities of each row sum
to one. Figure 4 illustrates a colour-based graphic representation of the transition matrix learned
from a collection of Bach Chorales in major mode (darker cells indicate higher probabilities). The
displayed chords are actually GCT chord groups obtained by the method described in Kaliakatsos-
Papakostas et al. (2015), while transitions between chords that pertain to the same GCT chord
group are disregarded.

Figure 4: The first-order Markov transition matrix of chords (GCT groups) in a major Bach Chorales
dataset.

3.1 A Markov transition matrix that accommodates two harmonic spaces

Aim of the proposed methodology is to construct a musically meaningful matrix of GCT chord
transitions that includes and extends the respective transition matrices of two initial idioms. Figure 5
illustrates the parts of the extended transition matrix of the C major and F] major initial idioms
referred to in the introduction as a ‘toy’ example. This matrix is built around the transition matrices
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of the initial idioms, I1 (C major) and I2 (F] major), with new transitions being inserted embodying
the blends that are generated by combining pairs of transitions belonging to the two initial idioms.
The matrix in Figure 1 is obtained by the same processes as the one in Figure 5, but includes
fewer blends because of different blending setup, as described in Section 3.4. Each initial idiom is
considered to incorporate a separate set of GCT chords, even if some chords might have common
names in both idioms. For instance, even though the [0, 0 4 7] GCT chord might be found both in
the Bach Chorales and Jazz datasets, it is treated within each idiom as a different chord, since it
has a potentially different functional role in terms of the chords that come before or after it in each
dataset, i.e. in terms of the transitions involving it. However, identical or similar chords in the two
initial idioms are seen as “natural” harmonic connection points between these idioms; transitions
between such chords are constructed in a pre-blending stage, described later.

The extended transition matrix is structured in blocks identified as follows: I1 and I2 are the
transition matrices of the initial idioms, Ai−j are blended transitions that lead from idiom Ii to
idiom Ij, Bi−X (and BX−i) are blended transitions that lead from idiom Ii to a new chord generated
with transition blending (respectively from a new chord to idiom Ii), and C represent transitions
between two new chords (not considered in the current implementation). Regarding the graph-
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I1
chords
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A2-1

A1-2
B1-X
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Figure 5: Graphical description of a compound matrix that includes transition probabilities of both
initial idioms and of several new transitions generated through transition blending. These new
transitions allow moving across the initial idioms, creating a new compound idiom.

ical representation of the extended matrix as depicted in Figure 5 the following facts should be
highlighted:

1. By using transitions in Ii, only chords of the i-th idiom are used. When using the transition
probabilities in Ii, the resulting harmonisations preserve the probabilistic character of idiom
i.

2. Transitions in Ai−j enable direct jumps from chords of the i-th idiom to chords of the j-th
idiom. If a blended transition happens to be in Ai−j there is no need for further considerations
– such transitions can be directly included in the extended matrix.

3. Transitions in Bi−X go from a chord of idiom i to a new chord created with transition blending.
Similarly, transitions in BX−j arrive at chords in idiom j from new chords. For moving from
idiom i to idiom j using one external chord cx that was produced by blending, a “chain” of two
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transitions is required: ci → cx followed by a transition cx → cj , where ci is in idiom i and
cj is in idiom j. A chain of two consecutive transitions with one intermediate external chord
from chords of i to chords of j will be denoted as Bi−X−j.

4. Transitions in C incorporate pairs of chords that are new to both the i-th and the j-th idioms.
Having two external chords, transition blends in C are disregarded in the present work and,
therefore, all probabilities in C are set to 0.

The proposed process for constructing the compound matrix intuitively generates new transi-
tions by blending the most common transitions in the initial (Ii, i = 1, 2) Markov matrices. It is
not straightforward how a blended transition should be inserted in the extended matrix, since the
extended matrix is a means to interconnect and relate chords between Ii and Ij. The idea behind
the proposed methodology is that blended transitions should allow moving from chords in Ii to
ones in Ij and vice-versa. However, since transition blending potentially invents transitions between
‘new’ chords not belonging to any of the initial idioms, for the proposed method we ensure that
every transition should have at least one chord that departs from or leads to Ii, i = 1, 2 (and so
should have at most one new chord created through blending), discarding transitions between two
newly created chords. Therefore, in this study we postulate that blended transitions should include
only one new ‘intermediate’ chord for moving from Ii to Ij, and so we need to ensure that if a new
chord is used, it will be preceded by a chord in Ii and followed by a chord in Ij. If this requirement
is not met, the new chord would be either a terminal or a beginning chord, constituting a ‘dead-end’
or ‘unreachable’ chord in the Markov chain.

3.2 Connecting transition tables via common chords

Two harmonic spaces may share common chords, or similar chords, which are hereby defined
as chords that belong to the same GCT chord group. According to the methodology presented
in Kaliakatsos-Papakostas et al. (2015), two chords belong to the same group (and are thus con-
sidered similar) if they (i) have the same root; (ii) have subset-related chord types; and (iii) both
include pitch classes that are diatonic to the scale of the idiom. For instance, in a C major key, the
GCT-represented chords [0, 0 4], [0, 0 4 7] and [0, 0 4 7 11] belong to the same major tonic group,
while [0, 0 4 7 10] belongs to another since the pitch class value 10 is not diatonic to the major
scale (this chord is a secondary dominant seventh to F major). For the remaining of this section,
the term ‘similar chords’ will be used for describing chords that belong to the same GCT group.

The first step for generating the compound version of two transition matrices does not include
blended transitions, but transitions that are composed of identical or similar chords between the
two initial spaces – formulating an initial set of A1−2 and A2−1 transitions. These transitions allow
moving between the two initial spaces by using common or similar chords as harmonic connection
points. To this end, all possible transitions of such chords (i.e. all preceding and next chords) in one
input idiom Ii, are also considered as possible transitions of this chord in the other input idiom Ij,
“activating” the respective transitions in A1−2 and A2−1.

An example of this process is illustrated in Figure 6, where the similar chords of two simple
3-chord C major and D major spaces are combined. In this example, the chords G7 in C major
and G in D major ([7, 0 4 7 10] and [7, 0 4 7] in GCT representation respectively) are similar in the
context of C major. Since these chords are similar in at least one context (C major), the following
transitions are activated:

1. All transitions leading to [7, 0 4 7 10] in C major (C2 column on top-left) should be also leading
to [7, 0 4 7] (C2 column on top-right).

2. All transitions departing from [7, 0 4 7 10] in C major (R1 row on top-left) should be also
departing from [7, 0 4 7] (R1 row on bottom-left).

3. All transitions leading to [7, 0 4 7] in D major (C1 column on bottom-right) should be also
leading to [7, 0 4 7 10] (C1 column on bottom-left).
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4. All transitions departing from [7, 0 4 7] in D major (R2 row on bottom-right) should be also
departing from [7, 0 4 7 10] (R2 row on top-right).

The probability values assigned to the copied rows and columns that correspond to the similar
chords are finally defined according to the probability intensity multiplier (PIM) described later in
Section 3.4.

C1C1

R1

R1

R2

R2

C2 C2

Figure 6: Graphical representation of shared transitions between similar chords between C major
(top left) and D major (bottom right) spaces, where chords [7, 0 4 7 10] and [7, 0 4 7] are similar in
the context of C major.

3.3 Identifying meaningful transition blending candidates

In order to reduce the number of applications of chord transition blending, the 10 most common
transitions in I1 and I2 are gathered in two chord transition sets that represent the respective initial
idioms. Every transition of idiom 1 is blended with the ones of idiom 2, producing 100 different
potential applications of blending. Some applications of blending, however, may potentially subsume
others, in a sense that some transition blending pairs may incorporate harmonic characteristics that
have already been examined in other pairs. For the current study, meaningful transition blends are
considered the ones that incorporate maximal subsets of features from the generic spaces in regards
to the subsumption relation, as explained in the next paragraphs.

Each pair of input chord transitions (x1, x2) defines a generic space (G(x1,x2)) and a set of all
possible generated blended transitions (B(x1,x2)); the generic space represents the common properties
of the two input transitions, as described in Section 2.2, and by extension it defines the set of all
possible blended transitions that fulfil its requirements, generated by Algorithm 1 and later ranked
as per Section 2.3. It should be reminded that in the proposed transition blending methodology,
only the properties related to pitch classes are considered in the generic space, namely the fromPCs
and toPCs properties.

A generic space ψ1 is said to subsume a generic space ψ2 (or ψ2 is subsumed by ψ1), denoted as
ψ1 v ψ2, if ψ1 is more general than or equal to ψ2 (or equivalently ψ2 is more specific than or equal
to ψ1) in the sense that ψ1 defines a larger set of possible generated blended transitions. Using the
above notation, G(x1,x2) v G(y1,y2) is equivalent to B(x1,x2) ⊇ B(y1,y2), which means that the pair of
transitions (y1, y2) gives rise to a smaller set of blended transitions B(y1,y2) due to a more constrained
generic space (i.e. the generic space G(y1,y2) is more specific than G(x1,x2)).
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The subsumption relation between generic spaces defines a partial order relation, that is, in
the set of all possible generic spaces the subsumption relation satisfies, for all ψi, ψj , the following
properties:

1. reflexivity: ψi v ψi;

2. antisymmetry: if ψi v ψj and ψi w ψj then ψi = ψj ; and

3. transitivity: if ψi v ψj and ψj v ψk then ψi v ψk.

Therefore, in every finite subset of generic spaces there is at least one maximal element7 ψM , for
which no other generic space ψi is more specific than ψM . In other words, in any set of pair of
transitions there are always (one or more) pairs that define maximal (i.e. most specific) generic
spaces, while other non-maximal pairs are characterised by weaker conditions (i.e. with less strict
generic spaces) that produce larger blending sets containing those produced by the most specific
generic spaces.

At this point it is helpful to consider the notion of a ‘blending quadruple’, denoted by Q, which
is a set that comprises four elements: input transition 1 (I1), input transition 2 (I2), their generic
space (G) and a list of all the produced blended transitions (B). Therefore, the blending quadruple
that corresponds to the i-th pair of input transitions is a set described as: Qi = {Ii1, Ii2,Gi,Bi}.
The subsumption relation is used on the generic spaces of quadruples to discard the ones that are
‘overshadowed’ by others, i.e. that incorporate a larger number of comparable common properties
between the inputs. As an example, table 3 shows two quadruples that take part in the blending
process with the initial spaces C major and F] major of the ‘toy’ example above. Thereby it can be
observed that G2 v G1 and therefore G2 (and the blends it includes) is not regarded in the subsequent
processes. Formally, by considering the set G = {Gi} of generic spaces from all blending quadruples
that are generated for two initial idioms, the blends that are retained are the ones that correspond to
maximal generic spaces in G. The generic spaces that are completely empty are not considered in this
process, since they subsume any other generic space and would be entirely disregarded. Since each
blended transition in every Bi also has a rating value, this set can be further reduced by applying a
threshold on rating value or on the number of desired outputs. For the next steps, a maximum of
100 blends with highest rating values will be retained for further processing in each Bi.

For computational efficiency, in the implemented system the quadruple rejection/acceptance
step precedes the blending step – therefore the blends of the discarded quadruples are actually never
computed. In the case where two blending quadruples include identical generic spaces with different
input transitions, the blends of both quadruples are retained. Even if the blends in quadruples with
identical generic spaces are the same, they are evaluated differently, since the input transitions that
produced them are different. Therefore, these quadruples include blends that are ranked differently,
leading to different selections of topmost blends in the subsequent steps.

Table 3: Two example blending quadruples obtained by combining C major with F] major spaces.

Inputs G B
Ii1 Ii2 fromPCs toPCs

I11 : [7, 0 4 7 10]→ [0, 0 4 7] I12 : [1, 0 4 7 10]→ [6, 0 4 7] G1: {{5, 11} ANY } B1
I21 : [7, 0 4 7 10]→ [0, 0 4 7] I22 : [11, 0 4 7]→ [1, 0 4 7 10] G2: {{11} ANY } B2

3.4 Assigning probabilities and embedding transition blends in the ex-
tended idiom matrix

For each quadruple that passes the generic space subsumption filtering stage, the topmost 100 blends
are kept while the rest are discarded. For each of these blends, a probability value is calculated,
that will be used in subsequent selection steps described later. The proposed approach for assigning

7ψM is maximal with respect to {ψ1, ψ2, . . . , ψn} when there is no element ψi with ψM v ψi, or equivalently,
when for each i it either holds that ψi v ψM or (ψM 6v ψi and ψi 6v ψM ).
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probability values to the blends of a quadruple is intended to reflect (a) the probability values of
the input transitions that produced these blends and (b) the ranking placement of each blend in
the blending quadruple. Specifically, if the probability value (in the initial transition matrix of the
idiom) of the inputs that produced a blend is pI1 and pI2 , then the potential of a blend, pb, is
computed as:

pb =
pI1 + pI2

2

rate(b)

ratemax
,

where rate(b) is the rating value of the blend and ratemax is the maximum rating value in the
examined blending quadruple. The final probability value of each blend is computed by normalising
each row of the matrix to sum to one, according to the potential of each blend. In other words, the
final probability assigned to a blend is the mean probability of the inputs that produced it, scaled
by a factor that indicates the rating of this blend in comparison to the best-rated blend that these
inputs have produced – the better the rate of the blend, the closer its probability value to the mean
value of probabilities of the inputs.

Among the blending quadruples that are preserved, a number of their best blends is stored for
further investigation, creating a pool of best blends. Based on trials, a large number of the best
blends (i.e. 100) from each blending quadruple should be inserted in the pool of best blends, so that
several scenarios for connecting the initial spaces can be created, since a greater number of blends
in the pool of best blends introduces a larger number of possible commuting paths in Ai−j or in
Bi−X−j.

Blended transitions in the pool of best blends are, then, categorised according to whether they
belong to category Ai−j , Bi−X or BX−i. Blends that belong to category Ai−j can be directly embedded
in the extended transition matrix. However, blends that belong to either Bi−X or BX−i may potentially
constitute terminal or beginning transitions respectively, as discussed in Section 3.1. Therefore,
blends in Bi−X or BX−i are matched in Bi−X−j chains/pairs and considered as integrated elements.
The rating value assigned to every chain of blended transitions is the mean of ratings of each blend
in the chain.

For allowing different intensities of blending in the harmonisations that the system produces, there
are also two parameters, namely rating-based selection (RBS) and probability intensity multiplier
(PIM), that define the number of blends to be embedded in the extended matrix and the relative
value of probabilities of transitions outside the initial harmonic spaces (I1 and I2). RBS is in the
range [0, 1] and defines the percentage of top blends or transition chains that are imported in the
extended matrix. For instance a RBS value of 0.5 imports 50% of the most highly rated blends, while
a value of 0 generates an extended matrix that includes only the initial spaces and the pre-blending
common/similar connections (see Section 3.2). For instance, the RBS value in the transition matrix
of Figure 1 is at 0.03, while a greater RBS value (0.06) is used for constructing the matrix in Figure 5,
which includes more blended transitions. PIM is in the [0, 1] range and is used as a multiplier of all
probabilities outside the I1 and I2 according to the following formula:

pnew = (0.1 + 20PIM) (p
(1−PIM

2 )

old ),

where pnew is a new value (potentially greater than 1) assigned in the transitions matrix in the place
of pold, which is its probability value assigned by either the pre-blending or the blending stage. After
all new values have been assigned, the transition matrix is normalised so that every row adds to
1. A PIM value of 0 reduces the probabilities of transitions in Ai−j , Bi−X and BX−i, resulting in
harmonisations that most probably use transitions (and, subsequently, chords) exclusively from one
initial harmonic space, making connections between initial spaces less likely. Conversely, a PIM value
of 1 increases the probabilities in Ai−j , Bi−X and BX−i, encouraging harmonisations that transit from
Ii to Ij and vice-versa by using existing chords (transitions in Ai−j) or even new ones (transitions
in Bi−X and BX−i), producing results that incorporate mixed harmonies of the initial spaces, as well
as new chords.
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4 Examples of blended harmonisations and methods for eval-
uation

Evaluating creative systems is a difficult task since there is no well-established and commonly ac-
cepted definition of creativity (e.g. Boden (2004); Wiggins (2006); for a comprehensive discussion see
Jordanous (2013), chapter 3). The methods proposed so far either focus on the creative processes
per se (Colton et al., 2011), or on the products of creative processes (Ritchie, 2007; Jordanous,
2013). Additionally, concept invention through blending harmonies is a new, currently vague and
unexplored field. When blending harmonic styles there is no concrete expectation about the result.
There are, however, specific problems in harmony that need to be resolved creatively (i.e. in novel
and consistent ways), in which tools like concept invention can be used to propose many alternative
and diverse solutions within a unified framework. A brief overview of some empirical evaluation tech-
niques that have been employed (Zacharakis et al., 2017) or are part of ongoing work are presented
as well (incorporating the ‘raw’ output produced by the assistant).

It is reminded that the presented methodology focuses on conceptual blending at the level of
chord transitions (chord types consisting of pitch classes), not on voice leading and chord layout
rules. The proposed harmonisation assistant employs elementary voice-leading algorithms (primarily
for the outer voices); if, however, the goal is to reach a ‘correct’ harmonisation according to the
voice leading rules of a specific musical style, additional human intervention is required. In the
examples presented below, we have manually altered the voice leading provided by the assistant
where necessary to make the examples more legible, while the ‘raw’ output of the system is given in
the Appendix.

4.1 Example harmonisations

In these examples, we investigate whether the products of the system8 are within an acceptable range
of musical solutions, taking into account their aesthetic contexts. To the best of our knowledge, there
is no methodology for resolving creatively harmonic ‘problems’ similar to the ones examined in this
paper. Seven different musical idioms and some of their blends were used for the harmonisation of
the melodies used in the presented examples, appearing in the following list:

• BC major & BC minor: The homophonic tonal harmonic idiom of J. S. Bach Chorales.

• JA major & JA minor: Mainstream jazz harmony, as encountered in selected jazz standards
from the Real Book.

• CN: Greek composer Yannis Constantinidis’s 20th-century modal style, as encountered in his
‘44 Greek miniatures for piano’ (Tsougras, 2010).

• HM: Paul Hindemith’s 20th-century neo-tonal harmonic idiom, as expressed in his ‘Six Chan-
sons’ for a capella choir.

• WT: Whole-Tone post-tonal harmony, as encountered in selected excerpts from early 20th-
century works.

An emphasis was given on the use of tonal idioms (mainly BC major and minor) in the present
paper, although the dataset9 used includes several diverse harmonic idioms, because major-minor
tonality is probably one of the most studied harmonic idioms, so it functions as a reference point
for testing and demonstrating blending procedures. The system produced raw MIDI files that were
further processed by humans using music notation software (Finale 2014). The process involved
two stages: 1) correction of music notation issues and enharmonic spellings of pitches in the MIDI
file, and 2) manual editing of the produced harmonisation regarding separation of the bass line in

8For all the examples that follow, if not otherwise explicitly stated, the PIM and RBS values in the presented
harmonisations are 0.7 and 0.9 respectively for the ‘high blending parameters’ setup and 0.3 and 0.5 respectively for
the ‘low blending parameters’ setup.

9http://ccm.web.auth.gr/datasetdescription.html
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a different layer, preservation of a constant number of active voices in the musical texture through
the use of octave doublings, and reworking of the inner voices for smoother voice-leading where
needed (although a strict application of common-practice voice-leading rules was not pursued).
Also, manual analysis of harmonic progressions through the use of Latin roman numeral notation
of tonal harmonisation was made in certain cases. The pitch content of the chords was always kept
intact, and the bass line was manually altered in very few cases (indicated by * followed by the
parenthesized original bass note in the scores) in order to improve the readability of the examples
and put the focus on the blending results rather than the voice leading; the Appendix includes the
‘raw’ output format as produced by the system of all the examples. In summary, the examples
illustrate harmonisations in which the pitch-class content of the chords (chord types) and almost
all of the pitches of the bass line are computed automatically by the system, whereas inner voice
leading is partly determined by hand.

4.1.1 Blending major and minor tonalities

The first harmonic setting that can be addressed with the proposed methodology concerns the
problem of harmonising a melody with a blended major and minor harmonic style. For this purpose,
a short 8-bar melody was constructed that deliberately avoids the 3rd and 6th melodic degrees of the
C scale, making it ambiguous regarding its classification as major or minor. It consists of two 4-bar
phrases (half cadence - full cadence) that form an 8-bar period. The short melody is harmonised four
times (see Figures 7 and 12). It should be noted that apparent parallelisms between the input melody
(upper staff) and some voices of the produced harmonisation (lower staff) are not considered errors
here, because they merely reflect the property that melody notes (input) are always included in the
harmony (output), regardless of voice assignment. Further separation of these harmonic ‘blocks’ into
coherent voices following specific voice-leading practices might be handled in a post-processing stage,
but this was not considered here. The first harmonisation is based on the BC major dataset and
uses mainly the I and V harmonic degrees, with sparse use of subdominant-function chords (IV and
ii). The second harmonisation uses the BC minor dataset and produces similar results in C minor
(use of i, V and iv) with the exception of the final tonic chord, which is major, as encountered in the
Bach chorales. The first blended harmonisation (low blending parameters, Figure 7 (c)) includes a
mix of the chords encountered in the two unblended versions (I, V, iv), avoiding the minor tonic (i)
and major subdominant (IV) chords and introducing other chords not used previously ([VI, v, iio).
The second blended harmonisation (high blending parameters) uses a different mix of chords from
the two parallel tonalities, that includes the minor tonic (i) and the submediant (vi).

4.1.2 Blending different major keys for modulation purposes

Compound harmonic spaces created through transition blending can also be used for key transposi-
tions, by combining the spaces of the incorporated keys. An original purpose-made 10-bar melody,
which includes tritonal shifts from C major to F] major and a return to C major, is harmonised
three times (see Figures 8 and 13), all with the use of the BC major (Bach Chorales major) harmonic
idiom. The first harmonisation does not incorporate any blending of keys, so the harmoniser at-
tempts to assign chords without modulating away from C major. The result reveals that the melodic
shift towards F] major has been ignored, however the system has managed to assign chords to the
melody’s chromatic pitches, albeit with functionally awkward or ambiguous results (in b. 6-8 G] has
been harmonised with E major chord, F] with F] diminished chord, G] with G] diminished chord
and A] enharmonically with B[ major chord, see Figure 8 (a) for an analytical attempt with Roman
numerals). The second harmonisation uses the blended C-F] major space with low PIM and RBS
values, so the system is now able to identify the modulating segment of the melody, and manages
to suggest functionally correct chords for both the shift towards F] and the return to C major, as
the harmonic analysis reveals (see Figure 8 (b)). All the chords are triads, except for the dominant,
which appears with its 7th in two cases. The third harmonisation uses the blended space again,
but with high PIN and RBS values. The result is quite original, as apart from the modulation,
which has been identified and harmonised correctly, the system introduces chromaticism within each
tonal region, with unexpected assigned chords in several cases (e.g. the B minor 7th in b. 1, the D
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(a) Melody harmonised with the BC major idiom.
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(b) Melody harmonised with the BC minor idiom.
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parameters.
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(d) Melody harmonised with the blended major-minor BC space, using high blending
parameters.

Figure 7: A melody without the 3rd and 6th diatonic degrees harmonised with idioms learned from
a dataset of (a) major (BC major), (b) minor (BC minor) Bach chorales and their harmonic blend
with (c) low PIM and RBS values (0.05 and 0.1 respectively) and (d) high PIM and RBS values (0.7
and 0.9 respectively).

half-diminished in b. 6, the G minor 7th and C major 7th in b. 9). This harmonisation displays
elements of unexpected originality to an extent that an explicit functional harmonic analysis would
be unsuitable, and so has been avoided.

4.1.3 Creative blending of different major keys

Combining harmonic spaces in different keys can also be used creatively, e.g. for introducing chro-
matic harmonic characteristics when harmonising even simple tonal melodies, without necessarily
focusing on the problem of key transposition. The Scottish folk song ‘Ye Banks and Braes’ in the
G major pentatonic mode can be harmonised in many different ways, with blended variations of
the BC major harmonic idiom in various shifted tonalities (i.e. blended G major and other major
tonalities). As an example, in Figures 9 (and 14) we present a harmonisation produced using the G
major-B major blend, which features forced chromaticism applied on the pentatonic/diatonic space
implied by the melody; the harmonisation with the plain BC major idiom (in G major) is a typical
diatonic tonal harmonisation. Harmonic analysis has not been included in this example, because
of instances where the harmony deviated from functional progressions towards free chromaticism,
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(b) Melody harmonised with the blended C and F] BC major spaces, using low blending
parameters.
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(c) Melody harmonised with the blended C and F] BC major spaces, using high blending
parameters.

Figure 8: A melody harmonised with the learned BC major idiom with (a) C major tonality and
blended versions of BC major in the tonality of C and its transposition in F] major with (b) low
PIM and RBS values (0.05 and 0.1 respectively) and (c) high PIM and RBS values (0.7 and 0.9
respectively).

although such an analysis could be obtained. Many interesting harmonic phenomena potentially re-
sult out of such harmonisations, as, for instance, the augmented 6th chord in b. 5 and the chromatic
linear progressions in b. 6-7 and b. 11 in the presented example. One interesting fact is that the
produced chords cannot always be explicitly identified as belonging to one of the blended spaces.
What is equally interesting is the fact that the blended tonal spaces can produce such a diverse range
of forced harmonic chromaticism, with elements of tonal mixture, chords of ambiguous functionality,
and chromatic contrapuntal chords even though the melody is purely pentatonic and does not even
hint at chromaticism.
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Figure 9: A traditional Scottish melody harmonised with the learned BC major space in G major
and B major.
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4.1.4 Creative blending of diverse harmonic spaces

Blending can be used creatively for combining two idioms from different eras. As an example, the
‘Ode to joy ’ melodic theme from L. v. Beethoven’s 9th Symphony (transposed into C major) is
harmonised three times in the sequel (see Figures 10 and 15). The first harmonisation uses the
BC major idiom (no blending) and consists of the alternation of only two triads: the tonic and
the dominant in root position and without 7th extensions (Figure 10 (a)). The second uses the JA
idiom (no blending also) and conforms to the mainstream jazz harmony rules: all chords include
major or minor 7ths, the main harmonic pattern is the ii-V-I turnaround and there is a tonicisation
of the IV at the beginning of the second phrase instead of a half cadence (Figure 10 (b)). The
third harmonisation is based on the harmonic idiom produced by blending the BC and JA idioms.
As shown in Figure 10 (c), there is a mix of simple and extended triads and a combination of
tonicisations and progressions in the circle of 5ths. Interestingly, now the tonicisation of IV occurs
in b. 2-4 through a turnaround, a tonicisation of ii is prepared but avoided in b. 5, and a chromatic
tonicisation of vi is observed in b. 7. These elements were not part of the unblended versions and
seem implicitly only related to either idiom, although there is a sense that the jazz idiom dominates
the system’s choices.
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Figure 10: Beethoven’s Ode to Joy theme harmonised in the style of (a) Bach chorales, (b) jazz
standards and (c) their blended harmonic space.

Interesting harmonisations can also be produced with this methodology when harmonies of di-
verse and potentially idiosyncratic idioms are blended. Two example harmonisations are presented,
involving the Greek folk melody ‘Apopse ta mesanychta’ (Tonight at midnight) in D Aeolian mode.
These examples are illustrated in Figures 11 and 16, using blends of diverse, mainly post-tonal,
harmonic idioms. The first harmonisation uses a blend of Yannis Constantinidis’s harmonic style
(20th-century chromatic modal harmony, see Tsougras (2010)) and Whole-Tone harmony. It seems
that Constantinidis’s harmony dominates, with its parallel voice-leading (b. 1, 3), free use of minor
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or major 7th chords, and conclusion on an open-5th sonority (b. 8), however a characteristic influ-
ence of the WT space can be observed in b. 5 (WT chord C-D-E-G]). The second harmonisation
is based on a blending between minor jazz harmony (extended tonal idiom) and the neo-tonal har-
monic idiom of Hindemith (free chromatic harmony with pitch centres). The chords suggested by
the system are mainly extended triads with loose harmonic functions, but there are some notable
exceptions, either as free mildly dissonant chords (mostly free verticalisations of diatonic sets), e.g.
the A-D-G-B sonority in b. 2 and 4, and the quartal chords D-E-A-B (b. 5) and C-F-G-B[ (b. 6)
or as the highly dissonant sonority B-E[-G-B[ in b. 8. However, although certain elements of the
harmonisations may be classified as stemming from one of the blended idioms, the overall produced
idioms feel original and coherent.
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(a) A traditional Greek melody harmonised in the harmonic style of CN blended with the WT
harmony.
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(b) A traditional Greek melody harmonised in the harmonic style of JA blended with the HM
harmonic idiom.

Figure 11: A traditional Greek melody harmonised with the blended harmonic styles of (a) Con-
standinidis with whole-tone and (b) jazz standards with Hindemith-style harmony.

4.2 Empirical evaluation methods

This section gives a brief overview of the so far employed and ongoing empirical evaluation methods
for the produced outcome of the CHAMELEON melodic harmonisation assistant, which utilises the
proposed methodology. First, the results obtained and presented in (Zacharakis et al., 2017) are
shortly described, and then, some pointers to ongoing research are given. A detailed description of
methods for the empirical experiments and the analysis of their results are beyond the scope of this
paper. The empirical evaluation methods address two main questions:

1. How are harmonisations from blended idioms perceived by musically trained listeners?

2. Can the results produced by the system enhance human creativity or assist composers in
exploring new harmonic areas?

Results obtained from empirical experiments on the raw output of the assistant indicate that the
proposed blending methodology produces harmonies that are perceived as belonging to hybrid or
new styles that potentially convey characteristics from both blended styles, while at the same time
are useful as a basis of inspiration for composers.

The first question above regarding perception of blended idioms involves two experiments in a
perceptual study presented in Zacharakis et al. (2017): a) mode and idiom and b) type of chro-
maticism classification of harmonisations. For mode classification, five harmonisations in major,
minor and blended styles (BC major, BC minor and three blends with different blending parameter
values) of a melody similar to the one presented in Figure 12 were presented simultaneously to 40
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students from the Department of Music Studies at the Aristotle University of Thessaloniki. During
the listening process, the participants were asked to rate the harmonisations on a Likert scale with 5
points from minor to major and a sixth option indicated as ‘Other’. The results indicated that the
participants clearly classified the pure major and minor harmonisations to the correct mode, while
the blended harmonisations were mainly placed in the middle, with a small percentage categorising
them as ‘Other’. In a similar setting harmonisations of five melodies (two tonal, two jazz and a
modal Greek traditional melody) were provided, in the harmonic styles learned from sets of Bach
chorales (tonal) and jazz standards, along with some rather different harmonisations using models
learned from the Beatles and Hindemith idioms in order to introduce diversity in the experiments.
The five melodies were harmonised with the non-blended versions of the input idioms as well as with
blended versions. As in the case of the major-minor mode classification experiment, participants
were asked to categorise each harmonisation to the ‘Tonal’ or ‘Jazz’ categories, using a Likert scale
from 1 to 5, or to categorise them as ‘Other’. The results show that the participants were able to
identify non-blended tonal from jazz harmonisations, while the blends where mostly categorised as
in-between tonal and jazz or as belonging to the category ‘Other’. Preference ratings, that were
also requested in the study, indicated that the blended harmonisations of the system were equally
preferred along with the non-blended ones; i.e. listeners think that the aesthetic value of the blended
harmonisation is at least as good as the original harmonisation.

The type of chromaticism classification was examined in a study with 30 participants, all students
from the Department of Music Studies at the Aristotle University of Thessaloniki. Participants
were asked to identify whether harmonisations of the ‘Ye Banks and Braes’ melody (presented in
Section 4.1.3) in G major alone and with different blended tonality combinations of the BC major
idiom belong to the ‘Diatonic’, ‘Chromatic’, ‘Atonal’ or ‘Other’ categories. Additionally, participants
were asked to rate each stimulus according to preference and expectancy (as opposed to novelty)
within a range from 1 to 5. While the harmonisation obtained by the non-blended BC major
idiom was unanimously categorised as ‘Diatonic’, the blended variations were mainly placed in the
‘Chromatic’ category. The expectancy of the blended harmonisations was significantly decreased in
comparison to the non-blended one, while at the same time the preference ratings were alike for non-
blended and blended harmonisations. Therefore, using the system in this way allows the generation
of harmonisations that are perceived as unexpected chromatic and at the same time preferred, by
blending a diatonic idiom (that is otherwise only able to produce expected diatonic harmonisations)
with a transposed version of itself.

Regarding the question of whether the results produced by the proposed methodology could
enhance human creativity or assist composers in exploring new harmonic ideas, ongoing research fo-
cuses on two empirical methods. In the first one students from the Department of Music Studies at
the Aristotle University of Thessaloniki are asked to harmonise a melody before and after they listen
to some harmonisations produced by the CHAMELEON system. More specifically, the melody of
‘Ye Banks and Braes’ is used (because of its clear tonal character) as the melody to be harmonised.
The students are first asked to freely harmonise this melody according to their personal taste – not
necessarily complying with any tonal rules of harmony. After a period of two weeks, they hand
their first attempt on harmonising this melody. Then they are provided with some harmonisations
of the same melody that were produced by the CHAMELEON melodic harmonisation assistant us-
ing blended idioms between transposed versions of the BC major style (a list of 6 harmonisations
including the blended harmonisation presented in Section 4.1.3 as well as harmonisations in other
modulation combinations). At this point, students are instructed to listen to those harmonisations
and decide if they want to change something in their initial harmonisation and if so, make a new ver-
sion. Preliminary results obtained so far among a small number of participants, indicate that almost
everyone decided to change their initial harmonisation significantly, going from harmonisations that
were closer to the tonal idiom to ones that incorporated more chromaticism. These results, however,
are still at a preliminary stage and the collection of data from more participants is necessary to allow
more conclusive results.

Our second approach to studying the enhancement of human musical creativity involves com-
posers. The ongoing study examines how the output of CHAMELEON can be used creatively by com-
posers as a source of harmonisation ideas that can provide novel harmonic frameworks/backgrounds
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for free development of musical textures. The task given to the composers involves the elaboration
and variation of a melody of their choice for the composition of a piano miniature. In a first ex-
periment four traditional melodies were given, along with a wide variety of diverse harmonisations
produced by a system using the blending methodology. The composers selected the harmonisation/s
of their melody that they considered most interesting/inspiring, and created their miniature com-
positions. Seven such miniatures for piano were performed by Fani Karagianni in a concert held at
the Macedonian Museum of Contemporary Art in Thessaloniki on 19 October 2016 10. Even though
the musical results of this attempt might arguably be considered as interesting and successful per
se, discourse analysis (Wodak and Meyer, 2009) on interviews with the composers will be used in
an effort to capture more detailed and robust indications about the actual influence that composers
acknowledge regarding the output of the transition blending methodology.

5 Conclusions

Creative melodic harmonisation through the combination of harmonic spaces is examined in this
paper; conceptual blending is integrated into a Markov chord transition methodology that is part
of an idiom-independent melodic harmonisation assistant that learns from harmonic data. The
algorithmic framework for conceptual blending developed in the context of the COINVENT (Concept
Invention Theory) project is utilised to blend transitions of chord (pairs of successive chords), referred
to as the ‘input transitions’, between different harmonic idioms, producing new blended transitions.
Transition blending is based on combining a priori defined transition features, while the best blends
are identified through a process that ranks all resulting blends according to the salience of their
incorporated features; the salience of features is automatically induced by statistical assessment on
the learned input idioms. The best blends of the most usual transitions in two initial harmonic idioms
are then used to construct a new ‘compound’ harmonic space, that includes chords and observed
transitions of the initial idioms along with new chords and new transitions created by transition
blending.

The creative harmonic capabilities of the system have been examined under several melodic
harmonisation blending settings, revealing a number of different previously unexplored cases (in the
context of musical artificial intelligence) where this methodology is applicable – from robust problem
solving to purely experimental harmonic exploration. The examples presented in this paper discuss
some potentially interesting applications of the proposed methodology for blending: (i) major and
minor modes; (ii) different keys for modulations; (iii) different keys for increasing chromaticism;
and (iv) different, potentially diverse harmonic styles for exploring novel harmonic ideas. Results
illustrate on the one hand that the presented system can be used for generating conventional har-
monic solutions, constituting a useful tool e.g. for music education, and on the other hand, that it
could be used for generating unconventional harmonic material, thus providing musicians with a tool
that produces many creative alternatives in harmonising a given melody. This methodology is also
within reach for potentially interested amateur musicians who might want to experiment with differ-
ent idiom blending combinations, and it could be easily integrated in other software (e.g. games) for
producing novel, unique and diverse musical backgrounds. The new possibilities that the proposed
system offers, as algorithmically approached in the context of the COINVENT project, highlight
the new capabilities that are introduced in computational creativity by conceptual blending. Those
capabilities can be further enhanced in future work by developing more sophisticated probabilistic
or rule-based voice leading methodologies that allow the generation of ‘raw’ output that adheres to
the voicing layout forms of a given style more persuasively.

Evaluation of how the products of this system are perceived has been performed in (Zacharakis
et al., 2017); results indicate that the intended purposes of blending are met, with the system cre-
ating compound idioms that are perceived either as in between the blended ones, or as something
completely new. Additionally, pilot results indicate that the creativity of human composers is en-
hanced when they are assigned with harmonic composition tasks that involve the results of the
proposed methodology; ongoing research in this direction will hopefully allow the extraction of more

10http://ccm.web.auth.gr/creativeusecomposers.html
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conclusive results. An interesting future research direction is towards increasing the self-awareness of
the system, by developing methods that automatically categorise the products of the system, either
by performing style classification or qualitative evaluation. Additionally, the statistical modelling
of learning different harmonic modules (i.e., chord types, transitions, cadences and bass voice lead-
ing) can be used per se for style identification or for harmonic similarity, either between blended
and non-blended harmonisations or between harmonisations in corpora of different styles. It would
be also interesting to examine how current state-of-the-art algorithms for style classification would
classify blended harmonisations (as belonging to one of the input spaces, in-between them, or as
belonging to a whole new style). Self-awareness on this level would allow the system to re-adjust
the blending parameters, i.e. PIM and RBS, so that more meaningful blended harmonisations are
produced without user intervention.

Acknowledgements

This work is supported by the COINVENT project (FET-Open grant number: 611553).

Appendix

This section includes the non-modified output of all the examples presented in Section 4 as produced
by the system.
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Figure 12: ‘Raw’ system output of all the examples in Figure 7.
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Figure 13: ‘Raw’ system output of all the examples in Figure 8.
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Figure 14: ‘Raw’ system output of the example in Figure 9.
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Figure 15: ‘Raw’ system output of all the examples in Figure 10.
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Figure 16: ‘Raw’ system output of all the examples in Figure 11.
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