Numerical Modeling of Storm Surges in the Eastern Mediterranean under Climate Change + Forecast Platform

- Y. Krestenitis
- Y. Androulidakis
- K. Kombiadou
- V. Baltikas

Lab of Maritime Engineering

Dept of Civil Engineering

Aristotle University of Thessaloniki – Greece

EastMed Symposium 2015

Regional Cooperation in Eastern Mediterranean Sea Research The University of Haifa, Israel, 19-21 October 2015

Research Associate

Professor

Research Associate

Research Associate

PhD Candidate

Thal s

Description/Aim of Research I

Storm Surge: Sea Level Variation due to low Sea Level Pressure (SLP) + high Wind Velocities

- Increase of **coastal inundation** and erosion **risk** on coastal low-land areas
- Intense impacts on: People Properties Habitats Public spaces Agriculture
- Study area: Mediterranean basin
- Focus on eastern diverse topography regions: Aegean + Ionian Seas
- Output: maps of hazard areas + occurrence probabilities & magnitudes of storm surge extremes based on climate models/scenarios

Aims – Climate Change impacts on Sea Levels

• Investigation through modelling of storm surge extremes for 150 years: Control Run (1951-2000) & A1B-scenario Run (2001-2100)

- Estimation of future magnitudes and occurrence frequencies of storm surge maxima under a mediocre to pessimistic climatic scenario for GHG emissions/concentrations
- Climate Change signal on Mediterranean coastal zone
- Estimate Sea Level extremes and inundation probabilities through CVI for Greek coastal zone

Objectives – Operational perspectives in Sea-state Forecasts

Development of a high-resolution state-of-the-art forecasting system for waves, circulation and storm surges in the Thermaikos Gulf (Thessaloniki, northern Greece).
Delivery of 3-day forecasts through TV broadcasts and web and GIS applications.
Dissemination of high-resolution results readily exploitable by every-day users (fisheries, aquacultures, tourism, sea-related recreational and sea-sport activities etc), environmental modellers and coastal zone management projects.

•Delivery of products **focused on areas** of special interest, like aquacultures and protected areas.

•Alerting public (and authorities) in cases of extreme sea level elevation events over a threshold.

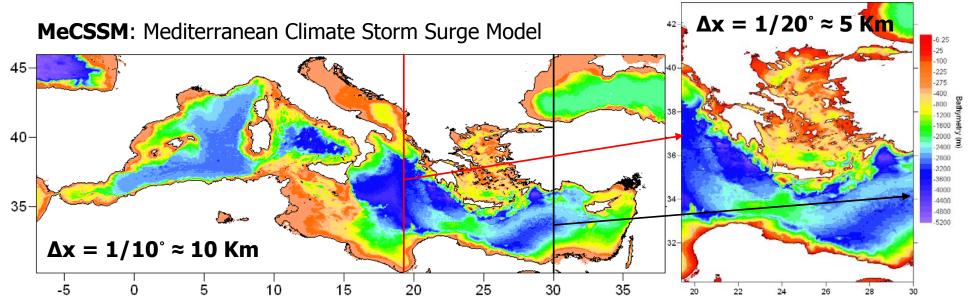
EastMed 2015

Methodology Data and Model

Available Data: sea-surface elevations / HNHS+GLOSS gauges / 5+4 stations / 1995-2012

Signal processing: detiding + steric effects removal with high-pass filter

Numerical Model: 2-D Shallow Water Equations


Forcing:SLP + Winds at 10m from RegCM3historical data 20C3M (1951-2000)IPCC SRS-A1B (2001-2100)

Results: Sea Surface Height due to meteorological effects

Boundaries: One-way nesting

Simulation Period: 1951-2100

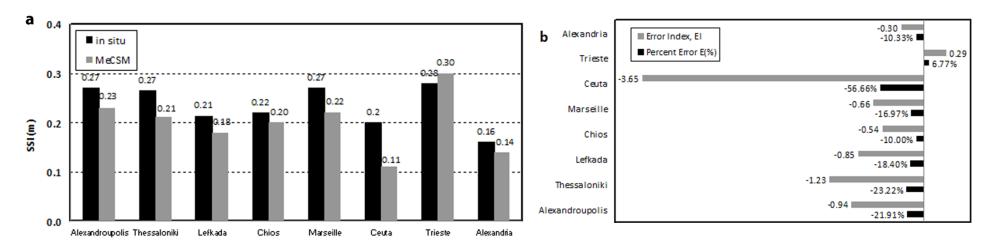
GreCSSM: Greek Climate Storm Surge Model

Study Tools Physical Features / Statistical Measures

SSH: Sea Surface Height

SSI: Storm Surge Index = Mean of 3 independent maxima SSH_{max} /year

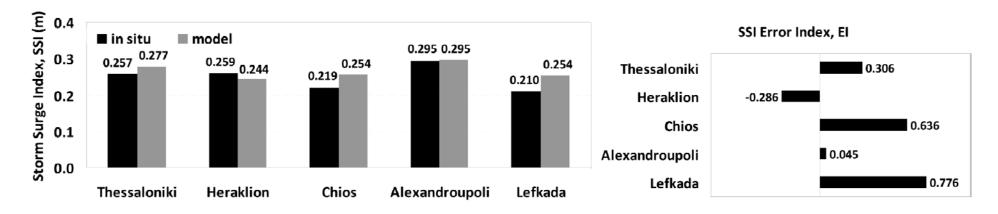
(independent event: abstain at least 120 hrs to the next and prior)


Percent Error:	$E(\%) = \frac{\overline{SSI}_{mod} - \overline{SSI}_{obs}}{\underline{\overline{SSI}_{mod} + \overline{SSI}_{obs}}} \cdot 100$			
Error Index:	$EI = \left(\overline{SSI}_{mod} - \overline{SSI}_{obs}\right) / \sqrt{\frac{\sigma_{SSI_{mod}}^2 + \sigma_{SSI_{obs}}^2}{2}}$			
Climate Change Index:	$CCI (\%) = \frac{\overline{SSI}_{mod}^{(FUTURE)} - \overline{SSI}_{mod}^{(PAST)}}{\overline{SSI}_{mod}^{(PAST)}} \cdot 100$			
Statistically coherent event: Statistically intense event:	$SLH_{coh} \ge (m + \sigma)$ $SLH_{int} \ge (m + 2\sigma)$	<i>m</i> : mean value of SSH time-series σ : standard deviation " "		

High-order **Percentiles** for **SSH**:

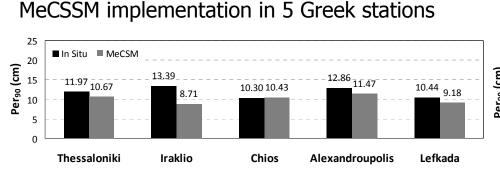
e.g. 95th percentile = indicates the value of SSH (m) below which 95% of observations in an ordered group fall

EastMed Model Validation Annual Maxima / Statistically Significant Values

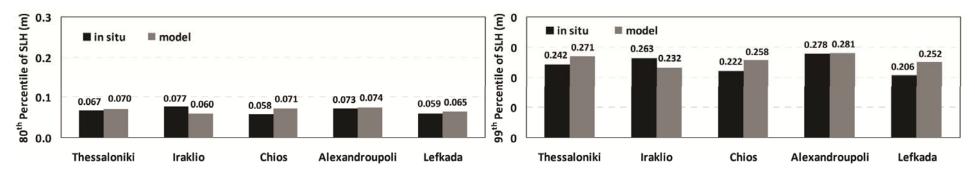


2015

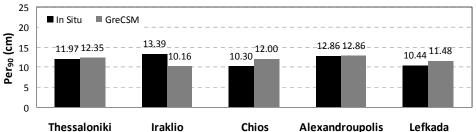
MeCSSM implementation in 8 Mediterranean stations


GreCSSM implementation in 5 Greek stations

Model Validation Interannual Maxima

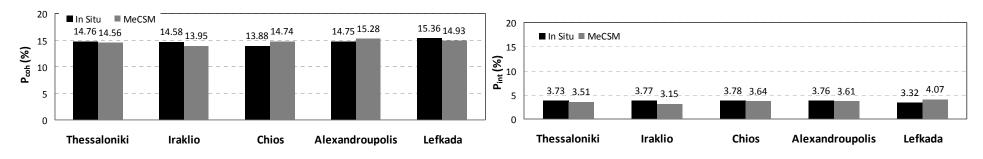


Comparisons In Situ vs. Model based on 80th, 90th and 99th Percentiles of SSH (m)

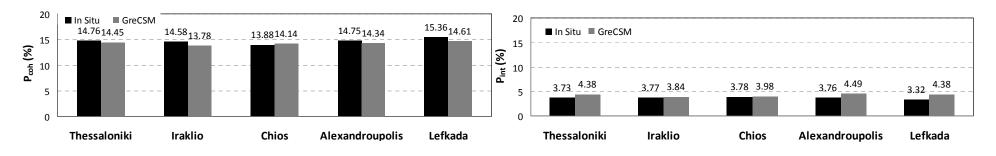

• Slight improvement of GreCSSM simulations

GreCSSM implementation in 5 Greek stations

- 20% of SSH values above 5,8 \sim 8 cm and 1% of SSH values above 21 \sim 28 cm
- Acceptable performance of GreCSSM
- The highest SSH extremes in North Aegean (Alexandroupoli)



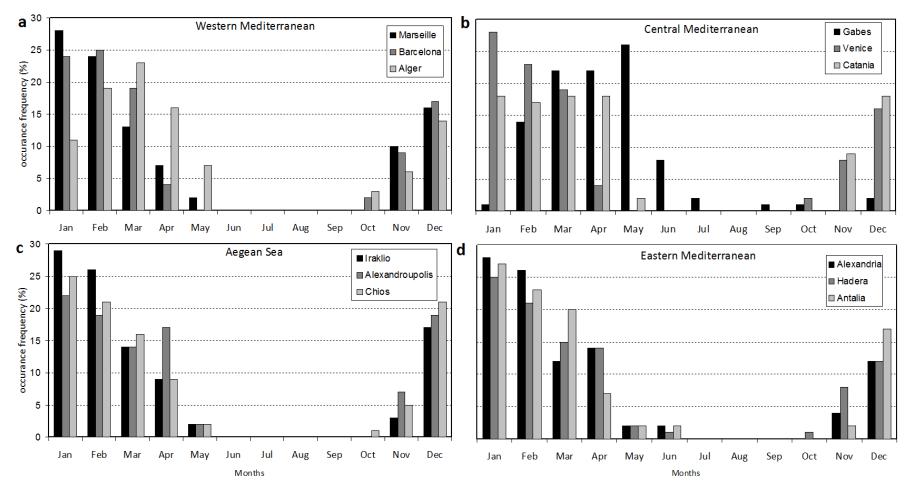
Model Validation Statistical Measures



Comparisons In Situ vs. Model based on Exceedance Probabilities P_{coh} and P_{int} (%)

MeCSSM implementation in 5 Greek stations

GreCSSM implementation in 5 Greek stations


- Good performance of both models for the depiction of statistically coherent events
- Slight improvement of GreCSSM simulations

Results Storm Surge Seasonality

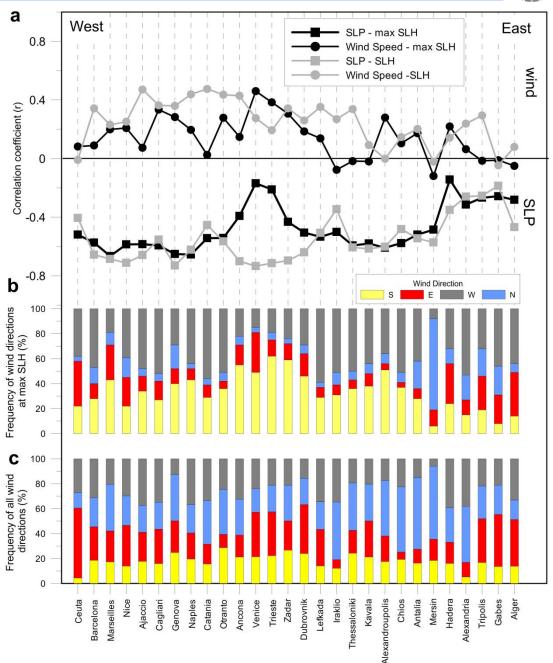
Seasonal percentage f (%) of SSH maxima occurrence at 12 locations

for the A1B-scenario Run during the 21st century

2001-2050 Increase of Winter events

2051-2100 Decrease of Winter events Increase of Spring events

Results SSH Response to Atmospheric Fields

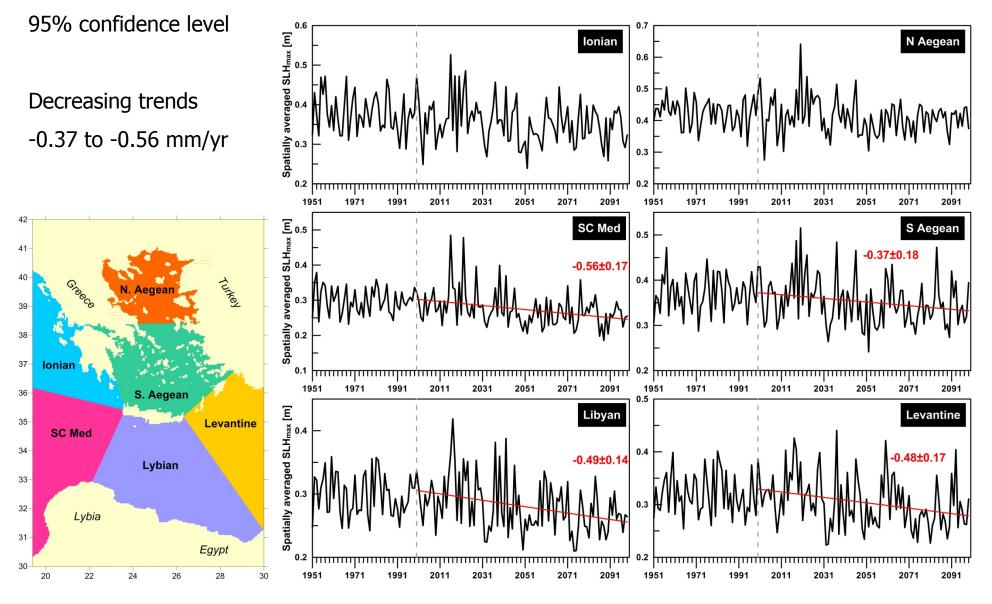


Pearson Correlation

for SLP vs. annual ${\rm SSH}_{\rm max}$

28 locations in the entire Mediterranean 150 yrs MeCSSM simulation

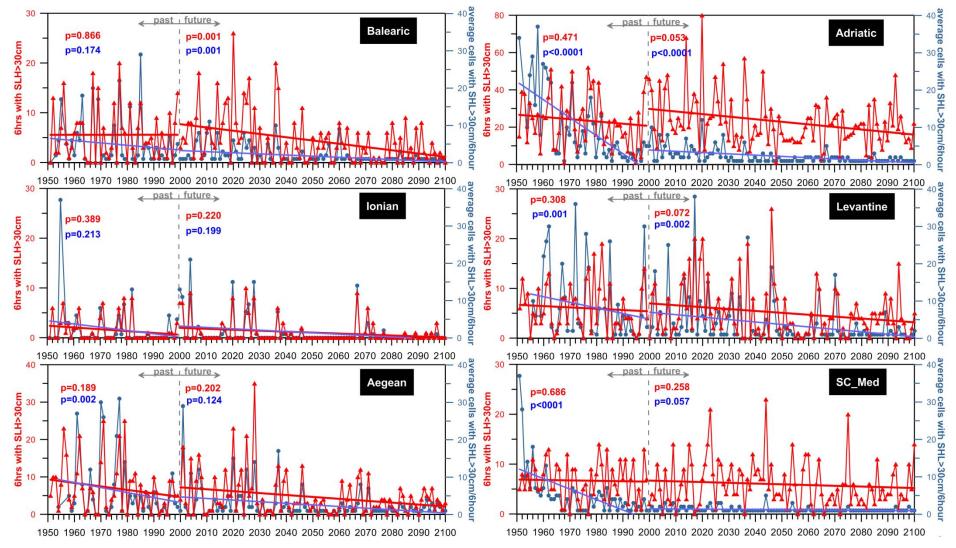
- Southern Greek coasts influenced less by SLP than other places
- Central Aegean → diverse
 topography (many islands) →
 big impact of SLP and not winds
- Influence of SLP in Adriatic and N. Ionian < S. Ionian
 High SSH mostly due to
 prevailing winds (Sirocco)
 in the area



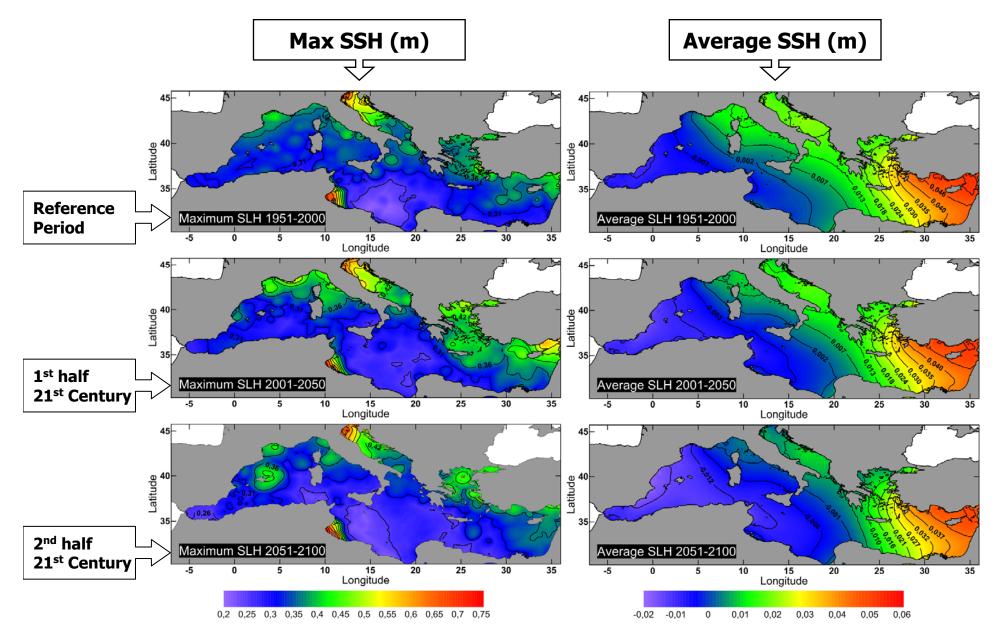
Results Annual Storm Surge Maxima Trends

Regional sub-basins evolution trends of spatially averaged annual SSH_{max}

Past (1951-2000) and Future (2001-2100)

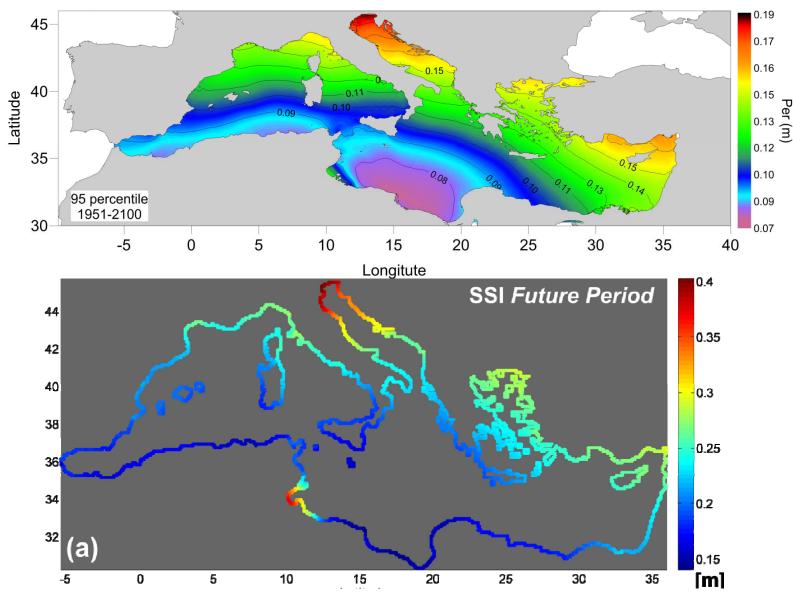

Results Storm Surge Duration/Coverage Trends

Regional sub-basins 95% confidence level evolution trends for SSH>30 cm


annual duration (hrs) and coverage area (cells)

Past (1951-2000) and Future (2001-2100)

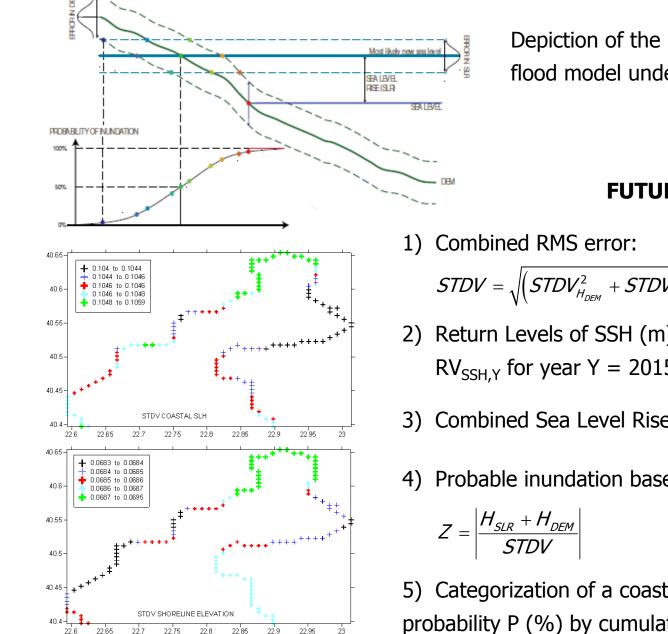
Results Regional Maxima/Average SSH Evolution



Results Mediterranean Extreme Storm Surges

Maps of 95th Percentile of SSH (m) and SSI (m)

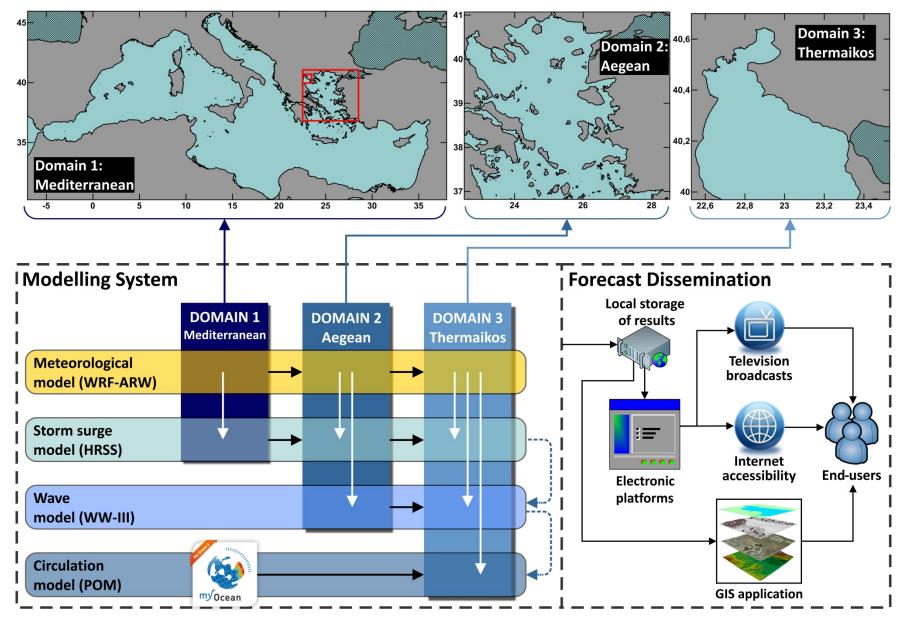
for the entire simulation period (1951-2100) and the A1B-scenario Run (2001-2100) respectively


Results Coastal Zone Climate Change Impact

Further Research Coastal Inundation Risk for Climate Change

Depiction of the proposed coastal zone flood model under Climate Change

FUTURE STEPS


$$STDV = \sqrt{\left(STDV_{H_{DEM}}^2 + STDV_{H_{SLR,Y}}^2\right)}$$

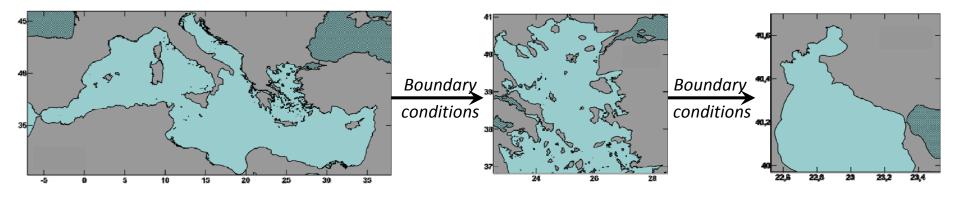
- 2) Return Levels of SSH (m) through **GEV**: $RV_{SSH,Y}$ for year Y = 2015, 2030, 2050, 2070, 2100
- 3) Combined Sea Level Rise $H_{SLR,Y} = SLR_Y + RV_{SSH,Y}$
- 4) Probable inundation based on Z:

5) Categorization of a coast based on inundation probability P (%) by cumulative normal distribution curve

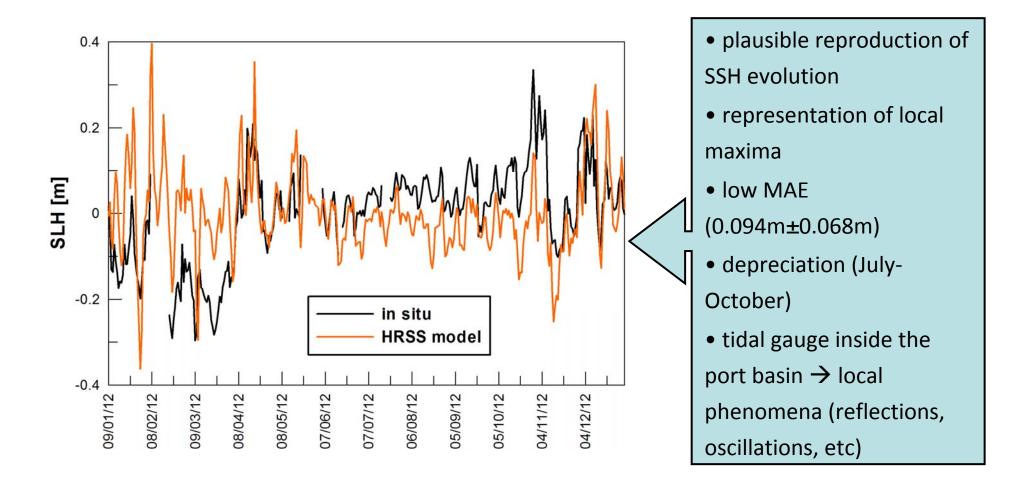
Application domain – Model coupling – Schematic representation of forecast apps

WaveForUs Storm Surge Model

High Resolution Storm Surge (HRSS) model

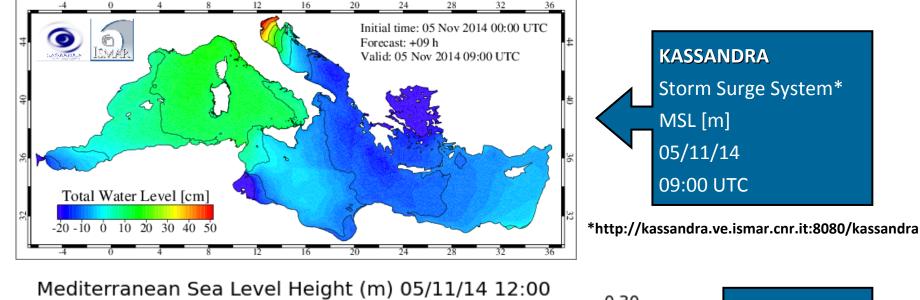

HRSS is a 2-D hydrodynamic model that simulates the changes to the mean Sea Level Height (SLH) taking into account:

- •Atmospheric forcing (wind and pressure fields)
- •Astronomical Tides Tidal Model (Schwiderski, 1980)
- •Geostrophy
- •Surface and seabed shear stresses
- •Impact of waves (superposition with WW-III wave-induced sea surface set-up)
- •Model results: SSH & depth averaged currents



HRSS model validation using insitu tidal gauge data from the Thessaloniki port

Local comparisons with HNHS point-measured data



WaveForUs Validation HRSS for the Mediterranean

HRSS model validation using comparison against KASSANDRA Project's map data

Spatial comparisons with similar operational systems

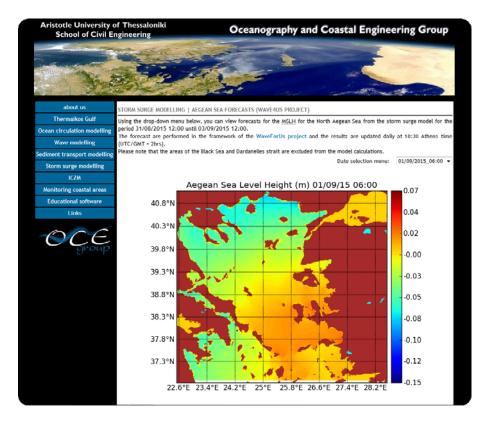
High-resolution forecast dissemination channels

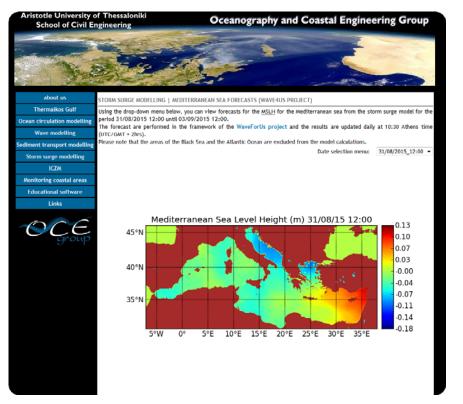
http://wave4us.web.auth.gr/index_eng.html

11/200				Thursday 25-6-2015 ελληνικά		
	A PILOT SYSTEM FOR THE DEVELOPMENT AND DELIVERY OF DAILY WAVE AND CIRCULATION FORECASTS FOR PUBLIC AND EMERGENCY USE IN THE THERMAIKOS GULF					
<u> </u>	Proj	ect acronym: WaveForUs	(Wave climate and coastal circ	ulation forecasts For public Use)		
the WaveForUs proj	ect t	ne forecasting system	partners f	forecast models forecasts		
3-day sea-state prognoses						
Using the drop-down menu below, you can view forecasts for the MSLH from the storm surge model (HRSS), the Significant wave height from the wave propagation model (WMII) and Temperature, Salinity and Velocity field irrom the circulation model (FOM) at depths of Om, 10m 2016 at the seabed for the period from 25/06/2015 12:00 to 28/06/2015 12:00. Results are presented as spatial distributions and time-series of oral cross-sections in areas of interest that can be viewed using the Results type selection menu. The forecast results are updated daily at 10:30 Athens time (UTC/GMT - 2ms)						
	You can also view the storm surge forecasts for the Mediterranean Sea Mediterranean Sea SLH forecasts					
		the storm surge for	ecasts for the North Aegean Sea	Aegean Sea SLH forecasts		
	the wave forecasts for the North Aegean Sea Aegean Sea wave forecasts					
the meteorological model forecasts WRF-ARW model forecasts						
			of the WaveForUs system in the	Web GIS platform		
Variable select	ion:	Results type selection:	Depth selection	: Date selection:		
Temperature	•	Spatial distribution V	Surface V	27/06/2015_15:00 ▼		
Mean Sea Leve Significant wa Temperature						
Salinity Current veloci	ma ma	kos Gulf Temper	ature (°C) 27/06/15	15:00		
				26.32		
	CON			25.27		
40	.6°N					
		Test -		- 24.22		
	Cart and			-23.17		
10	.4°N			25.17		
40	.4-1			- 22.12		
				21.07		
40	.2°N			20.01		
40						
				18.96		
				17.91		
	40°N					
	22.6°E	22.8°E 23	°E 23.2°E 23	.4°E 16.86		
	LLIO L	22.0 2 25				
	Operational pro-	me "Compatitivener	Feterense weblet and Root-tool	Terrestilan		
	National Action: "CO		Entrepreneurship" and Regions i hips of Production and Research			
EUROPEAN UNION MINISTRY OF E			NRS - GENERAL SECRETARIAT FOR RI	ESEARCH AND TECHNOLOGY		

Daily 3-day forecasts at 10:30

DION/ATLAS TV Broadcasts Local northern Greek TV Channel


WaveForUs Dissemination OCE Website & Web-GIS



Platform Forecast dissemination channels

Daily 3-day forecasts at 10:30

http://coastal.web.auth.gr/

http://ecoplan.static.otenet.gr:8079/WForUsApp/AppStart.html

Conclusions MeCSSM and GreCSSM

□ Acceptable to good performance of climatic storm surge model in Mediterranean, Aegean and Ionian seas is verified by in situ observations (annual, absolute maxima and statistical measures)

North Adriatic SSH maxima highest in the Mediterranean North Aegean SSH maxima higher than Central/South Aegean and Ionian

□ Absolute extreme of annual SSH maxima is estimated to increase in the 21st century under IPCC SRS-A1B

Seasonal occurrence of Storm Surge maxima is estimated similar in all stations in the future

Signals of Climate Change Impact based on annual extremes on the coastal zone: Increase in the 1st half of the 21st century Decrease in the 2nd half of the 21st century

□ Evolution of annual SSH maxima (2000-2100) in regional seas appears to slightly increase around the middle of the 21st century and decline towards 2100. Average SSH remains stable from the past to 2050 and is estimated to decrease slightly ~1 mm in the Levantine Sea

Storminess attenuation corroborated: Storm Surge events duration and spatial coverage are estimated to decrease with 95% confidence in all regional seas of the Mediterranean

□ Final Step: Greek coastal zone categorization based on inundation risk due to return levels of storm surge induced SSH

Conclusions WaveForUs

■ WaveForUs is already providing daily forecast results through the program webpage (<u>http://wave4us.web.auth.gr/</u>), a web-GIS application and 6 daily TV broadcasts.

Evaluation of the simulations showed the effectiveness of the sea-state forecasts is quite satisfactory. Acceptable to good performance of forecast storm surge model in the Mediterranean, Aegean and Ionian seas is verified by in situ observations.

□ The WaveForUs forecasting system may be a very useful and somewhat reliable tool for users and their everyday sea-based activities.

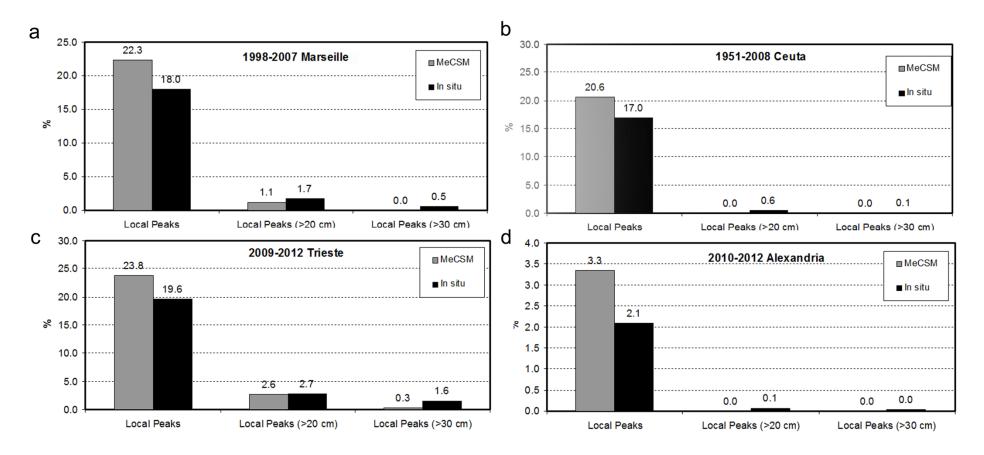
• On-going work:

Survey with questionnaires in order

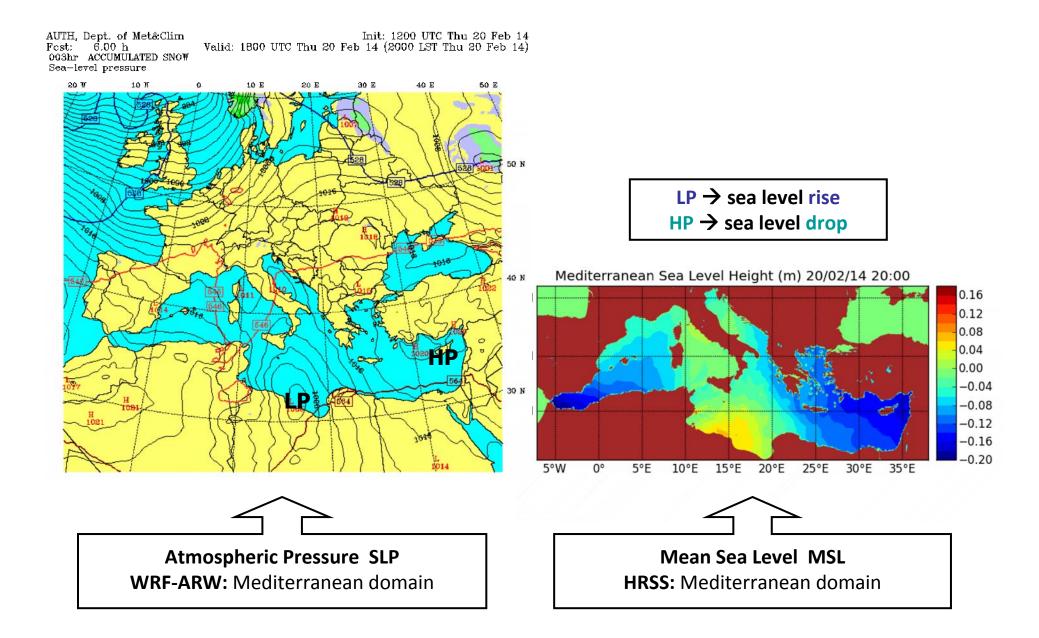
- to evaluate the public response to the WaveForUs system
- to produce more friendly-user products to general public and more useful products to professionals

Acknowledgements

- This research has been co-funded by the EU (European Social Fund ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) Research Funding Program: THALES – Investing in knowledge society through the European Social Fund under the Project CCSEAWAVS. WaveForUs project is funded by the national action COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors in the framework of the operational program Competitiveness and Entrepreneurship (NSRF 2007-2013)
- 2. The authors are grateful to Y. **Tegoulias**, C. **Anagnostopoulou** and D. **Tolika** (Dept. of Meteorology and Climatology, AUTh) for providing the atmospheric fields produced by RegCM3 model and used as forcing input for the storm surge simulations of our study.
- The authors are also grateful to MedGLOSS and HNHS for providing in situ tide-gauge data used for validation of the storm surrge model performance, and MyOCEAN (Copernicus) for initial condition fields in the Mediterranean.



Model Validation Local Maxima Occurrence


Comparisons In Situ vs. Model based on Percentage of Local Maxima (%)

MeCSSM implementation in 4 Mediterranean Stations

HRSS model results of MSL compared to the SLP forcing field by WRF-ARW

