Etude fonctionnelle multivariée de l'astragale et du calcanéum de *Mesopithecus pentelici*, Wagner 1839 (Cercopithecoida, Primates)

Dionisios Youlatos

Muséum National d'Histoire Naturelle, Paris

Résumé

Mots clés : *Mesopithecus pentelici*, Colobinae, astragale, calcanéum, anatomie fonctionnelle.
Key words: *Mesopithecus pentelici*, Colobinae, talus, calcaneus, functional anatomy.

Ce travail a été réalisé au Muséum National d'Histoire Naturelle, CNRS UMR 8570, Laboratoire d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France. Adresse de correspondance : 35 rue Agathoupolos, 11252 Athènes, Grèce (e-mail: dgioul@tee.gr).
INTRODUCTION

Afin d'éclaircir les suggestions contradictoires mentionnées ci-dessus, nous avons entrepris l'étude de l'astragale et du calcanéum de *Mesopithecus pentelici*. Le choix des os du pied n'est pas dû au hasard, car le pied, étant en contact direct avec le substrat qu'un animal utilise, s'avère très précieux pour traduire des adaptations locomotrices.
MATÉRIEL ET MÉTHODES

Le matériel fossile appartient à la collection Gaudry, provenant du site de Pikermi (Grèce), et actuellement conservée au Laboratoire de Paléontologie du M.N.H.N. à Paris. Il comprend 3 astragales : PIK-236 (mâle, droit), PIK-237 (femelle, droit), PIK-238 (femelle, gauche), ainsi que 5 calcanéums : PIK-239 (mâle, droit), PIK-240 (femelle, gauche), PIK-266 (mâle, gauche), PIK-1745 (femelle, droit), et PIK-1746 (mâle, droit) (Figure 1). Toutes les pièces, à l'exception de PIK-1745, sont en très bon

Figure 1. Première ligne : vue dorsale des astragales de Mesopithecus pentelicus: (a) PIK-236, (b) PIK-237, et (c) PIK-238. En haut se trouve la face distale. Pour (a) et (b) le côté médial est à gauche. Pour (c) le côté médial est à droite. Deuxième ligne : vue dorsale des calcanéums de M. pentelicus: (a) PIK-239, (b) PIK-1746, (c) PIK-1745, (d) PIK-266, et (e) PIK-240. En haut se trouve la face distale. Pour (a), (b) et (c) le côté médial est à gauche. Pour (d) et (e) le côté médial est à droite.

Figure 1. Top row: dorsal view of Mesopithecus pentelicus tali: (a) PIK-236, (b) PIK-237, and (c) PIK-238. Top is distal. For tali (a) and (b) left is medial, for talus (c) right is medial. Lower row: dorsal view of M. pentelicus calcanei: (a) PIK-239, (b) PIK-1746, (c) PIK-1745, (d) PIK-266, and (e) PIK-240. Top is distal. For calcanea (a), (b) and (c) left is medial, for calcanea (d) and (e) right is medial.

A l'aide d'un pied à coulisses électroénonique et d'un goniomètre, 11 mesures linéaires et un angle ont été pris sur l'astragale (Figure 2) : AS1, largeur de la facette astragalotibiale dans le plan dorso-médial ; AS2, largeur du col dans le plan dorso-latéral ; AS3, longueur maximale du col et de la tête ; AS4, longueur maximale de l'astragale ; AS5, hauteur de la facette astragalocalcanéenne postérieure ; AS6, longueur de la facette astragalocalcanéenne postérieure ; AS7, largeur de la tête ; AS8, hauteur de la tête, perpendiculaire à la mesure précédente ; AS9, largeur maximale du col dans le plan dorsal ; AS10, largeur distale de la trochlée ; AS11, largeur proximale de la trochlée ; et AS12, angle de torsion de la tête. En outre, 10 mesures linéaires et un angle ont été pris sur le calcaneum (Figure 2) : CA1, angle de la facette calcaneoastragaliennne postérieure ; CA2, largeur du tuber calcanei ; CA3, hauteur du tuber calcanei entre le point supérieur et l'empreinte du m. triceps surae ; CA4, hauteur de la facette calcaneocuboidienne dans l'axe perpendiculaire à sa largeur médio-latérale ; CA5, hauteur dorso-plantaire du calcaneum au niveau du tubercle antérieur ; CA6, longueur de la partie medio-proximale ; CA7, longueur totale du calcaneum ; CA8, longueur proximodistale de la facette de pression ; CA9, longueur latéro-distale de la facette calcaneoastragaliennne postérieure ; CA10, largeur medio-latérale de la facette calcaneoastragaliennne postérieure ; CA11, longueur maximale de la facette calcaneo-astragaliennne postérieure dans le plan dorso-médial. Les mesures ont été effectuées sur les deux os de tous les spécimens fossiles et actuels. Ces mesures correspondent à des caractères fonctionnels choisis après une étude préalable. Ensuite, les mesures brutes ont été utilisées pour 4 analyses factorielles de correspondance (AFC) : une sur l'astragale, une sur le calcaneum, une sur les deux os, les angles exclus, et une sur les deux os, angles inclus.

RÉSULTATS

Dans l'AFC sur l'astragale, l'axe 1 est caractérisé par la variable AS2, et l'axe 2 par l'AS5, dont les contributions relatives à l'incertitude totale dépassent 80%. L'axe 3 est caractérisé par l'AS9. Les autres variables se trouvent au centre des axes et contribuent peu à l'incertitude totale. Toutes les combinaisons des axes révèlent une séparation entre un groupe formé par Papio, Erythrocebus, et Theropithecus (situé près des variables AS2 et
Figure 2. Les mesures prises sur l’astragale (AS1-AS12) et le calcanéum (CA1-CA11). Voir les descriptions dans le texte.

Figure 2. Talar (AS1-A12) and calcaneal (CA1-CA11) measurements. See text for description.
AS9) et un autre, formé par les Colobinae, avec Cercopithecus (sauf C. aethiops), et situé près de l’AS5. Au centre des axes nous retrouvons Meso- pithecus, Macaca, C. aethiops et Cercocebus.

L’AFC, qui traite toutes les mesures linéaires de deux os, confirme les résultats précédents. L’axe 1 est caractérisé par la CA3, et l’axe 2 par l’AS2 (Figure 3). La contribution relative de chaque variable dépasse les 95%. Le troisième axe est caractérisé par l’AS5. Les Colobinae sont tou-

Figure 3. Plan 1,2 (axe 1 horizontal, axe 2 vertical) de l’AFC des astragle et calcaneum (angles exclus).

Figure 3. Talus and calcaneus FAC (angles excluded), plan 1,2 (axis 1 horizontal, axis 2 vertical).
jours regroupés avec *Cercopithecus*, et se trouvent du côté des variables CA3 et AS5. En revanche, *Papio, Theropithecus, Erythrocebus* et *Macaca* se trouvent de l'autre côté, près de l'AS2. Comme avant, *Mesopithecus, Cercocebus* et *C. aethiops* se placent au centre des axes (Figure 3).

L'insertion des mesures angulaires modifie la nature des variables qui caractérisent les axes, ainsi que leurs contributions relatives, qui baissent considérablement. Ainsi, l'axe 1 est maintenant caractérisé, d'un côté, par la CA1 et l'AS12 et, de l'autre côté, par l'AS2, et l'axe 2 par la CA3 (Figure 4). L'axe 3 est maintenant caractérisé par la CA2. Les Colobinae et *Cercopithecus* se regroupent près des variables CA1, AS12 et CA3. En revanche, *Papio, Theropithecus, Erythrocebus* et *Macaca sylvana* se trouvent à l'opposé, proches des variables AS2 et CA2. *Mesopithecus, Cercocebus* et *C. aethiops* se trouvent encore une fois ensemble au centre des axes (Figure 4).

Figure 4. Plan 1,2 (axe 1 horizontal, axe 2 vertical) de l'AFC des astragale et calcanéum (toutes les variables).

Figure 4. Talus and calcaneus FAC (all measurements), plan 1,2 (axis 1 horizontal, axis 2 vertical).
DISCUSSION

Dans toutes les AFC, nous avons constaté la séparation de trois groupes différents. Un groupe comprend les primates qui sont principalement terrestres. À l'opposé de ce groupe, nous retrouvons un ensemble comprenant des formes principalement arboricoles. Enfin, près du centre des axes, et entre ces deux groupes, nous retrouvons un ensemble de transition qui comprend des primates menant un mode de vie semi-terrestre, exploitant le sol autant que les arbres. Huit mesures sont responsables de cette séparation des groupes, dont 4 sur l'astragale : AS2, la largeur de la partie dorsolatérale du col ; AS5, la hauteur de la facette astragalocalcanéenne postérieure ; AS9, la largeur maximale du col dans le plan dorsal ; et A12, l'angle de torsion de la tête. Les 4 autres mesures sur le calcanéum sont : CA1, l'angle d'inclinaison de la facette calcaneoastragalienne postérieure ; CA2, la largeur du tuber calcanei ; CA3, la hauteur du tuber calcanei ; et CA11, longueur maximale de la facette calcaneoastragalienne postérieure dans le plan dorso-médial.

Le deuxième groupe comprend des primates qui habitent la canopée des forêts, ne descendant que très rarement au sol, comme la majorité des Colobinae et certaines espèces de *Cercopithecus*. Les Colobinae sont en majeure partie des quadrupèdes, des grimpeurs et des sauteurs arboricoles (Rose, 1973 ; Morbeck, 1979 ; Fleagle, 1980 ; Gebo et Chapman, 1995). D'autre part, la plupart des cercopithèques occupent toutes les strates de la
forêt (ainsi que le sol) et sont surtout des quadrupèdes arboricoles et des grimpeurs (Rose, 1973 ; Gebo et Sargis, 1994; Gebo et Chapman, 1995 ; McGraw, 1996). Cet ensemble présente un col astragalien assez gracile qui traduit l’absence des forces importantes uniplanaires mais plutôt une dissipation des forces appliquées (Langdon, 1986). La torsion prononcée de la tête astragalienne (Tableau 1) suggère une supination de la partie distale du pied, qui place les métacarpiens et les phalanges en position de préhension (Strasser, 1988). La facette astragalocalcanéene postérieure est bien courbée

| Tableau 1. Valeurs moyennes (en degrés), écart type et variance de l'angle de torsion de la tête de l'astragale (AS12). |
|---|-----------------|----------|---------|
| | N | Moyenne | SD | Variance |
| Mesopithecus pentelici | | | | |
| PIK-236 | 29.7 | 26 | 3.2 | 10.3 |
| PIK-237 | 32 | 31 | | |
| Colobinae | | | | |
| Semnopithecus | | | | |
| Presbytis | 3 | 33.0 | 1.7 | 3.0 |
| Pygathrix | 5 | 29.4 | 2.9 | 8.8 |
| Nasalis | 2 | 30.0 | 2.0 | 4.0 |
| Rhinopithecus | 10 | 33.0 | 1.4 | 2.0 |
| Colobus | 8 | 31.9 | 4.5 | 20.5 |
| Cercopithecidae | | | | |
| Theropithecus | 6 | 22.5 | 3.2 | 10.7 |
| Erythrocebus | 3 | 26.7 | 1.5 | 2.3 |
| Papio | 24 | 22.6 | 19.3 | 8.6 |
| Cercopithecus aethiops | 7 | 22.6 | 3.7 | 13.6 |
| Cercopithecus | 22 | 22.6 | 2.6 | 6.9 |
| Miopithecus | 3 | 22.0 | 3.4 | 12.0 |
| Cercocebus | 7 | 24.0 | 2.2 | 5.0 |
| Macaca | 12 | 21.5 | 3.5 | 12.1 |
| Macaca fascicularis | 5 | 23.0 | 3.1 | 9.5 |
| Macaca sylvana | 9 | 22.5 | 3.4 | 11.8 |

Table 1. Mean values (in degrees), standard deviation, and variance of the angle of torsion of the talar head (AS12).
et s’articule avec une facette calcanéo-astragalienne postérieure assez longue et modérément inclinée. Cette disposition favorise d’amples mouvements entre l’astragale et le calcanéum, suggérant une inversion distale, ainsi que la présence du mouvement hélicoïdal, qui caractérise le pied des hominoïdes grimpeurs (Langdon, 1986 ; Strasser 1988 ; Lewis, 1989). Le tuber calcanei haut et étroit s’associe avec les muscles Triceps suraë qui sont peu développés (Badoux, 1974), permettant plutôt une flexion plantaire contrôlée.

Le troisième groupe, dans lequel nous retrouvons Mesopithecus, consiste en un ensemble de primates qui sont à l’aise sur les arbres autant que sur le sol, comme les espèces de Cercocebus et Macaca, ainsi que C. aethiops. Les macaques et les cercocèbès sont des quadrupèdes à la fois arboricoles et terrestres, capables de grimper et de sauter (Rose, 1973 ; Fleagle, 1980 ; Rollinson et Martin, 1981 ; Cant, 1988 ; Gebo et Chapman 1995). C. aethiops se déplace au sol et dans les arbres avec la même facilité en marchant et en grimpant (Rose, 1979 ; Gebo et Sargis, 1994). Ces formes intermédiaires présentent un ensemble de caractères associés à une vie arboricole ainsi que terrestre (Napier, 1968 ; Rollinson et Martin, 1981). Le col astragalalien est relativement robuste, mais la torsion de la tête est modérée, se trouvant du côté des terrestres (Tableau 1). Mesopithecus possède aussi un col modérément robuste (Figure 1) et un angle de torsion relativement prononcé mais dont les valeurs sont assez variables (Tableau 1). La facette astragalocalcanéenne postérieure est légèrement concave et s’articule avec une facette calcanéo-astragalienne postérieure courte et variables inclinée. Le tuber calcanei est toujours large mais peut être soit haut, comme chez les cercocèbès, soit bas, comme chez Mesopithecus et les macaques. Ce mélange des caractères traduit un compromis qui permet une certaine stabilité aux articulations du pied, lors de la propulsion pendant la course au sol, ainsi qu’une certaine mobilité qui favoriserait la préhension, lors de la marche et du grimper sur les arbres. Mais la gracilité relative de ces os, ainsi que les caractères mentionnés ci-dessus, refléteraient une utilisation assez fréquente des substrats arboricoles.

Ces adaptations de la partie proximale du pied de Mesopithecus à une vie semi-terrestre sont en accord avec les interprétations fonctionnelles d’autres parties de son squelette post-crânien. Ces interprétations suggèrent un animal semi-terrestre qui ressemblait aux macaques et aux semnopithèques semi-terrestres (Szalay et Delson, 1979 ; Zapfè, 1991). Ainsi, Mesopithecus pouvait vivre dans les arbres des forêts galeries des pays boisés avec une canopée assez discontinue, s’obligéant à se déplacer au sol pour changer de site d’alimentation. Cette interprétation de sa paléobiologie est aussi
en accord avec les données sur le paléoenvironnement du site de Pikermi, car il s'agissait d'un environnement de pays boisé, longé des fleuves, avec peu d'espèces qui formeraient une canopée close (Solounias et Dawson-Saunders, 1988).

REMERCIEMENTS

Je suis très reconnaissant à MM. L. de Bonis, J.-P. Gasc, et M. Godinot, ainsi qu'à Mmes F.K. Jouffroy et B. Senut pour leurs remarques constructives au cours de ce travail. De plus, je tiens à remercier MM. J. Repérant et L. Ginsburg, pour l'accès au matériel actuel et fossile au Laboratoire d'Anatomie Comparée et à l'Institut de Paléontologie du Muséum National d'Histoire Naturelle. L'aide de M. M. Baylac a été indispensable pour l'interprétation des AFC.

ABSTRACT

The genus *Mesopithecus* is known from cranial and postcranial material from several Eurasian Upper Miocene to Upper Pliocene sites (10-3 mya) (Szalay & Delson, 1979). Its cranial and postcranial characters place it as a *Colobinae incertae sedis* (Szalay & Delson, 1979; Strasser & Delson, 1987; de Bonis et al., 1990), with closest affinities with the Asian Colobines (Zapfe, 1991). Its postcranium is characterised by a mosaic of features phylogenetically and functionally related to arboreal Colobines, as well as others, considered as specialisations to semi-terrestrial and terrestrial habits (Gaudry, 1862; Strasser & Delson, 1987; de Bonis et al., 1990; Zapfe, 1991). In this paper I investigate, by means of factorial analyses, the locomotor adaptations as reflected on the proximal foot of *M. penteliceps*, from Pikermi, Greece. Three fossil tali: PIK-236, PIK-237, and PIK-238, and 5 calcanei: PIK-239, PIK-240, PIK-266, PIK-1745, and PIK-1746 (Figure 1), all belonging to *M. pentelici* and kept in the collections of the Laboratoire de Paléontologie of the M.N.H.N., were studied. Furthermore, I was provided with the tali and calcanei of 128 extant cercopithecids, from the collections of the Laboratoires d'Anatomie Comparée, and d'Anthropologie Biologique of the M.N.H.N. Twenty-one linear and two angular functional measurements (Figure 2) were taken on both fossil and extant material and the raw measurements and angles were used in four factorial analyses of
correspondence (FACs), one for the talus, one for the calcaneus, one for both bones angles excluded, and the last one involving all measurements.

All FACs produced the same clusters of genera associated with some variables (see Figures 3, 4). *Erythrocebus, Theropithecus, Papio* and some *Macaca* species were grouped together associated with talar neck width (AS2), talar neck maximal width (AS9), the calcaneal pressure facet length (CA8), and the tuber calcanei width (CA2). This first group involved terrestrial adapted monkeys which are habitual terrestrial quadrupedal walkers and runners (Rose, 1973). The talar neck is robust with a weak torsion of the talar head (Table 1). The posterior talocalcaneal facet is gently concave and articulates with a short and steeply inclined posterior calcaneotalar facet. The tuber calcanei is low and wide. These features reflect limited midtarsal mobility in a foot capable of resisting stresses exerted during cursorial propulsion (Langdon, 1986; Strasser, 1988; Lewis, 1989). On the opposite side, Colobines and *Cercopithecus* were clustered together with the talocalcaneal posterior facet height (AS5), the tuber calcanei height (CA3), and the posterior calcaneotalar facet total length (CA11), the posterior calcaneotalar facet inclination angle (CA1), and the talar head torsion angle (AS12). This second group was composed mainly of arboreal species using arboreal quadrupedalism, climbing and leaping (Rose, 1973; Fleagle, 1980; Gebo & Sargis, 1994). The talar neck is gracile and head torsion is pronounced especially in Colobines (Table 1). The posterior talocalcaneal facet is very concave, and articulates with a long and smoothly oblique calcaneotalar facet. The tuber calcanei is high and narrow. These features are associated with controlled powerful grasping capacities and important midtarsal mobility in the foot (Langdon, 1986; Strasser, 1988; Lewis, 1989). *Mesopithecus, Cercopithecus, C. aethiops*, and some *Macaca* species were placed near the center of the axes. This transitional group involved semi-terrestrial monkeys which are quadrupedal walkers, climbers, and leapers (Rose, 1973, 1979; Fleagle, 1980; Rollinson & Martin, 1981). The talar neck is slightly robust, and head torsion is moderate or can be variable (Table 1). The posterior talocalcaneal facet is gently concave and joins a short and variably inclined calcaneotalar facet. The tuber calcanei is either high or low, but always large. These features reveal a compromise between a rigid foot, resisting quadrupedal stresses, and a certain degree of midtarsal mobility for grasping arboreal supports.
BIBLIOGRAPHIE

