
Chapter 2
The Harmonic Musical Surface
and Two Novel Chord Representation Schemes

Emilios Cambouropoulos

Abstract Selecting an appropriate representation for chords is important for encoding
pertinent harmonic aspects of the musical surface, and, at the same time, is crucial
for building effective computational models for music analysis. This chapter, initially,
addresses musicological, perceptual and computational aspects of the harmonic
musical surface. Then, two novel general chord representations are presented: the
first, the General Chord Type (GCT) representation, is inspired by the standard Roman
numeral chord type labelling, but is more general and flexible so as to be applicable
to any idiom; the second, the Directed Interval Class (DIC) vector, captures the
intervallic content of a transition between two chords in a transposition-invariant
idiom-independent manner. Musical examples and preliminary evaluations of both
encoding schemes are given, illustrating their potential to form a basis for harmonic
processing in the domain of computational musicology.

2.1 Introduction

Research in computational musicology and, more specifically, computational music
analysis commonly assumes the fundamental concept of the musical surface, i.e., a
minimal discrete representation of the musical sound continuum in terms of note-
like events (each note described by pitch, onset, duration, and possibly dynamic
markings and timbre/instrumentation). The musical surface is assumed to be merely
an unstructured sequence of atomic note events, such as score notes or a piano-roll
representation. Taking as a starting point this elementary musical surface, abstract
structures may be determined, such as grouping/segmentation, metre, chords and
motivic categories.

Emilios Cambouropoulos
School of Music Studies, Aristotle University of Thessaloniki, Thessaloniki, Greece
e-mail: emilios@mus.auth.gr

31



32 Emilios Cambouropoulos

In this chapter we will focus on aspects of the musical surface that pertain to
musical harmony. Challenging the ‘standard’ understanding (at least in the domain
of computational musicology) of the musical surface as being the note level of a
musical piece, it will be maintained that chords as wholes should be considered as
an integral part of the musical surface. The emergence of this harmonic musical
surface involves rather complex mechanisms that require, among other things, conso-
nance/dissonance discrimination, chord-type abstraction, root-finding and function
categorization (leaving aside non-harmonic factors such as rhythm, melody and voice
separation).

A novel general representation of chord types is proposed that is appropriate for
encoding tone simultaneities in any harmonic context whether it be tonal, modal,
jazz, octatonic or even atonal. This General Chord Type (GCT) representation allows
for the rearrangement of the notes of a harmonic simultaneity or pitch set, such that
abstract, idiom-specific types of chords may be derived. The GCT algorithm finds
the maximal subset of notes of a given note set that contains only consonant intervals,
employing a user-specified consonance/dissonance classification; this maximal subset
forms the base upon which the chord type is built. The proposed representation
is ideal for hierarchic harmonic systems such as the tonal system and its many
variations (actually the GCT is designed such that properties of the standard Roman-
numeral encoding scheme are naturally accommodated), but adjusts to any other
harmonic system such as post-tonal, atonal music, or traditional polyphonic systems.
It thus allows for automatic chord-type labelling (resembling traditional Roman
numeral encoding) in diverse musical idioms. The application of the GCT algorithm
is illustrated on a small set of examples from a variety of idioms and tested on the
Kostka–Payne harmonic dataset (Temperley, 2001b).

A proposal for representing chord transitions in an idiom-independent manner
is also introduced. A harmonic transition between two chords can be represented
by a Directed Interval Class (DIC) vector (this is an adaptation of Lewin’s interval
function between two collections of notes—see Sect. 2.4). This representation allows
for the encoding of chord transitions at a level higher than individual notes that
is transposition-invariant and idiom-independent (analogous to pitch intervals that
represent transitions between notes). The proposed 12-dimensional vector encodes
the frequency of occurrence of each distinct directional interval class (from 0 to 6
with +/− for direction) between a pair of notes in two successive chords. Apart from
octave equivalence and interval inversion equivalence, this representation preserves
directionality of intervals (up or down). The proposed DIC representation has been
evaluated on a harmonic recognition task (specifically, the identification of harmonic
queries in a small database consisting of pieces from diverse idioms). The DIC
vector representation is very general and may be useful in tasks such as chord pattern
recognition tasks, but is rather too abstract to be used in tasks such as sophisticated
harmonic analysis or melodic harmonization (for which the GCT representation is
more appropriate).

In the following sections, the notion of musical surface will first be discussed in
perceptual, musicological and computational terms. Then the GCT representation
will be described. Finally, the DIC vector chord transition encoding will be presented.



2 The Harmonic Musical Surface and Two Chord Representation Schemes 33

2.2 The Harmonic Music Surface and Chord Representation
Schemes

In this section, it is maintained that note simultaneities are perceived as chord types
(e.g., major, minor, dominant seventh, etc.) prior to establishing more elementary
aspects such as individual pitch octave information, note doubling, note omission
and chord inversion. This intuition is reflected in established musicological theoret-
ical typologies such as the standard guitar-like chord encoding or Roman numeral
analytic labels or even pc-set categories. Advantages and shortcomings of such
chord formalisms will be discussed primarily in relation to computational music
analysis. A more extended discussion on representing the musical surface is given
by Cambouropoulos (2010).

Jackendoff (1987), by analogy with the linguistic surface of phonemes, defines
the musical surface as being the “lowest level of representation that has musical
significance” (p. 219) and suggests that “standard musical notation represents the
pitch-events of the musical surface by means of symbols for discrete pitch and
duration” (p. 218). Sloboda (1985) suggests that the “basic ‘phoneme’ of music
is a ‘note”’ (p. 24) and presents empirical evidence for categorical perception of
pitch and duration. Should the note, however, be considered as the lowest level of
representation that has musical significance and perceptual relevance?

In terms of co-sounding events, there is evidence that pitch intervals and chords are
commonly perceived by listeners in a holistic manner, prior to their being perceived
in terms of their constituent parts. Over eighty years ago, Vernon (1934), a Gestalt
psychologist, suggested that ordinary listeners frequently perceive holistically a more
or less complex auditory figure, such as a complex tone or a chord, without knowing
or being able to analyse its constituent elements. Empirical research has shown that
listeners perceive musical intervals categorically (see Burns, 1999; Handel, 1989;
Smith et al., 1994). Categorical perception applies to chords as well, as has been
shown by Locke and Kellar (1973). It is suggested that pitch intervals or chords
are actually closer to the categorically perceived phonemic units of language than
isolated notes.

Due to octave equivalence and transpositional pitch interval equivalence, harmonic
pitch intervals and chords are considered ‘equivalent’ even though their constituent
pitches may be placed in different octaves. Empirical research has shown that listeners
confuse pairs of tones that are related by inversion (Deutsch, 2012) and that chord
positioning does not affect recognizing components of a chord—i.e., that chords in
different positions are essentially equivalent (Hubbard and Datteri, 2001).

Parncutt (1989) provides a psychoacoustic explanation of how chords are heard.
Just as our perceptual mechanisms analyse a complex periodic sound into partials
and then re-integrate them into a single percept, so chords can be heard as a single
entity with a single perceived root, rather than three or more individual co-sounding
tones. Parncutt suggests that the same factors that govern the perception of individual
pitches govern the perception of chords. Parncutt (1997) proposes an extended model
that calculates the perceptual root of a chord from its pitch classes, voicing, and



34 Emilios Cambouropoulos

the prevailing tonality. Parncutt’s approach to chord perception is in line with the
suggestion in this chapter that chords are perceived at the surface level as single
integrated entities rather than sets of constituent atomic notes.

Identifying a set of co-sounding partials or notes as, for instance, a major, minor or
diminished chord involves additional culture-specific knowledge that is acquired via
exposure to a certain idiom. “Chord recognition is the result of a successful memory
search in which a tone series is recognized as a pattern stored in long-term memory”
(Povel and Jansen, 2001, p. 185). Template-matching models (Parncutt, 1994) are
integrated in cognitive mechanisms of musical listening and are responsible for the
extraction of musically pertinent entities from sound at the surface level (the musical
surface is specific to a musical idiom in a similar way to that in which phonological
structure is language-specific). The above discussion supports the idea that chords
tend to be perceived at the surface level as single integrated entities, rather than
agglomerates of independent atomic notes.

The reduction of the sound continuum into more abstract (symbolic) entities such
as notes, chords, trills, and so on, may be attributed to general human cognitive
mechanisms that aim to reduce sensory information into smaller more manageable
discrete quantities (categorical perception). What are the grounding principles that
enable this reduction? More specifically, what are the principles that allow the
integration/segregation of distinct harmonics/tones into single entities or coherent
‘wholes’? The basic perceptual mechanisms that enable the breaking down of the
acoustic signal into more manageable units and successions of units (streams) have
been investigated extensively in the field of auditory scene analysis (Bregman, 1994).
These principles can be applied or adapted to account for musical practices of voice
separation/integration and voice leading (Huron, 2001). For instance, principles such
as tonal fusion, onset synchrony and pitch co-modulation (Huron, 2001) may play
an important role in the fusion of co-sounding entities into larger percepts such as
chords (e.g., greatest fusion in parallel motion of octave-related tones).

In recent years, a number of voice separation algorithms have emerged; these
algorithms mostly attempt to separate polyphonic unstructured note complexes into a
number of monophonic voices (see, e.g., Jordanous, 2008, and Chap. 6, this volume).
Cambouropoulos (2008) adopts a different approach in which multi-note sonorities
are allowed within individual ‘voices’. Allowing both horizontal and vertical integra-
tion allows the algorithm to perform well not only in polyphonic music that has a
fixed number of ‘monophonic’ lines, but in the general case where both polyphonic
and homophonic elements are mixed together. In this sense, the musical surface is
considered as consisting of both simple notes organized in melodic streams, and
chords organized in chordal streams (such streams may appear independently, or in
parallel, or may overlap).

A common underlying assumption in much cognitive and computational mod-
elling of musical understanding is that musical structural processing starts at the
musical surface and proceeds towards higher structural levels, such as metre, rhythmic
patterns, melodic motives, harmonic structure and so on. Lerdahl and Jackendoff’s
(1983) influential theory is grounded on this assumption:



2 The Harmonic Musical Surface and Two Chord Representation Schemes 35

The musical surface, basically a sequence of notes, is only the first stage of musical cognition.
Beyond the musical surface, structure is built out of the confluence of two independent
hierarchical dimensions of organization: rhythm and pitch.

(Jackendoff and Lerdahl, 2006, p. 37)

It is often an underlying assumption in computational research that from audio the
score may be extracted and then higher-level processing is possible.

However, as Cemgil et al. (2006) have pointed out,

one of the hard problems in musical scene analysis is automatic music transcription, that is,
the extraction of a human readable and interpretable description from a recording of a music
performance.

Indeed, research in automated music transcription has shown that a purely bottom-up
approach (from audio to score) is not possible; higher-level music processing is
necessary to assist basic multi-pitch and onset extraction techniques so as to reach
acceptable transcription results. Ryynänen and Klapuri (2008, p. 73) have observed
that

nowadays the concept of automatic music transcription includes several topics such as
multipitch analysis, beat tracking and rhythm analysis, transcription of percussive instruments,
instrument recognition, harmonic analysis and chord transcription, and music structure
analysis.

Some of the ‘higher level’ musical processes that are necessary for transcription are
addressed by Cambouropoulos (2010). It is suggested, not only that higher-level
processing influences the formation of the musical surface, but that some processes
that are considered ‘higher-level’ are actually necessary for the formation of the
surface per se, which means, essentially, that they are at or below the musical surface.
It is maintained that, for instance, beat structure, chord simultaneities and voice
separation are internal ‘primitive’ processes of the musical surface, that are necessary
for the surface to emerge.

For the sake of simplicity, in this chapter, we deal solely with purely symbolic,
isorhythmic, homophonic textures (i.e., sequences of chords without secondary em-
bellishment notes). Harmonic reduction (i.e., the abstraction of main chord notes
from a musical work) is anything but a trivial task. Reduction relies not only on
rhythm, metric position and melodic qualities (e.g., passing or neighbour notes), but
also on harmony per se. That is, harmonic knowledge is paramount in establishing
which notes are secondary and can be omitted. For instance, access to previously
learned harmonic context in a given idiom (chord patterns) may assist the selection
of appropriate chords that give rise to acceptable chord progressions (Mauch et al.,
2010). The representation schemes presented in the following sections (especially the
GCT) can be extended in the future so as to facilitate the recognition of harmonies in
an unreduced collection of notes or unreduced stream of sounds (this is beyond the
scope of the current chapter).

Researchers that work on symbolic music data (e.g., quantized MIDI or encodings
of scores) commonly assume that the formation of the musical surface (i.e., the
notes) from audio requires a potentially large amount of processing; once, however,



36 Emilios Cambouropoulos

the surface is formed, the road to higher-level processing (such as beat tracking,
metre induction, chord analysis, pattern extraction, and so on) is open. On the other
hand, researchers that work on music audio often leave aside the whole question
of musical surface and attempt to extract high-level information (e.g., harmonic
patterns, structural segmentation, music similarity, cover song identification) directly
from audio. We suggest that the whole discussion on the musical surface, apart from
being of theoretical interest, may make researchers more aware of the need to think
more carefully when deciding which primitive starting representation to use for their
systems (audio, expressive or quantized MIDI, pitch classes, notes, chords, etc.); how
much processing is already implicitly ‘embodied’ in this primitive representation;
and what kind of information can be extracted ‘naturally’ from the selected starting
representation.

Computational systems developed for harmonic analysis and/or harmonic gen-
eration (e.g., melodic harmonization), rely on chord labelling that is relevant and
characteristic of particular idioms. There exist different typologies for encoding note
simultaneities that embody different levels of harmonic information/abstraction and
cover different harmonic idioms. For instance, for tonal musics, chord notations such
as the following are commonly used: figured bass (pitch classes denoted above a bass
note—no concept of ‘chord’); popular music guitar-style notation or jazz notation (ab-
solute chord); and Roman numeral encoding (chord function relative to a key) (Laitz,
2012). For atonal and other non-tonal systems, pc-set theoretic encodings (Forte,
1973) may be employed.

For computational models of tonal music, Harte et al.’s (2005) representation
provides a systematic, context-independent syntax for representing chord symbols
which can easily be written and understood by musicians, and, at the same time, is
simple and unambiguous to parse with computer programs. This chord representation
is very useful for manually annotating tonal music—mostly genres such as pop, rock
and jazz that use guitar-style notation. However, it cannot be automatically extracted
from chord reductions and is not designed to be used in non-tonal musics.

Two question are raised and addressed in the remainder of this chapter. First,
is it possible to devise a ‘universal’ chord representation that captures features of
hierarchic pitch systems and adapts to different harmonic idioms? Is it possible to
determine a mechanism that, given some fundamental idiom features, such as pitch
hierarchy and consonance/dissonance classification, can automatically abstract chord
types and encode pitch simultaneities in a pertinent manner for the idiom at hand?
A second question regards chord transitions: is a relative pitch encoding of chords
possible such that chord transitions (i.e., intervallic content) are captured without
recourse to constituent chords? The first question will be addressed in the next section,
the second in Sect. 2.4.

It should be noted that the representations and processes reported in the following
sections do not explicitly deal with the issue of harmonic surface, but rather with
two relatively simple schemes of chord encoding that capture different aspects of the
harmonic surface. No explicit cognitive claims are made; however, it is suggested
that these representations may capture some properties of chords that are cognitively
relevant and are potentially linked to the notion of the harmonic surface. The main



2 The Harmonic Musical Surface and Two Chord Representation Schemes 37

objective of the proposed representations is to provide appropriate, general encodings
of aspects of the harmonic surface that may be useful in various computational music-
analytic tasks, such as harmonic analysis, chord sequence similarity, and harmonic
recognition. Hopefully, the proposed representations may be incorporated in more
sophisticated music surface extraction and processing schemes, providing a useful
step that links the sub-symbolic domain with higher-level musical structure.

2.3 The General Chord Type (GCT) Representation

Harmonic analysis focuses on describing the harmonic content of pitch collections
and patterns within a given music context in terms of harmonic labels, classes,
functions and so on. Harmonic analysis is a rather complex musical task that involves
not only finding roots and labelling chords within a key, but also segmentation (points
of chord change), identification of non-chord notes, metric information and other
aspects of musical context (Temperley, 2001a, 2012). In this section, we focus on
the core problem of labelling chords within a given pitch hierarchy (e.g., key). We
assume, for simplicity, that a full harmonic reduction, identifying the main harmonic
notes, is available as input to the model along with key and modulation annotations.

In trying to tackle issues of tonal hierarchy, a novel representation of chord types
is proposed that is appropriate for encoding tone simultaneities (or more generally
pitch sets) in any harmonic context (whether it be tonal, modal, jazz, octatonic or even
atonal). The General Chord Type (GCT) representation, allows the rearrangement
of the notes of a harmonic simultaneity such that abstract, idiom-specific types of
chords may be derived; this encoding is inspired by the standard Roman numeral
chord type labelling, but is more general and flexible. Given a consonance/dissonance
classification of intervals (that reflects sensory and/or culturally-dependent notions of
consonance and dissonance), and a scale, the GCT algorithm finds the maximal subset
of notes of a given note simultaneity that contains only consonant intervals; this
maximal subset forms the base upon which the chord type is built. The lowest note
of the base is the root of the chord. The proposed chord type representation, takes as
its starting point the common-practice tonal chord representation (for a tonal context,
it is equivalent to the standard Roman-numeral harmonic encoding), but is more
general as it can be applied to other non-standard tonal systems such as modal and
even atonal harmony. This representation is based on notions drawn primarily from
the domain of psychoacoustics and music cognition (such as octave equivalence, root,
relative root, consonance, parsimony), and, at the same time, ‘adjusts’ to different
culture-specific contexts of scales, tonal hierarchies and rankings of consonance and
dissonance. Cambouropoulos et al. (2014) provide a more extended discussion on
the background concepts underlying the GCT model.

At the heart of the GCT representation is the idea that the base of a note simul-
taneity should be ‘consonant’ (within some particular musical idiom). The GCT
algorithm tries to find a maximal subset that is consonant; the rest of the notes that
create dissonant intervals to one or more notes of the chord base form the chord



38 Emilios Cambouropoulos

extension. The GCT representation has common characteristics with the stack-of-
thirds and the virtual pitch root-finding methods for tonal music, but has differences
as well (see Cambouropoulos et al., 2014). Moreover, the user can define which
intervals are considered consonant; thus giving rise to different encodings. As will be
shown in the following subsections, the GCT representation naturally encapsulates
the structure of tonal chords and, at the same time, is very flexible and can readily be
adapted to different harmonic systems.

2.3.1 Description of the GCT Algorithm

Given a classification of intervals into the categories consonant and dissonant (i.e.,
binary values) and an appropriate scale background (i.e., scale with tonic), the GCT
algorithm computes, for a given multi-tone simultaneity, the ‘optimal’ ordering of
pitches such that a maximal subset of consonant intervals appears at the base of the
ordering (left-hand side) in the most compact form. Since a tonal centre (key) is
given, the position within the given scale is automatically calculated.

The input to the algorithm is the following:

Consonance vector The user defines which intervals are consonant/dissonant.
A 12-dimensional vector is employed in which each value
corresponds to a pitch interval from 0 to 11 (in the cur-
rent version of the algorithm, Boolean values are used
(i.e., consonant=1, dissonant=0).1 For instance, the vector
[1,0,0,1,1,1,0,1,1,1,0,0] means that the unison, minor
and major third, perfect fourth and fifth, minor and major
sixth intervals are consonant; dissonant intervals are the
seconds, sevenths and the tritone; this specific vector is re-
ferred to in this text as the ‘common-practice’ or ‘tonal
consonance’ vector.

Pitch Scale Hierarchy The pitch hierarchy (if any) is given in the form of scale
tones and a tonic. For instance, a D major scale is given
as 2, [0,2,4,5,7,9,11] and an A minor pentatonic scale
as 9, [0,3,5,7,10]. Other more sophisticated encodings of

1 The current version of the GCT algorithm requires a symmetric consonance vector for complemen-
tary intervals; for instance, if interval 2 is dissonant so is interval 10 (i.e., major second and minor
seventh are both dissonant). This means, essentially, that the vector can be shortened to correspond
to intervals from 0 (unison) to 6 (tritone). However, in principle, one may adjust the algorithm so as
to allow different consonance values for complementary intervals (e.g., major seventh less dissonant
than minor second). For this reason, the full 12-interval vector is retained. Additionally, non-binary
consonance/dissonance values may be used, allowing for a more refined consonance vector. Instead
of filling in the consonance vector with 0s and 1s, it can be filled with fractional values that reflect
degrees of consonance derived from perceptual experiments (see, e.g., Hutchinson and Knopoff,
1978) or values that reflect culturally-specific preferences. Such values may improve the algorithm’s
performance and resolve some ambiguities in certain cases.



2 The Harmonic Musical Surface and Two Chord Representation Schemes 39

pitch hierarchies are possible, but this simple encoding suf-
fices for the purposes of this study.

Input chord A list of pitch classes (MIDI pitch numbers modulo 12).

The GCT algorithm, shown in Fig. 2.1, encodes most chord types ‘correctly’ in
the standard tonal system. For instance, the note simultaneity [C,D,F],A] or [0,2,6,9]
in a G major key is interpreted as [7, [0,4,7,10]], i.e., as a dominant seventh chord.
Figure 2.2 shows an example of how the GCT algorithm labels a chord.

The algorithm successfully labels most tonal chords (see Sect. 2.3.2 and Cam-
bouropoulos et al., 2014 for examples). However, it is undecided in some cases, and
even makes ‘mistakes’ in other cases. In most instances of multiple encodings, it
is suggested that these ideally should be resolved by taking into account other har-
monic factors (e.g., bass line, harmonic functions, tonal context, etc.). For instance,
the algorithm gives two possible encodings for a [0,2,5,9] pc-set, namely minor
seventh chord or major chord with added sixth (i.e., [2, [0,3,7,10]] and [5, [0,4,7,9]],
respectively); such ambiguity may be resolved if tonal context is taken into account.
For the [0,3,4,7] pc-set with root 0, the algorithm produces two answers: a major
chord with extension [0, [0,4,7,15]] and a minor chord with extension [0, [0,3,7,16]].
This ambiguity may be resolved if key context is taken into account. For instance,
[0,4,7,15] would be selected in a C major or G major context and [0,3,7,16] in a C
minor or F minor context. Symmetric chords, such as the augmented chord or the
diminished seventh chord, are inherently ambiguous; the algorithm suggests multiple
encodings which can be resolved only by taking into account the broader harmonic

Algorithm 1 GCT algorithm (core)
Input: (i) the pitch scale (tonality), (ii) a vector of the intervals considered consonant,
(iii) the pitch class set (pc–set) of a note simultaneity
Output: The roots and types of the possible chords describing the simultaneity

1: find all maximal subsets of pairwise consonant tones
2: select maximal subsets of maximum length
3: for all selected maximal subsets do
4: order the pitch classes of each maximal subset in the most compact form

(chord ‘base’)
5: add remaining pcs (‘extensions’) above highest element of chord base (add

octave, if needed)
6: the lowest tone of the chord is the ‘root’
7: transpose the tones of the chord so that the lowest becomes 0
8: find position of the ‘root’ with respect to the given tonal centre (pitch scale)
9: end for

Fig. 2.1 The GCT algorithm



40 Emilios Cambouropoulos

Input: G major scale: [7, [0,2,4,5,7,9,11]]
Input: Consonance vector: [1,0,0,1,1,1,0,1,1,1,0,0]

– Input [50,60,66,69,74]
– Input converted to pc-set: [0,2,6,9]
– Maximal consonant subset: [2,6,9]
– Rewrite in narrowest range: [2,6,9]
– Dissonant tone 0 goes to the end (i.e., by adding an octave): [2,6,9,12]
– Lowest tone is root, i.e., 2 (note D)
– Chord in root position: [2, [0,4,7,10]] (i.e., major chord with minor seventh)
– Relative position in key: root is 7 semitones above the tonic G
– Chord in relative position: [7, [0,4,7,10]]
– No other maximal subset exists.

Output: [7, [0,4,7,10]] (i.e., dominant seventh chord)

Fig. 2.2 GCT chord labelling example

context (primarily the next chord). A half-diminished seventh chord [0,3,6,10], is
incorrectly encoded as [0,3,7,9], i.e., minor chord with added 6th, since the base
chord of the half-diminished chord is a diminished fifth interval (i.e., tritone) which
is dissonant and should be avoided. A preliminary evaluation of the GCT algorithm
was also carried out on the Kostka–Payne dataset (see Sect. 2.3.2).

Since the aim of this algorithm is not to perform sophisticated harmonic analysis,
but rather to find a practical and efficient encoding for tone simultaneities (to be
used, for instance, in creative, computer-assisted, harmonic generation that employs
combination of harmonic components from diverse idioms—see Sect. 2.3.2), we
decided to extend the algorithm by adding the additional steps shown in Fig. 2.3, so
that it outputs in every case a single chord type for each simultaneity (no ambiguity).

The additional steps select chord type [2, [0,3,7,10]] over [5, [0,4,7,9]] for the
[0,2,5,9] pc-set (see above), as this encoding has maximal overlapping between the
two maximal subsets. The maximal overlapping step of the GCT algorithm, in the
case of the ‘standard’ tonal consonance vector, amounts to a preference for the ‘stack
of thirds’ principle of common tonal chord labelling. The second additional step (if
the first step gives more than one option) prefers a chord encoding where non-scale
notes are at the end (this rule is not robust and requires further examination). The
last step for finding a unique solution is just a simple temporary fix; ideally, the GCT
algorithm should be extended to include other factors such as bass note, next chord
and, more generally, harmonic context to resolve ambiguity.

2.3.2 Examples of Harmonic Analysis with GCT

An example harmonic analysis of a Bach Chorale phrase illustrates the proposed
GCT chord representation (Fig. 2.4). For a tonal context, chord types are optimized



2 The Harmonic Musical Surface and Two Chord Representation Schemes 41

Algorithm 2 GCT Algorithm (additional steps)—for unique encoding
1: if more than one maximal subset then
2: Overlapping of maximal subsets: create a sequence of maximal subsets by

ordering them so as to have maximal overlapping between them and keep the
maximal subset that appears first in the sequence as base of the chord.

3: Avoid non-scale notes in the base: if more than one merged sequence, prefer
maximal subset at the base that contains only pcs that appear in the given scale
(tonal context).

4: If the above do not give a unique solution, choose the consonant maximal
subset that was calculated first as base.

5: end if
Additional adjustment: for dyads, in a tonal context, prefer perfect fifth over

perfect fourth, and prefer seventh to second intervals.

Fig. 2.3 The GCT algorithm: additional steps to generate unique encodings

such that pcs at the left-hand side of chords contain only consonant intervals (i.e.,
thirds and sixths, and perfect fourth and fifths). For instance, the dominant 7th chord
is written as [0,4,7,10] since set [0,4,7] contains only consonant intervals whereas
10, which introduces dissonances, is placed on the right-hand side—this way the
relationship between major chords and dominant seventh chords remains rather
transparent and is easily detectable (Kaliakatsos-Papakostas et al., 2015). Within the
given D major key context, it is simple to determine the position of a chord type with
respect to the tonic. For example, [7, [0,4,7,10]] means a dominant seventh chord
whose root is 7 semitones above the tonic. This way we have an encoding that is
analogous to the standard Roman numeral encoding (Fig. 2.4, top row). If the tonal
context is changed, and we have a chromatic scale context (arbitrary ‘tonic’ is 0, i.e.,
note C) and we consider all intervals equally ‘consonant’, we get the second GCT
analysis in Fig. 2.4, which amounts to normal orders (not prime forms) in a standard
pc-set analysis. For tonal music, this pc-set-like analysis is weak as it misses out
or obscures important tonal hierarchical relationships. Note that relative ‘roots’ to
the ‘tonic’ 0 are preserved as they can be used in harmonic generation tasks (see
comment on transposition values in the Messiaen example in Fig. 2.7 below).

Three further examples are presented below that illustrate the application of
the GCT algorithm on diverse harmonic textures. The first example (Fig. 2.5) is
taken from Beethoven’s Andante Favori. In this example, GCT encodes classical
harmony in a straightforward manner. All instances of the tonic chord are tagged
as 0, [0,4,7]; the dominant seventh (inverted or not) is 7, [0,4,7,10] and it appears
once without the fifth [7]; the third-from-last chord is a minor seventh on the second
degree encoded as 2, [0,3,7,10]; the second and fourth chords are Neapolitan chords



42 Emilios Cambouropoulos

Fig. 2.4 Chord analysis of a Bach chorale phrase by means of traditional Roman numeral analysis,
pc-sets and two versions of the GCT algorithm

encoded as 1, [0,4,7] (which means a major chord on the lowered second degree)
with a secondary dominant in between.

The second example, in an extended chromatic style, is from Richard Strauss’
Till Eulenspiegel. Piston (1978) provides a tentative partial analysis (Fig. 2.6). He
suggests that “any generalized appearance of tonality breaks down under the weight
of the rapid harmonic rhythm and distantly related harmonic functions” (p. 522). The
GCT algorithm was applied to this excerpt for the standard tonal consonance vector,
and for the key of F major (5, [0,2,4,5,7,9,11]). The algorithm assigns chord types
correctly to all chords (in agreement with Piston’s analysis) except for the seventh
chord, which is a symmetric diminished seventh, for which the algorithm selects the
wrong root. Additionally, the algorithm assigns chord types to all chords that have
been left unanalysed by Piston. Of course, excluding some chords is an integral part
of the analytic process (the analyst decides which chords are structurally important
and should be labelled); the algorithm is not sophisticated enough to make such
decisions. However, the chord types the GCT algorithm assigns to these chords are
not arbitrary and may be potentially useful for an automated harmonic reasoning
system.

In the third example, from a piece by Messiaen (Fig. 2.7), the second half of
the excerpt is a transposed repetition (lowered by three semitones) of the first half.

Fig. 2.5 Reduction of bars 189–198 of Beethoven’s Andante Favori. Top row: manual Roman
numeral harmonic analysis; bottom row: GCT analysis. GCT successfully encodes all chords,
including the Neapolitan sixth chord (the pedal G flat note in the third chord is omitted)



2 The Harmonic Musical Surface and Two Chord Representation Schemes 43

Fig. 2.6 Bars 1–3 of R. Strauss’ Till Eulenspiegel. Partial harmonic analysis by W. Piston and chord
types determined by the GCT algorithm (condensed GCT encoding—without commas)

The GCT can be used to capture transposition-invariant matching, if the ‘roots’
of chords are replaced by intervals between ‘roots’. This way the representation
becomes transposition-invariant. In this instance, the interval pattern between ‘roots’
of the first and second parts is [+6,−3,+3,+3,−3] for the ‘tonal’ version, and
[−4,−3,+3,−2,−3] for the ‘atonal’ version. This is a reason for preserving the
‘roots’ (relative to an arbitrary reference pitch class: pc 0) in the atonal version.
In pitch class set theory, normal orders do not have ‘roots’; however, they have
transposition values (T0-T11) in relation to a reference pc (normally pc 0). The
normal orders with transposition values of pc-set theory are equivalent to the GCT
for the ‘atonal’ consonance vector.

We tested the GCT algorithm on the Kostka–Payne dataset (Temperley, 2001b).
This dataset consists of the 46 excerpts that are longer than 8 measures from the
workbook accompanying Kostka and Payne’s (1995) theory textbook. Given the local
tonality (key), the GCT algorithm was applied to all the Kostka–Payne excerpts. Then,
the resulting GCTs were compared to the Kostka–Payne ground truth (i.e., the Roman
numeral analysis not taking into account inversions). From the 919 chords of the
dataset, GCT encodes fully in compliance with the human analysis 846 chords, and
72 chords are labelled differently. This means that the algorithm labels correctly 92%
of all the chords. Twenty-three mislabelled chords were diminished seventh chords—
these symmetric chords can have as their root any of the four constituent notes;
twenty-two half-diminished chords [0,3,6,10] were labelled as minor chords with
added sixth [0,3,7,9]; seventeen cases had a salient note missing (e.g., diminished
chord without root, dominant seventh without third, half-diminished seventh without

Fig. 2.7 Reduction of the first six bars of O. Messiaen’s Quartet for the End of Time, Quartet VII.
The piece is based on the octatonic scale: [0,1,3,4,6,7,9,10]. Top row: GCT encoding for standard
common-practice consonance vector; bottom row: GCT encoding for atonal harmony—all intervals
‘consonant’ (this amounts to pc-set ‘normal orders’). See text for further details



44 Emilios Cambouropoulos

third) and this resulted in finding a wrong root; eight chords were misspelled because
they appeared over a pedal note (the pedal note was included in the chord); two
sus4 chords [0,5,7] were written incorrectly as [0,5,10] (e.g., [C,F,G] contains the
dissonant interval [F,G] and is erroneously re-ordered as [G,C,F]).

In the context of tonal music, for the standard tonal consonance vector, the GCT
algorithm makes primarily the following types of mistake: first, it is undecided
with regard to the root of symmetric chords such as diminished seventh chords and
augmented triads; second, it assigns the wrong root to chords that have ‘dissonant’
intervals at their base, such as diminished fifths in half-diminished chords or major
second in sus4 chords; and, finally, tertian chords that have notes missing from their
base (e.g., missing third in seventh chords) are misinterpreted as their upper denser
part is taken as the chord’s base and the lower root as an extension.

In order to correct such cases, a more sophisticated model for harmonic analysis is
required. Such a model should take into account voicing (e.g., the bass note), chord
functions (see Kaliakatsos-Papakostas et al.’s (2015) proposal for organizing GCTs
into functional tonal categories), and, even, higher-level domain-specific harmonic
knowledge (e.g., specific types of chords used in particular idioms). However, the
aim of the current proposal is not a tool for tonal analysis, but a general chord
representation that can be applied to different harmonic systems (including the tonal
system).

The GCT algorithm captures reasonably well the common-practice Roman-nu-
meral harmonic analysis encoding scheme (for the ‘standard’ consonance vector).
Additionally, it adapts to non-tonal systems, such as atonal, octatonic or traditional
polyphonic music. The question is whether the GCT representation works well on
such non-tonal systems. The GCT representation has been employed in the case
of traditional polyphonic music from Epirus (Kaliakatsos-Papakostas et al., 2014).
In this study, song transcriptions were first converted to the GCT encoding, then a
learning HMM scheme was employed to learn chord transitions and, finally, this
knowledge was used to create new harmonizations in the polyphonic style of Epirus.
Ongoing research is currently studying the application of GCT to various harmonic
idioms, from mediaeval music to 20th century music, and various pop and folk
traditions.

What might such ‘universal’ harmonic encoding systems be useful for? Apart
from music-theoretic interest and cognitive considerations and implications, a general
chord encoding representation may allow generic harmonic systems to be developed
that may be adapted to diverse harmonic idioms, rather than designing ad hoc systems
for individual harmonic spaces. This was the primary aim for devising the General
Chord Type (GCT) representation. In the case of the project COINVENT (Schor-
lemmer et al., 2014) a creative melodic harmonization system is required that relies
on conceptual blending between diverse harmonic spaces in order to generate novel
harmonic constructions; mapping between such different spaces is facilitated when
the shared generic space is defined with clarity, its generic concepts are expressed in
a general and idiom-independent manner, and a common general representation is
available (Kaliakatsos-Papakostas and Cambouropoulos, 2014).



2 The Harmonic Musical Surface and Two Chord Representation Schemes 45

Overall, the GCT representation and algorithm are an attempt to create a flexible
and adaptable representation, capable of encoding different harmonic idioms. Clearly,
the algorithm can be extended and improved in different ways, depending on the task
at hand. Using it, for instance, for learning chord transition probabilities from different
corpora, unambiguous results are handy (each chord receiving a unique encoding).
On the other hand, if one wants to study human harmonic analysis or perception, it
may be useful to retain ambiguity and compare results with human empirical data.
The GCT representation attempts to capture commonly used properties of chords
(root, basic type, extension) in diverse styles (giving, however, a privileged vantage
point to hierarchic tonal systems). Various refinements of the algorithm are possible
depending on the context of the particular music-analytic or creative task to which it
is being applied.

2.4 Pitch Class Chord Transition Representation

Is it possible to devise a chord sequence representation that ‘captures’ the intervallic
content of chord transitions in a transposition-invariant and idiom-independent way
without recourse to the concept of a chord? Is it possible to define a harmonic
equivalent to the idiom-independent transposition-invariant ‘pitch interval’? In this
section a proposal is made for a chord transition representation that encodes chord
transitions independently of the absolute pitches of actual chords, or any other
representation of the notion of a chord.

Chords are usually represented either as collections of pitch-related values (e.g.,
note names, MIDI pitch numbers, pitch class sets, chroma vectors, etc.) or as chord
root transitions within a given tonality following traditional harmonic analysis (e.g.,
Roman numeral analysis, guitar chords, etc.). In the case of an absolute pitch rep-
resentation (such as chroma vectors, i.e., pitch class profiles) transpositions are not
accounted for (e.g., twelve transpositions of a given query are necessary to find
all possible occurrences of the query in a dataset). On the other hand, if harmonic
analytic models are used to derive harmonic descriptions of pieces (e.g., chords as
degrees within keys or tonal functions), more sophisticated processing is possible;
in this case, however, models rely on complicated harmonic analytic systems, and,
additionally, are limited to the tonal idiom.

One obvious way to represent chord sequences in a transposition-invariant and
idiom-independent way is to encode chord transitions as intervals between the first
pitch classes in the prime forms of the transpositional equivalence classes of the pitch
class sets of two chords (e.g., for transition C–F: [5, [0,4,7], [0,4,7]]). This works
well but it relies on the conversion of chords into pitch class sets (prime forms)—that
is, it requires encoding the two chords in some abstract form which implies various
assumptions and processing steps (see discussion in Sect. 2.3.2 above, relating to
Fig. 2.7, for a GCT example in the same vein). Another possible way is to employ
voice-leading intervals following, for instance, Tymoczko’s (2011) pitch-class voice-
leading formalism. For example, for transition C–F, the voice-leading is represented



46 Emilios Cambouropoulos

by (C,E,G)
0,1,2−−→ (C,F,A). This representation relies on coupling the first chord

(i.e., the notion of chord is necessary) with voice-leading paths describing thus a
chord transition; this formalism gets more complicated when successive chords
do not contain the same number of notes, as this results in a non-bijective relation
between pitch sets. All of the above encoding schemes require encoding one or both
chords delimiting a chord transition. Is it possible to represent a chord transition
solely in terms of pitch intervals? The proposed DIC vector representation provides
one possible solution. This can be seen as a music-theoretic exercise per se, or as a
practical encoding scheme that may be useful for certain tasks.

Most computational models of harmonic processing rely on some representation of
individual chords. There are very few attempts, however, to represent chord transitions.
For instance, de Haas et al. (2008, 2013) represent chord transitions as chord distance
values, adapting a distance metric from Lerdahl’s tonal pitch space (Lerdahl, 2001).
This representation is geared towards the tonal system; additionally, a chord transition
being represented by a single distance value may capture certain important properties
of the transition but may abstract out other important information.

2.4.1 The Directed Interval Class (DIC) Vector Representation

A proposal for representing chord transitions in an idiom-independent manner is pre-
sented in this section. A harmonic transition between two chords can be represented
by a Directed Interval Class (DIC) vector (Cambouropoulos, 2012; Cambouropoulos
et al., 2013). This representation allows the encoding of chord transitions at a level
higher than individual notes that is transposition-invariant and idiom-independent
(analogous to pitch intervals that represent transitions between notes).

The proposed 12-dimensional vector is an adaptation of Lewin’s (1959) interval
function (see also Lewin, 2001, 2007). Lewin’s function encodes the frequencies of
occurrence of the pitch intervals (from 0 to 11) that occur between the notes in one
pitch class set and the notes in another. In the current proposal, Lewin’s function
is modified such that the proposed vector encodes all pitch intervals (from 0 to 6
including +/− for direction; 0 and 6 are always positive) between all the pairs of
notes of two successive chords. The DIC vector is equivalent to Lewin’s interval
function; it is simply a re-ordering of Lewin’s intervals using directed pitch interval
classes. The proposed representation attempts to capture the fact that voice-leading
practice involves mostly small intervals (e.g., unison, step-wise motion) connecting
notes from one chord to another (cf. Tymoczko’s (2011) pitch-class voice leading).
From the left-hand side to the right of the proposed interval vector, we move from
unison to small (up or down) intervals up to the tritone. The DIC vector simply makes
the ‘voice leading’ character of a chord transition more apparent. As will be proposed
toward the end of this section, it may be possible to shorten the proposed vector by
keeping only the smaller intervals at the left-hand side of the vector without losing
its expressivity.



2 The Harmonic Musical Surface and Two Chord Representation Schemes 47

The 12-dimensional DIC vector features the following directed interval classes
in its twelve positions: 0 (unison), +1, −1, +2, −2, +3, −3, +4, −4, +5, −5, 6
(tritone). The reason for opting for this ordering is that the absolute size of intervals
increases from left to right, and this places small intervals, that are thought to be
most strongly connected with voice-leading, at the ‘privileged’ beginning of the
vector. The proposed vector encodes the frequency of occurrence of all directional
interval classes between all the pairs of notes of two successive chords. That is, from
each note of the first chord, all intervals to all the notes of the second chord are
calculated. Direction of intervals is preserved (+, −), except for the unison (0) and
the tritone (6) that are undirected. Interval size takes values from 0 to 6 (interval
class). If an interval X is greater than 6, then its complement 12−X in the opposite
direction is retained (e.g., ascending minor seventh ‘+10’ is replaced by its equivalent
complement descending major second ‘−2’).

As an example, the transition vector for the progression I–V is given by the DIC
vector: Q = < 1,0,1,1,1,1,0,1,0,0,3,0 > (which means: 1 unison, 0 ascending
minor seconds, 1 descending minor second, 1 ascending major second, etc.)—see
Fig. 2.8, and further examples in Fig. 2.9.

Fig. 2.8 The DIC vector, < 1,0,1,1,1,1,0,1,0,0,3,0 >, for the chord transition I–V, depicted as a
bar graph

Fig. 2.9 DIC vectors for four standard tonal chord transitions: V–I, IV–V, ii–V, I–V7



48 Emilios Cambouropoulos

For a given harmonic (e.g., tonal) context, the DIC vector is unique for many chord
transitions. However, there are a number of cases where different tonal transitions
have the same vector. For instance, the transitions I–V and IV–I share the same
DIC vector as their directed interval content is the same; it should be noted, that,
heard in isolation (without a tonal centre reference), a human listener cannot tell the
difference between these two transitions. Another case is when one of the two chords
is symmetric (e.g., an augmented triad or diminished seventh chord); this is actually
an interesting case that agrees with music theory and intuition in the sense that, say,
diminished seventh chords are considered ambiguous and can resolve to different
chords leading to different tonal regions or keys.

In addition to the above cases of ambiguity (that are musically meaningful), the
DIC vector encodes identically a chord transition and its retrograde inversion, i.e.,
any specific chord transition has the same DIC vector as its retrograde inversion. For
instance, the retrograde inversion of a major triad progressing to a major triad by an
interval X is a minor triad progressing to a minor triad by the same interval X ; these
two transitions share the same DIC vector. This is an inherent property of the DIC
vector which reduces its descriptive power, and may have serious ramifications for
certain tasks (see below).

Cambouropoulos et al. (2013) evaluated the proposed DIC representation on
a harmonic recognition task, in which the accuracy of recognition of harmonic
queries was tested in a small database of chord sequences (harmonic reductions)
derived from diverse musical idioms and styles. More specifically, standard chord
progressions were included from Bach chorales, along with harmonic progressions
from modal Greek rebetiko songs, polyphonic songs from Epirus, Beatles songs
and non-tonal pieces by Béla Bartók, Olivier Messiaen, Claude Debussy, and Erik
Satie (31 chord reductions of pieces, collectively containing 957 chords in all).
Both the query sequence and the chord progressions in the dataset were converted
to DIC vectors and exact matching for recognition was employed (approximate
matching was also considered using wildcards—see below). The results obtained
with the algorithm were judged by human music analysis experts. For this small
dataset, relatively longer sequences consisting of four or more chords were uniquely
identified in the correct positions in the pieces where they originated. For instance,
we examined exhaustively queries drawn from J. S. Bach’s chorale, “Ein feste Burg
ist unser Gott” (BWV 302), consisting of three or four chords; the longest sequence
found in at least one other piece was a 4-chord sequence (the first four chords
identified in position 26 of Strawberry Fields by The Beatles). Obviously, if the
dataset is significantly extended we expect to find more occurrences of relatively
longer harmonic queries. Many examples of harmonic queries and matches are
reported and discussed by Cambouropoulos et al. (2013).

Overall, the harmonic recognition model behaves as expected, and has sufficient
distinctive power to discern the harmonic individualities of these different harmonic
languages. Almost all of the harmonic queries were correctly detected (see one
problem below) and all queries containing at least three chords were identified without
mistakes. Apparently the model is capable of finding repeating harmonic patterns
even though pieces are in different keys (transposition invariance). Additionally,



2 The Harmonic Musical Surface and Two Chord Representation Schemes 49

recall that the system has no knowledge of the different kinds of harmonic systems
(tonal, modal, chromatic, atonal, etc.), and it is therefore interesting that it detects
correctly any kind of harmonic query in diverse harmonic idioms.

Interestingly, the harmonic recognition model is equally successful and accurate
when only the first five vector components are used. We tested all the above queries
using only the first five vector entries [0,1,−1,2,−2] (out of the 12) which corre-
spond to unison (i.e., common pitches between two chords) and steps (i.e., ascending
and descending semitones and tones); the resulting matches were the same in every
case. These small intervals may be thought of as being mostly related to voice-leading
as it is standard practice to try to connect chords avoiding larger intervals (using com-
mon notes and step movements). The reduction of the DIC vector to a 5-component
subvector, enhances the cognitive plausibility of the proposed representation. Even
though no cognitive claims are made in this chapter, we just mention that representing
the transition between two chords as the small intervals that link adjacent pitches
(being potentially part of individual harmonic voices) affords this representation
potential cognitive validity. Finally, a mathematical analysis of the redundancy con-
tained in the full DIC vector is needed; it is likely that, for example, for tertian chords,
the larger pitch intervals can be recovered from the smaller ones. Both cognitive and
mathematical properties of such a representation should be explored further in future
studies. In any case, this reduced vector results in better computational efficiency.

As mentioned above, a chord sequence shares a DIC vector with its retrograde
inversion. In the case of harmonic matching, this is not a serious problem if the
sequences sought are relatively long (say, at least 3 chords). The reason is that the
additional context of neighbouring chords often disambiguates the overall sequence.
For instance, a query of two major chords an ascending fourth apart returns one
hundred instances in our small dataset, some of which erroneously consist of two
minor chords an ascending fourth apart; if, however, our query is preceded by a
major chord one tone lower than the first chord, then we find only 12 instances of
the sequence (corresponding to IV–V–I). In another example, the transition between
two major chords an ascending tone apart returned 23 instances that correspond
most likely to a IV–V chord progression (even though it may correspond to a ii–iii
transition between minor chords). If the first chord is preceded by a diminished chord
a semitone lower, then the whole sequence of three chords is found only once (in
chorale BWV 302—the sequence is vii◦–I–V/V). The specific context restrains the
search drastically. Longer sequences are more unambiguous.

Finally, an important issue not explored sufficiently in this study is chord pro-
gression similarity, i.e., how similar two chord sequences are. As it stands, a IV–I
transition and a V7–I transition are different (not matched) because their DIC vectors
are not identical. Similarly, a V–I transition is not matched to another V–I transition
if a note is missing such as the fifth of the first or second chord. Such relations can
be captured if certain tolerances are allowed (approximate matching). For instance,
if all entries of one vector are smaller than the corresponding entries of the other
vector, and the sum of the differences is three or less, then sequences such as V–I
and V7–I would be matched. This is a kind of approximate matching where the
difference between individual DIC vector entries is less than or equal to δ and the



50 Emilios Cambouropoulos

sum of all differences less than γ (see Cambouropoulos et al. (2002) for another
study of (δ ,γ)-matching in music). The similarity relations between vectors is an
open issue for further research.

In the current implementation, wild cards can be inserted in order to allow a
certain tolerance in the matching. Disabling entries 6–12 in the vector, i.e., using
only the first five components, did not seem to make a difference as mentioned
earlier in this section. Trying out a more radical example, we queried the system
with the vector < 0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,2 >; this means we are looking for a chord
succession that contains no common notes but in which there exist two distinct tritone
relations between different notes of the chords. The system returned 7 instances:
4 in the rebetiko songs; one in Michelle by The Beatles that corresponds to the
transition of major chord to minor chord a tone lower (or the reverse); one in Bartók’s
fourth Romanian Folk Dance that corresponds to the transition of minor chord 7th
to major chord a tone higher; and one in the first measures of Debussy’s Nuages
that corresponds to the transition of a perfect fourth harmonic interval to a perfect
fifth a semitone lower. Such experiments allow the investigation of broader similarity
relations.

Cambouropoulos (2012) attempted to test the effectiveness of the DIC vector
representation in a harmonic progression similarity task. The main assumption there
was that, if this representation encodes aspects of the harmonic content of chord
progressions sufficiently well, then, given an appropriate distance metric, similarity
between different chord progressions can be calculated and chord progressions can
be clustered together in meaningful classes. We use the DIC vector representation
as a basis for calculating the distance between simple chord progressions in two
preliminary tests. In one case, we calculate the distances between 12 simple tonal
triadic progressions; whereas in the second case, we have 11 jazz progressions. For
this preliminary testing, we employed a very simple distance metric between the
DIC vector sequences, namely the city block distance. In this initial experiment
we employed phylogenetic trees (branching diagrams) to visualize the distance or
similarity relations between the given chord sequences.

In the first preliminary test, we constructed a set of twelve triadic tonal chord pro-
gressions, each consisting of four chords (Fig. 2.10). The twelve chord progressions
were constructed such that they were organized into three groups of four instances
each, corresponding to the following harmonic function progressions: T–S–D–T,
T–S–T–D, and S–T–D–T (T=tonic, S=subdominant, D=dominant). The simple simi-
larity method employed in this study resulted in a phylogenetic tree branching that
splits the twelve progressions into three groups that correspond with the expected har-
monic function progressions (Fig. 2.10). This very simple method manages to group
together successfully these chord progressions without any knowledge of tonality,
keys, chord roots, scales or any other sophisticated harmonic concepts. Even if we
transpose these progressions to various keys the proposed method would give exactly
the same result. The mere intervallic content of these progressions is sufficient for
finding similarities between them and organizing them into groups. It should be
noted, however, that, if in this example more extensive substitutions of chords are
introduced, the resulting tree is less successful, possibly because the distance metric



2 The Harmonic Musical Surface and Two Chord Representation Schemes 51

seq_01

seq_02

seq_03

seq_05

seq_06
seq_07

seq_08

seq_09
seq_10

seq_11

seq_12

seq_04

Fig. 2.10 The triadic chord progressions are organized into a phylogenetic tree that illustrates their
similarities and grouping based on their DIC vector distances

is extremely elementary. The similarity relations between vectors is an open issue for
further research.

In a second preliminary test, we asked an experienced jazz piano performer to
write down some jazz chord progressions (same length) and, also, to let us know how
she thought they related to each other. The jazz pianist prepared eleven jazz chord
progressions, each consisting of 4 chords. As in the previous test, these were orga-
nized into an 11×11 distance matrix and, then, a phylogenetic tree was constructed
(Fig. 2.11). The jazz musician examined the resulting phylogenetic tree and gave the
following feedback:

I think it is very nice and I agree with the main parts. The point on which I would disagree is
placing 6 far away from 5, 7, 8; I would place them in [the] same class. Secondly, group 1, 3
is closer to 2 in my opinion; the rest of the tree is very convincing.



52 Emilios Cambouropoulos

The harmonic similarity between these jazz chord progressions seems to be captured
reasonably well, despite the simplicity of the proposed model and its total ignorance
of jazz harmony. This is encouraging; however, more systematic research is necessary
to improve the model and to test it more extensively (e.g., empirical data for the 11
progressions could be gathered from a larger number of jazz musicians).

One might argue that all the above harmonic recognition and classification tasks
can be modelled equally well by employing a simple pc-set-based representation (e.g.,
chord transitions as intervals between the first pitch classes of the transpositional pitch
class sets of two chords). This is true. Why, then, use the DIC vector representation
at all? First, the DIC vector is very simple to compute (easier than normal orders and
prime forms of pc-set theory). Second, it may allow more general distance metrics
to be developed for the calculation of distances between chord sequences. Third,

jazz_chords01

jazz_chords03

jazz_chords06

jazz_chords11

jazz_chords09
jazz_chords10

jazz_chords02

jazz_chords04

jazz_chords05

jazz_chords07
jazz_chords08

Fig. 2.11 The jazz chord progressions are organized into a phylogenetic tree that illustrates their
similarities and grouping based on their DIC vector distances. See text for more details



2 The Harmonic Musical Surface and Two Chord Representation Schemes 53

it can be applied even in cases where it is not straightforward to compute prime
forms. For example, it is not straightforward to convert chroma vectors extracted
from audio into pitch class sets so that transitions between them may be represented
in a transposition-invariant manner; whereas successive chroma vectors can readily
be converted into weighted DIC vectors. Finally, the DIC vector (especially some
abbreviated form containing, for instance, only small intervals) may afford cognitive
relevance in the sense that, in some cases at least, listeners may abstract and categorize
directly intervallic content of chord progressions (instead of applying more advanced
processing that involves identifying pc-set classes and intervals between them).
Further research is necessary to substantiate such claims. Herein only preliminary
hints are given as to the potential of the proposed representation.

2.5 Conclusions

This chapter addresses issues of harmonic representation at the level of the musical
surface. It is argued that selecting an appropriate representation for chords is crucial
for encoding aspects of the musical surface that have perceptual pertinence, and at
the same time is paramount for building efficient and meaningful computational
models for music analysis. In the course of the chapter, two novel general chord
representations were presented and their potential was discussed. The first, the GCT
representation, generalizes the standard Roman-numeral representation in such a way
as to apply to any idiom; whereas the second, the DIC vector, captures the intervallic
content of a transition between two chords. The former is algorithmically more com-
plex but embodies more structured harmonic information (consonance/dissonance,
‘root’, chord type, position in scale) and is thus adequate for music analytic/synthetic
tasks in more sophisticated hierarchical musical idioms. It is suggested that both of
the proposed chord representations may be used for representing harmonic relations
in music from diverse musical idioms (i.e., they are not confined to tonal music) and,
therefore, may provide a most appropriate framework for harmonic processing in the
domain of computational musicology.

Acknowledgements The project COINVENT acknowledges the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework Programme for Research
of the European Commission, under FET-Open grant number: 611553. Special thanks are due to
Costas Tsougras for the preliminary analysis of the Kostka–Payne dataset and for the harmonic
reduction examples, Maximos Kaliakatsos-Papakostas for his practical support in preparing this
manuscript, and two anonymous reviewers and David Meredith for providing most interesting
suggestions on an earlier version of this chapter.



54 Emilios Cambouropoulos

References

Bregman, A. S. (1994). Auditory Scene Analysis: The Perceptual Organization of
Sound. MIT Press.

Burns, E. M. (1999). Intervals, scales and tuning. In Deutsch, D., editor, The
Psychology of Music, pages 215–264. Academic Press, second edition.

Cambouropoulos, E. (2008). Voice and stream: Perceptual and computational model-
ing of voice separation. Music Perception, 26(1):75–94.

Cambouropoulos, E. (2010). The musical surface: Challenging basic assumptions.
Musicae Scientiae, 14(2):131–147.

Cambouropoulos, E. (2012). A directional interval class representation of chord
transitions. In Proceedings of the Joint 12th International Conference for Music
Perception and Cognition & 8th Conference of the European Society for the
Cognitive Sciences of Music (ICMPC-ESCOM 2012), Thessaloniki, Greece.

Cambouropoulos, E., Crochemore, M., Iliopoulos, C. S., Mouchard, L., and Pin-
zon, Y. J. (2002). Algorithms for computing approximate repetitions in musical
sequences. International Journal of Computer Mathematics, 79(11):1135–1148.

Cambouropoulos, E., Kaliakatsos-Papakostas, M., and Tsougras, C. (2014). An
idiom-independent representation of chords for computational music analysis
and generation. In Proceeding of the Joint 11th Sound and Music Computing
Conference (SMC) and 40th International Computer Music Conference (ICMC),
ICMC–SMC 2014, Athens, Greece.

Cambouropoulos, E., Katsiavalos, A., and Tsougras, C. (2013). Idiom-independent
harmonic pattern recognition based on a novel chord transition representation. In
Proceedings of the 3rd International Workshop on Folk Music Analysis (FMA2013),
Amsterdam, Netherlands.

Cemgil, A. T., Kappen, H. J., and Barber, D. (2006). A generative model for music
transcription. IEEE Transactions on Audio, Speech, and Language Processing,
14(2):679–694.

de Haas, W. B., Veltkamp, R. C., and Wiering, F. (2008). Tonal pitch step distance:
a similarity measure for chord progressions. In 9th International Conference on
Music Information Retrieval (ISMIR 2008), pages 51–56, Philadelphia, PA.

de Haas, W. B., Wiering, F., and Veltkamp, R. C. (2013). A geometrical distance
measure for determining the similarity of musical harmony. International Journal
of Multimedia Information Retrieval, 2(3):189–202.

Deutsch, D. (2012). The processing of pitch combinations. In Deutsch, D., editor,
The Psychology of Music, pages 249–326. Academic Press, third edition.

Forte, A. (1973). The Structure of Atonal Music. Yale University Press.
Handel, S. (1989). Listening: An Introduction to the Perception of Auditory Events.

MIT Press.
Harte, C., Sandler, M., Abdallah, S. A., and Gómez, E. (2005). Symbolic representa-

tion of musical chords: A proposed syntax for text annotations. In Proceedings of
the 6th International Conference on Music Information Retrieval (ISMIR 2005),
pages 66–71, London, UK.



2 The Harmonic Musical Surface and Two Chord Representation Schemes 55

Hubbard, T. L. and Datteri, D. L. (2001). Recognizing the component tones of a
major chord. The American Journal of Psychology, 114(4):569–589.

Huron, D. (2001). Tone and voice: A derivation of the rules of voice-leading from
perceptual principles. Music Perception, 19(1):1–64.

Hutchinson, W. and Knopoff, L. (1978). The acoustic component of Western conso-
nance. Interface, 7(1):1–29.

Jackendoff, R. (1987). Consciousness and the Computational Mind. MIT Press.
Jackendoff, R. and Lerdahl, F. (2006). The capacity for music: What is it, and what’s

special about it? Cognition, 100(1):33–72.
Jordanous, A. (2008). Voice separation in polyphonic music: A data-driven approach.

In Proceedings of the International Computer Music Conference 2008, Belfast,
UK.

Kaliakatsos-Papakostas, M. and Cambouropoulos, E. (2014). Probabilistic harmoni-
sation with fixed intermediate chord constraints. In Proceedings of the Joint 11th
Sound and Music Computing Conference (SMC) and 40th International Computer
Music Conference (ICMC), Athens, Greece.

Kaliakatsos-Papakostas, M., Katsiavalos, A., Tsougras, C., and Cambouropoulos, E.
(2014). Harmony in the polyphonic songs of Epirus: Representation, statistical
analysis and generation. In 4th International Workshop on Folk Music Analysis
(FMA 2014), Istanbul, Turkey.

Kaliakatsos-Papakostas, M., Zacharakis, A., Tsougras, C., and Cambouropoulos,
E. (2015). Evaluating the General Chord Type algorithm in tonal music and
organising its output in higher-level functional chord categories. In Proceedings
of the 16th International Society for Music Information Retrieval Conference
(ISMIR 2015), Malaga, Spain.

Kostka, S. and Payne, D. (1995). Tonal Harmony. McGraw-Hill.
Laitz, S. G. (2012). The Complete Musician: An Integrated Approach to Tonal Theory,

Analysis, and Listening. Oxford University Press.
Lerdahl, F. (2001). Tonal Pitch Space. Oxford University Press.
Lerdahl, F. and Jackendoff, R. (1983). A Generative Theory of Tonal Music. MIT

Press.
Lewin, D. (1959). Intervallic relations between two collections of notes. Journal of

Music Theory, 3(2):298–301.
Lewin, D. (2001). Special cases of the interval function between pitch-class sets x

and y. Journal of Music Theory, 45(1):1–29.
Lewin, D. (2007). Generalized Musical Intervals and Transformations. Oxford

University Press.
Locke, S. and Kellar, L. (1973). Categorical perception in a non-linguistic mode.

Cortex, 9(4):355–369.
Mauch, M., Cannam, C., Davies, M., Dixon, S., Harte, C., Kolozali, S., Tidhar, D., and

Sandler, M. (2010). OMRAS2 metadata project 2009. In Proceedings of the 11th
International Society for Music Information Retrieval Conference (ISMIR 2010),
Utrecht, The Netherlands.

Parncutt, R. (1989). Harmony: A Psychoacoustical Approach. Springer.



56 Emilios Cambouropoulos

Parncutt, R. (1994). Template-matching models of musical pitch and rhythm percep-
tion. Journal of New Music Research, 23(2):145–167.

Parncutt, R. (1997). A model of the perceptual root(s) of a chord accounting for voic-
ing and prevailing tonality. In Leman, M., editor, Music, Gestalt, and Computing,
volume 1317 of Lecture Notes in Computer Science, pages 181–199. Springer.

Piston, W. (1978). Harmony. Norton. Revised and expanded by M. DeVoto.
Povel, D.-J. and Jansen, E. (2001). Perceptual mechanisms in music processing.

Music Perception, 19(2):169–197.
Ryynänen, M. P. and Klapuri, A. P. (2008). Automatic transcription of melody, bass

line, and chords in polyphonic music. Computer Music Journal, 32(3):72–86.
Schorlemmer, M., Smaill, A., Kühnberger, K.-U., Kutz, O., Colton, S., Cambouropou-

los, E., and Pease, A. (2014). COINVENT: Towards a computational concept
invention theory. In 5th International Conference on Computational Creativity
(ICCC) 2014, Ljubljana, Slovenia.

Sloboda, J. A. (1985). The Musical Mind. Oxford University Press.
Smith, J. D., Nelson, D. G., Grohskopf, L. A., and Appleton, T. (1994). What child

is this? What interval was that? Familiar tunes and music perception in novice
listeners. Cognition, 52(1):23–54.

Temperley, D. (2001a). The Cognition of Basic Musical Structures. MIT Press.
Temperley, D. (2001b). Kostka–Payne dataset. Available online at

http://theory.esm.rochester.edu/temperley/kp-stats/. Last accessed 5 September
2015.

Temperley, D. (2012). Computational models of music cognition. In Deutsch, D.,
editor, The Psychology of Music, pages 327–368. Academic Press, third edition.

Tymoczko, D. (2011). A Geometry of Music: Harmony and Counterpoint in the
Extended Common Practice. Oxford University Press.

Vernon, P. E. (1934). Auditory perception. I. The Gestalt approach. II. The evolu-
tionary approach. British Journal of Psychology, 25:123–139, 265–283.


