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Preface

Microfit 5.0 represents a major advance over the earlier versions of the package. It contains
many new features and covers a number of recent developments in the areas of multivariate
time series analysis and multivariate volatility modelling.

This volume describes how to install and run the software, use its various menus, op-
tions, formulae and commands. In addition, it contains detailed reviews of the underlying
econometric and computing methods, together with 86 tutorial lessons using more than 40
different data sets. It is hoped that this volume can serve as an interactive tool in the
teaching of time series econometrics, supplementing recent econometric texts.

Microfit 5.0 is particularly suited for the analysis of macroeconomic and financial time
series data at different frequencies: daily, monthly, quarterly and yearly.

This volume is in six parts:

Part I (Chapters 1-2) provides an introduction to the package and shows how to install
and run it on personal PCs.

Part II (Chapters 3-5) deals with reading/saving of data and graphic files, management
and processing of data, and preliminary data analysis.

Part III (Chapters 6-8) provides an account of the estimation menus and the various
single and multiple equation options that are available in Microfit 5.0.

Part IV (Chapters 9-20) is devoted to tutorial lessons covering many different issues and
problems, ranging from data management and data processing to linear and non-linear
regressions, univariate time series analysis, GARC H modelling, Probit and Logit esti-
mation, unrestricted VAR modelling, cointegration analysis, and SURFE estimation.

Part V (Chapters 21-23) provides a review of the underlying econometric techniques
for the analysis of single and multiple equation models.

Part VI (Appendices A-B) provides information on the size limitations of the package,
and tables of critical values.
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many Microfit users, students, and colleagues, particularly those at Cambridge University,
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Chapter 1

Introduction

1.1 What is Microfit?

Microfit is an interactive econometric software package designed specifically for the econo-
metric modelling of time series data. It is suitable for classroom teaching of undergraduate
and post-graduate courses in applied econometrics. It has powerful features for data process-
ing, file management, graphic display, estimation, hypothesis testing, and forecasting under a
variety of univariate and multivariate model specifications. These features make Microfit 5.0
one of the most powerful menu-driven time series econometric packages currently available.

Microfit generates output in carefully set out tables and graphs, virtually in a matter of
seconds. Output from Microfit can be sent directly to a printer, saved on a disk file to be
printed subsequently, or used in a text file as part of a printed report.

Microfit accepts ASCII and binary data files, Excel worksheets, and data files in a variety
of formats such as comma delimited (CVS), TXT and AREMOS (TSD) files. It also readily
allows for extension, revision, and merging of data files. Data on Microfit’s workspace can
be exported to spreadsheet packages in the CSV and TSD formats. Other software in the
operating system can be accessed easily. For routine and repetitive data processing tasks,
Microfit employs commands close to conventional algebraic notation.

The strength of the package lies in the fact that it can be used at different levels of
technical sophistication. For experienced users of econometric programs it offers a variety of
univariate and multivariate estimation methods and provides a large number of diagnostic
and non-nested tests not readily available on other packages. The interaction of excellent
graphics and estimation capabilities in Microfit allows important econometric research to be
carried out in a matter of days rather than weeks.

1.2 New features of M:icrofit 5.0

Microfit 5.0 represents a major advance over the earlier versions of the package. It makes
more intensive use of screen editors and window facilities for data entry, model specification,
and for easy storage and retrieval of data and result files. Using the new version you can run
regressions up to 102 regressors with an almost unlimited number of data points (5,000,000
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observations as compared to the 3,000 limit imposed in Microfit 4.0). The time series
dimension of the observations can be adjusted dynamically. You can also move readily
between drives, directories, and sub-directories for retrieving and saving data input and
output files. Scrolling within a result screen is also possible. Almost all files created using
Microfit 4.0 can be used in Microfit 5.0.

The new options in Microfit 5.0 include:

1

2.

10.
11.

12.

. Virtually no limits on the data sizes being analyzed — given available PC memory.
Importing and exporting of Fxcel files.

. Much enhanced graphic module with the possibility of many types of graphs and an
almost unrestricted number of plots per screen.

. Revamped interface — much more transparent instruction screens.

. Enhanced help files — online documentation.
. Additional unit roots test Phillips-Perron, ADF-GLS, ADF-W S, and ADF-MAX.

Analysis of cointegrating VARX models. This extends the popular cointegration mod-
ule to the case where the model contains weakly exogenous variables, essential for mod-
elling of small open economies, for example, used in modelling of global economy. This
option is also used for Global VAR (GV AR) modelling. See Pesaran, Schuermann,
and Weiner (2004) and Garratt, Lee, Pesaran, and Shin (2006).

. Forecasting, impulse response analysis, persistence profiles and error variance decom-
position for VARX models.

. Bootstrapped critical values for tests of over-identifying restrictions in cointegrated
models (very important in practical uses of the cointegrating options).

Small sample simulation of the critical values of unit roots and cointegration tests.

Bootstrapped error bounds for the impulse responses, persistence profiles and error
variance decompositions for VAR, VARX, and cointegrated VAR and VARX options.

Multivariate GARCH models — this option allows modelling of volatilities of many
assets jointly based on Pesaran and Pesaran (2007). This option allows estimation
with Gaussian and multivariate ¢-distributed shocks (important for the analysis of
fat-tailed distributions) and would be particularly helpful in empirical finance.

For data analysis, Microfit 5.0 has a large number of additional time series and econo-
metric features, including new functions and commands, new single-equation options, and

new

multivariate time series techniques.
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1.2.1 New functions and commands

New functions included in Microfit 5.0 are:

- NONPARM computes nonparametric density estimation using Gaussian and Epanech-
nikov kernels with Silverman rule of thumb and least squares cross-validation band
widths.

- REC_MAX(X) and REC_MIN(X) compute the maximum and minimum of X
recursively over a specified sample period.

- ROLL MAX(X,h) and ROLL MIN(X, h) compute the maximum and minimum
of X using rolling windows of size h over a specified sample period.

- MAV (X, p) function, which computes a p-th order moving average of X.

- GDL(X,)\) is the geometric distributed lag function with the lag coefficient A.
New commands in Microfit 5.0 are:

- DF PP is the Phillips-Perron (due to Phillips and Perron (1988)) unit roots test.

- In addition to standard ADF statistics, it is also possible to compute ADF _GLS (due
to Elliott, Rothenberg, and Stock (1996)), ADF _MAX (due to Leybourne (1995)),
and ADF WS (due to Park and Fuller (1995)) statistics. Unit root tests can also be
carried out in the case of ADF regressions subject to known breaks.

- CCA performs canonical correlation analysis on two sets of variables, after controlling
for a third set of variables.

- FILL  FORWARD replaces current missing values by the last available observations.
- FILL MISSING replaces current missing values with a value specified by the user.

- PCA performs principal components analysis on a set of variables after filtering out
the effects of another set of variables.

1.2.2 Single equation estimation techniques

The single-equation options in Microfit 5.0 include:
- Linear and non-linear OLS and Instrumental Variables (IV) regressions.
- Recursive and Rolling Regressions.

- Estimation of Regression Models with Autoregressive and Moving Average
Errors Cochrane-Orcutt, Maximum Likelihood and IV Procedures.
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- Estimation of Conditionally Heteroscedastic Models. Maximum likelihood es-
timation of regression models under a variety of conditionally heteroscedastic error
specifications, such as ARCH, GARCH, GARCH in mean,Absolute value GARCH,
absolute value GARC' H in mean, exponential GARCH , exponential GARC H in mean.
The ARCH and GARCH models can be estimated for two different specifications
of the conditional distribution of the errors, namely normal and the Student’s t-
distributions.

- Logit and Probit Estimation.

- Phillips-Hansen’s Fully Modified OLS Estimation. This procedure provides
single-equation estimates of the cointegrating relations.

- Autoregressive-Distributed Lag (ARDL) Estimation Procedure. This pro-
cedure provides estimates of a single cointegrating relation on the basis of an ARDL
model selected by means of model selection procedures such as Akaike, Schwarz, Han-
nan and Quinn, and R2. This approach also readily allows for inclusion of time trends,

seasonal dummies and other deterministic/exogenous regressors in cointegrating rela-
tion. See Pesaran and Shin (1999) and Pesaran, Shin, and Smith (2001).

- Diagnostic and misspecification test statistics.

- Non-nested tests. Tests of linear versus log-linear models, level-differenced versus
log-differenced models, and other non-linear specifications of the dependent variable.

1.2.3 System equation estimation techniques

Microfit 5.0 provides an integrated tool-box for the analysis of multivariate time series mod-
els. The estimation and testing procedures cover the following models:

- Estimation of Unrestricted VAR Models. This option provides estimates of
the coefficients in the VAR model, together with various diagnostic test statistics
for each equation in the VAR model, separately. It allows automatic order selection
in the VAR using Akaike, Schwarz, and likelihood-ratio procedures, Granger (1969)
block non-causality tests, orthogonalized and generalized impulse response in VAR
models (Sims (1980), Koop, Pesaran, and Potter (1996), Pesaran and Shin (1998)).
Orthogonalized and Generalized Forecast Error Variance Decomposition in unrestricted
and cointegrating VAR models. The generalized impulse responses are new and, unlike
the orthogonalized responses, do not depend on the ordering of the variables of the

V AR model.

- Estimation of Seemingly Unrelated Regression Equations. Estimation and
hypothesis testing in systems of equations by the Seemingly Unrelated Regression
Equations (SURE) method (Zellner 1962). ML estimation and hypothesis testing
in systems of equations subject to parametric restrictions. The restrictions could be
homogeneous or non-homogeneous, and could involve coefficients from different rela-
tions (such as cross-equation restrictions).
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- Two-Stage and Three-Stage Least Squares.
- Two-Stage and Three-Stage Restricted Least Squares.

- New Cointegration Tests in VAR and VARX Models. These tests allow for
deterministic linear trends in the underlying VAR model both with and without re-
strictions on the trend coefficients, and enable the user to carry out the Cointegration
tests when one or more of the /(1) variables are exogenously determined. Microfit 5.0
allows the users to simulate critical values at any desired level of significance for the
cointegration tests.

- Long-Run Structural Modelling. This estimation procedure allows you to esti-
mate and test more than one cointegrating relations subject to identifying and over-
identifying restrictions on the long-run (or cointegrating) relations. The restrictions
can be homogeneous or non-homogeneous, and can involve coefficients from different
cointegrating relations. The long-run structural modelling also allows analysis of sub-
systems where one or more of the I(1) variables are exogenously determined. See
Pesaran, Shin, and Smith (2000).

- Impulse Response Analysis and Forecast Error-Variance Decomposition.
The program now allows computations of orthogonalized and generalized impulse re-
sponse functions, and forecast error variance decomposition in the case of cointegrating
VAR models. It also produces estimates of the persistence profiles for the effect of
system-wide shocks on the cointegrating relations. See Pesaran and Shin (1996) and
Pesaran and Shin (1998).

- Computation of Multivariate Dynamic Forecasts. Multivariate dynamic fore-
casts for various horizons can be readily computed using Microfit 5.0, both for un-
restricted and cointegrating VAR models, and for Seemingly Unrelated Regression
Equations with and without parametric restrictions.

1.3 Tutorial lessons

Important features of Microfit are demonstrated throughout this manual by means of 82
tutorial lessons, using data files supplied with the program. There are lessons in data man-
agement; data transformation; graphics (plotting time series, scatter diagrams, histograms);
displaying; printing and saving results; estimation; and hypothesis testing and forecasting,
using a variety of univariate and multivariate econometric models. These lessons and the
details of econometric methods provided in Chapters 21, 22 and 23 are intended to com-
plement the more traditional econometric texts used in quantitative economics courses, and
help further establish the concept of interactive econometric teaching in the profession.
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1.4 Other features of Microfit 5.0

Many useful features of Microfit 4.0 have been either retained or have been greatly enhanced,
particularly as far as data inputs, interface and graphics are concerned. A summary of these
features follows.

1.4.1 Data management

Microfit can be used to input data directly from the keyboard, from raw ASCII data files,
csv, Fxcel spreadsheet files, or from special Microfit files prepared and saved previously
by the package. The data can be input as undated series or as daily, monthly, quarterly,
half-yearly or yearly frequencies. Integral parts of the data management system of Microfit
are the facilities provided for the extension, revision and merging of the data files. These
data management facilities allow the user to extend an existing data file by adding more
observations and/or more variables to it. It is also possible to input and output raw data
files in ASCII, CSV and Fzcel spreadsheets to and from Microfit.

1.4.2 Data transformations

Microfit allows the user to compute new series as algebraic transforms of existing data
using standard arithmetic operators, such as + - / *, and a wide range of built-in functions
including MAX, MIN, SIGN, RANK, and ORDER. Time trends, seasonal dummies,
and random numbers from UNIFORM and NORMAL distributions can also be generated
easily by Microfit.

1.4.3 High-resolution graphics

Microfit can be used to produce high-quality scatter diagrams and graphs of variables plotted
against time or against another variable, with the option of adding headings to the graph.
In Microfit 5.0 there are no effective limits on the number of time series plots that can be
shown on the same screen. A hard copy of the graphs can be produced on Laser and Laserjet
printers in black and white and in colour when available. Microfit can also automatically
produce graphs of actual and fitted values, residuals, histograms with superimposed normal
and t-distribution in the case of the ARCH and GARCH options, as well as graphs of
forecasts and concentrated log-likelihood functions.

Microfit 5.0 allows the graphs to be saved for importation into word-processing programs
such as Microsoft Word and Scientific Word.

1.4.4 Batch operations

Microfit allows the user to run batch jobs containing formulae, samples, and simulation
commands. This facility is particularly useful when the same transformations of different or
revised data sets are required.
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1.4.5 General statistics

Microfit allows the user to compute:

- Means and standard deviations.

- Skewness and kurtosis measures.

- The coefficient of variation.

- Correlation coeflicients of two or more variables.

- Minimum and maximum of a series.

- The autocorrelation coefficients and their standard errors.

- Estimates of the spectral density function and their standard errors using Bartlett,
Tukey and Parzen windows.

1.4.6 Dynamic simulation

Important facilities in Microfit are the SIM and SIMB commands, which allow the user to
simulate dynamically any non-linear difference equation both forwards and backwards.

1.4.7 Other single equation estimation techniques

Microfit 5.0 estimates regression equations under a variety of stochastic specifications. The
estimation techniques carried over from Microfit 3.0 include:

- Ordinary least squares.
- Generalized instrumental variables.
- Two-stage least squares.

- Recursive and rolling estimation by the least squares and instrumental variables meth-
ods.

- Non-linear least squares and non-linear two-stage least squares.
- Cochrane-Orcutt iterative technique.

- Maximum likelihood estimation of regression models with serially correlated errors
(both for AR and M A error processes).

- Instrumental variable estimation of models with serially correlated errors (both for AR
and M A error processes).

- Maximum likelihood estimation of ARM A or ARIM A processes.
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- Maximum likelihood estimation of cointegrated systems.

Models with autocorrelated errors of up to order 12 can be estimated, both when the
pattern of residual autocorrelation is unrestricted and when it is subject to zero restrictions.
The estimation results are compactly tabulated and provide parameter estimates and other
statistics of interest including ¢-statistics, standard errors, Durbin-Watson statistic, Durbin’s
h-statistic (when relevant), §2, and more.

Alternative estimates of the variance-covariance matrix of the parameter estimates, namely
White’s heteroscedasticity-consistent estimates and Newey-West adjusted estimates with
equal weights, Bartlett weights, and Parzen weights can also be obtained with Microfit,
for the cases of linear and non-linear least squares and instrumental variables methods.

Microfit enables the user to list and plot the actual and fitted values, as well as the
residuals. The fitted values and the residuals can be saved for use in subsequent econometric
analysis.

1.4.8 Model respecification

The specification of equations in Microfit can be changed simply by using a screen editor
to add and/or delete regressors, or to change the dependent variable. The equations and
variable lists can be saved to a file for later use. It is possible to re-estimate the same
regression equation over different time periods and under different stochastic specifications
simply by selecting the relevant items from the menus.

1.4.9 Diagnostic tests and model selection criteria

Microfit supplies the user with an array of diagnostic statistics for testing residual autocorre-
lation, heteroscedasticity, autoregressive conditional heteroscedasticity, normality of regres-
sion disturbances, predictive failure and structural stability. It automatically computes:

- Lagrange multiplier tests for serially correlated residuals in the case of OLS and IV
estimation methods.

- Ramsey’s RESET test of functional form mis-specification.

- Jarque-Bera’s test of normality of regression residuals.

- A heteroscedasticity test.

- Predictive failure test.

- Chow’s test of stability of regression coefficients.

- Unit roots tests.

- ARCH test.

- The CUSUM, and the CUSUM of Squares tests for structural stability.
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- R?, Akaike, Schwarz, and Hannan and Quinn model selection criteria.

- Generalized R? for models estimated by Instrumental Variables method (see Pesaran
and Smith (1994)).

1.4.10 Variable addition and variable deletion tests

Microfit has options for carrying out variable addition and variable deletion tests. These
facilities are very helpful in the process of model constructions, and enable users to follow
either of the two basic modelling strategies, namely specific-to-general or general-to-specific.
The former facility is also particularly useful as it allows the user to carry out further
diagnostic tests, such as higher-order RESET or ARC H tests, or to test for the independence
between the disturbances and the regressors of the regression equation.

1.4.11 Cointegration tests

Microfit provides a user-friendly method of testing for cointegration among a set of at most
12 variables by the Johansen’s Maximum Likelihood method. Both versions of Johansen’s
tests, namely the Maximal eigenvalue and the trace tests, are computed. These features are
extensively enhanced in Microfit 5.0.

1.4.12 Testing for unit roots

Microfit automatically computes a variety of Augmented Dickey-Fuller statistics and allows
the users to simulate the appropriate critical values at any desired level of significance.

1.4.13 Tests of linear and non-linear restrictions

Tests of linear and non-linear restrictions on the parameters of the regression model (both the
deterministic and the stochastic parts of the model) can be carried out using Microfit. 1t is
also possible to compute estimates of functions (possibly non-linear ones) of the parameters
of the regression model, together with their asymptotic standard errors for all the estimation
methods. This facility is particularly useful for the analysis of long-run properties, such as
estimation of long-run responses, mean lags, and computation of persistence measures.

1.4.14 Non-nested tests

Microfit provides a number of non-nested statistics proposed in the literature for tests of non-
nested linear regression models. These include Godfrey and Pesaran’s small sample-adjusted
Cox statistic, Davidson and MacKinnon’s J-test, and the encompassing F'-statistic based
on a general model. It also contains options for testing linear versus log-linear models, and
for testing ratio models versus log-linear and linear models. A number of important model
selection criteria such as Akaike’s information criterion, and Schwarz’s Bayesian criterion are
also computed in the case of non-nested models.
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1.4.15 Static and dynamic univariate forecasts

Microfit generates one-period-ahead (static) and dynamic forecasts of single-equation regres-
sion models. It gives forecast errors and a number of useful summary statistics. If lagged
dependent variables are included in the regression, Microfit automatically computes dynamic
forecasts, otherwise it generates static forecasts. The plot of actual and forecast values is
also provided, with the possibility of saving forecast values and forecast errors on a file for
later analysis.

Missing values are fully supported by Microfit, and when a transformation (including
leading and lagging) results or involves undefined values, the undefined values are set to
blank. At the Estimation/Testing/Forecasting stage Microfit looks for blank fields and
adjusts the specified sample period automatically so that beginning and end periods with
missing values are discarded. If missing values are encountered in the middle of the estimation
and/or forecast periods the Estimation/Testing/Forecasting will use as sample the set of
observations from observation 1 to the observation preceeding the first encountered missing
value. The value *NONE* is displayed whenever the computations involve operations that
cannot be carried out, such as taking the square root or the logarithm of a negative number.

1.5 Installation and system configuration

Microfit can be easily installed both on personal computers and can be configured to suit
the taste and the needs of the user. It allows the user to alter the colour of text displayed on
the screen by choosing a combination of foreground and background colours. Microfit needs
to be configured only once, at the time the package is installed on the PC, but can easily be
reconfigured at a later date.

1.6 System requirements for Mzicrofit 5.0

Microfit 5.0 is available for Microsoft Windows 2000, XP and Vista operating systems.

- 1MB of Random Access Memory (RAM).
- At least 45MB of free hard disk.
- Microsoft mouse or compatible (optional).

- A printer for producing hard copies of graphs and regression results (optional).

Microfit 5.0 allows running regressions with up to 102 regressors and up to 5,000,000
observations. In the case of the unrestricted VAR option Microfit allows for up to 12
variables in the VAR model and a maximum order of 24. In the cointegration option it
allows a maximum of 12 endogenous I(1) variables and 5 exogenous I(1) variables, and 18
deterministic and/or exogenous I(0) variables. See Appendix A for further information on
the size limitations of the program.



Chapter 2

Installation and Getting Started

2.1 Installation

To install Microfit 5.0, follow the installation instructions outlined below for a single user
(see Section 2.1.1) and for network installation (see Section 2.1.2).

2.1.1 Single user installation

Microfit 5.0 is distributed on a single CD-ROM. Close all applications before inserting the
CD into your computer’s drive and wait for the setup program to launch automatically. If
the setup does not start automatically, navigate to the CD drive and click on the Setup icon
(SETUP.EXE). Follow the simple instructions indicated by the program.

2.1.2 Network installation

This involves the following two steps:

1. Server Installation by the System Operator. The network version of Microfit 5.0 is
distributed on a single CD-ROM. The machine used for the server installation must be
a client machine and have internet access. Close all applications before inserting the CD
into a client computer’s drive and wait for the setup program to launch automatically.
If the setup does not start automatically, navigate to the CD drive and click on the
Setup icon (NETWORK SETUP.EXE). The only action required is to browse to a
folder to be used for installation on the server.

2. Installation by a Client. The client browses to the server folder specified in Step
1 above and starts the setup program (MICROFIT5 SETUP.EXE) and follows the
simple instructions (identical to the single user setup, see Section 2.1.1) indicated by
the program.

15
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2.2 Starting and ending a session

2.2.1 Running M:crofit

When you have successfully installed Microfit 5.0 on your system, you can start it by double-
clicking the icon for Mfit5 on your desktop or from the Programs menu. You can also upload
a special Microfit data file directly into the program by double-clicking on the Microfit data
file.

2.2.2  Quitting Microfit
To quit Microfit, do one of the following;:

- Choose Exit from the File Menu.

Double click on the left of the title bar.

Click on the left of the title bar once and choose = x

Close

Press ALT+F4.

You are warned that all unsaved data will be lost. If you are sure you have saved all your
data, choose Yes. If not, click No, save any unsaved data, and try quitting again.

2.3 Using windows, menus and buttons

You work your way through a Microfit 5.0 session using a combination of windows, menus,
and buttons. At the heart of the application are several menus and sub-menus for processing
your data. Each menu or sub-menu contains a selection of up to 11 options with one of the
options (usually the most common) already selected.

A simple method of familiarizing yourself with Microfit and what it can do is to learn
about its main menus and their interrelationships.

The rest of this volume describes the various options in these menus, show you how to
use them to input and process data, do preliminary data analysis, and estimate/test /forecast
using a number of univariate and multi-variate time series models.

2.3.1 The main window

The main window is your workspace. From here you can access all the main functions of the
program: the Variable window, the Data Editor, the Process window, the Single Equation
Estimation window, and the System Estimation window.

2.3.2 Main Menu bar

Many of the program’s functions are controlled using the menus of the main menu bar.
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File Menu

Open file Opens an existing data file saved in any of the following formats: ASCII (.DAT),
Microfit (.FIT), Excel (.XLS) comma delimited values (.CSV), AREMOS time series data
(.TDS).

Open file from tutorials data files Opens an existing data file saved in the tutorial
directory.

Input new data from the keyboard Allows you to enter a new data set from the
keyboard (see Section 3.2.1).

Input new data from clipboard Enables you to copy and paste a data set from the
clipboard (see Section 3.2.8).

Add 2 special Microfit files Allows you to load two Microfit files (see Section 3.3).

Add a special Microfit file to workspace Adds a Microfit file to existing data in
Microfit (see Section 3.2.4).

Paste data from clipboard to workspace Enables you to paste data from the clip-
board to existing data in Microfit workspace (see Section 3.2.9).

Save as Saves your data in a new file in special Microfit, ASCII, Excel, CSV, or AREMOS
format (see Section 3.5).

Change the data dimension Allows you to change the dimension of the data (see
Section 3.1).

View a file Opens a file and allows you to examine its content (see Section 4.2.1).

Exit Quits the program.

Edit Menu

Cut, Copy, and Paste allow you to perform standard Windows editing functions.
Constant (intercept) term Creates a constant (see Section 4.1.1). Its button equiva-
lentis Gl .

Constant

Time trend Creates a time trend (see Section 4.1.2). Its button equivalent is =~ @ .

Time Trend

Seasonal dummies Creates seasonal dummies (see Section 4.1.3). Its button equivalents
are the (8 | s”, and (5 buttons.

aaaaaaaaaaaaaaa

Options Menu

European/US date format Allows you to set the format of the date, when reading
CSV/ Excel files with daily data or calendar dates in the first column.

Result printing Allows you to make choices about how results are printed out.

Editor defaults Specifies the size, style, and colour of default.

Location of Acrobate PDF file viewer enables you to find (automatically or manu-
ally) the location of Adobe Acrobate reader.

Location of default files allows you to choose the location of default files.

Location of temporary files allows you to choose the location of temporary files.
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Univariate Menu

This is the Single Equation Estimation Menu from which all the sigle-equation estimation
options may be accessed. These are discussed in detail in Chapter 6.

Multivariate Menu

This is the System Estimation Menu from which all the multiple equation estimation options
may be accessed. These are discussed in detail in Chapter 7.

Volatility Modelling Menu

From this menu all univariate and multivariate GARCH options may be accessed. These
are discussed in details in Chapter 8.

Help Menu

Accesses the program’s help functions (see Section 2.5.2).

2.3.3 Buttons

The buttons in the main window control the most common functions:
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Button

Yariables

YR

T
S
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@

Load Graph

Function
Switches to the Variable window where the current list of variables and
their descriptions are displayed and may be edited.
Moves to the Data window where you can edit your data.

Moves to the Process window where you can process your data.
Switches to the Single Equation Estimation window. The Single Equation

Estimation options can also be accessed from the univariate menu.
Switches to the System Equation Estimation window. The System

Estimation options can also be accessed from the Multivariate menu.
Switches to the Volatility Modelling window. The Volatility options can

also be accessed from the Volatility Modelling menu.

Runs a Batch file you have saved earlier.

Displays the on-line help facility.

Saves the contents of the current editor to disk.

Loads a previously save LST or EQU file into the current box editor.
Clears the contents of the current box editor.

Changes the font of the contents in the current box editor.

Finds a word in the current box editor.

Prints the contents of the current box editor.

Loads into Microfit a graph in Olectra Chart format.

2.4 The Variables window

19

The Variables window displays the name of the variables and their descriptions in the
workspace, and can be accessed by clicking the VQ button (see Figure 2.1 below).

Variable descriptions can be up to 80 characters long. If you wish to add or change a de-
scription for one variable, move to the corresponding description field and type in a title,

click @ and then

Elose

variable description if you click the Q button.

x . Note that you cannot undo the changes you have made to the
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- . - — - | =
(i@ Variables and their DeEcnptlons 4 ‘i | it LX)
W ariable Description
|28 log real gdp
M logllabor force]
E log employment
W log earnings
F log consumer prices

.. | @]

Figure 2.1: The Variable window

2.5 The Data window

The Data window displays data in the workspace and can be accessed by clicking the @

button (see Figure 2.2). In this window you can inspect and edit your data. Use the
horizontal and vertical scroll panes to move through the contents of the data windows.
When you have finished editing your data, click @ and then = > . Once you press the

@ button, changes you have made to your data are permanent and cannot be undone.
You can also copy to clipboard a set of cells, by selecting the cells and pressing the i

button. Microfit will automatically add dates and column names to copied data.

2.5.1 Program options

Various aspects of the program may be customized to personal preference using Edit, Op-
tions, and Window Menus.
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(3 Data ==
Date Y M E W -
1855 10.0368087980813 9.43027879234144 9.39349491507403 407753744
1856 10.0752750706526 9.43827244002219 9.40672918598157 407753744
1857 10.0966085020704 9.44620269569817 9.40426106461349 404305126
| 1858 10.1031831363678 9.45485394902659 9.38092667255172 402535169
1859 10.123935874982 9.46343099965834 9.43747594455093 404305126
| 1860 10.13922309097 9.47116499025808 9.45328655058657 4.06044301
1861 10.1885548344007 9.47960385890395 9.4430381360952 4.06044301
| 1862 10.1885548344007 9.4864558080565 9.42625787819865 4.06044301
1863 10.1981354323207 9.49401442303042 9.44699227331519 409434456
1864 10.2135116722849 9.50076867009599 9.48189306249808 409434456
1865 10.2424320876502 9.50822026940441 9.490242257109 412713438
1866 10.2412914021671 9.51487956149439 9.48872939751637 418965474
1867 10.2548966059783 9.52222713312478 9.45876173047466 418965474
1868 10.2892120914225 9.52952111148733 9.46109909032337 415888308
1869 10.3192250518417 9.53604051161548 9.47654341275084 415888308
1870 10.3944631618832 9.54323478724951 9.50599061407714 418965474
1871 10.4568751282182 9.55037767476189 9.5345954246588 4.23410650
1872 10.4501295435478 9.55746990307138 9.54824016058858 433073334
1873 10.4501295435478 9.5645121856968 9.55303007636626 4.41884060
| 1874 10.508462318727 9.57150522118777 9.55534751104723 4.39444915
| 1875 10.5227255104211 9.57844969354058 9.55676293945056 4.38202663
1876 10.5336802899775 9.58534627250964 9.55108916536466 436944785
1877 10.5422044181375 9.59219561444521 9.54824016058858 435670882
1878 10.5491247990822 9.59899836176797 9.53604051161548 431748811
1879 10.5305630372466 9.60575514423085 9.49476715170729 429045944
1280 AN ANA22NA2INA21 0 R1212IRIRARIQAT Q RRN20277N1R4ANQ A J0NAROAA T
R 3
Q x ﬂ ‘ = Copy o
Save close Help Print clipboard

Figure 2.2: The Data Editor

Printing of results

To specify how your results are printed out, choose Result Printing from the Options Menu.
When you first install Microfit you are prompted to enter the name of the current researcher
(user). To edit or replace the name, click on the Name of Researcher field and edit (or delete)
the name as necessary.

Page numbers are added to your result printout by default. The date of your results
and the name of the researcher are added to results printouts by default. To exclude them,
uncheck the ‘Print date and researcher name’ option.

Changing font

You have two choices when specifying how the contents of Microfit editors and results win-
dows are displayed. You can either change the font in the current window, or change the font
for all editors and/or results windows. To change the font style, size or colour in which the
current editor or result window is displayed, click the E} button and choose an alternative

font, size, and/or colour from the Font dialogue. To change the default fonts, choose ‘Editor
defaults’ from the Options Menu. The default font used in all Editor boxes is Courier New.
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The default colour and size are blue 16-point. To change the default font, click the button
‘All Editor Boxes’ and choose an alternative font, size, and/or colour from the Font dialogue
box. Then click =« . The changes you have made will be immediately implemented.

The default font used in all result windows is black Courier New 9-point. To change
the default font, click the button ‘All Result Windows’ and choose an alternative font, size
and/or colour from the Font dialogue box. Then click =« . (To ensure the correct display

of results, only the fixed fonts available on your computer are listed).
To save the new font as default in Microfit, check the ‘Save as defaults’ checkbox in the
Options Menu.

2.5.2 Help

Microfit has an extensive on-line help facility. For help on the part of the application you
are currently using, click the EIJ button or press F1. Alternatively, use the Help Menu.
This has several options:

Overview Shows general information on using Microfit help. Click on a topic highlighted
in green to move there.

Contents Shows a list of help topics. Click on a topic highlighted in green to move
there.

Help on functions Displays help on various functions available in Microfit.

Help on commands Displays help on commands.

About Provides copyright information about Microfit for Windows.

To access the help options in Microfit 5.0 you need to have Acrobat Reader 6 or above
installed on your PC. Also before using the help options in Microfit we recommend that you
ensure that your Acrobat Reader (or Adobe Acrobat if you have one installed) allows you
to access the internet from PDF files.



Part 11

Processing and Data Management
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Chapter 3

Inputting and Saving Data Files

Data can be input into Microfit directly from the keyboard, from ASCII files, CSV files,
or Excel files, from special Microfit files saved previously, or from AREMOS (TSD) files.'
Data on the workspace of Microfit can be saved as ASCII/text files, Excel sheet, as special
Microfit files, as TSD files or as comma delimited (CSV) files with descriptions of variables
in the second row. It is also possible to copy data sets from the clipboard to Microfit.

To input and save data, use the options in the File Menu. You can also use the ‘Add a
Special Microfit File to Workspace’ option in the File Menu to add new variables (already
saved in a special Microfit file) to your current data set, or select ‘Add 2 Special Microfit
Files’ to combine two Microfit files containing the same variables.

3.1 Change data dimension

Before inputting data, make sure that the dimension of your data set does not exceed the
size limits of Microfit. Microfit 5.0 has a limit of 200 variables, and can run regressions up to
102 regressors, while it has no limits on the number of observations in the data. The default
maximum number of observations is 6,000, but it may be changed upwards or downwards.

You can change the default data/variable dimensions by clicking the ‘Change Data Di-
mension’ option in the File Menu. You are presented with a window where you can set the
maximum number of observations, variables and regressors (see Figure 3.1). If you set the
option ‘Save as Defaults’, these numbers will be remembered and become the default setting
when you open Microfit.

3.2 Inputting data

When you start a new session with Microfit, you can either input a new data set directly
from the keyboard or load an existing data set.

! Excel is a trademark of Microsoft.
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size

Maimurm number of observations
|6000
(Minirmurn = 500, Maximum = 993939)

Maxirum number of variables |507
(Minirmum = 50, Maximum = 200)

Maximurn number of regressors li
102

{Minimum = 20, Maximum=102)

[ Save as defaults

Use Microfit Defaults

0OK Cancel

Figure 3.1: Change the data dimension

3.2.1 Inputting data from the keyboard

Inputting data directly from the keyboard is the most basic method of entering data. Before
entering new data, make sure you know the frequency of your data (that is, whether your
data are undated, or have annual, quarterly, or monthly frequencies), the number of variables
in your data set, and the sample period of your observations.

To input a new data set, choose ‘Input new data from the keyboard’ in the File Menu.
This opens a new data set dialogue. The data frequency fields are at the top of the dialogue,
with fields for start and end dates, and number of variables below. The following data
frequency options are available. To choose one, click the appropriate radio button

Undated
Annual
Half-yearly
Quarterly
Monthly

Entering undated observations: This option is often relevant for entering cross-sectional
observations, and when it is chosen Microfit assumes that the observations are unordered,
and asks how many observations you have. An observation refers to the individual unit on
which you have data. For example, if you have cross-section data containing variables such
as employment, output, and investment on a number of firms, then each firm represents an
observation, and the number of observations will be equal to the number of firms in your data
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set. If you have time series data covering the period from 1960 to 1970 inclusive and for one
reason or another you wish to enter them as undated data; then the number of observations
in your data set will be equal to 11.

Entering annual, half-yearly, quarterly, or monthly observations: If any of these
options are chosen, the program will supply the dates, and you will not need to type them
in. You are, however, asked to type the dates for the start and end of your data in the
appropriate field. For example, if your data are annual and cover the period 1960-1985
inclusive, when asked, you need to enter 1960 in the Start field and 1985 into the End field.
You can type the year in its full (1960) or abbreviated (60) form. However, if your data go
beyond the year 1999 you must enter the dates in their full forms, namely 2000, 2025 and so
on.

If your data are quarterly and cover the period from the first quarter of 1990 to the last
quarter of 2000 inclusive, you need to enter 1990 in the Start field and 1 in the adjacent
quarter field, then 2000 in the End field, specifying 4 as its quarter.

Similar responses will be required if your data are half-yearly or monthly.

Note: It is not possible to enter daily data directly from the keyboard. You can only
input them from an Ezcel file or copy them from the clipboard. See Section (3.2.10) for
further information on how to input daily data.

Entering number of variables: This refers to the number of data items that you have
for each observation. Set as appropriate.

When you have finished entering the information, click . This opens the Variables
window.

Entering variable names: The Variables window contains the default variable names
X1, X2, X3, ... For example, if you specify that you have 10 variables the screen editor

appears with the following default variable names
X1 X2 X3 X4 X5X6X7X8X9X10

You can enter your own choice of variable names and/or add a description if you wish. Move
to the appropriate field and edit or add text using standard Windows editing functions.

A valid variable name is alphanumeric, can be at most 9 characters long, and must begin
with a letter. Lower- and upper-case letters are treated as equivalent. ¢’ underscore is also
allowed anywhere in a variable name. Examples of valid variable names are

GDPUK OUTPUT X2Y3 DATA261 Y 1

Variable names such as $GDP,123,2X, W# are not allowed. Also, function and command
names used in the data processing stage cannot be used as variable names. The list of
function and command names can be found in Chapter 4.

Variable descriptions can be up to 80 characters long. You can return to the Variables
window at any stage, by clicking the q button. Variables can also be given an optional
description of up to 80 characters in the Process window by means of the command ENTI-
TLE. See Chapter 4 on how to use this and other commands. When you are satisfied with
the changes you have made, click

oK
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Warning: Note that until the Close button is pressed, the Undo button will restore
the variables or their descriptions to their original values. But once the Close button is
activated the Undo button will no longer function.

Entering data: When you have completed listing your variable names, you will be
presented with the Data window. This is where you enter the observations on your first
variable. Initially, all cells on this screen are set to blank, indicating missing values.

To enter your data, move to each cell in turn and type in your data. Continue until all
the observations are entered. If the observations do not fit on one screen use the PgUp and
PgDn keys to move between screens. To move to the top or bottom table, press Ctrl+Home
and Ctrl+End. When you have finished entering your observations, click = x

Warning: Note that until the Close button is pressed, the Undo button will restore
the data to their original values. But once the Close button is activated the Undo button
will no longer function.

3.2.2 Loading an existing data set

You can input data from an existing file in any of the following formats: special Microfit,
FExcel sheet, Excel 4.0, ASCII, comma delimited (CSV), or AREMOS (TSD).

To load an existing file, choose ‘Open file’ from the File Menu. This displays the Open
dialogue. Select one of the file types from the drop-down list at the base of the dialogue,
choose your file types from the appropriate drive and directory in the usual way. and click

If the data are in Microfit, Fxcel, CSV, or TDS file formats, the data are loaded
automatically. If the data are in another file format, you will be asked to confirm how the
data are structured before they are loaded.

You are then presented with the Process window. To view or edit the variable names or
descriptions, click the q button. To edit the data, click the €  button.

Data

3.2.3 Inputting data from a raw data (ASCII) file

An ASCII (plain text) file may be extracted from an existing data bank, or typed in directly
using spreadsheets or other data processing packages, or after transfer from another computer
package. The file is expected to contain only numbers. A missing value is represented by
the number 8934567.0.

Once you have specified a filename successfully (see Section 3.1), you will need to specify
the frequency of your data, their coverage, and the names for the variables that they contain.
These specifications are the same as those described above in Section 3.2.1, and require
similar action.

In addition, you need to specify whether its format is free or fixed.

Data is organized by variable: This option should be chosen if all the observations
on the first variable appear in the file before the observations on the second variable are
entered, and so on.

Data is organized by observations: This option should be chosen if the first obser-
vations on all of the variables appear in the file before the second observations are entered,
and so on.
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As an example, suppose you have the following data on variables VAR1 and V AR2, over
the period 1980 to 1983 inclusive on your file

Period VAR1 VAR2

1980 23 45
1981 26 50
1982 30 52
1983 40 60
If your data appear on the file as
23 26 30 40
45 50 52 60

then your data are organized by variable. But if your data appear on the file as

23 45
26 50
30 52
40 60

then your data are organized by observation.

Free format: Choose this option if the data appear in the file with one item separated
from another by a space, a comma, or end of line.

Fixed format: The only time you need to choose this option is when data are packed
into the file without any such spacing, or have a particular layout specified according to one
of the FORTRAN format statements. Users who are not familiar with formatted data are
advised to consult a FORTRAN manual.

Once you have made all your choices click =« . The program starts reading the data
from the file and, if successful, presents you with the Process window. However, if the
information on the file does not match what has been supplied, then you will get an error
message. Click to return to the Open dialogue and start again.

oK

3.2.4 Inputting data from a special Microfit file saved previously

You are likely to choose this option on the second or subsequent time that you use Microfit,
assuming that you have previously saved a file as a special (non-text) Microfit file. If a correct
filename is specified, the file is loaded and you are presented with the Process window.

Warning: A special Microfit data file must have the file extension FIT. Special FIT files
created on earlier versions of Microfit can be read in Microfit 5.0. Special Microfit files
created using the current version of the package can be read into Microfit version 4.0 but
not into Microfit version 3.0 to 3.24.

3.2.5 Inputting data from an FEzxcel file

Microfit 5.0 can directly read Ezcel workbook files (one sheet of the book at a time). Before
loading an FEzxcel file into Microfit, make sure that you know in which sheet of the Excel
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workbook data are saved. Data should be organized so that the observations for the different
variables are arranged in columns, with variable names (up to nine characters) on the first
row. The variable names can be followed by their optional descriptions (up to 80 characters
for each variable), separated by spaces. Alternatively, descriptions of the variables can be
provided on the second row in the cells below the variable names.

The first column of the file must contain dates or, if undated, the observation numbers.
Acceptable examples of dates are

1990, 70H1, 1983Q2, 76M12, 30/7/83, 30-7-2001, May-90, 951103

Once you have selected the file, you will need to specify the sheet where data are saved.
Select the relevant sheet and click the < button.

3.2.6 Inputting data from CSV files

These files are in ASCII (text) format and are usually created by spreadsheet packages.
Before they can be read into Microfit they must have the following structure:

1. The file should be organized so that columns are variables and rows are observations.

2. The first row of the file must contain the variable names followed by optional descrip-
tions and separated by spaces. Alternatively, the first row could contain the variable
names, with their descriptions given on a second row immediately below the variable
names.

3. The first column of the file must contain dates or, if undated, the observation numbers.

Note that the separator for the values/observations for each row in the above files can
be a comma, a tab, or spaces.

3.2.7 Inputting data from AREMOS (TSD) files

Files created by the AREMOS package are in the time series data (TSD) format.
Note that only TSD files containing data with the same frequency, namely annual, quar-
terly, monthly and daily observations, can be read into Microfit.

3.2.8 Input new data from the clipboard into Microfit

Data copied from a standard Windows spreadsheet package, such as Microsoft Ezxcel, can be
pasted from the clipboard into Microfit. There are two possibilities: You can paste new data
sets from the clipboard into an empty Microfit workspace, or you could augment existing
data on Microfit workspace with additional data from the clipboard. For the former choose
the option ‘Input New Data from Clipboard’ from the File Menu. The information on the
clipboard may contain the variable names on the first row, the descriptions of the variables
in the second row, and dates (or observation numbers in the case of undated data) in the
first column. See Figure 3.2.
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i@ Pasting Data from the Clipboard |ﬂ
Dates/Observations Data Freguency
(¢ Mo Dates " Undated
(" Dates/0bg. in firsgt column ™ Annual
i Half-pearly
Mames
o Quarterly
" MoMNames
e " Monthly
o Mames/Descriptions in first row
Dezcriptions
" Mo Descriptions in second row Start
Tear Quarter

o Descriptions in second row | |

OK ‘ Cancel Help ‘

Figure 3.2: Pasting data from the clipboard

When pasting daily data, the information on the clipboard must contain dates in the
first column.

Note: Microfit sets the precision of data equal to the number of places after the decimal
point displayed in the Excel worksheet. It is always possible to switch back and forth to the
spreadsheet application in order to inspect or change the contents of the clipboard so that
the necessary information can be supplied to Microfit.

Data are pasted into the Data window. Move to the Data window (click =€) to check

that data have been correctly formatted. If you are satisfied, click = = . If not, try to paste

Close

data again.

3.2.9 Adding data from the clipboard into Microfit workspace

Provided a data set is already loaded into Microfit, it is possible to copy data (typically copied
from FExcel) into clipboard and then add the contents of the clipboard to an existing Microfit
data set. For this you need to select option ‘Add Data from Clipboard to Workspace’. For
this option the first row of the data to be added must contain variable names. each variable
name can be followed by a space and an optional description. Alternatively, the second row
can contain the descriptions. The first column of the data on the clipboard must contain
valid dates recognized by Microfit. The periodicity of the added data must match that of
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the data already loaded into Microfit.

Note that this option is particularly useful for adding daily data. You can also use this
option to load a new data set from clipboard into Microfit. In this case first create a data set
using the ‘Input New Data from the Keyboard’ from the File Menu and specify the number
of variables to be zero. You can then use this option to add data of the same frequency
which has been copied to the clipboard.

3.2.10 Inputting daily data

One important advance of Microfit 5.0 over earlier versions of the package is that it can
handle daily observations.

You can only load daily data from a Microfit special file or from an Ezxcel file.

The first column of your data must contain dates, which can be expressed either in
European or in US format. Acceptable examples of dates in European dd/mm/yyyy format
are

30/5/05, 30-7-01, 02-May-99

while examples of US dates are
3/14/01, 01/25/2005

When Microfit is installed it automatically detects the Windows regional settings of your
computer, and sets the appropriate date format as the default. To change the default date
format in Microfit, go to the Options Menu and choose ‘European/US date format’. Then
select the preferred date format (either ‘European date format’ or ‘US date format’) and
click v

Once the appropriate date format is selected, you can load in your data by selecting your
data file (see Sections 3.2.2 for a description of how to load an existing data set). Once the
program has successfully read the data, it creates three new columns containing for each
observation the corresponding information on the day, month and year. If your data contain
more than 6,000 observations per variable you need to increase the maximum number of
observations after selecting the option ‘Change Data Dimensions’ under File Menu. Make
sure to tick the box ‘Save as Defaults’ to ensure a permanent change in the data dimensions
of Microfit on your PC.

Note: There is no need to change the date format when data are saved in special Microfit
files. Dates contained in special Microfit files are automatically converted to the European
format, regardless of the settings of your computer.

3.3 Adding two data files

You can add two Microfit files containing the same variables, or add the variables from one
Microfit file to another.

To add two files containing the same variables, select the ‘Add 2 Special Microfit Files’
option from the File Menu. Choose the first file, click OK, and then choose the second
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file from the Open dialogue. If the files contain the same variables, data frequency, or any
number of undated observations, data are combined. The program appends the observations
from the second data set to those of the first data set and, when observations can be ordered,
sorts them.

To add two files containing different variables but the same data frequency, load the first
file into Microfit in the usual way. Then select ‘Add a Special Microfit File to Workspace’
from the File Menu, and choose the file you want to add to your existing file from the Open
dialogue.

If the data are incompatible, a warning message is displayed.

3.3.1 Adding two special Microfit files containing the same variables

Adding two data files containing different observations on the same variables is particularly
useful for extension and/or revision of data in either direction (backward or forward), and for
stacking of undated (cross-sectional) data. In the case of files containing dated and overlap-
ping observations the second file that you specify should contain the most recent information.
The content of the first file which overlaps with the second file will be overwritten.

As an example suppose you have a special Microfit file (say, SET1.FIT) which contains
annual observations for the period 1970-1978 on the variables, C, S, and Y.

Obs c S Y

1970 57814.0 0.0908 63585.0
1971 59724.0 0.0747 64544.0
1972 63270.0 0.0989 70214.0
1973 66332.0 0.1163 75059.0
1974 65049.0 0.1215 74049.0
1975 60000.0 0.1429 70000.0
1976  60000.0 0.1429 70000.0
1977 60000.0 0.1429 70000.0
1978 60000.0 0.1429 70000.0

Consider now a second special Microfit file called SET2.FIT which contains revised and
updated observations on the same variables C, S, and Y over the period 1975 to 1980.

Obs c Y S

1975 64652.0 74005.0 0.1264
1976 64707.0 73437.0 0.1189
1977 64517.0 72288.0 0.1075
1978 68227.0 78259.0 0.1282
1979  71599.0 83666.0 0.1442
1980 17550.0 84771.0 0.1560

Using the ‘Add 2 Special Microfit files’ option from the File Menu, and choosing SET1.FIT
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as first file and SET2.FIT as second file creates the following ‘combined’ data set:

Obs. C Y S

1970 57814.0 63585.0 0.0908
1971 59724.0 64544.0 0.0747
1972 63270.0 70214.0 0.0989
1973 66332.0 75059.0 0.1163
1974 65049.0 74049.0 0.1215
1975 64652.0 74005.0 0.1264
1976 64707.0 73437.0 0.1189
1977 64517.0 72288.0 0.1075
1978  68227.0 78259.0 0.1282
1979 71599.0 83666.0 0.1442
1980 71550.0 84771.0 0.1560

Notice that the observations for the period 1975-1978 in the first file (SET1.FIT) which over-
lap with the observations in the second file (SET2.FIT) are overwritten by the corresponding
observations in the second file. Also note that the order of variables in the combined data set
is the same as that of the second file. Remember to save the combined data set as a special
Microfit file!

In the case of data files with non-overlapping observations, the data gaps (if any) will be
shown by a blank field, indicating missing observations. For example, combining the files

First File Second File
Obs X1 X2 Obs X1 X2
1960 2.0 10.0 1965 10.0 25.0
1961 3.0 20.0 1966 20.0 35.0
1962 4.0 30.0 1967 22.0 45.0

produces the combined data set

Obs X1 X2
1960 2.0 10.0
1961 3.0 20.0
1962 4.0 30.0
1963

1964

1965 10.0 25.0
1966 20.0 35.0
1967 22.0 45.0

You can optionally fill in the missing values in the Process window by means of the
commands FILL MISSING and FILL FORWARD. See Chapter 4 on how to use these
and other commands. In the case of data files containing undated observations (cross-
sectional data), the use of this option has the effect of stacking the observations in the
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two special Microfit files. This facility is particularly useful for pooling cross-section and
time series data. For example, combining the following two special Microfit files containing
undated observations

Second File

First File Obs PU PS
Obs PU PS 1 16.0 71.0
1 3.0 66.0 2 25.0 64.0
2 3.0 66.0 3 24.0 64.0
3 9.0 62.0 4 22.0 64.0
4 9.0 64.0 5 12.0 70.0

6 13.0 66.0

results in the data set which appends the observations in the second file at the end of the
observations in the first file.

Only Microfit files with the same data frequencies can be combined. For example, a data
set containing annual observations cannot be combined with a data set containing quarterly
or monthly observations.

3.3.2 Adding two special Microfit files containing different variables

Combining two files containing different variables but the same data frequency allows you
to add new variables to your current data set. The new variables should already have been
stored in a special Microfit file.

When using this option the following points are worth bearing in mind:

1. The current data set and the special Microfit file to be added to it should have the
same data frequencies, otherwise an error message will be displayed

2. The current data set and the special Microfit file need not cover the same time period

As an example, suppose your current data set contains

Obs X Y

1960 34.0000 76.0000
1961 25.0000 84.0000
1962 76.0000 90.0000

and you have a special Microfit file containing variables A and B over the period 1959 to
1963. The special Microfit file to be added to the current data set contains

Obs A B

1959 20.0000 72.0000
1960 40.0000 98.0000
1961 50.0000 76.0000
1962 30.0000 45.0000
1963 56.0000 &87.0000
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If you now add the files the above special Microfit file is added to your current data set, and
your new current data set is

Obs X Y A B

1959 20.0000  72.0000
1960 34.0000 76.0000 40.0000 98.0000
1961 25.0000 84.0000 50.0000 76.0000
1962 76.0000 90.0000 30.0000 45.0000
1963 56.0000  87.0000

Note: If you wish to add variables to your data set from the keyboard, you should use
the ADD command followed by the name of the variable in the Process window and then
press R(u) to add the variable name to the workspace. Once the new variable is added to

the workspace use the =€ button to input values for the new variable just added to the
workspace.

3.4 Using the Commands and Data Transformations box

At various stages during the processing of your data you will need to enter text into an
on-screen editor box, such as the Commands and Data Transformation box. Text can be
edited in the usual way, using the Cut, Paste, and Copy options in the Edit Menu.

To scroll through the contents of the current editor, use the mouse or the cursor keys.
To scroll up or down a screen page, press PgUp or PgDn. To scroll to the top or bottom of
the editor text, press Ctrl4+Home, or Ctrl4+End.

When you have finished using the current editor, click the RCME button. You can change

the font of the text displayed in the box editors using the @ button. To clear a box
editor completely, click

3.5 Saving data

You can save your current data set (the data in the Microfit workspace), in several different
formats: in an ASCII (text) format, in a special Microfit format for use in subsequent Microfit
sessions, in a comma delimited (CSV) file, in an AREMOS file or in an Ezcel format.

To save your current data file, click ‘Save as’ from the File Menu and select in the
sub-menu the type of file in which you want to save your data.

A ‘Save as’ dialogue appears, choose the drive and the directory in which you want to
save the data, and type in a filename in the usual way. Click

3.5.1 Save as a special M:icrofit file

You can save your data in a special Microfit file, for use in subsequent sessions. In addition to
data, special Microfit files also contain other important information, namely data frequency,
time periods, and variable names and their description (if any).
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Notes

1. If you specify a file that already exists, you will be prompted to confirm that you wish
to overwrite it.

2. Microfit automatically affixes the file extension .FIT to files saved as special Microfit
files. An alternative cannot be used.

3. Special Microfit files saved using the earlier version of Microfit (versions 4.0 and lower)
can still be used in Microfit 5.0. Special Microfit files created in this version of Microfit
can be used in Microfit 4.0 but not in earlier versions.

3.5.2 Save as an Fxcel sheet

You can save your data in Fzcel format. The FEzxcel file created by Microfit 5.0 contains
in the first column the dates or the observation numbers, and in the first row the variable
names and their optional descriptions.

3.5.3 Save as a comma separated values (CSV) file

This file format is useful when you wish to export the data from a Microfit workspace to
spreadsheet packages such as Microsoft Ezxcel.

If you select the option ‘Comma Separated Values File’ from the Save As Menu, Microfit
saves data as a CSV file. The CSV file created by Microfit 5.0 contains information in ASCII
(raw text) on data frequency (undated, yearly, quarterly, and so on), the variable names and
their optional descriptions given in the first row.

Alternatively, if you select the option ‘CSV File with Descriptions in 2nd Row’, data are
saved with the description of the variables given in the second row, immediately below the
variable names.

Microfit 5.0 also allows you to save data as a CSV file, excluding rows with missing
values. This is particularly useful when you want to estimate a regression model, but there
are missing values in the middle of the estimation period, since in this case Microfit does not
carry out the estimation (see Chapter 11). You can create a new file that excludes the rows
with missing values, by choosing the option ‘CSV, Descriptions in the 2nd Row, Excludes
Rows with Missing Values, Undated and Daily Data Only’. Note that this option is only
valid for undated and daily data.

After selecting the format in which you want to save your data, type in the filename and
click OK. Microfit automatically gives the file an extension .CSV. An alternative extension
cannot be used.

Notes

1. The start and the finish of the subset of observations to be saved should fall within the
specified range (between the minimum and the maximum values).
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2. A raw data file does not contain any information on the frequency of your data, variable
names or their descriptions. It only contains numbers, or ‘raw’ data.

3. When saving raw data files Microfit replaces missing data, namely a blank field, by
the number 8934567.0

3.5.4 Save as an AREMOS (TSD) file

You can save data from Microfit’s workspace as a Time Series Data (TSD) file for export
into the AREMOS package. The file extension . TSD is assigned by default. An alternative
extension cannot be used.

3.5.5 Save as a raw data (numbers only) file

You can save your data in an ASCII (text) file for the purpose of exporting it to other
programs or computers that are not capable of reading CSV files (see Section 3.5.3). If you
choose this option you are asked to type the start and finish of the subset of observations to
be saved, whether you want to save your data variable by variable or by observations, and
whether you want to save your data in fixed of free format.

Notes

1. The start and the finish of the subset of observations to be saved should fall within the
specified range (between the minimum and the maximum values).

2. Microfit will automatically affix the extension .DAT to files saved as raw data files.

3. A raw data file does not contain any information on the frequency of your data, variable
names or their descriptions. It only contains numbers, or ‘raw’ data.

4. When saving raw data files Microfit replaces missing data, namely a blank field, by
the number 8934567.0

3.6 Starting with a new data set

Suppose you wish to abandon your current data set and start with a new data set without
exiting Microfit. To enter your data from keyboard, choose ‘Input New Data from the
Keyboard’ from the File Menu. To open an existing file, choose ‘Open File’ or ‘Open File
from Tutorials Data Files’ from the File Menu.

Warning: Before starting with a new data set make sure that your current data set is
saved. To save your data, use the ‘Save as’ option from the File Menu.



Chapter 4

Data Processing and Preliminary
Data Analysis

When your data has been successfully read in Microfit, the program opens the Process
window. This is Microfit’s gateway to data transformations and preliminary data analyses.
To return to the Process window if this is not displayed on screen, click the <4  button.

Process

Various buttons appear along the top and the base of the Process window.

The rectangular buttons across the top of the Process window are used to access other
parts of the application.

To view your variables, and edit their names and/or descriptions, click the ) button.

Variables

To return to the Data window to edit your data, click the €  button.
To access the Single Equation Estimation window, click the @  button. The Single

Equation Estimation options can also be accessed directly using the Univariate Menu on the
main menu bar (for more information on these estimation options see Chapter 6).

To access the System Estimation window, click the cSIEb button. The System Estima-
tion functions can also be accessed directly using the Multivariate Menu on the main menu
bar (for more information on these estimation options see Chapter 7).

To access the Volatility Modelling window, click the button. These functions can

also be accessed directly using the Volatility Modelling Menu on the main menu bar (for
more information on these estimation options see Chapter 8).

The buttons along the base of the screen, on the right, allow you to create constants,
time trends, and seasonal dummies. These functions can also be accessed via the Edit Menu;
they are described in Section 4.1.

The Process window is divided into two panes the Variables box, which lists the variable
names in the workspace, and the Commands and Data Transformations box, where you enter
your commands. You can move up, down and side ways in these boxes by using the PgUp
and PgDn and the cursor keys T—]«.

You can type formulae and commands directly in the Commands and Data Transforma-
tions box (see Section 4.2). The different formulae need to be separated by semicolons (;).
You can see lists of available functions and commands using the drop-down lists above the

38



CHAPTER 4. DATA PROCESSING AND PRELIMINARY DATA ANALYSIS 39

File | Edit | Options  Univariate  Multivariate  Volatility Modelling  Help

@ @ @ (% E “ariahles Functians Cammands

¥ariables Data Process Single Multi Yolatility IUKI——HD>< j I j I j
& Process
SAMPLE 197061 1995k bs.). Min 197071 bdax 199505, tatal obs. = 305

7 wariables out of a possible maximurm of 200. Last file read was C\Program Files\Microfit 5y TutorUkstock fit

Simulation of Critical Values for Unit Root Tests [DFff) |
0

List of variable names in workspace:

UKFTIDX UKFIDY UKMO0 UK3TBR UK20YR UKEXCH UKCPI

Batch

Hel,
COMMANDS AND DATA TRANSFORMATIONS =t

&

Retrieve

&

Save

A

Font

&

Find

S

Print

<

Lead Graph|

@

Constant

g

Time Trend

(=)

1

1z

4

Clear I3

Figure 4.1: The Process window

Process window. Click on the appropriate box to view its list. To select a function or a

command, click on it in the list. Functions and Commands are discussed in Sections 4.3 and
4.4.

4.1 Creating constant terms, time trends and seasonal dum-
mies

The buttons along the base of the Process window allow you to create constants, time trends,
and seasonal dummies. Equivalent options are found in the Edit Menu. These options enable
you to create a constant (or an intercept) term, a linear time trend, or seasonal dummies
with the frequency of your choice, for use with quarterly or monthly observations.
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a Click here to create a constant.

mewed 10 create a time trend, use this button.

N2l Click this button to create (0,1) seasonal dummies.
¥

selz Creates centred seasonal dummies.
(4

=i (Creates seasonal dummies relative to the last period.

4.1.1 Creating a constant (intercept) term

To create a constant (intercept) term click the Gl button or choose Constant (intercept)

nnnnnnnn

term from the Edit Menu. Microfit creates a constant term (a variable with all its elements
equal to unity) and asks you to supply a name for it.

4.1.2 Creating a time trend

If you click @ , or choose ‘Time trend’ from the Edit Menu, Microfit creates a time trend

and asks you to supply a name for it. The time trend variable begins with the value of 1 at
the start of the sample and increases in steps of 1.

4.1.3 Creating (0,1) seasonal dummies

To create traditional seasonal dummies, click the @. button or choose ‘Seasonal dummies
(0,1) from the Edit Menu. Each seasonal dummy created will have the value of unity in
the season under consideration and zeros elsewhere. In the case of quarterly observations,
seasonal dummies created by this option will be

Obs. S1 S2 S3 S4
gl 1 0 0 0
802 0 1 0 0
80g3 0 0 1 0
80g4 0 0 0 1
81gl 1 0 0 O
812 0 1 0 0
813 0 0 1 0
81g¢4 0 0 0 1

When you choose this option, you will be asked to specify the periodicity of your seasonal
variables. When your data are undated, or are ordered annually, you can choose any peri-
odicity. But for other data frequencies the program automatically creates seasonal dummies
with periodicity equal to the frequency of your data, and presents you with a screen editor
containing default names for the seasonal dummies. For example, for half-yearly data the
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periodicity will be 2 and the default variable names S1 and S2; for quarterly data the pe-
riodicity will be 4 and the default variable names S1, 52,53, and S4; and for monthly data
the periodicity will be 12, and the default variable names, S1, 52, ..., 512.

In the case of daily data you will be asked to specify the periodicity of your seasonal
variables.

Notice that in each case the sum of the seasonal dummies will add up to unity, and
their inclusion in a regression equation containing an intercept (constant) term will cause
regressors to be perfectly multicollinear. To avoid this problem one of the seasonal dummies
can be dropped, or use the seasonal dummies created using the = [% button (see Section

415, T

4.1.4 Creating centred seasonal dummies

Clicking the button, or choosing the ‘Seasonal Dummy, Centred’ option from the Edit

Seasonal 12

Menu, generates seasonal dummies centred at zero. For example, in the case of quarterly
observations the centred seasonal dummies will be

Obs. SC1 SC2 SC3 SC4
80ql 0.75 -0.25 -0.25 -0.25
802 -0.25 0.75 -0.25 -0.25
80gq3 -0.25 -0.25 0.75 -0.25
80g4 -0.25 -0.25 -0.25 0.75
81ql 0.75 -0.25 -0.25 -0.25
812 -0.25 0.75 -0.25 -0.25
81gq3 -0.25 -0.25 0.75 -0.25
81g4 -0.25 -0.25 -0.25 0.75

When you choose this option you will be presented with a screen editor containing the default
names SC1, SC2, and so on. Click = & to accept or edit the default variable names and
then click =~ Q .

4.1.5 Creating seasonal dummies relative to the last season

Clicking the () button, or choosing ‘Seasonal Dummies Relative to Last Season’ from the

aaaaaa 13

Edit Menu, creates seasonal dummies relative to the last season, which are transformations
of (0,1) seasonal dummies. For example, in the case of quarterly observations it generates
the following seasonal dummies

SRl = S1-54

SR2 = S52-54

SR3 = S3-—54

where S1, 52,53, 54 are the (0,1) dummies, created using the @. button. These relative

seasonal dummies can be included along with an intercept (constant) term in a regres-
sion equation, and their coefficients provide estimates of the first three seasonal effects (say
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a1, ag,and ag). The effect of the last season can be computed as —(«a; + ag + a3). This
procedure restricts the sum of the seasonal effects to be zero. A similar logic also applies to
monthly or half-yearly observations. For monthly observations, 11 relative seasonal dummies
defined as SR1 = §1 — S12, SR2 = 52 — 512,.... will be created. Once again S1, 52, ...
are (0,1) monthly seasonal dummies, which can be created using, for example, the S@

button (see Section 4.1.3).

4.2 Typing formulae in Mzicrofit

The Process window is automatically displayed when a data set is opened. To return to the
Process window from another part of the application, click the W@ button. One or more
formulae or commands can be typed in the Commands and Data Transformations box. The
different formulae need to be separated by semi-colons (;).

When entering information in the Commands and Data Transformations box you can
quickly add one or more variables by highlighting their names and dragging them from the
Variables box into the editor while holding down the mouse button.

The formula can be as complicated as you wish and, with the help of nested parentheses,
you can carry out complicated transformations on one line, using standard arithmetic oper-
ators such as +, —, /, , and a wide range of built-in functions. For example, to create a
new variable (say, X LOG) which is the logarithm of an existing variable (say, X) you need
to type

XLOG =LOG(X)

in the Functions box. You can then execute the formula by clicking the R(HD button. This
operation places the natural logarithm of X in XLOG. The program will show the extra
variable (X LOG) in the list of variables. The program adds the extra variable (X LOG) to the
list of variables in the Variables box shown above the Commands and Data Transformations
box, if there is enough space. Otherwise you need to move to the Variables box and use
the cursor keys or the PgUp and PgDn keys to see all your variables. To view the values
for XLOG, click the €  button. Scroll through the data to find the new variable if
necessary.

In this version of Microfit it is also possible to enter two or more formulae/commands in
the Functions box before carrying out the operations. Suppose you have annual observations
on US output over the period 1950-1994, but you wish to compute the percentage rate of
change of the variable USGDP, and compute its mean and standard deviations over the
period 1970 to 1990. You need to type the following operations in the Functions box:

G = 100% (USGNP —USGNP(-1))/USGNP(—1);
SAMPLE 1970 1985; COR &

and then press the € button to carry out the required operations. Notice that mistakes
can be readily corrected at little cost. Microfit does not automatically clear the Functions
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box and so you can edit any mistakes that you find without having to type all the formulae
or commands. Also you can save the content of the Commands and Data Transformations
box in a file for later use by clicking the =@ button, at the base of the screen.

The following points are worth bearing in mind when entering formulae/command:

1. The upper- and lower-case letters are equivalent. So, the above operation could be put
into effect by typing
XLOG =LOG(X)

2. The new variable X LOG is added to the list of the variables in the workspace, but
needs to be saved as a special Microfit file if you wish to use it in subsequent sessions
(see Section 3.5.1 on how to save a file as a special Microfit file).

3. If one or more observations of X are negative the program still creates the new variable
X LOG but enters the missing value indicated by a blank field for negative observations.

4. If you attempt to take the logarithm of a non-existent variable you will see the error
message

Error in formula or command or ’;” missing

Examples of other data transformation are as follows:

Y=2«X+4+(Z/3)-5
This creates a new variable called Y which is equal to twice X plus a third of Z minus 5.
An error message is generated if X and/or Z do not exist.
Y =X"3.25

This raises X to the power 3.25 and places the result in Y (on some keyboards the symbol
1 is used in place of 7).
X1=X(-1)

This generates first-order lagged values of X and places the results in the variable X1. The
initial value, if undefined, will be set to blank, i.e. missing. For higher-order lagged values
of X, you need to specify the order in parenthesis. For example, to create third-order lagged
values of X in X3, you should type

X3=X(-3)
It is also possible to generate lead values of a variable of any arbitrary order. For example,
XF2=X(+2)

creates the second-order lead of X and places the results in variable X F'2. In this example
the undefined final two observations of X F'2 will be set to blank.
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INPT =1 O

This creates an intercept (or a constant) term called /NPT with all its elements equal to 1.

You can also create linear or quadratic time trends in the Process window. Suppose you
have a set of monthly observations over the period 1965(1)-1995(12), and you wish to create
a linear trend variable, say T, starting with the value of 1 in January 1974. Type

SAMPLE 1974m1 1995m12; T = CSUM(1) RC")

The variable T' now contains the values of 1,2, 3, ... for the months 74m1, 74m2, 74m3, and
so on. The values in T for the months prior to 1974 will be set to blank, unless you specify
otherwise. CSUMY(+) is the ‘cumulative sum function’ described below in Section 4.3.4.

4.2.1 Printing, saving, viewing, and copying files

You can save the content of the Commands and Data Transformations box in a file for later
use by clicking the @’ button. Such a file will be saved with the extension .EQU or

.LST. To load a file saved previously, click the @b . You are presented with an Open file
name of the file in the usual way. To view, copy, or save the contents of a saved file (without
loading it into the editor) choose the ‘View a File’ option from the File Menu. Choose the
file you want from the dialogue in the usual way. It is displayed in the File View window.

You can copy text from the File View window to the clipboard or to a new file of the
same type. First, highlight the text you want to copy. To save it to a file, click the g
button and specify a name and a location for your saved file. To copy it to the clipboz;;"d,
click the .G.,E‘}d button.

To edit the font of the text displayed in the window, click the @ button. A standard

windows font dialogue is displayed. Make your choices in the usual way and click

4.3 Using built-in functions in M:crofit

Standard mathematical functions, namely LOG (logarithm function), EX P (exponential
function), COS (cosine function), SIN (sine function), SQRT (square roots operator), and
ABS (absolute value operator) can also be used in a formula.

In addition to the above standard functions, several other functions can also be used in a
formula. A brief description of these functions is given in Sections 4.3.1 to 4.3.30. For a list
of available functions, click the Functions field above the Process window and scroll through
the drop-down list. To copy a function from the list to the Functions box in the Process
window, click on it.
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4.3.1 Function ABS
Absolute value function. For example,

Y =2+3xABS(X) O

4.3.2 Function COS
The cosine function. Example:

Y =2+35+COS(5+2+X) Q

4.3.3 Function CPHI

This is the cumulative standard normal function so that CPHI(X) represents the integral
between minus infinity to X of the standard normal distribution. For examples,

Y = CPHI(0.0) @

RUN

returns the value of 0.5 for Y,
Y = CPHI(W + 2% (Z1/Z2)) R(u)

first computes the expression inside the brackets, and then returns the values of the integral
of the standard normal distribution from minus infinity to W + 2 % (Z1/22).

4.3.4 Function CSUM
This function, when applied to a variable X, calculates the cumulative sum of X. For
example, if X = (6,2,—1,3,1), then typing the formula

Y = CSUM(X) 0

RUN

will result in Y = (6,8,7,10,11).
The argument X can itself be a function of other variables as in the following example:

Y = CSUM((z — (SUM(z)/SUM(1))*)

Here SUMY(+) is the function SUM described below. See Section 4.3.29.
Warning: Before using this command you need to make sure that there are no missing
values in the variable X.

4.3.5 Function EXP

This function takes the exponential of the expression that follows in the brackets. For
example,
Y =2+34+«EXP(1.5+44xX) )

The general form of EXP(+) is given by
EXP(z) =14z +2%/2! +23/31 4 ...
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4.3.6 Function GDL

This is the geometric distributed lag function and has the form
Y = GDL(X, ) Q

It computes Y as
SIMY =AY (-1)+ X Q

RUN

over the sample in which it is in effect. A is the parameter of the distributed lag function,
and SIM is the SIM command (see Section 4.4.25). The initial value is set equal to the
value of X at the start of the selected sample period. For example, suppose you wish to
compute geometric distributed lag of X over the period 1950-1980, with A = 0.8, you need
to type

SAMPLE 1950 1980; Y = GDL(X,0.8) SUD

The value of Y in 1950 will be set equal to the value of X in 1950.
Warning: Before using this command you need to make sure that there are no missing
values in the variable X.

4.3.7 Function HPF

This function has the form

Y =HPF(X,\) O

and runs the variable X through a Hodrick-Prescott (HP) filter using the parameter A. In
this function X is a vector, and X is a non-negative scalar (a vector with all its elements equal
to A > 0). This filter is used extensively in the real business cycle literature as a de-trending
procedure (see Hodrick and Prescott 1997)

The choice of A depends on the frequency of the time series, X. For quarterly observations
Hodrick and Prescott set A = 1,600. The argument X could also be specified to be a function
of other variables in the variable list. Harvey and Jaeger (1993) show that for A = 1,600 the
transfer function for the HP filter peaks around 30.14 quarters (approximately 7.5 years).
This suggests using the value of A = 7 for annual observations, and A = 126,400 for monthly
observations.! But, in general, the optimal choice of A will depend on the particular time
series under consideration.

For example, suppose USGN P contains quarterly observations on US aggregate output.
The trend series (in logarithms) are given by

YT = HPF(LOG(USGNP), 1600) 0
To compute the filtered, or de-trended, series you need to type

YD =LOG(USGNP)-YT U

RUN

'"We are grateful to Micheal Binder for the estimates of A in the case of annual and monthly observations.
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4.3.8 Function INVNORM

This function computes the inverse of the cumulative standard normal distribution, so that
for a given probability p, Y =INVNORM(p) computes Y such that the area under the
standard normal curve between minus infinity to Y is equal to p:

Y = INVNORM(0.975) = &

In this example, Y will be set to 1.9600, the 95 per cent critical value of the standard normal
distribution. Note that 0 < p < 1.

4.3.9 Function LOG

The function takes logarithm to the base e (natural logarithm) of the expression that follows
in brackets. For example

Y =24+35+LOG(X +3) O

For negative or zero values of X, this function returns missing values.

4.3.10 Function MAX

This function has the form
Y = MAX(X, Z2) 0

and places the maximum of X and Z in Y. For example, if X = (1,7,2,3,6) and Z =
(6,2,—1,3,1), then Y will be set to (6,7,2,3,6).

4.3.11 Function MAV

This function has the form
Y = MAV(X,p) ()

and places the pth order moving-average of the variable X in Y, namely
1
Y, = ];(Xt + X+ + X ph)

Variable X could be any of the variables on the workspace or a function of them. If p is not
an integer Microfit chooses the nearest integer to p in order to carry out its computations.
If p is negative this function returns a missing value (a blank field).

4.3.12 Function MEAN

This function, when applied to a variable X, calculates the mean of X over the specified
sample period. For example,

SAMPLE 1970 1995; Y = (X - MEAN(X))  Q
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generates deviations of variable X from its mean computed over the sample period 1970-1995,
inclusive.

Note that the value of MEAN(X) will be set to missing if one or more values of X are
missing over the specified sample period.

4.3.13 Function MIN

This function has the form

Y = MIN(X, Z) Q

and places the minimum of X and Z in Y. The arguments X and Z themselves could be
functions of other variables, as in the following example:

y=MIN((G1/G2) + 1,(H1/H2) - 1) O

4.3.14 Function NORMAL

This function can be used to generate independent standardized normal variates (i.e. with
zero means and unit variances). The function should be used in the form of NORMAL(j)
within a formula, where j represents the ‘seed’ for the quasi-random numbers generated,
and it must be an integer in the range 0 < j < 32000. By changing the value of j, different
quasi-random number series can be generated. Examples of the use of this function are:

X =NORMAL(1l); Y =2+35xNORMAL(124)+ Z 0

RUN

Warning: The function UNIFORM and NORMAL must not be used in SIM or
SIMB commands!
4.3.15 Function ORDER

This function has the form
Y = ORDER(X, 7) SUD

and orders X according to the sorting implied by Z, where Z is sorted in an ascending order.
The results is placed in Y. For example, if X = (1,7,2,3,6) and Z = (6,2,—1,3,1), then Y
will be set to (2,6,7,3,1).

Clearly, as in the case of other functions, the arguments of the function, namely X and
Z, could themselves be functions of other variables.

4.3.16 Function PHI

This function gives the ordinates of the standard normal distribution for the expression that
follows in brackets. For example,

Y =05+ (1/PHI0)2 @
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Y = PHI(1) 0
Z =PHI(1+ 05+ W) Sul
The general formula for the PH I function is given by
PHI(X) = ((2xm)"(—=0.5)) * EXP(—0.5 x X "2) 0
where EXP is the exponential function (see Section 4.3.5), and 7=3.14159.
4.3.17 Function PTTEST
This function has the form

T =PTTEST(Y,X) @ ©
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and returns the Pesaran and Timmermann (1992) statistic for a non-parametric test of
association between the variables Y and X. Under the null hypothesis that X and Y are
distributed independently, PTTEST(X,Y) has a standard normal distribution in large
samples. For example, for a two-sided test, the hypothesis that Y and X are statistically

independent will be rejected if PTTEST is larger than 1.96 in absolute value.

4.3.18 Function RANK

This function, when applied to a variable X, gives the ranks associated with the elements of
X, when X is sorted in an ascending order. For example, if X = (6,2, —1,3,1) then typing

the formula
Y = RANK(X) R(u)

will give Y = (5,3,1,4,2).

4.3.19 Function RATE

This function has the form
PI1Z =RATE(Z) R(")

It computes the percentage rate of change of Z and places the result in PIZ. More specifi-

cally, PIZ will be computed as
PIZ =100 (Z — Z(-1))/Z(-1) 0

with its initial value set to blank.

An alternative approximate method of computing rate of change in a variable would be

to use changes in logarithms, namely

PIZX =100+ (LOG(Z/Z(-1)) ~ ©



CHAPTER 4. DATA PROCESSING AND PRELIMINARY DATA ANALYSIS 50

It is easily seen that both approximations are reasonably close to one another for values of
PIZ and PIZ X around 20 per cent or less.
The argument of this function, namely Z, can itself be a function of other variables, as
in the following example
Y =RATEW +U/V) O

RUN

4.3.20 Function REC_ MAX

This function, when applied to a variable X, returns for each observation j the maximum
value of X over the interval that goes from the start of the sample to the j** observation.
For example, if X = (2,1,3,0,4), then typing

Y =REC_ MAX(X) 0
will return Y = (2,2,3,3,4).
Warning: Before using this command you need to make sure that there are no missing
values in the variable X.
4.3.21 Function REC_MIN

This function, applied to a variable X, returns for each observation j the minimum value
of X over the interval from the start of the sample to the j** observation. If, for example,
X =(2,1,3,0,4), then typing

Y =REC_MIN(X) Q
will set Y = (2,1, 1,0,0).

Warning: Before using this command you need to make sure that there are no missing
values in the variable X.

4.3.22 Function ROLL MAX

This function has the form
Y =ROLL MAX(X,h) R(u)

where h is the window length. It returns the maximum value of X over successive rolling
periods of a fixed length. For each observation j, this function computes the maximum value
of X over the interval that goes from the (j — h)th to the j™* observation. The first h — 1
observations are set to missing. If for example X = (2,1,3,0,4,3), then

Y =ROLL_MAX(X,2) O

will set Y = ( ,2,3,3,4,4).
Warning: Before using this command you need to make sure that there are no missing
values in the variable X.
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4.3.23 Function ROLL MIN
This function takes the form
Y = ROLL_ MIN(X,h) Q
It returns, for each observation j, the minimum value of X over the sample from the (j — h)th

to the j* observation, with the first h — 1 observations set to missing. If, for example,
X =1(2,1,3,0,4,3), then

Y =ROLL_MIN(X,2) O

will set Y = ( ,1,1,0,0,3).
Warning: Before using this command you need to make sure that there are no missing
values in the variable X.

4.3.24 Function SIGN

This function, when applied to a variable X, returns the value of 1 when X is positive and
0 when X is zero or negative. For example, if X = (3,—4,2,0,1.5), then typing

Y =SIGN(X) O
will return Y = (1,0,1,0,1). Another example is
Y = SIGN(X — 2) Q
which will return Y = (1,0, 0,0, 0).

4.3.25 Function SIN
This function takes sine of the expression that follows in the brackets. For example,

Y =243%SING+7+X) O

4.3.26 Function SORT

This function, when applied to a variable X, will sort X in an ascending order. For example,
if X =(6,2,—1,3,1) then typing

Y =SORT(X) G
will set Y = (—1,1,2,3,6), while
Z = —SORT(-X) ' Q

RUN

will sort X in descending order in Z so that Z = (6,3,2,1,—1).
In the example
Y = SORT(2 + w/z) Q
the expression 2 4+ w/z will be first computed, and the resultant expression will be sorted in
Y as above.
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4.3.27 Function SQRT

This function takes the square-root of the expression that follows in brackets. For example:

Y =3+5%SQRT(X) Su)

For negative values of X, this function returns the missing values.

4.3.28 Function STD

This function, when applied to a variable X, calculates the standard deviation of X over the
specified sample period. For example,

SAMPLE 1970 1995;
Z = (X - MEAN(X))/STD(X) @

places the standardized values of X over the period 1970-1995 (inclusive) in the variable Z.
Warning: The value of STD(X) will be set to missing (blank) if one or more values of
X are missing over the specified sample period.

4.3.29 Function SUM

This function first calculates the expression specified within closed brackets immediately
following it, and then computes the sum of the elements of the result over the relevant
sample period. Examples of the use of this function are:

SAMPLE 1960 1970; XBAR =SUM(X)/SUM(1);

XD =X - XBAR; YBAR =SUM(Y)/SUM(1); YD =Y — YBAR,;

BYX =SUM(XD«YD)/SUM(XD % XD) 0
In the above examples, SUM(X) is a vector with all its elements equal to the sum of the
elements of X over the period 1960-70. SUM(1) is equal to the number of observations
in the sample period (namely, 11). XBAR is, therefore, equal to the arithmetic mean of
X, computed over the specified sample period. XD and YD are deviations of X and Y
from their respective means and BY X is the ordinary least squares (OLS) estimates of the
coefficients of X in the regression of Y on X (including an intercept term).

4.3.30 Function UNIFORM

This function can be used to generate independent random numbers from a uniform distrib-
ution within the range 0 and 1. The function should be used in the form of UNIFORM(j)
within a formula, where j represents the ‘seed’ for the quasi-random numbers generated,
and must be an integer in the range 0 < j < 32000. By changing the value of j, different
quasi-random number series can be generated.

Examples of the use of this function are:
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X = UNIFORM(])
Y = 2+35+UNIFORM(124)+Z  Q

Warning: The functions UNIFORM and NORMAL must not be used in SIM or
SIMB commands!

4.4 Using commands in M:icrofit

For a list of available commands, click the Commands field above the Process window and
scroll through the drop-down list. To select a command from the list and copy it to the
Functions box, click on it.

4.4.1 Command ADD

This command enables you to add a new variable to the list in the Variables box. The form

of this command is
ADD XNEW 0

where X N EW is the name of the new variable.
The variable is added to the variables list, and a new empty column appears on the
extreme right-hand side of the Data window. To add a description to your variable, click
©  to move to the Variables window and type in your description. To insert the values

for your variable, click the Q button to move to the Data window, then click on each
of the relevant cells in turn and type in the value you want.

Note that this command allows you to add one new variable at a time. If you want to
add the variables from an existing Microfit file to your current data set, you should use the
‘Add’ option from the File Menu instead.

Remember to save the data set with the added variable(s) as a special Microfit file if you
wish to use it in subsequent Microfit sessions.

4.4.2 Command ADF

This command, when followed by a variable name, displays the Dickey-Fuller (DF') and the
augmented Dickey-Fuller (ADF') statistic for testing the unit root hypothesis together with
the associated critical values. See Dickey and Fuller (1979), and Lesson 12.1.
For example,
SAMPLE 75Q1 87Q1; ADF X Q

computes the DF and the ADF test statistics of up to order 4 (the periodicity of the data)
for the variable X, and displays the statistics together with their 95 per cent critical values
on screen for the following models:
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Case I: No intercept and no trends. The ADF test statistic is computed as the t-ratio of
¢ in the ADF(p) regression

p
AX; = oXi—1 + Z’yiAXt_Z’ + U (41)
=1

where AX; = Xy — X1, and p is the order of augmentation of the test.

Case II: With intercept but without a trend. The p!* order ADF test statistic is given
by the t-ratio of ¢ in the ADF(p) regression

p
AXt =ag + ¢Xt_1 + Z ’yiAXt_i + U (42)
i=1

Case III: With an intercept and a linear time trend. The p!* order ADF test statistic is
the t-ratio of ¢ in the regression

p
AXy =ag+ a1 Ty + ¢ X1 + Z’YiAthi + ut (4.3)

i=1

where T} is a linear time trend.

Microfit computes the ADF statistic for cases I, II and III, and also provides Akaike
information and Schwarz Bayesian criteria for selecting the order of augmentation in the
ADF tests. The 95 per cent critical values for the test computed using the response surface
estimates given in (MacKinnon 1991, Table 1), are provided at the foot of the result tables
only for p = 0, for cases I and II.

Microfit 5.0 also presents the possibility of computing simulated critical values for unit
roots tests by bootstrapping. Click on the rectangular button SV lusiat0i ] Yoy
will be presented with a window that allows you to set the number of replications, the
maximum number of observations used for simulating critical values, and the significance
level. Check the ‘Simulate Critical Values’ checkbox and click = x . The rectangular button

Close

will turn green, indicating that, when running unit roots tests, the result table will display
a new column, C'V, containing the simulated critical values of ADF tests for each order of
augmentation, for cases I, IT and III.

Note that simulation of critical values could take a long time if your sample size is large
(for example, more than 400 units) and you use all observations in the simulation. To control
the computational time, reduce the maximum number of observations used for simulations
(for example, to 400).

The ADF command can also be used to compute the augmented Dickey-Fuller test
statistics, up to an order of augmentation specified by the user. The desired order should be
specified in parentheses immediately after the variable name. For example,

ADF X(12) Q
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gives the ADF test statistics for the variable X up to the order 12, assuming, of course, that
there are enough observations.

Finally, ADF tests can be applied to a series after controlling for a set of determinis-
tic/exogenous variables. This can be achieved by using the ADF command in combination
with &. For example

ADF Y & Z1 22 Su)

allows performing unit roots tests on residuals computed from a regression of ¥ on Z1 and
Z2. Notice that in this case Microfit only reports ADF statistics and associated critical
values for Case 1, the no intercept and no trends case. Intercept and/or trends can be
included in the set of exogenous variables after &. Different orders of augmentation can also
be computed as before by issuing the command

ADF Y(4) & 71 72 Q

in the case of a 4th order ADF test. This option is particularly useful in testing for unit
roots in the presence of structural breaks. For example, to allow for an intercept shift at a
known point in time first construct a dummy variable, say DUM 1, that takes the value of
zero before the break and unity after, and then issue the following command

ADF Y(4) & INPT DUM1  Q

Also see Lessons 12.5 and 12.6.

Warning (sample selection for computation of ADF statistics): The actual sample period
used by the ADF command is based on the sample period specified by the user and the lag
order, p, of the ADF test. If data on X is available over the sample 1 to 100 (inclusive)
and the sample is specified by the user is from 20 to 100 and p = 2, ADF regressions are
run over the period 2 to 100 and observations 18 and 19 are used as initial values. But if
the selected sample is 1 to 100 (and no other data exists before the first observation), then
ADF regressions are run using observations 3 to 100, with X7 and X5 used as initial values.
The same also applies to the other ADF statistics set out below.

4.4.3 Command ADF_GLS

This command, applied to a variable X, takes the form
ADF GLS X Q

It computes the GLS augmented Dickey-Fuller test statistic due to Elliott, Rothenberg, and
Stock (1996) of up to order p (the periodicity of the data) for testing the unit root hypothesis
for cases I, IT and III. The 95 per cent critical values for the test have been computed by
Pantula, Gonzalez-Farias, and Fuller (1994) and by Elliott, Rothenberg, and Stock (1996),
and are given at the base of the Result Tables for cases II and III. If you choose the option
‘Simulate Critical Values’, Microfit also provides the simulated critical values for the test for
each order of augmentation (see Section 4.4.2).
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The ADF _GLS command can also be used to compute the GLS augmented Dickey-
Fuller test statistics up to an order of augmentation specified by the user, putting the order
in parentheses immediately after the variable name, namely, by issuing the command

ADF_GLS X(p) @

where p is the order of augmentation (p < 12).

This command cannot be used in conjunction with & to include additional variables when
carrying out the test. To control for breaks or other exogenous effects when carrying out unit
root tests use the ADF, ADF MAX or ADF WS commands. Also see the discussion and
the warning regarding the sample period used for computation of ADF statistics in Section
4.4.2.

4.4.4 Command ADF MAX

This command computes the Maximum Augmented Dickey-Fuller statistic for testing the
unit root hypothesis in models of type I to III. The test is due to Leybourne (1995), in which
further details can be found.

This test is given by the maximum between the usual ADF statistic and the ADF
statistic computed on the reverse time series, in a regression with an intercept and a time
trend. When applied to a variable X this command has the form

ADF_MAX X  Q

Switch on the button Simulation of Critical Values for Unit Root Tests, to obtain the simu-
lated critical values for the test for an arbitrary significance level (see Section 4.4.2).

The ADF MAX command can also be used to compute the Maximum augmented
Dickey-Fuller test statistics up to an order of augmentation specified by the user, putting
the order in parentheses immediately after the variable name. This command can also be
used in combination with & (see Section 4.4.2 for more information).

Examples of this command are

ADF_MAX X(p) ©

ADF_MAX X(p) & Z1 72 Q©

RUN

where p (p < 12) is the order of augmentation and Z1 and Z2 are deterministics such as
intercepts, time trends of dummy variables representing breaks in intercepts or the trend
coefficients.

Also see the discussion and the warning regarding the sample period used for computation
of ADF statistics in Section 4.4.2.
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4.4.5 Command ADF WS

This command computes the Weighted Symmetric ADF (WS-ADF) statistic, for testing
the unit root hypothesis advanced by Park and Fuller (1995), in which further details can be
found. Critical values of the test statistic for a given level of significance (to be selected by
the user) can be obtained via stochastic simulations. For this purpose the option ‘Simulate
Critical Values’ need to be switched on. see also Section 4.4.2.

The ADF WS command can also be used in combination with & to control for effect
of a set of exogenous variables (see Section 4.4.2 for more information). It can also be used
to compute the weighted-symmetric augmented Dickey-Fuller test statistics up to an order
of augmentation specified by the user, putting the order in parentheses immediately after
the variable name. Examples of this command are

ADF_WS X(p) O

ADF WS X(p) & Z1 Z2 0

where p (p < 12) is the order of augmentation and Z1 and Z2 are deterministics such as
intercepts, time trends of dummy variables representing breaks in intercepts or the trend
coefficients.

Also see the discussion and the warning regarding the sample period used for computation
of ADF statistics in Section 4.4.2.

4.4.6 Command BATCH

This command has the form
BATCH )

or
BATCH < filename > L

If you enter the command BATCH on its own, the names of the batch files in your default
directory will appear on the screen. Select the appropriate batch file, and when prompted
press =

When the batch command is followed by a file name the instructions in the file will be
carried out on the variable in the workspace. A batch file must have the extension .BAT as
a part of its name.

This command allows you to place a number of commands in a file so that they are
subsequently obeyed in batch mode. The legitimate instructions can either be one or more
mathematical formulae and/or commands: SAMPLE, DELETE, KEEP, ENTITLE,
SIM, SIMB, REORDER, RESTORE, and $. When you use the command ENTITLE
in batch mode you need to enter the descriptions of the variables on separate lines in exactly
the same order that the variables are typed after the command. You can also write in
comments in your BATCH file by starting your comments with the dollar sign, $. Anything
entered on the same line after the $ sign in the BATCH file will be ignored.
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An example of a simple BATCH file is given below:

$ Space for comments
SAMPLE 70M1 78M5

INPT =1
Z =X + LOG(Y)
W=X-Y

SAMPLE 75M1 78M5
ENTITLE X Y
Consumption Expenditures
Labour Income

$ Theend of BATCH file

Running this file with the BATCH command creates variables INPT, Z, and W from the
data series X and Y, and assigns the title ‘Consumption Expenditures’ and ‘Labour Income’
to the variables X and Y, respectively.

This is a useful command enabling you to carry out the same operations on different data
sets or on revisions of the same data set.

Notice that in Microfit, the commands COR, LIST, SPECTRUM, HIST, PLOT,
XPLOT,SCATTER, ADD, ADF, EDIT, and TITLE cannot be included in the BATCH
file.

4.4.7 Command CCA

This command enables you to perform a canonical correlation analysis on two sets of vari-
ables, controlling for a third set of variables. Suppose in your workspace you have T' observa-
tions on three sets of variables named (Y'1,Y2,....Yn); (X1, X2, ..., Xs) and (Z1, Z2, ..., Zg).
Then to obtain the canonical correlations and the associated canonical variates between Y
and X, controlling for Z, type

CCA Y1 Y2 ... Yn & X1 X2 ... Xs & Z1 Z2 .. Zg 0
Microfit reports the squared canonical correlations p? > p3 > ... > pz > 0, with £k =
min(n, s), and the canonical variates, u;; and vy for t = 1,2,....,T and 7 = 1,2,...,k, for
the two sets of variables Y1,Y2,....Yn, and X1, X2,..., Xs, once these have been filtered
by the variables Z1 Z2 ... Zg. The filtering is carried out by running regressions of Y3
and Xion Z1,72,..., Zg and then using the residuals from these regressions to compute the
canonical correlations. Microfit also reports the trace statistic for testing the independence
of the two sets of variables.

Under the null hypothesis of independence and certain regularity conditions, the trace
statistic is distributed as a chi-squared variate with (n — 1) (s — 1) degrees of freedom. See
Section 22.13 for further details on canonical correlation analysis and references to the liter-
ature. For tutorial lessons see 10.17 and 16.8.

—_
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4.4.8 Command COR

This command has different effects depending on whether it is followed by one variable or
more. When only one variable is specified after COR, as in the example

SAMPLE 120; COR X  Q

Summary statistics for X (mean, standard deviation, coefficient of variation, skewness, kur-
tosis, minimum, and maximum values) and its auto-correlation coefficients of up to the order
of a third of the number of specified observations will be shown on the screen. If you have a
graphics adaptor, the plot of the auto-correlation function will also be displayed.

The COR command can also be used to compute auto-correlation coefficients up to an
order specified by the user. The desired order should be specified in parentheses immediately
after the variable. For example,

COR X(12) O

gives the auto-correlation coefficients for the variable X up to the order of 12 (assuming, of
course, that there are enough observations). When the COR command is followed by two
or more variables, as in the example

COR X Y Z 0

then summary statistics and the correlation coefficients for these variables, over the specified
sample period, will be provided.
For the relevant formulae and appropriate references to the literature, see Section 21.1.

4.4.9 Command DELETE

This command enables you to delete one or more variables from the list of your existing
variables in your workspace. The names of the variables to be deleted should follow the
command, separated by spaces. For example,

DELETE X Y Z (@

deletes the variables X, Y, and Z from the list of your existing variables. If you wish to delete
a single variable, you can also type

X = Q
This operation has the effect of deleting variable X.

4.4.10 Command DF_PP

This command, applied to a variable X, takes the form

DF_PP X(h) Q
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It computes the Phillips-Perron unit roots test due to Phillips and Perron (1988) using a
window of length h. This test attempts to correct for the effect of residual serial correlation
in a simple DF regression with an intercept both with and without a time trend, using non-
parametric estimates of the long-run variance. If you do not specify the window length in
parentheses, Microfit automatically select it as in the command SPECTRUM (see Section
4.4.27). The command DF PP can also be used in combination with & to control for a set
of exogenous variables. For example,

DF PP Y & INPT Z1 Z2 Q

allows performing unit roots tests on residuals from a regression of Y on the variables IN PT',
Z1, Z2 (see Section 4.4.2 for more information).

The 95 per cent critical values for the test are the same as DF critical values, and are
provided at the foot of the Result table. Critical values for an arbitrary significance level can
also be obtained via simulation, setting the option ‘Simulate Critical Values’ (see Section
4.4.2).

See Phillips and Perron (1988) for further information on this test.

4.4.11 Command ENTITLE

This command allows you to enter or change the description of one or more of the variables
in your workspace. For example, if you type

ENTITLE Q

RUN

the Variable window opens and you can add the titles (or descriptions) of the variables you
require. Note that the description of a variable can be at most 80 characters. If you type in
a title which is more than 80 characters long, only the first 80 characters will be saved.

When a new variable is generated using the data transformation facilities, the first 80
characters after the equality sign will be automatically used as the title of the generated
variable. Also, when a variable X N EW is created by the formula

XNEW = XOLD 0

the title of the variable XOLD, if any, will be passed on to the new variable, X NEW.

4.4.12 Command FILL FORWARD

This command allows you to replace missing values of a given variable or all the variables in
the workspace. For example, if you type

FILL FORWARD X 0

the program replaces any existing missing value of the variable X by the last available
observation in X. If you type the command on its own, namely

FILL FORWARD 0
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for each variable in the workspace the program replaces the missing values by the last avail-
able observation for that variable.

Note: It makes sense to use this command only when observations can be ordered. In case
of undated observations, the use of FILL MISSING command is preferable (see Section
4.4.13).

4.4.13 Command FILL_MISSING

This command, when applied to a variable X, replaces any existing missing value of X with
a value specified by the user. For example,

FILL MISSING X 10 0

replaces all missing values in the X variable with 10.

4.4.14 Command HIST

This command will only work on computers with a graphics facility. When followed by a
variable name, this command displays the histogram of the variable. For example,

SAMPLE 1 20; HIST X 0

The number of bands is automatically chosen between 6 and 15 according to the formula
Min {15, Max(n/10, 6)}

where n is the total number of observations.

This command can also be used to plot the histograms for any numbers of intervals chosen
by the user. The desired number of classes should be specified in parentheses immediately
after the variable. For example,

HIST X(12) ©

In the Graph window you can specify a different period over which you wish to see the
histogram of the variable. Click the Start and Finish fields and scroll through the drop down
lists to select the sample period, and then press the button ‘Refresh graph over the above
sample period’.

Use the Help Functions at the foot of the displayed graph for information about the
various options available for saving and printing the displayed graph. Also see Section 5.2
on how to add text, print, save and retrieve graphs.

To exit the graphic routine, click the = x  button.

Clase
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4.4.15 Command KEEP

This command deletes all the variables in the workspace except those specified. For example,
suppose you have 10 variables named X1, X2, ..., X10 in your workspace, and you wish to
keep only the variables X1 and X2, then type

KEEP X1 X2 Q

by which only the variables X1 and X2 will be kept. Also see the command DELETE.

4.4.16 Command KPSS

This command allows you to compute the stationarity test, developed by Kwiatkowski,
Phillips, Schmidt, and Shin (1992), for a simple DF regression with an intercept and a linear
time trend. Note that the null hypothesis in this test is that the time series is stationary.
The command takes the form

KPSS X(h) 0

where the number in parentheses is the window size. If you type

KPSS X Q

a window size is automatically selected as in the command SPECTRUM (see Section
4.4.27). You can obtain simulated critical values for this test by setting on the option
‘Simulate Critical Values’ (see Section 4.4.2).

For further information on this test see Kwiatkowski, Phillips, Schmidt, and Shin (1992),
in which appropriate critical values are also provided.

4.4.17 Command LIST

This command allows you to inspect your data on screen and/or to save them in a file to be
printed out later. If the command LIST is typed on its own followed by , then the values
of all the variables will be displayed over the current sample period set by the SAMPLE
command. If the command LIST is followed by one or more variable names, then only the
values of the specified variables will be listed.

For example,
SAMPLE 1940 1980;

LIST )
displays all the existing variables over the period 1940-80.

SAMPLE 80Q1 85Q2;
LIST X Y Z &)

displays the observations on the variables X, Y, Z over the period from the first quarter of
1980 to the second quarter of 1985, inclusive.
See Chapter 5 on how to print or save the displayed observations in a result file.
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4.4.18 Command NONPARM

The command NONPARM provides non-parametric estimates of the density function of a
set of n observations set out as x = (x1,x2, ..., ;). The command has the general form

NONPARM 1 2 3 4 X Z h

where the integers 1 to 4 indicates the combination of kernel functions and band width to
be used from the following choices:

k =1: Gaussian kernel and Silverman rule of thumb band width

k =2: Gaussian kernel and least squares cross-validation band width

k = 3: Epanechnikov kernel and Silverman rule of thumb band width

k = 4: Epanechnikov kernel and least squares cross-validation band width

We refer to Section (21.2) for the description of the above kernel functions and band width,
and references to the literature. The vector Z contains the values at which the nonparametric
function is to be evaluated and h gives the choice of the band width imposed by the user.

When £ is set to zero the band width is selected automatically according to Silverman
rule of thumb if £k = 1 or 3, and by the least squares cross-validation procedure if kK = 2 or
4. If h is set to a (small) positive number the badwith will be fixed at that value and only
the choice of the kernel is governed by the specified value(s) of k. The optimum value of h
under the cross-validation procedure is computed on a grid covering 101 values of h in the
range [0.25hgiermans 1-5hsitverman], where Rgiierman 18 given by (21.1).

The command computes the values of fitted density at n points uniformly distributed over

the range |Tmin — iL, Tmax + ﬁ] , where Tpin = Min(z1, 22, ..., Tpn), Tmax = Max(z1, T2, ..., Tp),
and h is the value of the bandwith (either specified by the user or automatically automati-
cally).

In applications where n is relatively large (larger than 1000), the computation of the
least squares cross-validation band width could take considerable amount of time. In such
cases the user has the option of specifying

NONPARM 1 3 X Z h

or

NONPARM 1 X Z h

In the case of these commands the nonparametric densities will be computed only for the
values of k specified.
Also it is not necessary to specify the variable Z. For example, the command can be
issued as
NONPARM 1 X h

In this case the density of = evaluated at m points uniformly distributed over the range
[wmin — iL, Tmax + ﬁ], where h is either the value of h specified by the user or automatically
computed by Microfit.
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If the user wishes to use an automatically computed band width the following simple
form of the command can be used.

NONPARM 1 X
This will have the same effect as issuing the command
NONPARM 1 X 0

Finally, if the integer values k = 1,2, 3,4 are dropped from the command, Microfit assumes
that all the four options is to be computed. Namely the following commands will have the
same effects

NONPARM 1 2 3 4 X O

NONPARM X 0

See Section (21.2) for the mathematical details and the references to the literature. See 10.15
for a tutorial lesson.

4.4.19 Command PCA

This command takes the form
PCA X1 X2 ... Xn & Z1 Z2 .. Zs

and computes the principal components of the variables X1 X2 ... Xn after filtering
out the effects of Z1 Z2 ... Zs. The filtering is carried out by regressing Xi, for each 1,
on Z1 Z2 ... Zs (if any specified), with the residuals from these regressions used in the
principal component analysis. Typically Zi, i = 1,2, ..., s, would include intercept or linear
trends, although other variables can also be included amongst the Zi variables.

The PCA command generates the eigenvalues of the correlation matrix of filtered vari-
ables and the associated eigenvectors and principal components. The eigenvalues are reported
in descending order together with the list of cumulative and percent cumulative eigenvalues,
and the list of eigenvectors associated with non-zero eigenvalues. If you close the output
screen, you are presented with the Principal Components Analysis Menu, where you can
decide to plot eigenvalues and percent cumulative eigenvalues. You can also save a selected
number of principal components as CSV or FIT files, or into workspace. Eigenvectors (or
factor loadings) can also be saved, but only in a CSV file.

Notice that there is no need to standardize the variables before carrying out the principal
component analysis. However, if you do not standardize them, it is advisable to set Z1 = 1.
For technical details and references to the literature see Section 22.12. For a tutorial lesson
see 10.16.
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4.4.20 Command PLOT

This command produces a line graph of up to a maximum of 100 variables against time. You
must specify at least one variable name. For example

SAMPLE 1950 1970;
PLOT X Q

produces a plot of variable X against time, over the period 1950-70.

PLOT X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Q

RUN

produces a plot of the ten variables X1, X2, ..., X10 against time.
If you type
PLOT X1X2X3& Z122 73 Q

Microfit shows the Y axis of the first set of variables X1 X2 X3 on the left of the screen,
and those of Z1 22 Z3 to the right of the screen. Specifically, left Y-axis reports the values
of X1 X2 X3, while the right Y-axis reports the values of Z1 Z2 Z3.

In the Graph window you can specify a different period over which you wish to see the
plots. Click the Start and Finish fields and scroll through the drop-down lists to specify the
sample period and then press the ‘Refresh graph over the above sample period’ button.

See Section 5.2 on how to alter the display of graphs.

4.4.21 Command REORDER

This command enables a complete reordering of all the observations in the workspace ac-
cording to the ordering of the variable that follows the command. For example,

REORDER X 0

produces a reordering of observations according to the ordering of the observations in variable
X. This command is particularly useful when analyzing cross-sectional observations where
the investigator wishes to carry out regression analysis on a sub-set of the observations. The
exact nature of the particular sub-set of interest is defined by the ordering of the observations
in the variable X.

As an example, suppose that the undated observations on the workspace refer to both
male and female indexed by 0 and 1, respectively, stored in the variable SEX. Issuing the
command

REORDER SEX RCMD

reorders the observations in the workspace so that observations referring to females appear
first. The number of such observations is equal to SUM(SEX). See the SUM function
above.
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4.4.22 Command RESTORE

This command should be used after the REORDER command, and restores the ordering
of the observations to their original state (before REORDER was used).

4.4.23 Command SAMPLE

This command can be used to change the sample period for subsequent data analysis in
the data processing stage, but does not carry over to the other parts of the program. An
example of the use of this command for undated observations is

SAMPLE 3 26 0

For annual observations
SAMPLE 1972 1986 T

For half-yearly data
SAMPLE 50H2 72H1 Q

For quarterly data
SAMPLE 75Q1 78Q2 Q

RUN

For monthly data
SAMPLE 70M1 80M11 Q

For daily data
SAMPLE 03-May-85 25-May-85 Q

RUN

4.4.24 Command SCATTER

This command can be used to produce a scatter diagram of one variable against another.
When issuing this command, you must specify exactly two variable names. For example,

SCATTER X Y L

produces a scatter plot of the variable X against the variable Y.
See Section 5.2 for details concerning adding text, saving, retrieving and printing graphs.

4.4.25 Command SIM

This is a simulation command, and enables you to solve numerically any general univariate
linear or non-linear difference equation. For example, to solve the non-linear difference
equation

X(t)=02X(t—1)4+0.7Log(X(t —2))+ Z
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for t = 3,4, ...,20, with initial values X (1) = 0.05 and X (2) = 0.10, you need to issue the
following commands

SAMPLE 1 1; X = 0.05;

SAMPLE 2 2; X =0.10;

SAMPLE 3 20; SIM X = 0.2+ X(—1) + 0.7+ LOG(X(~2)) + Z;
SAMPLE 1 20; PLOT X Q

The first four commands in the above example set the initial values for X, which are used
to simulate the values of X for observations 3, 4, ...., 20.
The following points should be borne in mind when using the SIM command:

1. When the SIM command is used, the values of the simulated variable will be overwrit-
ten. To avoid this problem, one possibility would be to create a new variable called,
say X NEW, which contains the appropriate values, but is otherwise undefined for
other periods. The SIM command can then be applied to X NEW over the sample
period for which X NEW is undefined. A typical example of this procedure would be
(assuming that the specified sample period runs from 1950 to 1980)

SAMPLE 1950 1950; X NEW = 0.05;
SAMPLE 1951 1980;
SIM XNEW = 4% XNEW(—1) % (1—- XNEW(-1)) @

The above will solve the well-known chaotic bifurcation equation
Xy =4X1(1 — Xyq)
starting with the initial value Xj95¢9 = 0.05 over the period 1951-1980.

2. Choose your sample period carefully and make sure that well-defined initial values exist
for the simulation, otherwise all the values of the variable being simulated will be set
to missing.

3. In the case of unstable difference equations, the use of the SIM command may cause
an overflow. When the value of the simulated variable exceeds 10 to the power 50, to
prevent the program from crashing, all the subsequent values will be set to missing.

4.4.26 Command SIMB

This is a simulation command which allows you to solve numerically any general univariate
linear or non-linear difference equation involving lead (not lagged) values of the left-hand
side variable. The difference equation is solved backwards over the specified sample period.
For example, to solve the linear difference equation:

X(t)=12% X(t+1)+ Z(t), for t=20,19,...,1
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with a terminal value of 30.5 at observation 20, the following commands should be issued:

SAMPLE 20 20; X = 30.5;
SAMPLE 119; SIMB X = 1.2 X(+1) + Z;
SAMPLE 1 20; PLOT X Q

For more information, see the description of the SIM command in Section 4.4.25.

4.4.27 Command SPECTRUM

This command, when followed by a variable name, displays the estimates of the standardized
spectral density function of the variable and their estimated standard errors using Bartlett,
Tukey and Parzen lag windows as in the following example:

SAMPLE 1 120; SPECTRUM X Q

The window size will be taken to be twice the square root of the number of specified obser-
vations. If you have a graphics adaptor, the plot of the different spectral density functions
and the associated standard error bands will also be displayed.

The SPECTRUM command can also be used to estimate the spectrum for a window
size specified by the user. The desired window size should be specified in parentheses after
the variable. For example,

SPECTRUM X(12) Q

See Section 5.2 on how to alter the display of graphs.
The algorithms used to compute the different estimates of the spectral density and the
relevant references to the literature are given in Section 21.3.

4.4.28 Command TITLE

This command generates a list of the names of your variables, together with their description,
if any. If you type
TITLE Q

the variable names and the descriptions (if any) of all your variables will be displayed.

4.4.29 Command XPLOT

This command can be used to plot up to a maximum of 100 variables against another variable.
When issuing this command you must specify at least two variable names. For example,

XPLOT X Y 0

produces a plot of the variable X against the variable Y.

XPLOT X1 X2 X3 X4 X5 X6 Y Q

produces a plot of the variables X1, X2, X3, X4, X5, and X6 against the variable Y.
See Section 5.2 for details concerning how to add text, save, retrieve and print graphs.



Chapter 5

Printing/Saving Results and
Graphs

Output from Microfit appears on your screen in the form of texts and graphs. These can be
output to a variety of printers attached to your PC, or can be saved as a file to be printed
at a later stage or for importation into Word-processing packages such as Microsoft Word
or Scientific Word. Microfit 5.0 also allows to save regression results in equation format,
suitable for use with modelling or simulation packages.

5.1 Result screens

Text output of Microfit is displayed inside a result window. You can scroll through the win-
dow in the usual way using the mouse and scroll bar and/or the PgUp/PgDn, Ctrl+Home/End
keys.

Use standard Windows editing functions to edit the contents of the results window if you
wish. To copy text to the clipboard, highlight the text you want by clicking and dragging
with mouse, and click the ﬁié., button.

To edit the font of text digglayed in the window, highlight the text you want to change,

and click the @ button. A standard Windows font dialogue is displayed. Make your
choices in the usual way and click

oK

To exit the result window, click = x

Close

5.1.1 On-line printing of results

The content of each result screen can be printed, separately, by clicking on the @ icon.

Make any choice about the number of copies and so on. and click

69
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5.1.2 Saving results

When saving results you can save them either in ‘report file’ format, or in ‘model file’
format. The former saves the content of the result screen in a text (ASCII) file for use with
word-processing editors. The latter saves only the estimated coefficients in the form of a
linear /non-linear regression equation.

Saving results to a report file. To save your results in a result file, click the @

button and select the ‘Save to Existing/New Result File’ option. When the ‘Save as’ dia-
logue appears, specify a filename, drive and directory. Result files in Microfit are given the
extension .OUT, and if you have any such files in your default directory you should see them
in the list.

Suppose now that you have already opened a result file called RESULT.OUT. To add the
results displayed on the screen to this existing report (or output) file, click the Q button
and select the ‘Add to Current Result File’ option, or choose the ‘Save to Existing/New
Result File’ option and select the RESULT.OUT file.

To view the contents of a result file, use the ‘View a File’ option from the File Menu.
The result files created in Microfit are in ASCII (text) format and can be edited/printed
using text editing or word-processing packages.

Saving equation specification to a model or an equation file. This function applies
only when the displayed results contain coefficients of an estimated relation/model.

To save your results in a model or an equation file, click the ;@' button and select
the option ‘Save to Existing/New Model File’. A menu appears giving you a choice of model
file types; choose the type most suited to the package into which you want to import the file.
Four different model file formats are allowed:

1. Microfit model file format. This is internal to Microfit and may not be compatible
with model specification formats used by other packages.

2. Winsolve model file format. This is the format used in the model solver program,
Winsolve, developed by Richard Pierse of the Department of Economics, University of
Surrey, England.

3. National Institute model file format. This is the equation format used by the National
Institute of Economic and Social Research (NIESR), London.

4. London Business School model file format. This is the equation format currently used
in the London Business School (LBS) forecasting model.

5.2 Print/save/retrieve graphs

The graphic facilities in Microfit 5.0 are considerably enhanced in comparison with earlier
versions of the package. In order to take full advantage of these facilities you need at least
a laser-jet or a PostScript printer.
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5.2.1 Altering the display of graphs

The default graph display may be edited using the Chart Control facility. Select the chart
options from the Edit Menu or click the Edéh button below the graph to access it. Chart
Control contains numerous options for adjustping the background, colour, axes, style, title,
and so on, of your graph. Each option (such as ‘Background’) has its own property page;
click the appropriate page tab to view it. Page tabs contain one or more inner tabs that
group related properties together. Some tabs also contain a list that selects a specific object
to edit. The property changes are immediately applied unless the option ‘IsBatched’ in the
Control page tab is set. When this option is set click the Apply button to display property
changes. To exit Graph Control without implementing our changes, click CANCEL. To
minimize the graph window and reduce it to an icon, click the MINIMIZE button. To close
the window click CLOSE.

The most common functions you may want to use with Microfit are described here.

For more information, visit the web site

http://helpcentral.componentone.com.

Titles: A graph can have two titles, called the header and footer. You can use this page
to set the text alignment, positioning, colours, border style and font used for the header
and/or footer. For example, to change or insert a title select Titles from the Edit and then
select Label in the ‘2D Chart Control Properties’ screen that follows. To edit the ‘Title at
the Header’ select Header in the left window insert. You can also change the location of the
titles on the graph, add Border to them or change their fonts.

Legends. In this screen you can decide the positioning, border, colours and font used for
the legend. Use the Anchor property in the General tab to specify where to position the
legend relative to the ChartArea. When the IsDefault property is used, the chart automati-
cally positions the legend. You can also remove the legends by switching off IsShowing. Use
the Title property to specify the legend title.

Colours. Using this option you can set the line thickness, pattern and colour for each line
in the graph, separately. For example, to change the pattern/colour of the first line in the
graph select Colours under Edit and in the ‘2D Chart Control Properties’ select Stylel under
ChartGroup 1 then change Pattern, Width and Colour using the right panel of this screen
insert. To do the same for the second line in the graph select Style 2 in ChartGroup 1 and
repeat the process.

Variable names. This option allows you to change the variable names of the displayed
graphs. For example, if you have plotted the variables Y and P and you wish to change
their names in the graph select Variable Names under Edit and in the ‘2D Chart Control
Properties’ screen select the variable name that you wish to change and then type in the
new name in the text box provided.
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Other options of the graph menu. To access the other options of ‘2D Chart Control
Properties’ select ‘All Chart Options’ from the Edit Menu. For example you can change the
Y (vertical) and X (horizontal) axes, decide whether or not to display them, show them in
logarithmic scales or reverse the way they are displayed.

Axes. This page allows you to modify the annotation method, the scale and the style of
axes and to give a title to axes. The Scale tab in this page allows you to frame the graph at
specific data values (using ‘Data Min’ and ‘Data Max’ options) and/or at specific axis values
(using ‘Max’ and ‘Min’ options), and to control the placement of the origin point. Use the
TitleRotation property to rotate the axis title to either 90 or 270 degrees counterclockwise.
In the Axis/Grid Lines tab you can change the properties of axes lines or display a grid on
a graph. Use the tick length property to choose the length of the tick marks on the axis,
or use the IsStyleDefault axis line property to allow the graph to set it automatically. Use
the gridlines Spacing property to change the grid spacing for an axis. In the AxisStyle and
GridStyle tabs you can control the line pattern, thickness, and colour properties of the axis
lines and ticks and of the grid, respectively.

View 3D. Graphs can be enhanced with a 3D effect. Use the Depth property to set the
visual depth of the 3D effect, as a percentage of the chart width. The maximum value is
500. Use the Elevation property to set the distance above the X-axis for the 3D effect, in
degrees. This can be from —45 to 45 degrees. Use the Rotation property to set the distance
right of the Y-axis for the 3D effect, in degrees. This cannot be higher than 45 or lower than
—45. Use the Shading property to set the shading method for the 3D areas of the chart.

5.2.2 Printing graphs
To obtain a hard copy of the displayed graph on the default printer click the @ button.

Make any choices about the number of copies and so on, and click

oK

5.2.3 Saving graphs

A displayed graph can be saved in a variety of formats: as an Olectra Chart (OC2), as a
Bitmap (BMP), Windows metafile (WMF), Enhanced metafile (EMF), JPEG or Portable
Network Graphics (PNG) file.

The Olectra Chart format is useful if you want to load the graph into Microfit at a later
stage for further editing (see Section 5.2.4). To save the graph as an OC2 file, select the
‘Save the Chart (Olectra Chart Format)’ option from the File Menu in the Graph window.
Enter the filename and location for your file and click

To save the graph in BMP, WMF, EMF, JPEG or PNG format, select the ‘Save as’
option from the File Menu or click the Q button. Choose the file type you want from

the drop-down list and enter the filename and location for your file before clicking

oK

The graph’s image only will be saved.
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5.2.4 Retrieval of graphic files

To retrieve a graphic file, click the L...... button at the base of the screen. In the Open
dialogue, select Graph files from the List of types box, find the location and name of the file
you want, and click . Only graphs saved in Olectra Chart (OC2) format can be loaded
into Microfit.

5.2.5 Capturing graphs onto the clipboard
It is possible to capture the displayed graph onto the Windows clipboard. Click the @@

button. From the clipboard the graph may be pasted into another application in the usual
way, using the special Paste option available in word-processing packages such as Microsoft

Word or Scientific Word.

5.3 Exercises using graphs

5.3.1 Exercise 5.1

Carry out Lesson 10.5, copy the plot of C' and Y to the clipboard and then past the graph
into Microsoft Word or Scientific Word. When you see the graph on the screen type some
text around it, resize and print.

Note that any text that you wish to add to the graph must be done in Microfit. Once
a graph is imported into a word-processing package you cannot add text inside the graphic
box. You can only give it a title.

5.3.2 Exercise 5.2

Carry out Lessons 10.9 and 10.10, and save the results from both lessons in one file. Add
titles and other descriptions to this result file by editing it, and then print the file.
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Chapter 6
Single-Equation Options

In this chapter we show how Microfit can be used to estimate a large number of single-
equation econometric models, compute diagnostic statistics for them, carry out tests of
linear or non-linear restrictions on their parameters, and use them in forecasting. First we
review briefly the classical linear regression model and the likelihood approach that underlie
the various estimation options in Microfit. The more technical details of the econometric
methods and the computational algorithms used are given in Chapter 21, where further
references to the literature can also be found.

6.1 The classical normal linear regression model

The econometric model underlying the linear regression estimation options in Microfit is the
classical linear regression model. This model assumes that the relationship between y; (the
dependent variable) and x1¢, zat, ..., % (the k regressors) is linear

k
Yt :Zﬁixit+ut7 1= 1’2)"',n (61)
=1

where u;’s are unobserved ‘disturbance’ or ‘error’ terms, subject to the following assumptions.

A1l Zero mean assumption. The disturbances u; have zero means

E(u) =0, t=1,2,...,n

A2 Homoscedasticity assumption. The disturbances u; have a constant conditional
variance
V(ut |z1e, Tot, ..oy Tpt) = 02, forall t

A3 Non-autocorrelated error assumption. The disturbances u; are serially uncorre-
lated
Cov(ut, us) = E(upug) =0, forall t+#s

75
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A4 Orthogonality assumption. The disturbances u; and the regressors x1;, To¢, ... Tgt
are uncorrelated
E(ug |x14, Tot, ...y xpy) =0, for all ¢

A5 Normality assumption. The disturbances u; are normally distributed.

Adding the fifth assumption to the classical model yields the classical linear normal
regression model. The latter model can also be derived using the joint distribution of v, x1¢,
Tot, ..., Tit, and by assuming that this distribution is a multivariate normal with constant
means, variances and covariances. In this setting the regression of y; on x1¢, Tot, ..., Tht,
is defined as the mathematical expectation of y; conditional on the realized values of the
regressors, will be linear in the regressors. The linearity of the regression equation follows
from the joint normality assumption and need not hold if this assumption is relaxed. Both
of the above interpretations of the classical normal regression model have been used in the
literature (see, for example, Spanos 1989).

In time-series analysis, the critical assumptions are A3 and A4. Assumption A3 is par-
ticularly important when the regression equation contains lagged values of the dependent
variable, namely y;_1, y;—2,... . However, even if lagged values of y;s are not included among
the regressors, the breakdown of assumption A3 can lead to misleading inferences; a problem
recognized as early as the 1920s by Yule (1926), and known in the econometrics time-series
literature as the spurious regression problem.! The orthogonality assumption, A4, allows the
empirical analysis of the relationship between y; and x1;, xot,...,z5 to be carried out without
fully specifying the stochastic processes generating the regressors, or the ‘forcing’ variables.
Assumption Al is implied by A4, if a vector of ones is included among the regressors. It
is therefore important that an intercept is always included in the regression model, unless
it is found to be statistically insignificant. Assumption A2 specifies that uss have constant
variances both conditionally and unconditionally. The assumption that the error variances
are constant unconditionally is likely to be violated when dealing with cross-sectional regres-
sions. The assumption that the conditional variance of u; is constant is often violated in
analysis of financial and macroeconomic time-series, such as exchange rates, stock returns
and interest rates. The normality assumption A5 is important in small samples, but is not
generally required when the sample under consideration is large enough. All the various
departures from the classical normal regression model mentioned here can be analysed using
the options that are available in Microfit.

6.1.1 Testing the assumptions of the classical model

Microfit enables the user to test the assumptions that underlie the classical model in a simple
and straightforward manner. This type of diagnostic testing is an essential component of any
applied econometric research. However, it is important that the outcomes of such diagnostic
testing exercises are properly interpreted and acted upon.

! Champernowne (1960), and Granger and Newbold (1974) provide Monte Carlo evidence of the spurious
regression problem, and Phillips (1986) establishes a number of theoretical results.
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Guidelines
You may find the following broad guidelines useful when working with Microfit:

1. Rejection of an hypothesis against an alternative does not necessarily imply that the
alternative hypothesis is acceptable or that it should be necessarily adopted. Rejection
of a given hypothesis could be due to a number of different interlocking factors, and it
is therefore important that a variety of nested and non-nested alternative explanations
are considered before a firm conclusion, as to the appropriate choice of the alternative
hypothesis, is reached. For example, when assumption A3 (the non-autocorrelated
error assumption) is rejected it may be due to any one or a mixture of the following
model mis-specifications: omitted variables, structural change, mis-specified dynamics,
or aggregation across heterogenous groups. Rejection of the normality assumption may
be due to the presence of outliers or non-linearities. Rejection of the orthogonality
assumption could arise because of simultaneity, expectational effects, omitted variables
and/or mis-specified dynamics.

2. A regression equation that passes all the diagnostic tests generated by Microfit is not
necessarily a statistically adequate model, and should not be regarded as the ‘true’
data-generating process! It is quite possible for two rival (or non-nested) models to
pass all the diagnostic tests produced by Microfit, but yet one of the models could be
rejected by the other and not vice versa.” The non-nested test options in Microfit can
be used to deal with such eventualities. Even then there could be other possible models
that may not have been considered or thought out by the investigator. A satisfactory
econometric model should satisfy a number of quantitative and qualitative criteria, and
can at best represent a reasonable approximation of one or more aspects of the reality
that the investigator is interested in analyzing. Pesaran and Smith (1985) summarize
these different criteria under the heading ‘relevance’, ‘consistency’ and ‘adequacy’.

3. The t-tests on individual regression coefficients should be carried out with great care,
particularly when the regressions exhibit a high degree of collinearity. It is good prac-
tice to combine the t-tests on individual coefficients with F-tests of joint restrictions on
the coefficients. It is important that the results of the individual ¢ -tests (also known
as separate-induced tests) and the joint tests are not in conflict. Otherwise, inferences
based on individual t-tests can be misleading. For a demonstration of this point see
Lesson 10.4 on the multicollinearity problem.

6.1.2 Estimation of the classical linear regression model

Under the classical assumptions (Al to A4), the estimation of the regression coefficients, 3,
Ba,-.., B}, is carried out by minimizing the sum of squares of the errors, u;, with respect to
B1s Baye--sB)- Writing (6.1) in matrix notations we have

v =XB+u (6.2)

2 As an example, see the comparative empirical analysis of the Keynesian and the Neo-Classical explana-
tions of US unemployment in Pesaran (1982b), Pesaran (1988b) and Rush and Waldo (1988).




CHAPTER 6. SINGLE-EQUATION OPTIONS 78

where
Y1 U1
y Y2 u U2
nx1l : S
Yn Un
Tl T2l ... Tkl
X 12 I22 ... XTk2
nxk
Tin T2n ... Tkn

and B = (81, By, ..., ;)" is a k x 1 vector of unknown coefficients. The sum of squares of the
errors can now be written in matrix notations as

Q(B) =) _uf =uu=(y —Xp)(y - XB) (6.3)
t=1
The first-order conditions for minimization of Q(3) with respect to 3 are given by
9Q(B) /
— =-2X(y— X 4
e (v - X8) (6.4

The Ordinary Least Squares (OLS) estimator of 3 is obtained by solving the normal equa-
tions in BO LS R

X'(y = XBors) =0
For these equations to have a unique solution it is necessary that X’X has a unique inverse,
(X'X)"". When X is rank deficient, any one of the columns of X can be written as exact
linear combinations of the other columns, and it is said that the regressors are perfectly
multicollinear. In what follows we make the following assumption:

A6: The observation matrix X has a full column rank: Rank(X) = k.

Under this assumption the OLS estimator of 3 is given by
Bors = (X'X) Xy (6.5)

Under the classical assumptions (A1 to A4), B¢ is unbiased (E(Bp.s) = B), and among
the class of linear unbiased estimators it has the least variance. (This result is known as the
Gauss Markov Theorem.).

Under the normality assumption A5, the Maximum Likelihood (ML) estimator of 3 is
identical to the OLS estimator, and the log-likelihood function is given by

Ly - XB)(y - XB) (6.6)

L(B,02) = —% log(27r02) ~ 5,2
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where 02 denotes the variance of u;. The ML estimator of o2 is given by

& =n"'y — XBors)' (y — XBors) (6.7)

and is biased. In fact

The unbiased estimator of o2, which we denote by 62, is defined by

6% =(n—k) " (y—XBos) (y — XBors) (6.9)

The variance matrix of BO g, together with a number of useful summary statistics for
regression analysis, are given in Section 21.6.1.

6.1.3 Testing zero restrictions and reporting probability values

Consider the problem of testing the ‘null” hypothesis that

Hy: f; = ﬁ?
against
Hy:B; # ﬂ?
where f3; is the ith element of 3 in (6.2). The relevant test statistic is given by the t-ratio
8. — 0
= Pibi (6.10)
V(5:)

where BZ is the ith element of BO s, and ‘A/(Bl) is the estimator of the variance of 31 and
is given by the ith diagonal element of the variance matrix defined by (21.6). Since the
alternative hypothesis, Hi, is two-sided, the absolute value of ¢; should be compared with the
appropriate critical value of the Student-t distribution with n—k degrees of freedom. Microfit
reports the probability of falsely rejecting the null hypothesis that 3; = 0 against 5; # 0, in
square brackets next to the t-ratios. These probability values are valid under assumptions
A1l to A5 for two-sided tests, and provide an indication of the level of significance of the
test. For example, if the probability value reported for 3, is equal to 0.025, it means that
the probability of falsely rejecting 3, = 0 is at most equal to 0.025. Therefore, the null
hypothesis that 8; = 0 against 5; # 0 is rejected at the 2.5 per cent significance level. The
probability values are applicable even if the normality assumption is violated, provided that
the sample is large enough.

6.2 The maximum likelihood approach

Many of the estimation options in Microfit compute estimates of the regression coefficients
when one or more of the classical assumptions are violated. For example, the AR and the
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M A options, discussed in Sections 6.8-6.11 below, compute estimates of 3 under a variety
of assumptions concerning the autocorrelation patterns in the disturbances. To deal with
such departures, Microfit makes use of two general principles: the Likelihood Principle, and
the Instrumental Variables Method which is a special case of the Generalized Method of
Moments (GM M ). Here we briefly review the likelihood principle.

Let L(6) be the likelihood function of the k& x 1 vector of unknown parameters, 6, as-
sociated with the joint probability distribution of y = (y1,y2, ..., yn)’, conditional (possibly)
on a set of predetermined variables or regressors. Assume that L(8) is twice differentiable
and satisfies a number of regularity conditions. See, for example, Chapter 8 in Davidson and
MacKinnon (1993).

The Maximum Likelihood (ML) estimator of @ is that value of @ which globally max-
imizes L(0). Let 0 be the ML estimator of 6, then it must also satisfy the first-order
condition

0log L(0) — o
00 0—d -

6.2.1 Newton-Raphson algorithm

The computation of the M L estimators in Microfit is generally carried out using the Newton-
Raphson algorithm. Denote the estimator of € in the jth iteration by 6(;_), then the
iterative algorithm used is given by

N B 9%log L(6)] " dlog L(0)
o Plog L(6) dlog L(6) 11
00 9(3—1>+d[ 0006’ Lg(jl) { 00 ]9 6i1) o

where d is a scalar ‘dumping factor’. In cases where convergence of the numerical algorithm
may be problematic, Microfit allows the user to start the iterations with different choices
for the initial estimates, 5(0), and the value of the damping factor in the range [0.01 — 2.00].
The iterations are terminated if

k
20(] —9 G—1) < ke
where 51-7(]-) is the 7th element of é(j), and e is a small positive number usually set equal to
1/10,000. In some cases the program also checks to ensure that at termination the maximized

value of the log-likelihood function is at least as large as the log-likelihood values obtained
throughout the iterations.

6.2.2 Properties of maximum likelihood estimators

The optimum properties of M L estimators are asymptotic; that is, they are valid in large
samples. Assuming that certain regularity conditions are satisfied, and in particular y, is a
stationary process, then 6, the ML estimator of 6, has the following properties:*

3Many of these properties continue to hold even if the stationary assumption is relaxed. For general results
in the case of the M L estimation of models with unit root processes see Chapters 7 and 22.
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1. 6 is a consistent estimator of = (01,02, ...,0k) that is

lim Pr{ Aéz — 00

n—o0

< e} —1,  for i=1,2,....k
where 0,y is the true value of §; and €(> 0) is a small positive number.

2. Asymptotically (as n — 00), \/n (5 — 00) has a multivariate normal distribution with

zero means and the variance matrix » |, where

1 1 0%log L(0) R e | 0?log L(0)
Lo =F { n 0000’ or 2 = plim = —ne

[y

n—oo

3. 0 attains the Cramer-Rao lower bound asymptotically.

4. 0 is an asymptotically unbiased estimator of 6, that is

lim E(0) = 6,

n—oo

5. s an asymptotically efficient estimator. That is, 6 has the lowest asymptotic variance
in the class of all asymptotically unbiased estimators.

6.2.3 Likelihood-based tests

There are three main likelihood-based test procedures that are commonly used in economet-
rics for testing linear or non-linear parametric restrictions on a maintained model. They
are:

1. The Likelihood Ratio (LR) approach.
2. The Lagrange Multiplier (LM ) approach.
3. The Wald (W) approach.

All these three procedures yield asymptotically valid tests, in the sense that they will
have the correct size (the type I error) and possess certain optimal power properties in large
samples. They are asymptotically equivalent, although they can lead to different results
in small samples. The choice between them is often made on the basis of computational
simplicity and ease of use.
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The Likelihood Ratio test procedure

Suppose that the hypothesis of interest to be tested can be written as a set of r independent
restrictions (linear and/or non-linear) on . Denote these r restrictions by*

¢1(01,02,....,0,) = 0
¢9(01,02,....,0;) = 0

¢, (01,02,....,0,) = 0
which can be written compactly in vector notations as
Hy:¢(0)=0

where ¢(-) is an 7 x 1 twice differentiable function of the k x 1 parameter vector, 8. Consider
the two-sided alternative hypothesis

Hy:¢p(6) #0

The log-likelihood ratio (LR) statistic for testing Hp against H; is defined by
LR=2 {1og [L(“éU)] —log [L(ER)] } (6.12)

where EU is the unrestricted M L estimator of 8, and 53 is the restricted ML estimator
of 6. The latter is computed by maximizing L(@) subject to the r restrictions ¢(8) = 0.
Under the null hypothesis, Hp, and assuming that certain regularity conditions are met, the
statistic LR is asymptotically distributed as a chi-squared variate with r degrees of freedom.
The hypothesis Hy is then rejected if the log-likelihood ratio statistic, LR, is larger than the
relevant critical value of the chi-squared distribution.

The LR approach requires that the maintained model, characterized by the likelihood
function L(#), be estimated both under the null and the alternative hypotheses. The other
two likelihood-based approaches to be presented below require the estimation of the main-
tained model either under the null or under the alternative hypothesis, but not under both
hypotheses.

The Lagrange Multiplier test procedure

The Lagrange Multiplier (LM ) procedure uses the restricted estimators, 53, and requires
the computation of the following statistic:

dlog L(6) R2logL(O) " [09log L(6)
LM =227 _= o) cos A7) 1
{ 00’ }ezaR{ 0000" Jo5, 00" Jo g, (613)

4The assumption that these restrictions are independent requires that the r x k matrix of the derivatives
O¢ /90’ has a full rank, namely that Rank(d¢/060") = r.
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2
where {al%g(a)} _ and {ag)%az,(e)} _ are the first and the second derivatives of the
0=0p 0=0r

log-likelihood function which are evaluated at 0 = g, the restricted estimator of 6. Recall
that @ is computed under the null hypothesis, Hy, which defines the set of restrictions to
be tested. The LM test was originally proposed by Rao (1948) and is also referred to as
Rao’s score test, or simply the ‘score test’.

The Wald test procedure

The Wald (W) test makes use of the unrestricted estimators, 0y, and is defined by

-1 ~

W =¢'00){V |#60)|}  #60) (6.14)

where V [(,‘[)(5(])} is the variance of ¢(8y) and can be estimated consistently by

wo0] = {25, e e, (5,

Asymptotically (namely as the sample size, n, is allowed to increase without a bound), all
the three test procedures are equivalent. Like the LR statistic, under the null hypothesis,
the LM and the W statistics are asymptotically distributed as chi-squared variates with r
degrees of freedom. We can write

<

LR ~ LM X W

where ~ denotes ‘asymptotic equivalence’ in distribution functions.
Other versions of the LM and the W statistics which replace

9?log L(0)
06000’

in (6.13) and (6.15) by a consistent estimate of

_,0%log L(G)}

nplim{n 2000’

n—oo
are also used in Microfit. This would not affect the asymptotic distribution of the test
statistics, but in some cases could simplify the computation of the statistics.

The various applications of the Likelihood Approach to single equation econometric mod-
els are reviewed in Chapter 18.

6.3 Estimation menus in M:icrofit

Microfit’s gateway to econometric analysis consists of the Single Equation Estimation Menu
(shortened to Multivariate Menu on the menu bar), the System Estimation Menu (shortened
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to Multivariate Menu on the menu bar), and the Volatility Modelling Menu. The Univariate
Menu opens the Single Equation Estimation Menu (see Section 6.4) which provides a large
number of options for estimation of linear and non-linear single equation models.

The Multivariate Menu opens the System Estimation Menu (see Section 7.3) which al-
lows you to estimate unrestricted vector autoregressive (VAR), cointegrating VAR models
with exactly identifying and over-identifying restrictions on the long-run relations, cointe-
grating VARX, and system of seemingly unrelated equations (SURE), with and without
restrictions.

The Volatility Modelling Menu allows you to estimate univariate and multivariate GARC H
models (see Chapter 8).

Alternatively, use the O. , &I: or buttons to move to Single Equation Esti-
mation window, the System Estimation window, or the Volatility Modelling window respec-
tively. The window opens with the last menu option chosen (or the first option in the menu)
selected by default.

Before any of these estimation options are used, it is important that the data are correctly
entered, and that all the variables to be included in the regression equation, such as the
intercept (the constant term), time trends, seasonal dummies, or transformations of your
existing variables (for example, their first differences or logarithms). See the data processing
functions described in Chapter 4.

6.4 Single Equation Estimation Menu

The Single Equation Estimation Menu (abbreviated to Univariate Menu in the menu bar)
contains the following options:

1. Linear Regression Menu.

2. Recursive Linear Regression Menu.
3. Rolling Linear Regression Menu.

4. Non-linear Regression Menu.

5. Phillips-Hansen Estimation Menu.
6. ARDL Approach to Cointegration.

7. Logit and Probit Models.

In Microfit each of these options is regarded as a menu on its own.

When you choose any of these options, or their submenu options, you will be asked to
enter the specification of your econometric model in the editor window on the screen.

Option 1 allows you to estimate linear regression models by a variety of methods: ordi-
nary least squares (OLS), instrumental variables (IV') or two-stage least squares (T'SLS),
maximum likelihood (ML) estimates for regression models with serially correlated errors
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(AR, CO, MA), and IV estimates of regression models with serially correlated errors
(IV/AR and IV/M A options)

Options 2 and 3 compute recursive and rolling regressions estimated by the OLS and
the IV methods.

Option 4 enables you to estimate non-linear regression equations by the least squares
or the two-stage least squares methods.

Option 5 can be used to obtain fully-modified OLS (FM-OLS) estimators of a single
cointegrating relation proposed by Phillips and Hansen (1990).

Option 6 implements the Autoregressive-Distributed Lag (ARDL) approach to estima-
tion of a single long-run relationship advanced by Pesaran and Shin (1999), with automatic
order selection using any one of the four model selection criteria, namely R?, the Akaike
information criterion (AIC), the Schwartz Bayesian criterion (SBC'), and the Hannan and
Quinn criterion (HQC).

Option 7 can be used to estimate univariate binary quantitative response models for
normal and logistic probability distributions (namely, the Probit and Logit models).

6.5 The Linear Regression Menu

This is the main menu for estimation of single equation linear regression models. It contains
the following options

Ordinary Least Squares.

Gen. Instr. Var. Method.

AR Errors (Exact ML) J<=12.

AR Errors (Cochran Orcutt) J<=12.
AR Errors (Gauss-Newton).

IV with AR Errors (Gauss-Newton).
M A errors (Exact ML) J<=12.

1V with M A Errors J<=12.

P NSO W

The options in this menu can be used to compute estimates of a linear regression equation
under a number of different stochastic specifications of the disturbances. To start your
calculations once they have been set up, click =~ @ . All the options in this menu assume

that the observation matrix of the regressors has a full rank (that is, that Assumption A6
is satisfied and the specified regressors are not perfectly multicollinear). If this condition is
not satisfied Microfit gives an error message and invites you to click s

To access the Linear Regression Estimation Menu choose option 1 in the Single Equation
Estimation Menu (see Section 6.4), and then follow the instructions below to specify your
regression equation and the estimation period.
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6.5.1 Specification of a linear regression equation

When you choose options 1 to 3 in the Single Equation Estimation Menu (see Section 6.4)
you will be asked to type the name of your dependent variable followed by the list of your
regressors, separated by spaces, in the box editor that appears on the screen. For example,
to specify the regression

YFOOD; = ag+ a1 XLy + as X Cy + uy

you need to type
YFOOD INPT XL XC

where Y FOOD is the dependent variable and INPT, X L,and XC' are the regressors. The
variable I N PT here denotes for the intercept (or constant) term and can be created either
by using the = Gl button (see Section 4.1), or by typing the formula

INPT =1

into the Functions box. Before running this regression you must ensure that all the four
variables Y FOOD , INPT, X L,and XC are in the variable list by clicking the q button

(see Chapter 4).
In specifying the regression equation the following points are worth bearing in mind:

1. It is possible to specify lagged or lead values of the dependent variable or other variables
as regressors by including the order of lags or leads enclosed within brackets immedi-
ately after the relevant variables. For example, to specify the regression equation

Yo = o+ O1yi—1 + Goyr—2 + 3Yi1 + Lot + Brai—1 + wy
when asked to list your regression equation you can type
Y INPT Y(-1) Y(-2) Y(+1) X X(-1)

where I N PT stands for an intercept term (a vector of ones), Y (—1) and Y (—2) repre-
sent the first and second-order lags of the dependent variable (Y), respectively, Y (+1)
stands for the first-order lead of Y, and X (—1) is the first-order lag of X. The variables
Y(-1), Y(-2), Y(+1), and X(—1) are created temporarily for use only in the esti-
mation/testing/forecasting stage of the program. This is a useful facility and allows
you to include lags of variables in the regression equation without having to create
them explicitly as new variables in the Process window. When the specified equation
contains lagged variables, the information in the order of lags will also be used in the
calculation of dynamic forecasts (see the forecast option in the Post Regression Menu
in Section 6.20). However, if lagged values of the dependent variable are created in the
Process window, before entering the estimation/testing/forecasting stage, these lagged
values will be treated like any other regressors, and static forecasts will be calculated.
For example, suppose Y1, Y2, and X1 are created in the Process window as

Y1=Y(-1); Y2=Y(-2); X1=X(-1)



CHAPTER 6. SINGLE-EQUATION OPTIONS 87

The regression of Y on
INPT Y1 Y2 X1

will generate the same results as the regression of Y on
INPT Y(-1) Y(-2) X(-1)
except for the forecasts; which will be static (see options 8 and 9 in Section 6.20).

2. Also, in the regression of Y on
INPT Y(-1) X

the program recognizes that only the first-order lag of the dependent variable, namely
Y (—1), is specified amongst the regressors, and automatically includes Durbin’s h-
statistic in the OLS regression results. But if the regression is specified as Y on
INPUT Y1 X the program treats Y1 like any other regressor and does not report
the h-statistic.

3. In specifying distributed lag functions it is often convenient to use the facility that
allows the user to include a number of lagged values of a variable without having to
type all of their names in full. For example to include the variables

Ty Ti—1, Lt—2, Lt—3, Tt—4, Lt—5, 2t—10, Zt—11, Zt—12
among your regressors you simply need to type
X{0—-5} Z{10—12}
As another example, if you wish to include the following regressors in your model
W, Wt—2, Wi—5, Wt—8, Wt—9, Wt—10

you need to type
W{0258—10}

4. Note that except for Phillips-Hansen’s Fully Modified OLS estimator (item 5 in the
Single Equation Estimation Menu), Microfit does not automatically include an inter-
cept term in the regression equation, and you need to include it explicitly amongst
your regressors.

6.5.2 Specification of the estimation period

You need to specify the estimation period once you have set up the model (see Section
6.5.1). By default, all available observations will be chosen, and the start and finish for the
estimation period will be the same as the minimum and maximum dates (or observations)
displayed on the screen.
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You may, however, wish to choose a subset of available observations for estimation,
perhaps saving some of the observations for the predictive failure and structural stability
tests, or for forecasting. In this case you should enter the start and finish of your estimation
period, by clicking on the Start and End boxes in turn and choosing a date from the drop-
down list.

If there are observations at the end of the sample period which have not been included
in the estimation period, in the case of the OLS option you will also be asked to specify the
number of observations to be used in the predictive failure/structural stability tests. You will
be presented with a window stating: ‘Number of observations for predictive failure/structural
stability tests(s) (Min 0 Max < >)’ . Enter your desired number of observations between
zero and the maximum number specified, and press /

In specifying the estimation period the following points are worth bearing in mind:

1. The estimation period cannot fall outside the period defined by the minimum and
maximum dates (or observations).

2. The program automatically adjusts the chosen estimation period to allow for missing
observations (blank fields) at the beginning and at the end of the sample period. For
example, if the available observations run from 1960 to 1980, but the observations on
the dependent variable and/or one of the regressors are missing for the years 1960,
1961, and 1980, then the default estimation period will be 1962-1979.

3. If one or more observations on the dependent variable and/or on the regressors are
missing in the middle of the specified estimation period, estimation will be carried out
on a shorter sample period with no missing values (if possible).

6.6 Ordinary Least Squares option

This option computes the Ordinary Least Squares (OLS) estimates of 3 together with the
corresponding standard errors, t¢-ratios, and probability values. (See Sections 6.1.2 and
6.1.3). It also computes a number of summary statistics and diagnostic test statistics (with
probability values) aimed at checking for possible deviations from the classical normal as-
sumptions (A1 to A5). The summary statistics include R?, R?, Akaike information criterion
(AIC), Schwartz Bayesian criterion (SBC'), residual sum of squares, standard error of re-
gression, and the maximized value of the log-likelihood function. The formulae used for the
computation of these and other statistics are given in Sections 21.6 and 21.7.

The diagnostic statistics included in the OLS regression results are for testing the fol-
lowing hypotheses:

- Residual serial correlation.
- Functional form misspecification.

- Normality of residuals.
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- Heteroscedasticity.
- Predictive failure.

- Structural stability.

For each of these hypotheses the program computes two test statistics: a Lagrange mul-
tiplier (LM), or score statistic, and an F' statistic. The LM statistic is asymptotically
distributed as a chi-square (x?) variate. For a comprehensive review of the use of LM tests
in econometrics, see Godfrey (1988). The F-statistic, also known in the literature as ‘LM
F’ or ‘modified LM’ statistic, is taken approximately to have the F' distribution: see Harvey
(1981), p. 277. The LM and the F statistics have the same distribution asymptotically.
But, on the basis of Monte Carlo results, Kiviet (1986) has shown that in small samples
the F' version is generally preferable to the LM version. In what follows we provide a brief
account of these diagnostic tests. For further details of the econometric methods involved
and the relevant references to the literature, see Section 21.6.2.

6.6.1 Tests of residual serial correlation

The program provides the following tests of the non-autocorrelated error assumption, A3:

- Durbin-Watson test (Durbin and Watson (1950), Durbin and Watson (1951)).
- Durbin’s h-test (Durbin (1970))°.

- Lagrange multiplier (LM) tests’.

The program always supplies the DW statistic, but reports the h-statistic only when the
regression equation is explicitly specified to include a single, one-period lag of the dependent
variable. The LM statistic is included in the diagnostic tests table, and is applicable to
models with and without lagged dependent variables (Godfrey 1978b, 1978¢). It is applicable
in testing the hypothesis that the disturbances, u;, are serially uncorrelated against the
alternative hypothesis that they are autocorrelated of order p (either as autoregressive or
moving average processes). In the diagnostic tests table the following values are chosen for
p:

p=1 for undated, annual and daily data
p =2 for half-yearly data

p=4 for quarterly data

p =12 for monthly data

Other values for p can be specified using option 1 in the Hypothesis Testing Menu (see
Section 6.23).

’See also Godfrey (1978a).
For example, see Godfrey (1978b), Godfrey (1978c), Breusch and Pagan (1980), and Breusch and Godfrey
(1981).
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6.6.2 Ramsey’s RESET test for functional form misspecification

The RESET test (Ramsey 1969) reported in the diagnostic tests table refers to the simple
case where only the square of fitted values (§?) are included in the extended regression of
er = Y — ng (or ;) on x; and §2. A pth order RESET test can be carried out by using
Option 6 in the Hypothesis Testing Menu (Section 6.23), with 92, 42, ..., 9} specified as
additional variables. Notice that to carry out such a test, you first need to save the fitted
values of the regression of y on X by means of Option 7 in the Display/Save Residuals and
Fitted Values Menu (see Section 6.21).

6.6.3 The normality test

This is the test proposed by Jarque and Bera (1980) for testing the normality assumption,
A5, and is valid irrespective of whether or not the regression equation includes an intercept
term.

6.6.4 Heteroscedasticity test

This is a simple test of the (unconditional) homoscedasticity assumption, A4, and provides
an LM test of v = 0 in the model

E@W))=0?=0>+7(x8)%, t=12..,n

See Koenker (1981), where it is also shown that such a test is robust with respect to the
non-normality of the disturbances.

6.6.5 Predictive failure test

This is the second test discussed in Chow (1960), and is applicable even if the number of
available observations for the test is less than the number of unknown parameters. As shown
in Pesaran, Smith, and Yeo (1985) the predictive failure test can also be used as a general
specification error test.

6.6.6 Chow’s test of the stability of regression coefficients

This is the first test discussed in Chow (1960), and tests the equality of regression coefficients
over two sample periods conditional on the equality of error variances. In the statistics
literature this test is known as the analysis of covariance test: see Scheffe (1959). The
program computes this test if the number of observations available after the estimation
period is greater than k, the number of regressors included in the model.
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6.6.7 Measures of leverage

In the classical linear regression model (6.2), the leverage (or the influence) of points in the
regression design is measured by the diagonal elements of the matrix”

A =X(X'X) X' = (a;) (6.16)

The relevance of the leverage measures, a;;, ¢ = 1,2,...,n in regression analysis has been
discussed in detail by Belsley, Kuh, and Welsch (1980) Chapter 2, and Cook and Weisberg
(1982) Chapter 2.

The program provides plots of a;;, i = 1,2, ...,n, and allows you to save them for subse-
quent analysis. In the plot of the leverage measures, the average value of a;;, which is equal
to k/n, is also displayed.®

The leverage measures also provide important information on the extent of small sample
bias that may be present in the heteroscedasticity-consistent estimators of the covariance
matrix of Bprg (Section 21.22). As shown by Chesher and Jewitt (1987), substantial down-
ward bias can result in the heteroscedasticity-consistent estimators of the variance of the
least squares estimators, if regression design contains points of high leverage.

6.7 Generalized instrumental variable method option

Option 2 (the IV or 25LS option) in the Linear Regression Estimation Menu (see Section 6.5)
enables you to obtain consistent estimates of the parameters of the regression model when the
orthogonality assumption A4 is violated.” The breakdown of the orthogonality assumption
could be due to a variety of problems, such as simultaneity, measurement errors or sample
selection bias, or could be because actual values are used as a proxy for expectational variables
under the rational expectations hypothesis. For example, see Sargan (1958), McCallum
(1976), Wickens (1982), and Pesaran (1987b). A unified account of the IV method can be
found in Pesaran and Smith (1990).

The IV option can also be used to compute two-stage least squares (2S5LS) estimates of
a single equation from a simultaneous equation system. Notice, however, that the computa-
tions of the 25 LS estimates require that all the predetermined variables of the simultaneous
equation model be specified as instrumental variables.

When you choose this option, you will be asked to list your instrumental variables sep-
arated by spaces. The number of instruments should be at least as large as the number of
regressors. In the case of exact collinearity amongst the instruments and/or the regressors,
the program displays an error message and invites you to click = to continue.

If you specify fewer instruments than regressors, the program shows the minimum number
of required instruments (i.e. the number of regressors) and asks you to try again.

"Since matrix A maps y into § = Ay, the matrix A is also known in the literature as the ‘hat’ matrix.

¥Note that since Tr(A) = > 1 aii =k, then the simple average of ai, ¢ = 1,2,...,n will be equal to k/n.

9 A test of the orthogonality assumption can be carried out by computing Wu-Hausman statistic T2, (Wu
1973 and Hausman 1978), using the variable addition test option in the Hypothesis Testing Menu (see Section

6.23). See also Lesson 11.10.
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The estimation results for the I'V option are summarized in two tables. The first table
gives the parameter estimates, their estimated asymptotic standard errors, and t-ratios,
as well as Sargan’s statistic for a general test of misspecification of the model and the
instruments. This test statistic is asymptotically distributed as y? with s — k degrees of
freedom, where s represents the number of instruments and k the number of the regressors
(s > k). (See Section 21.10.3). This table also reports probability values, the values of

the IV minimand, R2, RZ, GR?, ﬁQ, F, and DW statistics, and a few other summary
statistics. But, note that these statistics in the case of the IV option do not have the
usual OLS interpretations. For example, R?, R’ are not valid for regressions estimated by
the IV method, and can produce misleading results. Appropriate measures of overall fit
for IV regressions are given by the Generalized R-Bar-Squared statistics (GR?, and @2)
proposed in Pesaran and Smith (1994) (see Section 21.10.2). The same also applies to the
DW statistic. For tests of residual serial correlation the appropriate statistics is the LM
statistic reported in the Diagnostic Tests Table. Finally, note that the probability values
reported are only valid asymptotically.

The second table supplies diagnostic statistics (with the associated probability values) for
the tests of residual serial correlation, functional form misspecification, non-normal errors,
and heteroscedasticity. The tests of residual autocorrelation and functional form misspecifi-
cation are both based on the statistics in equation (21.69), originally due to Sargan (1976),
using different specifications for the W matrix. In the case of the test of residual autocorre-
lation, the W matrix is defined by equation (21.70), with p, the order of the test, being

p=1 for undated, annual and daily data
p =2 for half-yearly data

p=4 for quarterly data

p =12 for monthly data

Other values for p can be specified using option 1 in the Hypothesis Testing Menu (see Section
6.23). The statistic for the test of functional form misspecification is computed using (21.69)
with the W matrix specialized to

_(r2 .2 .2 /
W = (yl,IVv Y21V s s yn,]V)

where g, 1v = x} B,y are the IV fitted values.

The statistics for normality and the heteroscedasticity tests are computed as in the OLS
case, with the difference that the IV fitted values and the I'V residuals are used in place of
the OLS ones (see Section 21.6.2).

The details of the algorithms used to compute the IV estimators and the associated test
statistics are given in Section 21.10.

6.8 AR errors (exact ML) option

Option 3 in the Linear Regression Estimation Menu (see Section 6.5) computes exact max-
imum likelihood estimators of the regression equation (6.1) under the assumption that the
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disturbances, us, follow a stationary autoregressive process with stochastic initial values.
This option differs from the Cochrane-Orcutt option (option 4 in the Linear Regression
Menu), which estimates the AR error regression model under the assumption of fixed ini-
tial values. The idea of allowing for initial values in the estimation of AR(1) error models
was first put forward in econometrics by Hildreth and Lu (1960). The method was then
subsequently extended to higher-order AR error models by Pesaran (1972), and Beach and
MacKinnon (1978). See Section 21.11 for more details.

When you click the Su) button to begin your calculation you need to specify the order

of the AR error process. You can either choose the AR(1) specification
AR(1) 1w = pus—1 + €
or the AR(2) specification
AR(2):  up = prug—1 + paus—2 + €

For example, to choose the AR(2) specification, when prompted, type 2 and click s
The estimation results are displayed in a table in two parts. At the top are the estimates of
the regression coefficients, their (asymptotic) standard errors, and other summary statistics
such as R?, R?, standard errors of regression (), are given. At the bottom (use the scroll
bar if necessary) is the second part of the results, which gives the parameter estimates of
the AR error process, together with the associated t-ratios computed on the basis of the
(asymptotic) standard errors (see Sections 21.11.1 and 21.11.2 for the relevant formulae).
The program also reports the log-likelihood ratio statistics for the test of AR(1) against the
non-autocorrelated error hypothesis, and for the test of the AR(2) error specification against
the AR(1) error specification. The latter statistic is reported only in the case of the AR(2)
option. These statistics are computed according to the formulae set out in Section 21.11.4
In case of the AR(1) option, you will also be given the opportunity to see the plot of the
concentrated log-likelihood function in terms of the parameter of AR(1) error process over
the range |p| < 1 (see equation (21.77) in Section 21.11.1). The plot of the concentrated
log-likelihood function is particularly useful for checking the possibility of multiple maxima.

Notes

1. In the case of this option the standard errors (and hence t-ratios) reported for the
estimates of the regression coefficients and the parameters of the A R-error process are
valid (asymptotically) if the regression equation does not contain lagged dependent
variables. When your equation includes lagged dependent variables try other AR
options, namely options 4 to 6 in the Linear Regression Menu.

2. The iterations, if convergent, always converge to a stationary solution. This is a partic-
ular feature of the exact M L/AR option and does not apply to the other AR options.

3. If the estimation method fails to converge within 40 iterations, a sub-menu will be
displayed. The options in this sub-menu allow you to terminate the iterations and
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start with a different set of initial parameter estimates, or to increase the number of
iterations in steps of 20 until convergence is reached. If you choose option 0 (abandon
estimation), you will be presented with another menu with which to specify a new set of
initial parameter estimates and another chance to try the iterations (see Section 6.13.1
for more details). In situations where the convergence cannot be attained even after,
say, 100 iterations, and for different sets of initial parameter estimates, it is perhaps
best to terminate the iterations and try other AR options in the Linear Regression
Menu. Notice, however, that in the case of option 3 where a first-order error process
is specified, the iterations are certain to converge (see Section 21.11.1).

6.9 AR errors (Cochrane-Orcutt) option

Option 4 in the Linear Regression Menu computes estimates of the regression equation (6.1)
under the following AR(m) error process (m < 12)

AR(m): w = pwi+e (6.17)
=1

using a generalization of the Cochrane and Orcutt (1949) iterative method. This method
assumes that the initial values wuy,ug, ..., u,, are given (or fixed). Notice, however, that if the
AR(m) process is stationary, the Cochrane-Orcutt (CO) option yields estimates that are as-
ymptotically equivalent to the exact M L estimators that explicitly allow for the distribution
of the initial values.

The results for the CO option are summarized in a table, the top half giving the estimates
of the regression equation (6.1), and the bottom half giving the estimates of the error process
(6.17). The details of the computations can be found in Section 21.12.

Notes

1. For the case where m = 1, the program provides you with the option of seeing the plot
of concentrated log-likelihood function, given by equation (21.102) in Section 21.12.

2. The estimated standard errors computed under the CO option are valid (asymptoti-
cally) even if the regression equation contains lagged values of the dependent variable.

3. The program displays a warning if the estimates of pq,ps,...,p,, result in a non-
stationary error process. In such a case, inferences based on the reported standard
errors can be misleading.

4. The program allows you to increase the number of iterations interactively or to change
the choice of the initial parameter estimates for the start of the iterations, if the method
fails to converge within 40 iterations (for details see note 3 in Section 6.8.)
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6.10 AR errors (Gauss-Newton) option

Option 5 in the Linear Regression Menu (see Section 6.5) provides estimates of equations
(6.1) and (6.17) when the AR(m) process is subject to zero restrictions. For example, it
allows estimation of equation (6.1) under

Ut = PyUt—4 + €, (618)

or under
Ut = P1UL—1 + PaUi—4 + P15Ut—14 + €. (619)

When this option is chosen you will be prompted to type the non-zero lags in the AR
error process (6.17) in an ascending order separated by space(s). To choose, for example,
specification (6.18), you need to type 4 and then click on the R(ul button. To choose
specification (6.19) you need to type

1 4 15

then click © @ . In the case of example (6.18), the order of the AR error process is m = 4,
but there is only one unknown parameter in the AR error process. Similarly, in example
(6.19), m = 15, but the number of unknown parameters of the AR error process is equal to
r = 3. The following restrictions apply:

r<12

and
n>m+k+r

where
the number of observations in the chosen sample period.

the number of regressors in the regression equation.
the order of the AR-error process.
the number of non-zero coefficients in the A R-error process.

= S > 3
1T {1

See Section 21.13 for more details. Notice, however, that in the case of this option, the plot
of the concentrated log-likelihood function can be obtained if r = 1, irrespective of the value
specified for m.

6.11 IV with AR errors (Gauss-Newton) option

Option 6 in the Linear Regression Menu is appropriate for the estimation of a regression
equation with autocorrelated disturbances when one or more of the regressors are suspected
of being correlated with the disturbances. The estimation method which is due to Sargan
(1959) is, however, applicable if there exists a sufficient number of instrumental variables
that are uncorrelated with the current and past values of the transformed disturbances, ¢;
in equation (6.17), but at the same time are asymptotically correlated with lagged distur-
bances, w;—1,Ut—2, .., Ut—m. This option also enables you to compute IV/AR estimates when
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the AR-error process is subject to zero restrictions. See Section 21.13.1 for details. The
econometric methods underlying this option are briefly described in Section 21.14. Other
relevant information can be found in Sections 21.14.1 and 21.14.2.

When you click RC") you will be asked first to type the non-zero lags in the AR process
(as in Section 6.10). You will then be presented with a screen editor to type the list of your
instruments. At least k+ m instruments are needed for this option. The program provides a
number of useful error messages if the instruments and/or regressors are exactly collinear or
if the number of instruments supplied is insufficient (see also Section 6.7). You can retrieve
a list of instruments previously saved as an .LST file using the @ button, or save your

instrument lists for use in subsequent sessions using the @ button.
Notes

1. In the absence of adequate initial observations, the program automatically adjusts
the estimation period to allow for the specification of lagged values of the dependent
variable and/or the regressors as instruments. In the case of the I'V regressions only
the Generalized R? measures are appropriate for this option.

2. The Sargan misspecification test statistic reported in the case of this option is computed
using (21.111), and is useful as a general test of misspecification. It is asymptotically
distributed as a chi-squared variate with s — k — r degrees of freedom, where s is the
number of specified instruments, k is the number of regressors, and r is the number of
unknown parameters of the AR error process (see Section 21.14.1).

3. The R?, R?, GR?, and GR’ statistics reported for this option are based on adjusted
residuals and prediction errors, respectively. The relevant formulae are given in Section
21.14.2. Notice that in the case of the IV regressions only the Generalized R? measures
are appropriate for this option.

4. When r = 1, the program gives you the option of plotting the minimized values of the
IV minimand (21.109), in terms of the unknown parameter of the AR process. This
is useful for checking the possibility of multiple minima.

5. The program enables you to increase the number of iterations interactively if the
method fails to converge within 40 iterations. (For details see note 3 in Section 6.8).

6. The program gives a warning if the method converges to a non-stationary AR process
(see note 3 in Section 6.9).

7. In the case of this option the estimated standard errors are valid (asymptotically) even
if the regression equation contains lagged values of the dependent variable.
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6.12 MA errors (exact ML) option

Option 7 in the Linear Regression Menu allows you to estimate the regression equation (6.1)
under the following M A(q) error specification

q
Ut = Z%’ﬁt—i, Yo=1 (6.20)
i=0

Like option 5, this allows you to impose zero restrictions on the M A parameters, ;. The
estimation is carried out by the exact ML method described in Pesaran (1988a), and does
not require the M A process to be invertible. For a description of the method see Section
21.15. The M A option can also be used to estimate univariate ARM A or ARI M A processes.

Notes

1. The estimation of high-order M A error processes (with ¢ > 6) can be time-consuming,
especially in the case of regression equations with a large number of regressors and
observations.

2. The standard errors of the parameter estimates obtained under the M A (or the IV /M A)
options are valid asymptotically so long as the estimated M A process is invertible; that
is, when all the roots of Y 7_, v,2" = 0 fall outside the unit circle. Microfit displays a
warning if the estimated M A process is non-invertible.

See also the notes in Section 6.11.

6.13 IV with MA errors option

This is the M A version of the IV/AR option described in Section 6.11. It differs from the
IV/AR option in two important respects:

1. Following Hayashi and Sims (1983), the IV/M A estimates are computed using ‘for-
ward filter’ transformation of the regressors and the dependent variable (but not the
instruments) to correct for the residual serial correlation. In effect, the IV /M A option
is an iterated version of the Hayashi-Sims procedure: see Pesaran (1987b), Section
7.6.2. It is particularly useful for the estimation of linear rational expectations models
with future expectations of the dependent variable, where the ujs may be correlated
with the future values of the instruments.

2. The IV minimand for the IV /M A option contains an additional Jacobian term. Al-
though in the case of invertible processes this additional term is asymptotically neg-
ligible, our experience suggests that its inclusion in the IV minimand helps the con-
vergence of the iterative process when the roots of the M A part are close to the unit
circle. The details of the algorithm and the rationale behind it can be found in Pe-
saran (1990). A similar procedure has also been suggested by Power (1990) for the
first-order case. A description of the underlying econometric method can be found in
Section 21.16.
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3. The R?, EQ, GR? and GR® statistics are computed using the formulae in Section
21.16.1. Only the Generalized R? statistics are appropriate for this option.

6.13.1 Specification of initial estimates for the parameters of the AR/MA
error process

When you choose the AR/M A options in the Linear Regression Menu and click R(UD , you

will be presented with a menu'’ which gives you a choice between starting the iterations
with initial estimates supplied by the program or the initial estimates to be supplied by you.
In the case of the AR and M A options with » = 1 (when the error process depends only on
one unknown parameter), you will also be presented with an option to see the plot of the
concentrated log-likelihood function or the IV minimand.

To enter the initial estimate for the first-order lag coefficient, type your choice and move
the cursor to the AR lag 2 position. Repeat this process until all the initial estimates are
supplied. Then click SUD to start the iteration.

Since there is no guarantee that the iterative procedures will converge on the global
maximum (minimum) of the likelihood function (the IV minimand), we recommend that
you check the computations by starting the iterations from a number of different initial
values. In the case of error processes with only one unknown parameter, the plot of the
concentrated log-likelihood function or the IV minimand can be used to determine whether
the global optimum has been achieved.

6.14 Recursive regression options

Option 2 in the Single Equation Menu (See Section 6.4) is the Recursive Linear Regression
Menu with the following options:

1. Recursive Least Squares
2. Two-Stage Recursive Least Squares

Option 1 enables you to estimate a linear regression equation recursively by the OLS
method.

Option 2 allows you to estimate a linear regression equation recursively by the 2SLS
(or the IV)) method. When you choose this option you will be prompted to list at least as
many instruments as there are regressors in your model.

Specify the estimation period and your linear regression equation as described in Sections
6.5.1 and 6.5.2. Set the number of observations you want to use for updating recursive
estimation. When the computations are completed you will be presented with the Recursive
OLS (or IV) Regression Results Menu described in Section 6.14.1. For the details of the
algorithms used in carrying out the necessary computations see Section 21.17.

0There is an exception. The AR(1) error specification in Option 3 of the Linear Regression Menu does
not give you a choice for the specification of the initial parameter value of the AR(1) process. The iterative
method used does not require it, and is always sure to converge.
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6.14.1 Recursive OLS Regression Results Menu

This menu has the following options

Move to Backtracking Menu

Plot recursive coeflicients and their standard errors

Plot standard errors of recursive regressions

Save recursive coefficients

Save standard errors of recursive coefficients

Save standard errors of the recursive regressions

Save standardized recursive residuals

Save recursive predictions based on existing regressors

Save recursive predictions based on variables to be specified
Save adaptive coefficients

© 0N UE WO

Option 0 takes you back to the Commands and Data Transformations box.

Option 1 allows you to plot the recursive coefficients, Br, r=r*r"+1,..,n,and their
standard error bands (computed as ,BT plus or minus twice their standard errors). To avoid
the large uncertainties that are associated with the initial estimates, only the final % of the
estimates for each coefficient are displayed: namely, r* is set equal to in + %(k +1). When
you choose this option you will be presented with the variable names for your regressors
and will be asked for the name of the regressor whose coefficient estimates you wish to see
plotted. See Sections 21.17.3 and 21.17.5.

Option 2 plots the standard errors of the recursive regressions, defined by &3, r =
r*,r* 4+ 1,...,n, computed using equations (21.138) and (21.143) for the OLS and the IV
options, respectively. To avoid the uncertain initial estimates the plots are displayed for
r*=in+32(k+1).

Options 3, 4 and 5 allow you to save all the estimated recursive coefficients, their
standard errors, and the standard errors of the recursive regressions as variables in Microfit’s
workspace.

Option 6 enables you to save standardized recursive residuals defined by equations
(21.136) and (21.141) for the OLS and the I'V options, respectively.

Option 7 enables you to save recursive predictions and their standard errors. See Section
21.17.8.

Option 8 allows you to save recursive predictions and their standard errors obtained with
respect to the variable wy, which may differ from the regressors, x;. See equation (21.146)
in Section 21.17.8. When you choose this option you will be prompted to list the variable
names in w; to be used in the calculations of the recursive predictions. You must specify
exactly the same number of variables as there are regressors in your regression equation.

Option 9 enables you to save adaptive coefficients defined by equation (21.144).
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6.15 Rolling Linear Regression Menu

Option 3 in the Single Equation Menu (see Section 6.4) is the Rolling Linear Regression
Menu. The menu has the following options

1. Rolling least squares
2.  Rolling two-stage least squares

Option 1 allows you to estimate the coefficients of a linear regression equation by the
OLS method over successive rolling periods of a fixed length.

Option 2 allows you to estimate the coefficients of a linear regression equation by the
two-stage least squares (or IV') method over successive rolling periods of a fixed length (set
using option 1). If you choose this option you will be prompted to list at least as many
instruments as there are regressors in your equation.

Specify the estimation and your regression equation as usual. You will be asked to specify
the length of the window to be used in the estimation, and to set the number of observations
you want to use for updating the estimation.

6.15.1 Rolling Regression Results Menu

This menu has the following options

Move to Backtracking Menu (Rolling Regression)
Plot rolling coefficients and their standard errors
Plot standard errors of rolling regressions

Save rolling coefficients

Save standard errors of rolling coefficients

Save standard errors of rolling regressions

Plot one-step-ahead rolling forecasts

Save one-step-ahead rolling forecasts

Save standard errors of rolling forecasts

NSO WY o

Option 0 takes you back to the Commands and Data Transformations box.

Option 1 allows you to plot the rolling regression coefficients and their standard errors.
See also the description of option 1 in the Recursive Regression Results Menu in Section
6.14.1.

Option 2 allows you to plot the standard errors of the rolling regressions.

Options 3, 4 and 5 enable you to save the rolling coefficients, their standard errors, and
the standard errors of the rolling regressions on Microfit’s workspace.

Options 6, 7 and 8 allow you to plot and save one-step-ahead rolling forecasts and their
standard errors
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6.16 Non-Linear Regression Menu

The Non-Linear Regression Menu is option 4 in the Single Equation Estimation Menu (Uni-
variate Menu: see Section 6.4). It contains the following option

1. Non-linear least squares
2. Non-linear 2-stage least squares

Option 1 allows you to estimate your specified non-linear equation by the least squares
method.

Option 2 allows you to estimate your specified non-linear equation by the 2SLS (or
IV') method. When you choose this option you will be prompted to list at least as many
instruments as there are unknown parameters in your non-linear model.

Notes

1. See Section 6.16.1 on how to specify /modify a non-linear equation

2. Special care needs to be exercised with respect to the choice of initial parameter esti-
mates. An appropriate choice of initial estimates can hamper the convergence of the
iterative process, and may lead to error messages which can be difficult to decipher at
first. For example, suppose you are interested in estimating the following non-linear
equation:

Cy = Ag+ Ay exp (Y;/A2)

where C' is real consumption expenditure, Y is the real disposable income and Ay, Aq,
and Ay are unknown parameters. If you start the iteration with As = 0, you will see
an error message stating that there are insufficient observations to estimate. This is
because with As initially set equal to zero, all the values of Y;/As, being undefined,
will be set to blank. Another problem that arises frequently in the estimation of non-
linear regression models concerns the scaling on the regressors. In the case of the above
examples, unless the Y;s are reasonably small, exponentation of Y; can result in very
large numbers, and the computer will not be able to handle the estimation problem.
When this arises you will see an error message on the screen.

3. A similar problem can arise when initial values chosen for Ay are very small, even if
the Y;s are reasonably small. In some applications the use of zero initial values for the
parameters can result in an error message. It is always advisable to think carefully
about the scale of your regressors and the choice of the initial parameter values before
running the non-linear regression option.

4. When estimating a linear regression equation via the non-linear regression option, it is
acceptable to use zeros as initial values for the parameters
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5. The least squares and the I'V options in the Non-Linear Regression Menu allow you to
estimate a linear or a non-linear regression, subject to linear or non-linear parametric
restrictions. For example,, to estimate the ARDL model

Yt = o+ Ayr—1 + Bzt + Bomi—1 +
subject to the common factor restrictions

BIA+ By =0

you need to type the following formula.

Y = A0+ AL« Y (—=1) + A2% X — Al x A2 % X(—1)

6. The non-linear 25L.S option can also be used to estimate Euler equations, namely the
first-order conditions for intertemporal optimization problems under uncertainty. For
an example, see Lesson 13.2.

6.16.1 Specification of a non-linear regression equation

Enter the specification of the non-linear equation, and type the formula for the equation in
the box editor provided on the screen. You can type your formula using standard arithmetic
operators such as +, —, /, and *, and any one of the built-in functions set out in Section
4.2. For example, suppose you are interested in estimating the following Cobb-Douglas
production function with additive errors:

Y, = ALSKP +

where Y; is output, L; and K; are labour and capital inputs, and u; is a disturbance term.
The unknown parameters are represented by A, o and 8. Then you need to type

Y = A0« (L A1) (K A2)
As another example, suppose you wish to specify the following non-linear regression:
2 = a7t 4 apePa2 4y,
In the box editor that appears on the screen you need to type
Z =al * EXP(bl * X1) 4+ a2 « EXP (b2 * X2)
When specifying a non-linear regression, the following points are worth bearing in mind:

1. In the case of the above two examples, it is assumed that the variables (Y, K, and
L), and (z, 1 and x2) are in the variable list and that A0, A1, A2, B1 and B2 are
parameters to be estimated, and are not, therefore, in your list of variables. (Note that
in Microfit upper- and lower-case letters are treated as identical.)
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2. You need to watch for two important types of mistake: using an existing variable
name to represent a parameter value, and including a non-existent variable in the
specification of the non-linear equation. Microfit is not capable of recognizing these
types of mistake. But you should be able to detect your mistakes at a later stage
when you will be asked to provide initial estimates for the unknown parameters of
your equation (see Section 6.16.2). If, by mistake, you use a variable name to present
a parameter, you will not be asked to supply an initial estimate for the parameter in
question, and most likely the computations will fail to converge. In the opposite case,
where a non-existent variable is included in the regression equation, Microfit treats
the non-existent variable as an unknown parameter and asks you to supply an initial
estimate for it! To reduce the probability of making such mistakes we recommend that
you reserve the names A0, Al, A2... and B0, B1, B2, .... for parameter values, and try
not to use them as names for the variables on the workspace.

3. Mistakes in typing the regression formula are readily detected by Microfit. But you
need to fix the problem by carefully checking the non-linear formula that you have
typed, and by ensuring that you have not inadvertently mixed up variable names and
parameter values!

4. The list of variables specified under the various estimation options, including the non-
linear equation specified under option 4, can be saved in a file for use at a later stage
using the @ button. The variable lists are saved in files with extension .LLST, and
the non-linear equations are saved in files with the extension .EQU. To retrieve a file
you saved earlier, click éi? .

6.16.2 Specification of initial parameter estimates

The non-linear estimation option, and the other estimation methods that use iterative tech-
niques, will require the users to supply initial values for the unknown parameters in their
specified econometric model. In such cases you will be presented with a screen containing
the names of the known parameters, all of which are initially set equal to zero. You can
change these initial settings by moving the cursor to the desired position and typing your
own choice of the initial estimate. These initial parameter values can be readily changed if
the estimation method fails to converge.

6.16.3 Estimation results for the non-linear regression equation

Once the estimation of the non-linear equation is successfully complete, you will be presented
with the estimation results in a format similar to that given for the OLS and the I'V options
in the case of linear regression (see Section 6.5). Microfit also automatically computes
diagnostic statistics for tests of residual serial correlation, functional form mis-specification,
non-normality of disturbances, and heteroscedasticity in the case of non-linear equations
estimated by the least squares or the IV methods. These statistics are computed using
the same procedures as outlined in Sections 21.6.2 and 21.10, with the matrix X replaced
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by the matrix of first derivatives (of the non-linear equation with respect to the unknown
parameters) evaluated at the parameter estimates obtained on convergence. The non-linear
options do not compute statistics for structural stability and predictive failure tests.

The relevant formulae for the non-linear estimation options are given in 21.21.

6.17 Phillips-Hansen Estimation Menu

This menu allows you to estimate the parameters of a single cointegrating relation by the
fully-modified OLS (FM-OLS) procedure proposed by Phillips and Hansen (1990). The
underlying econometric model is given by

Yt :,80+,6/1Xt+ut, t= ].,2,...,TL (621)

where y; is an I(1) variable, and x; is a k X 1 vector of I(1) regressors, assumed not to be
cointegrated among themselves.'! Tt is also assumed that x; has the following first-difference
stationary process

Ax; = p+ve, t=2,3,...,n (6.22)

where p is a k x 1 vector of drift parameters, and v; is a k x 1 vector of I(0), or stationary
variables. It is also assumed that &, = (u, v})’ is strictly stationary with zero mean and a
finite positive-definite covariance matrix, 3.

The OLS estimators of 8 = (8, 8})" in (6.21) are consistent even if x; and u; (equiv-
alently vy and w;) are contemporaneously correlated: see, for example, Engle and Granger
(1987), and Stock (1987). But in general the asymptotic distribution of the OLS estimator
involves the unit-root distribution and is non-standard, and carrying out inferences on (3
using the usual ¢-tests in the OLS regression of (6.21) will be invalid. To overcome these
problems, appropriate corrections for the possible correlation between u; and v; and their
lagged values is required. The Phillips-Hansen fully-modified OLS (FM-OLS) estimator
takes account of these correlations in a semi-parametric manner. But it is important to
recognize that the validity of this estimation procedure critically depends on the assumption
that x;s are I(1) and are not themselves cointegrated. For Monte Carlo evidence on small
sample properties of the FFM-OLS estimators see Pesaran and Shin (1999). For details of
the computational algorithms see Section 21.18.

To access this menu, select option 5 in the Single Equation Estimation Menu (see Section
6.4). It contains the following options

1. None of the regressors has a drift
2. At least one regressor is (1) with drift

You need to choose option 1 if g in (6.22) is zero. Otherwise you should select option 2.
List the dependent variable, y;, followed by the I(1) regressions, =1, Za¢,..., Tt in the box

"1 A variable is said to be I(1) if it must be differenced once before it can be rendered stationary. A random
walk variable is a simple example of an I(1) variable. A set of I(1) variables are said to be cointegrated if
there exists a linear combination of them which is I(0), or stationary. For further details see, for example,
Engle and Granger (1991).
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editor on the screen. Do not include intercept or time trends among the regressors. Specify
your estimation period and the length of your lag window. When you click SUD , you will
be presented with the following menu for selecting the lag window for the estimation of the
long-run variances used in the estimation procedure

Move to Backtracking Menu
Equal weights lag window
Bartlett lag window

Tukey lag window

Parzen lag window

Ll O

The use of the equal weights (or uniform) lag window may result in negative standard
errors, and when this happens you need to choose one of the other three lag windows. We
recommend the Parzen lag window.

Once the lag window is chosen you will be asked to specify the length of the lag window,
and are then presented with the estimation results. You can also carry out tests of linear
and non-linear restrictions on the cointegrating coefficients 3 = (60, 5’1)/, using the options
in the Post Regression Menu (see Section 6.20).

6.18 ARDL approach to cointegration

Option 6 in the Single Equation Estimation Menu (Univariate Menu: see Section 6.4) allows
you to estimate the following ARDL(p, q1, g2, ..., qr) models

k
S(L,p)yr = Y Bi(L, qi)zi + 8wy + uy (6.23)
i=1
where
S(Lp) = 1—¢1L—dyl?— ... = ¢,IP,
Bi(L,qi) = 1—ByL—BpLl?— .. =B L%, fori=1,2,..k (6.24)

L is a lag operator such that Ly; = y;—1, and wy is a s X 1 vector of deterministic variables
such as the intercept term, seasonal dummies or time trends, or exogenous variables with
fixed lags. Microfit first estimates (6.23) by the OLS method for all possible values of
p=0,1,2...m, ¢ =0,1,2,....m, i=1,2, .. k; namely a total of (m + 1)k+1 different
ARDL models. The maximum lag, m, is chosen by the user, and all the models are estimated
on the same sample period, namely t =m +1,m+2,...,n.

In the second stage the user is given the option of selecting one of the (m + 1)11€+1 es-
timated models using one of the following four model selection criteria: the R? criterion,
Akaike information criterion (AIC'), Schwartz Bayesian criterion (SBC) and the Hannan
and Quinn criterion (HQC).'> The program then computes the long-run coefficients and

"2 These model selection criteria are described in Section (21.7).
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their asymptotic standard errors for the selected ARDL model. It also provides estimates
of the error correction model (ECM) that corresponds to the selected ARDL model. For
further details and the relevant formulae for the computation of the long-run coefficients and
the associated Error Correction Model (ECM) see Section 21.19.

6.18.1 Specification of an ARDL regression equation

Specify the estimation period and maximum lag order m (m < 24) for your ARDL specifi-

cation before specifying your equation. The list of the variables to be included in the ARDL

model should be typed followed by deterministic regressors such as the intercept term, time

trends, and regressors with fixed lags; separating the two sets of variables by &. The de-

pendent variable should be the first variable in the list. The first set of variables should not

appear in lagged or lead form, and it should not contain an intercept term or time trends.
As an example, suppose you wish to specify the following ARDL model:

O(L,s)yy = oo+ aaTy+ gz + B1(L, s)x1t
+ﬂ2(L> 3)$2t + u

where ¢ (L, s), 5; (L, s), i = 1,2 are polynomial lag operators of the maximum order equal
to s, T} is a deterministic time trend, and z; is an exogenous regressor. Once presented with
the box editor you need to type

Y X1 X2 & INPT T Z

It is important to note that even in the case of ARDL models with a small number of
regressors (say k = 2), the number of ARDL models to be estimated could be substantial,
if m is chosen to be larger than 6. In the case where kK = 2, and m = 6, the total number
of ARDL models to be estimated by the program is equal to (6 + 1)3 = 343. If this number
of ARDL models to be estimated exceeds 125 you will be presented with a warning that
computation may take a long time to complete. If you choose to go ahead, Microfit carries
out the necessary computations and presents you with the ARDL Order Selection Menu (see
Section 6.18.2).

6.18.2 ARDL Order Selection Menu

This menu has the following options

Move to Backtracking menu

Choose maximum lag to be used in model selection
R-BAR Squared

Akaike information criterion

Schwartz Bayesian criterion

Hannan-Quinn criterion

Specify the order of the ARDL model yourself

OO N O
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Option 1 allows you to change the maximum lag order, s, to be used in the computations

Option 2 selects the orders of the ARDL(p, g1, q2, -..,qx) model, namely the values of
D, q1,q2..., q using the EZ criterion.

Option 3 selects the orders of the ARDL model using the Akaike information criterion.

Option 4 selects the orders of the ARD L model using the Schwartz Bayesian criterion.

Option 5 selects the orders of the ARDL model using the Hannan and Quinn criterion.

Option 6 allows you to specify your own choice of the lag-orders, p, q1, g2, ..., qx. When
you choose this option you will be asked to specify exactly k + 1 integers representing the
order of the lag on the dependent variable, followed by the order(s) of the lag(s) on the k
regressor(s). Microfit works out the maximum value of these orders that can be chosen by
the user given the sample size available.

Once the orders p, q1, g2, ..., i are selected either by one of the model selection criteria
(options 2 to 5) or by specifying them yourself (option 6) you will be presented with the Post
ARDL Selection Menu (see Section 6.18.3).

6.18.3 Post ARDL Model Selection Menu

This menu has the following options

Return to ARDL Order Selection Menu

Display the estimates of the Selected ARDL regression

Display long run coefficients and their asymptotic standard errors
Display Error Correction Model

Compute forecasts from the ARDL model

L e

Option 0 returns you to the ARDL Order Selection Menu (see Section 6.18.2).

Option 1 gives the estimated coefficients of the ARDL model, together with the asso-
ciated summary and diagnostic statistics. This option also allows you to make use of all
the options available under the OLS method, for hypothesis testing, plotting fitted values,
residuals, leverage measures, and so on (See Section 6.6).

Option 2 presents you with a table giving the estimates of the long-run coefficients, their
asymptotic standard errors, and the associated t-ratios. The orders p, ¢1, G2, ..., G selected
for the underlying ARDL model are also specified at the top of the table.

Option 3 displays a result table containing the estimates of the error correction model
(ECM) associated with the selected ARDL model. These estimates are computed using
the relations in Section 21.19, and allow for possible parametric restrictions that may exist
across the long-run and the short-run coefficients. The estimated standard errors also take
account of such parametric restrictions.

Option 4 computes forecasts based on the selected ARD L model, and asks you whether
you wish to see forecasts of the levels or the first-differences of 3;. You will then be presented
with the ARDL Forecast Menu (see Section 6.18.4).
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6.18.4 ARDL Forecast Menu

This menu appears on the screen if you choose option 4 in the Post ARDL Model Selection
Menu (see Section 6.18.3). It contains the following options

0. Choose another variable

1. Display forecasts and forecast errors

2. Plot of in-sample fitted values and out of sample forecasts
3. Save in-sample fitted values and out of sample forecasts

Option 0 enables you to alter your choice of the levels or the first-differences of y; that
you may wish to forecast.

Option 1 displays the forecasts and the forecast errors for y; (or Ay;) computed on
the basis of the selected ARDL model. It also provides a number of summary statistics
computed both for the estimation and the prediction periods.

Option 2 plots the actual values of y; (or Ay,), and the fitted and forecast values of y;
(or Ay;) over the estimation and the forecast periods, respectively.

Option 3 allows you to save the fitted values of y; (or Ay;) over the estimation period,
and the forecast values of y; (or Ay;) over the forecast period.

6.19 Logit and Probit models

The Logit and Probit options are appropriate when the dependent variable, y;, ¢ = 1,2,...,n
takes the value of 1 or 0. In econometrics such models naturally arise when the economic
agents are faced with a choice between two alternatives. (For example, whether to use public
transportation, or to purchase a car), and their choice depends on a set of k explanatory
variables or factors. The models are also referred to as ‘qualitative’ or * limited dependent’
variable models. In the biological literature they are known as ‘quantal variables’, or as
‘stimulus and response models’.

Comprehensive surveys of the literature on binary response models can be found in
McFadden (1976) and Amemiya (1981). Other useful references are Maddala (1983), Judge,
Griffiths, Hill, Liitkepohl, and Lee (1985) Chapter 18, Cramer (1991), and Greene (2002)
Chapter 19.

6.19.1 Specification of the Logit/Probit model

To access the Logit and Probit estimation options choose option 7 in the Single Equation
Estimation Menu (see Section 6.4). You will then be asked to list the dependent variable,
y;, followed by the regressors (or the explanatory) variables, z;1, 2, ..., ;x. The dependent
variable must contain only ones and zeros. The explanatory variables could contain both
continuous and discrete variables. Once you have completed the specification of the model
you will be asked to select a sample period for estimation. If the dependent variable in your
model contains values other than ones and zeros you will be presented with an error message
to that effect; click =« to continue. This will take you to the Backtracking Menu for the

Logit/Probit Estimator.
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6.19.2 Logit/Probit Estimation Menu

The Logit/Probit Estimation Menu contains the following options

1. Logit
2.  Probit

Option 1 computes M L estimates of the coefficients assuming the logistic probability

model ,
Pr(y; = 1) = A(B'x;) G (6.25)
r(y; =1) = X)) =——7—, 1=1,2,...,n .
Yi i 1+ Px
where B = (34, B3, ..., B)) is the k x 1 vector of unknown coefficients, and x; is a k x 1 vector
of explanatory variables, possibly containing a vector of ones (the intercept term). The effect

of a unit change in the jth element of x; on Pr(y; = 1) is given by
=B;Ai(1=A;), for j=1,2,..,k and i=1,2,..,n (6.26)

where A; = A(B'x;). The M L estimation is carried out using the iterative method of Scoring
(see (21.182)).
Option 2 computes M L estimates of the coefficients assuming the normal probability

model ,
Pr(y;=1) =& (v'x;) f— {-it?}at (6.27)
r(y;, =1) = X;) = expi—s , .
yl 7 1 . \/ﬂ p 2
where as in option 1 above, « is a k x 1 vector of unknown coefficients and x; is a k x 1
vector of explanatory variables. In the case of this option the effect of a unit change in the

jth element of x; on Pr(y; = 1) is given by

OPr(y; =1)

5 =B,0(8'%;), for j=1,2,..k, and i=1,2 .,n, (6.28)
l‘ij

where ¢ () stands for the standard normal density
1 2
6 (Bx;) = (2m) Fexp { -4 (8'x:)"}

6.19.3 Estimation results for Logit and Probit options

The estimation results for both the Logit and Probit options are set out in a table with two
parts. The top part gives the M L estimates of coefficients together with their (asymptotic)
standard errors and the t-ratios. The bottom part of the table gives the factor

A (B%) (1-AB%)

or

¢ (B/iz‘)
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needed to compute the marginal effects (6.26) and (6.28) for different coefficients evaluated
at sample means, a number of summary statistics, test statistics and model selection criteria.
Here X refers to the sample mean of the regressors. The details of these are given in Section
21.20.3. Since under both probability models the log-likelihood function is concave, the
computations usually converge very quickly to the unique M L estimators (when they exist).
Also note that the variances of the logistic and normal distributions that underlie the Logit
and Probit options differ and are given by 72/3 and 1, respectively. As a result, to ensure
comparability of the M L estimates obtained under these two options the M L estimates using
the Probit option must be multiplied by 7/v/3 ~ 1.814 to make them comparable with those
computed using the Logit option.

The problem of choosing between the Probit and Logit models can be approached either
by application of the model selection criteria such as Akaike information criterion or the
Schwartz Bayesian criterion, or by means of non-nested hypothesis testing procedures. In
cases where the Logit and Probit options are used on the same set of regressors, x; the
applications of the various model selection criteria reduced to a simple comparison of the
maximized log-likelihood values. In practice these log-likelihood values will be quite close,
particularly if the estimates of 3'x; (or v'x;) lie in the range (—1.6,1.6). In these circum-
stances the application of the non-nested testing methods is more appropriate: see Pesaran
and Pesaran (1993).

6.19.4 Logit/Probit Post Estimation Menu

You will be presented with this menu when you have finished with the estimation results
tables (see above). This menu has the following options:

Quit Logit/Probit Estimation

Display results again

List actual and fitted values, and fitted probabilities
Plot actual values and fitted probabilities

Save fitted probabilities (and forecasts if any)

Wald test of linear/non-linear restrictions
Estimate/test functions of parameters of the mode
Compute forecasts

NSO w2 o

Option 0 takes you back to the Commands and Data Transformations box (see Section
6.19.2).

Option 1 enables you to see the M L estimation results again (see Section 6.19.3).

Option 2 lists actual values (y;), the fitted values (;), and the fitted probability values
@(B,xi) and A(,B/xi) for the Probit and Logit options, respectively. (See Section 21.20.2).

Option 3 plots actual values (y;) and the fitted values, @(lei) and A(,E‘}Ixi) for the
Probit and Logit options, respectively.

Option 4 allows you to save fitted probability values and their forecasts (if any). Use
Option 7 below to compute forecasts of probability values.
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Option 5 enables you to carry out Wald tests for linear and non-linear restrictions on
the coefficients 3. Also see Option 7 in the Hypothesis Testing Menu (see Section 6.23). For
the relevant formulae see Section 21.25.

Option 6 allows you to estimate linear and non-linear functions of the coefficients 3.
Also see Option 5 in the Post Regression Menu in Section 6.20. For the relevant formulae
see Section 21.24.

Option 7 computes forecasts of the probability values and the associated forecasts of y
using the formulae in Section 21.20.4. This option also gives a number of summary statistics
computed over the estimation and forecast periods.

6.20 Post Regression Menu

This menu appears on the screen immediately after the estimation results for the single
equation linear and the non-linear estimation options. The Probit and Logit estimation
option has its own Post Estimation Menu. (See Section 6.19.4). The Post Regression Menu
contains the following options

Move to Backtracking Menu

Display regression results again

Move to Hypothesis Testing Menu

List/plot/save residuals and fitted values

White and Newey-West adjusted variance menu
Estimate/Test (possibly non-linear) functions of parameters
Plot the leverage measures of the regression (OLS)

Save the leverage measures of the regression (OLS)
Forecast

Plot of forecast values only

© 0N W o

These options enable you to study the properties of your specified regression equation in
more detail. The highlighting in this menu is initially placed on option 2 in the case of the
least squares and the IV methods; otherwise the highlighting is placed on option 1.

Option 0 takes you back to the Commands and Data Transformations box, where a new
estimation period and/or a regression equation can be specified.

Option 1 enables you to see your regression results again.

Option 2 takes you to the Hypothesis Testing Menu (see Section 6.23)

Option 3 takes you to the Display/Save Residuals and Fitted Values Menu (see Section
6.21).

Option 4 takes you to the menu for the computation of alternative estimators of the
variance matrices (see Section 6.22).

Option 5 allows you to estimate linear or non-linear functions of the parameters of
your regression model. In the case of linear regressions Microfit assigns Al, A2, ..., to the
regression coefficients and B1, B2,... to the parameters of the AR/M A error processes. For
non-linear regression Microfit works directly in terms of the parameter names that you have
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specified. When you choose this option you will be asked to type your functions one at a time
in the box editor that appears on the screen, separating the functions by a semicolon ().
The program computes and displays the estimates of the functions and the estimates of their
(asymptotic) variance-covariance matrix. The relevant formula for the variance-covariance
matrix of the parameter estimates is given in Section 21.24.

Option 6 provides plots of the measures of the leverage (or the influence) of points in
the regression design, together with a horizontal line representing the average value of the
leverage measures (see Section 6.6.7 for more details and relevant references to the literature.)

Option 7 allows you to save the leverage measures for subsequent analysis

Option 8 computes static or dynamic forecasts of the dependent variable conditional on
the observed values of the regressors over the forecast period, if any, together with forecast
errors, and the standard errors of the forecast. Dynamic forecasts will be computed if the
lagged value of the dependent variable are explicitly included among the regressors (see note
4 in Section 6.5.1). When you choose this option you will be asked to specify the final
observation in your forecast period. Type in the observation number, or the relevant date,
and click =« . To choose all the available observations in the forecast period you only need

to click =« (see Section 21.26 for details of the computations).

Option 9 provides a plot of actual and forecast values. The emphasis in this plot is
on the forecast values, and in contrast to the plot provided under Option 8, it does not, in
general, cover the whole of the estimation period.

6.21 Display/Save Residuals and Fitted Values Menu

This is a sub-menu of the Post Regression Menu and contains the following options

Return to Post Regression Menu

List residuals and fitted values

Plot actual and fitted values

Plot residuals

Plot the autocorrelation function and the spectrum of residuals
Plot the histogram of residuals

Save residuals (and forecast errors if any)

Save fitted values (and forecasts if any)

N otk W o

Option 0 takes you back to the Post Regression Menu (see Section 6.20).

Option 1 displays on the screen the residuals and fitted values together with the actual
values of the dependent variable. In the case of the AR and M A options (options 3 and 8
in the Linear Regression Menu), adjusted residuals and fitted values are reported.

Option 2 provides a plot of actual and (adjusted) fitted values.

Option 3 provides a plot of (adjusted) residuals, together with a standard error band.
The band represents +26, where 6. is the estimated standard error of the regression.

Option 4 displays graphs of the autocorrelation function and the standardized spectral
density function of the residuals estimated using the Parzen window. To obtain estimates
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that utilize other windows or to compute the standard errors of these estimates, you can
apply the COR and the SPECTRUM commands to the residuals, after saving them using
option 6 in this menu.

Option 5 displays a histogram of the residuals. If you wish to produce a histogram with
a different number of bands, save the residuals using Option 6 in this menu and then apply
the HIST command to the saved residuals at the data processing stage.

Option 6 allows you to save the residuals and forecast errors (if any) in a variable for use
in subsequent analyses. When you select this option, you will be asked to specify a variable
name for the residuals to be saved. Type in the variable name followed by an optional
description and click

Option 7 allows you to save fitted and forecast values (if any) in a variable for use in
subsequent analyses (see previous option above in this menu for more details).

6.22 Standard, White and Newey-West Adjusted Variance
Menu

This menu has the following options

Return to Post Regression Menu

Standard variance-covariance matrix
White heteroscedasticity adjusted
Newey-West adjusted with equal weights
Newey-West adjusted with Bartlett weights
Newey-West adjusted with Tukey weights
Newey-West adjusted with Parzen weights

OGN O

Option 0 returns you to the Post Regression Menu.

Option 1 displays the conventional variance-covariance matrix of the estimated coef-
ficients. This option applies to all the methods available for the estimation of linear and
non-linear regression models. It also computes and displays the covariance matrix of the
regression coefficients and the parameters of the AR and M A error processes.

Option 2 computes and displays a ‘degree of freedom adjusted’ version of White (1980)
and White (1982) heteroscedasticity-consistent estimates of the variance-covariance matrix
of the parameter estimates in the case of the OLS, the IV, the non-linear least squares and
the non-linear I'V options. (See Section 21.22 for the relevant formulae). If you click x o,

you will be presented with the following choices:

Return to White and Newey-West Adjusted Variance Menu
Display regression results for the adjusted covariance matrix
Display the adjusted covariance matrix

Wald test of restrictions based on adjusted covariance matrix
Estimate/test functions of parameters based on adjusted matrix

== o
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The options in this sub-menu allow you to test hypotheses on the regression coefficients
using the heteroscedasticity-consistent estimates of the variance-covariance matrices.

Options 3 to 6 compute a ‘degree of freedom adjusted’ version of the Newey and West
(1987) heteroscedasticity and autocorrelation consistent estimates of the variance-covariance
matrix of the parameter estimates in the case of the linear and non-linear least squares and
IV options for different choices of lag windows (see Section 21.23). Newey and West use
the Bartlett weights, but in general the Parzen weights are preferable. The ‘equal weights’
options is relevant when the residual serial correlation can be approximated by a finite order
M A process. When you choose any of these options you will be prompted to specify the
size of the lag window. We recommend that you do not specify a window size which is in
excess of one third of the available observations. Microfit then computes and displays the
estimates of the Newey-West adjusted variance-covariance matrices. If you click = x  you

Close

will be presented with the same choices as in the case of option 2 (White heteroscedasticity
adjusted variance-covariance matrix) set out above.

Note: The formula for the White standard errors is a special case of the Newey-West
formula, and can also be obtained using Options 3 to 6 by setting the window size equal to
Zero.

6.23 Hypothesis Testing Menu

This menu contains the following options

Return to Post Regression Menu

LM tests for serial correlation (OLS, IV, NLS, & IV — NLS)
Autoregressive conditional heteroscedasticity tests (OLS & NLS)
Unit root tests for residuals (OLS & NLS)

CUSUM and CUSUMSQ tests (OLS)

Variable deletion test (OLS & IV)

Variable addition test (OLS & IV)

Wald test of linear/non-linear restrictions

Non-nested tests against another linear regression (OLS)
Non-nested tests by simulation for log-linear ratios etc (OLS)

© 0N W o

and allows you to subject your chosen linear and non-linear regression model to additional
tests.

Option 0 takes you back to the Post Regression Menu (see Section 6.20)

Option 1 allows you to carry out a pth order test of residual serial correlation (p < 12).
In the case of the least squares option (OLS and NLS) it provides (asymptotic) t-ratios
for individual coefficients of the AR error process as well as the LM, the F', and the log-
likelihood ratio statistics. When this option is chosen you will be asked to specify the order
of the test. Type in your answer (an integer between 1 and 12) and click < . In the case
of the least squares options, the program computes the LM and the F-version of Godfrey’s
test statistic given respectively by equations (21.19) and (21.21). For the I'V options, the
program computes Sargan’s test statistic given by (21.69).
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Option 2 allows you to compute the autoregressive-conditional heteroscedasticity (ARCH)
test statistic due to Engle (1982). For an (ARCH) test of order p, the program computes
the LM statistic for the test of §; = 0,4 =1,2,...,p in the auxiliary regression

p
e? = intercept + Z ;e 4 Error

=1

estimated over the period t = p+ 1, p+ 2,...,m, where ¢; are the OLS residuals. See also
Section 23.1.7.

Option 3 allows you to carry out the Dickey-Fuller and Augmented Dickey-Fuller tests
of the unit root hypothesis in the residuals (see the ADF command for more details).'? This
test has been discussed in Engle and Granger (1987) and Engle and Yoo (1987) as a test of
cointegration. The program also displays the 95 per cent critical values, using the results
in MacKinnon (1991). Note that these critical values differ from those supplied with the
ADF command, and depend on the number of /(1) variables in the underlying regression
(excluding the intercept term and the time trend), and whether or not the regression model
includes a time trend. Microfit checks the regressions and reports the correct critical values.
If an intercept term is not included in the original regression, a warning is displayed. It is
important to note that in view of the above considerations, a direct application of the ADF
command to saved residuals will generate incorrect critical values for the test, and must be
avoided.

Option 4 enables you to carry out the cumulative sum (CUSUM) and the CUSUM of
squares (CUSUMSQ) tests of structural stability proposed by Brown, Durbin, and Evans
(1975). When you choose this option, Microfit displays two graphs, one giving the plot of
the CUSUM statistic (21.131), and the other giving the plot of the CUSUMSQ statistic
(21.133). Each graph also displays a pair of straight lines drawn at the 5 per cent level of
significance defined by equations (21.132) and (21.134), respectively. If either of the lines
is crossed, the null hypothesis that the regression equation is correctly specified must be
rejected at the 5 per cent level of significance. The CUSUM test is particularly useful
for detecting systematic changes in the regression coeflicients, and the CUSUM SQ test is
useful in situations where the departure from the constancy of the regression coefficients is
haphazard and sudden.

Option 5 enables you to test for the statistical significance of deleting one or more
regressors from your linear regression model.

Option 6 enables you to test the statistical significance of adding one or more regressors
to your linear regression model.

Option 7 allows you to carry out a Wald test of linear or non-linear restrictions on the
parameters of your model. When you choose this option you will first be prompted to specify
the number of the restrictions that you wish to test, and then the restrictions themselves.

Notes

13Unit roots tests can also be applied to the residuals directly by making use of the ADF commands in
the Processing Window. See Section 4.4.2 for more information.
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1. Restrictions must be linearly independent and should not exceed the number of the
unknown parameters in your model.

2. In the case of linear regressions, Microfit assigns A1, A2, ... to the regression coefficients
and B1, B2, ... to the parameters of the AR/M A error processes. For example, to test
the hypothesis that in the regression of C' on INPT, Y, Y(—1), C(—1) the long run
response of C to Y is equal to 1, you need to specify either (A2 + A3) /(1 — A4) =1,
or A2 + A3+ A4 = 1. Both are mathematically equivalent, and in large samples give
the same results. In small samples, however, they could give very different results (see
Gregory and Veall 1985, 1987). The linear form of the restriction is preferable and
should be used in practice.

3. Another method of testing restrictions would be to use option 5 in the Post Regression
Menu (see Section 6.20).

4. The relevant expression for the test statistic is given by equation (21.198).

Option 8 enables you to compute a number of test statistics proposed in the literature
for the test of non-nested linear regression models. This option also computes a number of
useful summary statistics, including Akaike and Schwartz Bayesian information criteria (see
Section 21.8 for details, and for relevant references to the literature).

Option 9 allows you to carry out non-nested tests of the following linear regression
models :

My : fy)=XBi+u;,  u;~ N(0,0%L,),
My @ gly)=ZBy+uy  us~ N(0,wL,),

where f(y) and g(y) are known transformations of the n x 1 vector of observations on the
underlying dependent variable of interest, y, and X and Z are n X kjand n X kg, observation
matrices for the models M; and My, respectively. In what follows we refer to f(y) and g(y)
as the right-hand-side (RHS) variables.

When you choose this option, you will be prompted to list the regressors of model Ms.
The currently specified regression equation will be treated as model M;. Then you will be
presented with the following menu, asking you to specify the nature of the transformation
of the dependent variable for model Mj:

Move to Hypothesis Testing Menu

Linear form

Logarithmic form

Ratio form

Difference form

Log-difference form

General non-linear form to be specified by you

SO N O

Options 1 to 5 allow you to specify the following transformations of the dependent
variable under model Mj:
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Linear form: fly)=y

Logarithmic form:  f(y) = log(y)

Ratio form: fly)=y/z

Difference form: fly)=y-y(-1)
Log-difference form: f(y) =logy —logy(—1)

where z is another variable on the workspace. Notice that log(y) refers to a vector of
observations with elements equal to log(y:), t = 1,2,...,n. Also y —y(—1) refers to a vector
with a typical element equal to y; —y—1, t =1,2,...,n.

Option 6 in this sub-menu allows you to specify your own particular functional form for
f(y). See note 4 below for more details.

Once one of these options is chosen, the program presents you with a similar menu to
identify the functional form, g(y), for the RHS variable under model Ms. Having specified
the functional forms for the dependent variables of the two models, the program asks you to
give the number of replications, R, to be used in the simulations, and computes the following
test statistics: Ppg test statistic due to tciteNMacKinnon1983, the Bera and McAleer (1989)
test statistic, the double-length regression test due to Davidson and MacKinnon (1984), and
the simulated Cox test statistic, SC., proposed in Pesaran and Pesaran (1995). Furthermore,
it reports Sargan (1964) and Vuong (1989) likelihood criteria for the choice between the three
models. See Section 21.9 for the details. Using this option it is possible, for example, to
test linear versus log-linear models, first-difference models versus models in log-differences,
models in ratio forms against models in logarithms.

Notes

1. In the case of testing linear versus log-linear models (or first-difference versus log-
difference models) the program first computes the probability of drawing a negative
value of y under the linear model, and displays a warning if this probability is larger
than 0.0001. In such an event, the Cox statistic for testing the log-linear versus the
linear model cannot be computed, and the program only computes the Cox statistic
for testing the linear versus the log-linear model. See Pesaran and Pesaran (1995).

2. The results are displayed in two separate screens. The first screen gives the OLS
estimates of models M; and Ms, and the quasi-maximum likelihood estimators of the
parameters of model M; and Ms, and vice versa. The different test statistics are
displayed in the subsequent screen.

3. Our experience suggests that for most problems 150 to 200 replications should be
enough for achieving accuracies of up to two decimal places in the computation of the
simulated Cox statistic. Nevertheless, we recommend that you try different numbers
of replications to check the robustness of the results.

4. You need to choose option 6 when the functional forms f(y) or g(y) are not among the
menu choices. When you choose this option you will be presented with a box editor,
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asking you to specify the functional forms for the RHS variable, their inverse functions,
and their derivatives, for each of the non-nested models separately. You need to provide
the required information first for model M and then for model Ms, separating them
by a semicolon (;). For example, suppose you wish to specify the functions

Yt — Yt—1
fly) = ————
2t

9(yt) = log(ye/2t)

for the non-nested regression models M; and Mo, respectively. You need to type

F = (Y-(Y(-1)/Z; Y=Z+«F+Y(-1); DFY =1/Z;
G = LOG(Y/Z); Y =Z+EXP(G):; DGY =1/Y Q

Notice that the variables F', Y, GG, Z should exist on Microfit’s workspace, but the
variables DFY and DGY should not exist.



Chapter 7

Multiple Equation Options

This chapter deals with the multiple (system) equation options in Microfit, and covers esti-
mation, hypothesis testing and forecasting in the context of unrestricted Vector Autoregres-
sive (VAR) models, Seemingly Unrelated Regression Equations (SURFE), and cointegrating
VAR models. The chapter also shows how to compute/plot orthogonalized and generalized
impulse response functions, forecast error variance decompositions, and persistence profiles
for the analysis of the effect of system-wide shocks on the cointegrating relations. There are
also important new options for long-run structural modelling, enabling the user to estimate
and test models with multiple cointegrating relations subject to general linear (possibly)
non-homogeneous restrictions. The details of the econometric methods and the computa-
tional algorithms that underlie the multivariate options are set out in Chapter 22, where
references to the literature can also be found.

7.1 The canonical multivariate model
The multivariate estimation options in Microfit are all based on the following augmented
vector autoregressive model of order p, or AV AR(p) for short:
P
z; = ap +ait + Z Pz, +Pw +wy (7.1)
i=1

where z; is an m x 1 vector of jointly determined (endogenous) variables, ¢ is a linear time
trend, w; is a ¢ X 1 vector of exogenous variables, and u; is an m x 1 vector of unobserved
disturbances assumed to satisfy the following assumptions:'

B1 Zero Mean Assumption. The m x 1 vector of disturbances, u;, have zero means

E (u) =0, for t=1,2,...n

'These assumptions are the multivariate generalizations of those underlying the univariate classical linear
regression model described in Section 6.1.

119
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B2 Homoscedasticity Assumption. The m x 1 vector of disturbances, u;, has a time-
invariant conditional variance matrix

!/
E (utut |Zt—1,Zt—2, ..oy Wi, Wi_1, ) =X
where ¥ = () is an m X m symmetric positive definite matrix.

B3 Non-autocorrelated Error Assumption. The m x 1 vector of disturbances, u;, are
serially uncorrelated
E(wu,) =0 forall t#s

B4 Orthogonality Assumption. The m x 1 vector of disturbances, u;, and the regressors
w; are uncorrelated
E(u|wy) =0 for all ¢

B5 Stability Assumption. The augmented VAR(p) model (7.1) is stable. That is, all the
roots of the determinantal equation

| L — @1\ — B2 — - — BN =0 (7.2)
fall outside the unit circle.
For maximum likelihood estimation, the following normality assumption is also needed

B6 Normality Assumption. The m x 1 vector of disturbances has a multivariate normal
distribution.

The VAR specification is chosen for its flexibility and computational ease, and it is
‘hoped’ that by choosing p (the order of the VAR) high enough, the residual serial correla-
tion problem can be avoided. The conditional homoscedasticity assumption, B3, is likely to
be violated in the case of financial time series at monthly or higher frequencies. See Chapter
8 for the use of multivariate GARCH models. Assumption B2 allows for contemporane-
ous correlation across the errors in different equations, and therefore also accommodates
instantaneous feedbacks between the different variables in z;.

The canonical multivariate model (7.1) also forms the basis of the Seemingly Unrelated
Regression Equations (SURE) and the restricted SURE options in Microfit. The general
SURE model results when one allows for different lag orders and/or exogenous variables in
different equations in (7.1) (see Section 7.7).

Finally, the cointegrating VAR options discussed in Section 7.5 are based on equation
(7.1) but allows one or more roots of the determinantal equation (7.2) to fall on the unit
circle.



CHAPTER 7. MULTIPLE EQUATION OPTIONS 121

7.1.1 The log-likelihood function of the multivariate model

The various multivariate estimation options in Microfit compute maximum likelihood (ML)
estimators of the parameters of (7.1) subject to appropriate parametric restrictions. The log-
likelihood function of (7.1), conditional on w1, wa, ..., w,, and the initial values, zg,z_1, ..., Z2_p41,
is given by

—nm

n
n _
lo(p) = log 2m — 510g D g ux tuy, (7.3)
t=1

where ¢ stands for all the unknown parameters of the model. Stacking the n observations
on the m equations in (7.1), the log-likelihood in (7.3) can also be written in matrix form as

@) = _;”" log 27 — glog 3| - irr (2UUY), (7.4)
where T'r(-) denotes the trace of a matrix, and

p
U=7-7na)—tya) — Y Z_ ;% - W (7.5)

i=1
U =(u,u,...,u,), Z =(z1,22,...,2,) (7.6)

nxm nxm
Z—i = (Z—i+luz—i+27 -“7Z—1+n)l) W = (W17W27 "‘7WTL)I (77)
nxm n xq
T = (1,1,...,1), t, =(1,2,...,n) (7.8)
nxl1 nx1

The particular computational algorithm used to carry out the maximization of the above
log-likelihood function depends on the nature of the restrictions on the parameters of the
model, and are set out in detail in Chapter 22. In this chapter our focus will be on how to
use the various multiple estimation options.

7.2 General guidelines

Before proceeding any further, the following points are worth bearing in mind when using
the multiple equation options in Microfit:

1. The order of the VAR, p, often plays a crucial role in the empirical analysis, and in
selecting it special care must be taken to ensure that it is high enough so that the
disturbances u; in (7.1) are not serially correlated and, for the p chosen, the remaining
sample for estimation is large enough for the asymptotic theory to work reasonably well.
This involves a difficult balancing act. For VAR order selection Microfit automatically
generates the Akaike information criterion (AIC) and the Schwarz Bayesian criterion
(SBC), as well as a sequence of log-likelihood ratio statistics. In practice, their use
often leads to different choices for p, and the user must decide on the best choice of p
for the problem in hand.
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2. The multivariate techniques are often highly data intensive, particularly when m, the
number of jointly determined variables, is large. For example, when m = 10, p = 4, and
q = 2, each equation in the AV AR model (7.1) contains s = mp+ ¢+ 2 = 44 unknown
coefficients. For such a specification our experience suggests that sample sizes of 200
or more is often needed if any sensible results are to be obtained. It is, therefore,
important that the multivariate options in Microfit are applied in cases where n is
sufficiently large.’

3. Cointegrating VAR options presume that the variables z; are I(1), and that the user
already knows the nature of the unconditional mean of the variables in the underlying
VAR model, namely whether the variables z; have non-zero means or are trended,
and whether the trend is linear. Therefore, it is important that the variables in z; are
tested for unit roots (for example using the ADF command in the Process window),
and that the nature of the trends in z; is ascertained, for example, by plotting each
elements of z; against time! Econometric techniques are often not powerful enough to
identify the nature of the trends in the variables being modelled.

4. Before using the long-run structural modelling options described in Section 7.5.3, you
need to specify the number of cointegrating (or long-run) relations of your model.
The maximum eigenvalue and the trace statistics advanced by Johansen (1988) and
Johansen (1991) can be employed for this purpose (see Section 7.5). However, the
results of these tests are often ambiguous in practice, and it may be necessary that
the number of cointegrating relations is chosen on the basis of a priori information;
for example from the long-run predictions of a suitable economic model: see Pesaran

(1997).

5. Another important issue in the use of long-run structural modelling options concerns
the nature of the just-identifying restrictions on the long-run relations. This invariably
requires an explicit formulation of the long-run economic model that underlies the
empirical analysis. Microfit invites you to specify the cointegration or the long-run
relations of your model at two different stages. In the first stage you will be asked to
specify the cointegrating relations that are just-identified. Once such a just-identified
model is successfully estimated, you will be prompted to specify your over-identifying
restrictions (if any). For the ML estimation procedure to converge it is important
that the over-identifying restrictions are introduced one at a time, starting with those
that are less likely to be rejected. The asymptotic standard errors computed for the
estimated coeflicients of the exactly-identified cointegrating relations can be used as a
guide in deciding which over-identifying restrictions to impose first, and which one to
impose second, and so on.

6. Since the cointegration analysis focuses on the long-run properties of the economic
model, it is important to combine it with some additional information on how the
long-run relations of the model respond to shocks. For example, it may be of interest

%Size limitations in the case of the multivariate estimation options are set out in Appendix A.
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to know whether there are over-shooting effects, and how long, on average, it will
take for the economy to settle back into its long-run state after being shocked. To shed
light on these and other related issues we recommend the use of the generalized impulse
response functions for characterizing the time-profiles of the effects of variable-specific
shocks on the long-run relations, and the persistence profiles for characterizing the
effects of system-wide shocks on the cointegrating relations. See Sections 22.9.4, 22.9.5
and 22.9.6.

7.3 System Estimation Menu

All the multivariate options in Microfit can be accessed from the System Estimation Menu
(the Multivariate Menu) or by clicking the @ button. When you use this button the cur-

rently selected menu option (Unrestricted V AR) is automatically selected. The Multivariate
Menu options open the System Estimation Menu which contains the following options

Unrestricted VAR
Cointegrating VAR Menu
Cointegrating VARX
SURE method

Restricted SURFE method
25LS

Restricted 25LS

3SLS

Restricted 3SLS

© 0N oA WD =

Option 1 enables you to estimate unrestricted VAR models, test a number of restrictions
on their parameters and compute multivariate, multi-step ahead forecasts. You can also use
this option to estimate univariate AR models. But if you wish to estimate univariate ARMA
models you need to choose the MA option in the Linear Regression Estimation Menu. See
Sections 6.5 and 6.12.

Option 2 enables you to carry out cointegration analysis in a VAR framework; dis-
tinguishing between I(1) jointly determined variables, I(1) exogenous variables, and I(0)
exogenous variables. You can choose among five different specifications of intercepts and/or
trends in the underlying VAR model. This option also allows you to perform impulse re-
sponse analysis and trend/cycle decompositions. See Sections 22.10.1, 22.11 and 22.9.4.

Option 3 enables you to estimate vector error correction models with weakly exogenous
I(1) variables (VARX). This option can also be used to perform impulse response analysis
and trend/cycle decompositions. See Sections 22.10.1, 22.11 and 22.9.4.

Option 4 allows you to estimate a system of Seemingly Unrelated Regression Equations
(SURE) by the full maximum likelihood method (see Zellner 1962).

Option 5 provides an important extension of the SURFE estimation method of option
3, and allows estimation of SURFE models subject to linear restrictions, possibly involving
coefficients from different regression equations in the model. This option can be used, for
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example, to estimate systems of demand equations subject to the homogeneity and symmetry
restrictions.

Options 6 and 7 enable you to estimate SURFE models and SURFE models subject to
linear restrictions by two-stages least squares (see Zellner 1962).

Options 8 and 9 allow three-stages least squares estimation of unrestricted and re-
stricted SU RE models. This method accounts for possible serial correlation of disturbances,
and leads to more efficient estimates of regression coefficients than two-stages least squares
when regression errors are autocorrelated (see Kmenta and Gilbert (1970) and Parks (1967)).

7.4 Unrestricted VAR option

Option 1 in the System Estimation Menu (Multivariate Menu: see Section 7.3) enables you
to estimate the augmented V AR(p) model defined by (7.1). When you choose this option
you will be presented with Figure 7.1, which prompts you to list the jointly determined
variables in the VAR, namely z;, followed by the deterministic/exogenous variables, namely
intercepts, trend terms (if any) and possibly exogenous variables determined outside the
V AR model, denoted by w; in equation (7.1). It is possible to specify only one variable in
z;. In this case an augmented univariate autoregressive model will be estimated. The two
sets of variables must be separated by &.
For example, to specify a VAR model in the three variables

C Real consumption expenditure
I  Real investment expenditure
Y Real output

including in it an intercept (INPT') and a linear trend (7°), you need to type
Cc 1Y & INPT T
in the box editor shown in Figure 7.1.

Type in the start and the finish of your estimation period, and the order of the VAR
model (p < 24), and then click = @ . Microfit carries out the necessary computations and

presents you with the Unrestricted VAR Post Estimation Menu. See Section 7.4.1.
Notes

1. The ordering of the variables in the VAR is important only as far as computation of
the orthogonalized impulse responses and orthogonalized error variance decompositions
are concerned. See Sections 22.5 and 22.6.

2. Lagged values cannot appear among the set of jointly determined variables, z;. Al-
though they could be included in the second set, namely w;s, so long as these are not
lagged values of the first set!
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Figure 7.1: The System Estimation window with the unrestricted VAR option

3. If a lagged variable, say C'(—1), is included as one of the variables in the VAR, Microfit
will present you with an error message

4. If you include lagged values of the jointly determined variables as an exogenously
determined variable, initially no error messages will appear on the screen, but at the
stage of computations the program will encounter a perfect multicollinearity problem
and issue an error message.

7.4.1 Unrestricted VAR Post Estimation Menu

The Unrestricted VAR Post Estimation Menu appears on the screen when the estimation
of the VAR model is complete. It contains the following options

Move to Backtracking Menu

Display single equation estimation results

Display system covariance matrix of errors

Impulse Response and Forecast Error Variance Decomposition
Hypothesis testing and lag order selection in the VAR
Compute multivariate dynamic forecasts

SUp o0 = O
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Option 1 enables you to see estimation results for individual equations in the VAR
model. When you choose this option you will be asked to select the equation to be displayed.
Initially, the highlighting will be on the first variable in the VAR. Move the cursor to the
variable whose equation you wish to inspect, and click =« . The estimation results for the
selected equation should now appear on the screen. Since all the equations in the unrestricted
VAR model have the same variables in common, the M L estimates of the VAR model is
the same as the OLS estimates. See Section 22.4. Similarly, the summary and diagnostic
statistics supplied with the estimation results are computed using the same formula as in the
case of the OLS option described in Section 6.6. The only additional information provided
is the maximized value of the system log-likelihood function given at the bottom right-hand
corner of the first result table that appears on the screen. See equation (22.38). As in the
case of the OLS option, after the estimation results you will be presented with the Post
Regression Menu, which provides you with a number of options for further analysis of the
residuals and hypothesis testing. For example, you can compute White and Newey-West
adjusted standard errors for the parameter estimates or carry out tests of linear/non-linear
restrictions on the coefficients of the chosen equation in the VAR. But to carry out tests
of restrictions that involve parameters of different equations in the VAR model you need to
choose the SURE and restricted SURE options described in Section 7.7.1 and 7.7.2.

Option 2 presents you with the unbiased estimates of 33, given by S in equation (21.12).

Option 3 takes you to the Unrestricted VAR Dynamic Response Analysis Menu, from
where you can compute and plot orthogonalized and generalized impulse responses and
forecast error variance decompositions for unit shocks to the ith equation in the VAR model
(7.1). See Section 7.4.2.

Option 4 moves you to the VAR Hypothesis Testing Menu, where you can select the
order of the VAR, test for the statistical significance of the exogenous/deterministic vari-
ables, w, and finally test for non-causality of a sub-set of jointly determined variables, z;,
in the VAR model defined by (7.1). See Section 7.4.3.

Option 5 enables you to compute forecasts of the jointly determined variables, z;, in
(7.1), for given values of the exogenous/deterministic variables, w;, over the forecast period.
When you select this option you will be first asked to specify the forecast period, and then to
choose the variable you wish to forecast. For each variable that you choose you will be given
a choice of forecasting the levels of the variable or its first-differences. The program then
computes the forecasts and presents you with the Multivariate Forecast Menu (see Section
7.4.4).

7.4.2 Unrestricted VAR Dynamic Response Analysis Menu

This menu has the following options

Return to VAR Post Estimation Menu
Orthogonalized IR of variables to shocks in equations
Generalized IR of variables to shocks in equations
Orthogonalized forecast error variance decomposition
Generalized forecast error variance decomposition

== o
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When you choose any one of the above options 1 to 4, you will be asked to choose the
equation to be shocked. Each equation is designated by its left-hand-side variable. Move
the cursor to the desired variable name (equation) and click <. You will now be asked
to specify the horizon (denoted in Chapter 22 by N) for the impulse responses (or forecast
error variance decomposition). The default value is set to 50, otherwise you need to type
your desired value of N and then click = «*  (with N < 150). Once you have specified the
horizon the program carries out the computations and presents you with a list of impulse
responses (or forecast error variance decompositions) at different horizons. To plot or save
the results click 2 to move to the Impulse Response Results Menu. This menu has the

following options

Move back/bootstrap confidence intervals
Display results again

Graph

Save in a CSV file

W

Option 0 allows you to compute the empirical distribution of impulse responses for one or
more variables by applying the bootstrap method. Choose the desired number of replications
and the confidence level (1 —«) and click i, then select the variable you want to inspect.
You will be presented with the list of impulse responses at different horizons for the selected
variable, together with their bootstrapped 1 — § and § percentiles, their median and mean.
Click 2 to return to the Impulse Response Results Menu.

Option 1 enables you to see the results of the impulse response analysis and forecast
error variance decompositions again.

Option 2 enables you to plot the impulse responses (or the forecast error variance
decompositions) for one or more of the variables in the VAR at different horizons. If you have
previously used option 0 to compute the bootstrapped confidence intervals at a confidence
level (1 — ), you can also plot the mean, median, 1 — § and § percentiles of the impulse
responses bootstrapped empirical distributions.

Option 3 allows you to save the impulse responses (or the forecast error variance de-
compositions) for all the variables in a CSV file for subsequent analysis.

It is worth noting that the orthogonalized impulse responses and the orthogonalized
forecast error variance decompositions usually depend on the ordering of the variables in the
V AR, but their generalized counterparts do not. The orthogonalized and the generalized
impulse responses exactly coincide either for the first variable in the VAR or if 3 is diagonal.
An account of these concepts and the details of their computation are set out in Sections
22.5 and 22.6.

7.4.3 VAR Hypothesis Testing Menu

This menu appears on the screen when option 4 in the Unrestricted VAR Post Estimation
Menu is chosen. (see Section 7.4.1), and has the following options
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Return to VAR Post Estimation Menu

Testing and selection criteria for order (lag length) of the VAR
Testing for deletion of deterministic/exogenous variables in the VAR
Testing for block non-causality of a subset of variables in the VAR

W

Option 0 returns you to the Unrestricted VAR Post Estimation Menu (see Section
7.4.1).

Option 1 computes Akaike information and Schwarz Bayesian model selection criteria
for selecting the order of the VAR(p), for p =0, 1,2, ..., P, where P represents the maximum
order selected by the user (see Section 7.4). The selection procedure involves choosing the
V AR(p) model with the highest value of the AIC or the SBC. In practice, the use of SBC is
likely to result in selecting a lower order VAR model, as compared to the AIC. But in using
both criteria it is important that the maximum order chosen for the VAR is high enough,
so that high-order VAR specifications are given a reasonable chance of being selected, if
they happen to be appropriate. This option also computes log-likelihood ratio statistics and
their small sample adjusted values which can be used in the order-selection process. The
log-likelihood ratio statistics are computed for testing the hypothesis that the order of the
V AR is p against the alternative that it is P, for p = 0,1,2,.., P — 1. Users interested in
testing the hypothesis that the order of the VAR model is p against the alternative that it
isp+1,forp=0,1,2,..., P— 1, can construct the relevant log-likelihood statistics for these
tests by using the maximized values of the log-likelihood function given in the first column
of the result table corresponding to this option. For example, to test the hypothesis that the
order of the VAR model is 2 against the alternative that it is 3, the relevant log-likelihood
ratio statistic is given by

LR(2:3)=2(LL3 — LL3) (7.9)

where LL,, p = 0,1,2,...,p refers to the maximized value of the log-likelihood function for
the VAR(p) model. Under the null hypothesis, LR(2 : 3) is distributed asymptotically as a
chi-squared variate with m?(3 — 2) = m? degrees of freedom, where m is the dimension of z,
in equation (7.1). For further details and the relevant formulae see Section 22.4.1.

Option 2 computes the log-likelihood ratio statistic for testing zero restrictions on the
coefficients of a sub-set of deterministic/exogenous variables in the VAR. For example, to
test the hypothesis that the VAR specification in (7.1) does not contain a deterministic trend
the relevant hypothesis will be a; = 0. In general, this option can be used to test the validity
of deleting one or more of the exogenous/deterministic variables from the VAR. When you
choose this option you will be asked to list the deterministic/exogenous variable(s) to be
dropped from the VAR model. Type in the variable name(s) in the box editor and click

< to process. The test results should now appear on the screen; they give the maximized
values of the log-likelihood function for the unrestricted and the restricted model, and the
log-likelihood ratio statistic for testing the restrictions. The degrees of freedom and the
rejection probability of the test are given in round () and square [ ] brackets, respectively.
For further details and the relevant formulae see Section 22.4.2.

Option 3 computes the log-likelihood ratio statistic for testing the null hypothesis that
the coefficients of a sub-set of jointly determined variables in the VAR are equal to zero.
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This is known as Block Granger Non-Causality test and provides a statistical measure of
the extent to which lagged values of a set of variables (say zg;) are important in predicting
another set of variables, (say z1;) once lagged values of the latter set are included in the
model.

More formally, in (7.1), let z; = (z},, z5,) where z; and zg; are my x 1 and mg x 1 sub-sets
of z;, and m = mj + mg. Consider now the following block decomposition of (7.1)

p p
zZ1; = ajo +ant + z D 11214 + Z ®; 1022 + ¥1wy + uyy, (7.10)
=1 i—1

P P
Zot = agy + agt + E D,01214; + E D; 29291 + Pow; + uy;.
i=1 i=1

The hypothesis that the subset z9; does not ‘Granger-cause’ zy; is defined by
HG . @12 == 0,

where @15 = (@112, ®212..., ®,12) . When you choose this option you will be asked to list
the subset of variable(s) on which you wish to carry out the block non-causality test, namely
Z9t, in the above formulation. The program then computes the relevant log-likelihood ratio
statistic and presents you with the test results, also giving the maximized log-likelihood
values under the unrestricted (®12 # 0) and the restricted model (®12 = 0). For further
details and the relevant formulae see Section 22.4.3. Note that the Granger non-causality
tests may give misleading results if the variables in the VAR contain unit roots (namely
when one or more roots of (22.34) lie on the unit circle). In such a case one must ideally
either use VAR models in first differences, or cointegrating VAR models if the underlying
variables are cointegrated. See the discussion in Canova (1995) p. 104, and the references
cited therein.

7.4.4 Multivariate Forecast Menu

This menu appears on the screen when option 5 in the Unrestricted VAR Post Estimation
Menu is selected. (See Section 7.4.1). It contains the following options

Choose another variable

Display forecast and forecast errors

Plot of in-sample fitted values and out of sample forecasts
Save in-sample fitted values and out of sample forecasts

W

Option 0 enables you to inspect forecasts of the level or first-differences of another
variable in the VAR.

Option 1 lists the actual values, multivariate forecasts and the forecast errors. In cases
where actual values for the jointly determined variables over the forecast period are not
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available, it is still possible to generate multi-step ahead forecasts so long as observations
on the exogenous/deterministic variables in the VAR (namely wy, intercepts and trends)
are available over the forecast period. In addition to listing the forecasts, this option also
computes a number of standard summary statistics for checking the adequacy of the forecasts
over the estimation and the forecast periods.

Option 2 enables you to see plots of the actual and forecast values for the selected
variable. In the graph window you can specify a different period over which you wish to see
the plots. Click the Start and Finish fields and scroll through the drop-down lists to select
the desired sample period, and then press the button ‘Refresh graph over the above sample
period’.

Option 3 allows you to save the fitted and forecast values of the selected variable in
the workspace in a new variable to be used in subsequent analysis.

7.5 Cointegrating VAR options

The econometric model that underlies the cointegrating VAR options is given by the follow-
ing general vector error correction model (VECM):

p—1
Ay; = agy +ayyt — Iz, 1 + Z FiyAZt_i + W, Wi+ uyy (7.11)
i=1
where z; = (Yt). This model distinguishes between four categories of variables:
Xt

1. y¢, which is an m,, x 1 vector of jointly determined (or endogenous) I(1) variables.’®
2. xy, which is an m, x 1 vector of I(1) exogenous variables.

3. wy, which is a ¢ x 1 vector of I(0) exogenous variables.

4. Intercepts and deterministic linear trends.

The implicit VAR model for the I(1) exogenous variables, x;, is given by

p—1
Ax; = agg + Z TioAxi—j + Yo wi + vy (7.12)
i=1
and assumes that x;s are not themselves cointegrated. Notice also that despite the fact that
(7.12) does not contain a deterministic trend, the levels of x; will be trended due to the drift
coefficients, ag,.
Combining (7.11) and (7.12) we obtain

p—1
Az; = ag+ ayt — Iz q + Z Az + Owy + ug (7.13)
i=1

% Vector y; is said to be I(1) if all its elements must be differenced to achieve stationarity.
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2y — <Yt>7 w = (uty>’ ag — <30y>’ ay — (a1y>
Xt Vi aog 0
I, T N
Il = Y, Li=(.Y), ="
< 0 >’ ' <Fix>7 (‘le>

which is a restricted vector error correction form of (7.1).

In estimating (7.11) Microfit distinguishes between five cases depending on whether (7.11)
contains intercepts and/or time trends, and on whether the intercepts and the trend coef-
ficients are restricted. Ordering these cases according to the importance of deterministic
trends in the model we have

where

Case I. agy = ajy = 0 (no intercepts and no deterministic trends).
Case II. aj, =0, and agy = ITypu, (restricted intercepts and no deterministic trends).
Case III. a;y, =0, and ag, # 0 (unrestricted intercepts and no deterministic trends).

Case IV. ag, # 0, and aj, = Iy, (unrestricted intercepts and restricted deterministic
trends).

Case V. ag, # 0, and a;, # 0 (unrestricted intercepts and trends).

The intercept and the trend coefficients, ag, and aj, are m, x 1 vectors, II, is the
long-run multiplier matrix of order m, x m, where m = my, + my, I'1y, T2y, ...,T'p_1, are
my X m coefficient matrices capturing the short-run dynamic effects, and ¥, is the m, x ¢
matrix of coefficients on the I(0) exogenous variables.

Firstly (7.11) allows for a sub-system approach in which the m,-vector of random vari-
ables, x¢, are treated structurally ezogenous, in the sense that there are no error correction
feedbacks in the equations explaining Ax;. Models of this type naturally arise in empirical
macroeconomic analysis of small open economies where for the purpose of modelling the
domestic macroeconomic relations, foreign prices, interest rates and foreign incomes can of-
ten be treated as exogenous (1) variables. Secondly, the model (7.11) explicitly allows for
the possibility of deterministic trends, which again could be an important consideration in
macroeconomic applications.

The importance of distinguishing among the above five cases is discussed in Section 22.7.
In the case where ag and aj are both unrestricted (Case V), y; will be trend-stationary when
the rank of I, is full, but when II, is rank deficient, the solution of y; will contain quadratic
trends, unless aj, is restricted as in Case IV. Similarly, in Case III, when II,, is rank deficient
then y; will contain a linear deterministic trend, unless ag, is restricted as in Case II. Case
I is included for completeness and is unlikely to be of relevance in economic applications.

It is also worth noting that in Case IV where a;, # 0, the cointegrating vectors contain
a deterministic trend, and in Case II where ap, # 0, the cointegrating vectors contain
intercepts.
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Under the assumption that Rank(IL,) = r, that is, when there exists r cointegrating
relations among the variables in z;, we have

m, = o, (7.14)

where o, and B are my x m and m x r matrices each with full column rank, r. The r
cointegrating relations are then given by

Bz, = B'zo + (B'C*(Var) t + 1, (7.15)

where zg is the initial value of z;, C*(1) = C§ + C7 + C5 + - - -, defined by the recursive
relations (22.83), and m; (ny = 0) is an r x 1 vector of mean-zero, I(0) disturbance vector,
representing the covariance stationary components of the cointegrating relations.” In the
case where the trend coefficients a;, in the underlying V ECM are restricted (Case IV), we
have 3'C*(1)a; = B'~y, where « is an r x 1 vector of unknown coefficients. In this case the
trend coefficients enter the cointegrating relations and we have

p—1
Ay, = agy — o B (z4-1 — vt) + Z LAz + ¥yw; + uyy (7.16)
i=1

B’ (z4—1 — ~t) will be a covariance stationary process with a constant mean. In this case the
presence of a deterministic trend in the cointegrating relations can be empirically tested by
testing the r ‘co-trending’ restrictions

B~y=0 (7.17)

In Case V where aj, is unrestricted, the deterministic trends in the error correction model
(7.11) are specified outside the cointegrating relations. One could test for their presence in
the error correction model by means of standard #-tests. Similar considerations also apply
when comparing models with restricted and unrestricted intercepts, but with no determinis-
tic trends (Cases IT and III). Under Case II, the intercepts in the underlying error correction
model will appear as a part of the cointegrating relations, while under case III, the unre-
stricted intercepts appear as a part of the error correction specification.

In most macroeconomic applications of interest, where y; and x; contain deterministic
trend components, and II, is rank deficient, the appropriate vector error correction model
is given by Case IV, where the trend coefficients are restricted. In cases where (y,x;) do
not contain deterministic trends, Case II is the appropriate error correction model.

7.5.1 Specification of the cointegrating VAR model

The Cointegrating VAR Menu is option 2 in the System Estimation Menu (See Section 7.3).
The menu contains the following choices for the inclusion of intercept/trends in the VAR
model

* For a derivation and an explicit expression for 1, see Section 22.7.1. Also see Park (1992) and Ogaki
(1992).
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No intercepts or trends included in VAR model

Restricted intercepts and no trends in VAR model
Unrestricted intercepts and no trends in VAR model
Unrestricted intercepts and restricted trends in VAR model
Unrestricted intercepts and unrestricted trends in VAR model

A A

Options 1 to 5 refer to Cases I to V set out above, and correspond to different spec-
ifications of intercept/trend in the underlying VAR model. Option 2 is appropriate when
the jointly determined variables do not contain a deterministic trend. Option 4 (that corre-
sponds to Case 1V) is appropriate when the jointly determined variables in the VAR have a
linear deterministic trend.

Options 3 to 5 can lead to error correction models with different trend properties
depending on the number of cointegrating relations.

You need to list the I(1) variables in your model, namely variables z;, followed by the
list of your I(0) variables, wy, if any, separating them by &. The division of I(1) variables
into the jointly determined variables, y;, and the exogenously determined variables, x;, is
done by using the semicolon character (;) as a separator. For example, suppose you wish to
estimate a cointegrating V AR model containing the following variables:

P Domestic price level

PF Foreign price level

E Exchange rate

R Domestic interest rate
RF Foreign interest rate
DPO Changes in real oil prices

DPO(—1) Lagged changes in real oil prices

where P, F and R are endogenous [(1) variables, PF' and RF' are exogenous (1) vari-
ables, and DPO is the exogenous I(0) variable in the model. Then you need to type

P E R; PF RF & DPO DPO(-1)

You should not include an intercept or a deterministic trend term among these variables.
You need to specify the order of the VAR model (p < 24), and then click Su) to begin
calculations. Microfit presents you with the trace and maximum eigenvalue statistics for
testing a number of hypotheses concerning the rank of the long-run matrix IT, in (7.11),
together with the relevant 90 and 95 per cent critical values (see Sections 22.8, 22.8.1 and
22.8.2).

The program also gives the maximized values of the log-likelihood function of the cointe-
grating VAR model, Akaike, Schwarz, and Hannan and Quinn model selection criteria, for
the different values of r, the rank of the long-run matrix, IT, (see Section 22.8.3).

The above test results and model selection criteria can be used to determine the appro-
priate number of cointegrating relations that are likely to exist among the I(1) variables.
Before moving to the next stage of the cointegration analysis, you must choose a value for
r. It is only meaningful to continue with the cointegration analysis if your choice of r lies
strictly between 0 and m,,.
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7.5.2 Cointegrating VAR Post Estimation Menu

This menu appears on the screen after the cointegration test results obtained choosing either
option 2 or 3 in the System Estimation Menu (see Section 7.6 for further details on option
3, the cointegrating VARX option). This menu has the following options

Move to Backtracking Menu

Display cointegration tests again

Specify r, the number of cointegrating vectors (CVs)
Display CVs using Johansen’s just-identifying restrictions
Display system covariance matrix of errors

Display matrix of long-run multipliers for the specified r
Long-run structural modelling, IR Analysis and Forecasting
Compute multivariate dynamic forecasts

N otk oo

Option 0 takes you back to the Commands and Data Transformations box.

Option 1 enables you to see the cointegration test results again.

Option 2 allows you to specify your choice of r, the number of cointegrating or long-run
relations among the (1) variables. Notice that r cannot be zero. If r is chosen to be equal
to m,, the dimension of y;, the estimation results will be the same as using the unrestricted
V AR option.

Option 3 displays the M L estimates of the cointegrating vectors under Johansen’s exact
identifying restrictions. These estimates lack any meaningful economic interpretations when
r > 2. In the case where r = 1, Johansen’s estimates (when appropriately normalized) will
be the same as those obtained using option 6 in this menu.

Option 4 displays the estimates of X, the variance matrix of the errors in the cointe-
grating VAR model, assuming rank of II, is equal to r.

Option 5 displays the ML estimates of IL,, the matrix of the long-run coefficients
defined by (7.14), subject to the cointegrating restrictions. Notice that by construction rank
of ﬁy is equal to r.

Option 6 moves you to the Long-Run Structural Modelling Menu and enables you to
estimate the cointegrating vectors subject to general linear restrictions, possibly involving
parameters across the cointegrating vectors, and to test over-identifying restrictions (if any).
This option is also the gateway to computation of impulse response functions, forecast error
variance decompositions, persistence profile analysis and multivariate forecasting, with the
cointegrating vectors, (3, being subject to (possibly) over-identifying restrictions (see Section
7.5.3).

Option 7 enables you to compute multivariate dynamic forecasts of y;, the jointly
determined variables, for given values of x; and wy, over the forecast period, and assuming
that rank (II,) = r. The forecasts obtained under this option implicitly assume that the
cointegrating vectors, 3, are exactly identified. To compute multivariate forecasts when (3
is subject to over-identifying restrictions you must use option 5 in the Impulse Response
Analysis and Forecasting Menu (see Section 7.5.4). When you choose this option you will
be first asked to specify the forecast period, and then to choose the variable you wish to
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forecast. For each variable that you choose you will be given a choice of forecasting the
levels of the variable or its first differences. The program then computes the forecasts and
presents you with the Multivariate Forecast Menu (see Section 7.4.4).

7.5.3 Long-Run Structural Modelling Menu

This menu can be accessed selecting option 6 in the Cointegrating VAR Post Estimation
Menu (see Section 7.5.2). It contains the following options

Move to Cointegrating VAR Post Estimation Menu

Likelihood ratio test of fixing some cointegrating vectors (CVs)
Likelihood ratio test of imposing same restriction(s) on all CVs
Likelihood ratio test of imposing restriction(s) on only one CV
Likelihood ratio test of imposing general restrictions on CVs
Use CVs obtained under Johansen’s just-identifying restrictions
Fix all the cointegrating vectors

SO N O

Option 0 returns you to the Cointegrating VAR Post Estimation Menu (see Section
7.5.2).

Options 1 to 3 represent different ways of testing simple homogenous restrictions on the
cointegrating vectors. Since the same restrictions can be imposed and tested using option
4 we will not discuss these options here. The interested user should consult the manual for
Microfit 3.0 where these tests are described in detail (see Pesaran and Pesaran (1991), pp.
88-89).

Option 4 enables you to estimate the VAR model subject to general (possibly) non-
homogenous restrictions on the cointegrating (or the long-run) coefficients, and compute log-
likelihood ratio statistics for testing over-identifying restrictions on the long-run coefficients.
However, when you first choose this option you will be asked to specify exactly r restrictions
on each of the r cointegrating vectors to just-identify the long-run restrictions. For example,
if the number of cointegrating relations, r, is equal to 4, a typical set of just-identifying
restrictions could be

Al=1; A2=0; A3=0; A4=0;
Bl1=0; B2=1; B3=0; B4=0;
Cl=0;, C2=0; C3=1; C4=0;
D1=0; D2=0; D3=0; D4i=1

The files CO2.EQU, CO3.EQU, ..., CO10.EQU in the Microfit Tutorial Directory contains
such just-identifying restrictions for r = 2,3,..,10, respectively. The above type of just-
identifying restrictions could be made relevant to your particular application, by a suitable
choice of the ordering of the variables in the VAR.? Once you have successfully estimated the
model subject to the just-identifying restrictions, you can add over-identifying restrictions

5 Notice that except for the results on orthogonalized impulse response functions, and the orthogonalized
forecast error variance decomposition, the cointegration tests and the ML estimates are invariant to the
ordering of the variables in the VAR.
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at a later stage (see option 0 in Section 7.5.4). The econometric and computational details
are set out in Section 22.9.
Option 5 sets the cointegrating vectors equal to Johansen’s estimates, B 7, which are
obtained subject to the just-identifying restrictions defined by (22.106) and (22.107).
Option 6 enables you to fix the cointegrating vectors by specifying all their elements.
Options 1 to 6 in the menu, once successfully implemented, take you to the Impulse
Response Analysis and Forecasting Menu (see Section 7.5.4).

7.5.4 Impulse Response Analysis and Forecasting Menu

This menu appears on the screen after a successful implementation of options 1 to 6 in the
Long-Run Structural Modelling Menu (see Section 7.5.3). It contains the following option:

Return to identify /test cointegrating vectors
Impulse Response of variables to shocks in equations
Forecast Error Variance Decomposition analysis
Impulse Response of CVs to shocks in equations
Persistence Profile of CVs to system-wide shocks
Trend/Cycle Decomposition

Compute multivariate dynamic forecasts

Display restricted/fixed CVs again

Display error correction equations

Save error correction terms

Display system covariance matrix of errors

Save the cointegrating VAR model in a CSV file

—_ =
CEO®Ne e ®wn o

Option 0 enables you to estimate/test (further) over-identify restrictions on the coin-
tegrating or long-run coeflicients. The restrictions could involve parameters from different
long-run relations (see Section 22.7 and option 4 in the Long-Run Structural Modelling
Menu described in Section 7.5.3). When you choose this option you will be asked to con-
firm whether you wish to test over-identifying restrictions on the long-run relations. If you
say ‘No’, you will be returned to the Long-Run Structural Modelling Menu (see Sections
22.9.1-22.9.3). If your answer is in the affirmative you will be presented with a box-editor to
specify your over-identifying restrictions. Our recommendation is to introduce these restric-
tions gradually (ideally one by one), starting from those that are less likely to be rejected.
The asymptotic standard errors reported below the just-identified estimates could provide
a good guide as to which over-identifying restrictions to impose first, second and so on.
Once your over-identifying restrictions are added successfully to the existing set of restric-
tions (including the just-identifying ones), you will be presented with a screen containing
initial values for all the long-run coefficients. These are the estimates obtained under the
previous set of restrictions. We recommend that you accept these initial estimates.’ If you

5You can, of course, edit these initial estimates if you experience difficulties with the convergence of the
iterative algorithm.
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now click to accept the initial values you will be presented with a small menu giving

you a choice of the ‘Back substitution algorithm (A) as in Microfit 4’, the ‘Back substitu-
tion algorithm (B) new to Microfit 5°, and the ‘Modified Newton-Raphson algorithm’. The
highlighting is always on the ‘Back substitution algorithm (B) new to Microfit 5’, which is
the one that we recommend. If you choose the modified Newton-Raphson algorithm’ you
will also be given a choice of a damping factor in the range [0.01 to 2.0]. We recommend
starting with the value of 0.01, unless you experience difficulties with getting the algorithm
to converge. Once you have chosen the algorithm, the program starts the computations and,
if the iterative process converges successfully, presents you with the ML estimates of the
long-run relations subject to the over-identifying restriction, together with their asymptotic
standard errors in round brackets. Microfit also generates log-likelihood ratio statistics for
testing the over-identifying restrictions, which are asymptotically distributed as x? variates
with degrees of freedom given by k — 72, where k is the total number of restrictions and 72
is the number of just-identifying restrictions (see Section 22.9.3). If you click 2, you will
be presented with a window asking whether you want bootstrapped critical values of overi-
dentifying restrictions on long-run relationships. You can choose the number of replications
and two different significance levels. If you click ... Microfit starts the computation and
presents you with an output window which reports the bootstrapped critical values of the
log-likelihood ratio statistics. If you click you return to the Impulse Response Analysis

::::::

and Forecasting Menu.

Option 1 computes and displays orthogonalized and generalized impulse responses of
variable-specific shocks on the different variables in the cointegrating VAR model, (possibly)
subject to over-identifying restrictions on the long-run coefficients. Once the results are ob-
tained, it is also possible to compute bootstrapped confidence intervals of impulse responses,
for any desired confidence level.

Option 2 computes and displays orthogonalized and generalized forecast error variance
decompositions for the cointegrating VAR model, (possibly) subject to restrictions on the
long-run relationships. You can then obtain bootstrapped confidence intervals for the error
variance decomposition at a given confidence level.

Option 3 computes and displays orthogonalized and generalized impulse responses of
the effect of variable-specific shocks on the r cointegrating relations.

Option 4 computes and displays the time profile of the effect of system-wide shocks
on the cointegrating relations, referred to as ‘persistence profiles’. Selecting options 3 or 4
allows you to obtain bootstrapped confidence intervals for persistence profiles, for a given
confidence level. The algorithms used to carry out the computations for options 3 and 4 are
set out in Section 22.9.5 and 22.9.6, where references to the literature can also be found.

Option 5 allows you to perform the multivariate Beveridge Nelson trend/cycle decom-
position (see Section 22.11).

Option 6 enables you to compute multivariate, multi-step ahead forecasts (of levels and
of first-differences) of y; conditional on values of x; and w;. The forecasts obtained using

"For a detailed account of the Back substitution algorithm (A) and of the Modified Newton-Raphson
algorithm see Section 22.9.2.



CHAPTER 7. MULTIPLE EQUATION OPTIONS 138

this option and those obtained using option 7 in the Cointegrating VAR Post Estimation
Menu will be identical under just-identifying restrictions on the cointegrating relations, and
differ only when there are over-identifying restrictions on 3 (see Section 7.4.4, and option 7
in Section 7.5.2). In the case of cointegrating VARX (option 3 from the System Estimation
Menu), you can choose between conditional and unconditional or ez ante forecasts, depending
on whether you wish to use the realized values of the exogenous variables or their forecast
values. For the conditional forecasts the values of the exogenous variables during the forecast
period are treated as known. The unconditional forecasts use forecasts of the exogenous
variables, obtained using the marginal model.

Option 7 displays the M L (or fixed) estimates of the cointegrating vectors again. This
option also allows you to obtain bootstrapped confidence intervals for M L estimates, for two
different significance levels.

Option 8 displays error correction equations for each of the jointly determined I(1)
variables in the model. These estimates are followed by diagnostic statistics and the other
options available after the OLS option. See section 6.6.

Option 9 saves error correction terms in the workspace.

Option 10 displays the degrees-of-freedom adjusted system covariance matrix of the
errors in the underlying VAR model, (7.11). The adjustments are made by dividing the
cross-product of residuals from different equations by n — s, where s is the total number
of coefficients estimated for each equation in the VAR. This adjustment does not take
account of the cross-equation restrictions on the long-run coefficients, II,, implicit in the
cointegrating restrictions. These estimates will be identical to those obtained using option
4 in the Cointegrating VAR Post Estimation Menu, if the cointegrating vectors, 3, are not
subject to over-identifying restrictions. See Section 7.5.2.

Option 11 allows you to save the estimated cointegrating VAR model as a CSV file.

7.5.5 Beveridge-Nelson Trend/Cycle Decomposition

Option 5 from the Impulse Response Analysis and Forecasting Menu allows you to com-
pute the multivariate Beveridge-Nelson trend /cycle decomposition (see Section 22.11). When
choosing this option you will be presented with a screen containing the names of the endoge-
nous and exogenous variables and the default initial values for the corresponding parameters
and t-ratios on the intercept and trend. If you click ~ ., you are then asked to select the

variable for which you wish to perform the trend/cycle decomposition.

7.5.6 Trend/Cycle Decomposition Results Menu

This menu appears on screen after you have performed a trend cycle decomposition, using
option 5 from the Impulse Response Analysis and Forecasting Menu. It contains the following
options



CHAPTER 7. MULTIPLE EQUATION OPTIONS 139

Move back

Display results again

Graph

Save the decomposition for all variables in a CSV file

Save the trend component for all variables in a CSV file

Save the stochastic component for all variables in a CSV file
Save the permanent component for all variables in a CSV file
Save the cyclical component for all variables in a CSV file
Save all the detrended variables in a CSV file

P NSOtk WO

Option 0 allows to move back to the Impulse Response Analysis and Forecasting Menu.

Options 1 and 2 enables to display results or to plot the various components.

Option 3 to 8 save the decomposition or some components of the Beveridge-Nelson
decomposition for all variables in a CSV file.

7.6 Cointegrating VARX option

Option 3 in the System Estimation Menu (Multivariate Menu: see Section 7.3) enables you
to estimate vector error correction models (VECM) with weakly exogenous I(1) variables.
When you choose this option you will be presented with the screen in Figure 7.2 (below),
which prompts you to list the jointly determined (endogenous) variables, followed by the
list of the exogenous variables, and the deterministic variables such as intercepts and trend
terms (if any). The division of variables into endogenous and exogenous is done using the
semicolon character (;) as a separator, and the deterministic variables are separated from
the rest by &.

Type in the start and the finish of your estimation period, and the order of the VAR
model which could differ between endogenous and exogenous variables (in both cases must
be smaller than 24) and then click Q. Microfit asks you to select the variables you wish
to restrict, and then presents you with the screen in Figure 7.3.

Here you are asked to specify the equations for the marginal models for your exogenous
variables. You need to list first the lag order of the endogenous variables, then the lag order
of exogenous variables, followed by the deterministic variables (if any). You must specify
one equation for each exogenous variable and separate the equation specifications using the
semicolon ().

Once you have completed the specification of the marginal models, click = Q. Microfit
carries out the necessary computations and produces an output window with the results on
cointegration tests. If you close this output window, you will be then presented with the
Cointegrating VAR Post Estimation Menu (see Section 7.5.2).

7.7 SURE options

There are six options in Microfit for estimation of Seemingly Unrelated Regression Equations
(SURFE) models. These options can be accessed from the System Estimation Menu (see
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Define the Conditional Model for VARX:

List the (1) variable(s) for cointegration analysis followed by deterministic
variable(s), if any. Separate the two sets of variables by &

The I(1) variables can be further divided into endogenous and exogenous
variables by separafing them by a ;.

COMMANDS AND DATA TRANSFORMATIONS

@

Save

&

Retrieve Clear | Font
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Find

Print.

B

Load Graph

Specific help

Figure 7.2: The System Estimation window with the VARX option

Section 7.3).

Option 4, 6 and 8 in this menu enable you to compute, respectively, maximum likelihood
(ML), two-stages least squares (25LS) and three-stages least squares (3SLS) estimates (see
Section 22.1 and 22.2) of the parameters of the following SURE model:

vir = Bixit + Ui, 1=1,2,....m (7.18)

where y;; is the i*" dependent variable in the model composed of an equation, x;; is the
k; x 1 vector of regressors in the ith equation, 3, is the k; x 1 vector of unknown coefficients
of the " equation, and wu; is the disturbance term. The disturbances (shocks) wu;, i =
1,2,...,m are assumed to be homoscedastic and serially uncorrelated, but are allowed to be
contemporaneously correlated (Cov (u;, uj;) = 05, need not be zero for i # j).

Options 5, 7 and 9 in the System Estimation Menu allow you to compute, respectively,
maximum likelihood, two-stages least squares and three-stages least squares estimates of
(7.18) when ;s are subject to the following general linear restrictions:

RA=b (7.19)

where R and b are r X k matrix and r x 1 vector of known constants, and 3 = (,8'1, 35, ..ﬂ’m)/
is a k x 1 vector of unknown coefficients, k = >, k;. When there are no cross-equation
restrictions, we have

R;3; = b; (7.20)
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Figure 7.3: Box editor for the specification of the marginal model

where R; and b; are the r; X k; and r; X 1 matrix vector of restrictions applicable only to
the coefficients of the ith equation in the model. See Section 22.3 for more details.

7.7.1 Unrestricted SURE options

These are options 4, 6 and 8 in the System Estimation Menu (see Section 7.3). When
you choose one of these options you will be presented with a box editor for specifying the
equations in the SURFE model. You should list the endogenous variable, y;;, followed by its
regressors, X;, for each equation, separating the different equations by a semicolon (;). The
program then automatically works out the number of equations in the SU RE model, namely
m (m < 10). A simple example, of a SUREFE specification is

W1 INPT WI1(-1) LP1 LP2 LP3 LRY;
W2 INPT W2(-1) LP1 LP2 LP3 LRY

where INPT is an intercept term, W1 and W2 could be budget shares of two different
commodity groups, LP1, LP2 and LP3, the logarithm of price indices and LRY, the loga-
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rithm of real income. It is also possible to estimate restricted VAR models using the SURE
option. For example, suppose you wish to estimate the following restricted VAR(4) model:

4
T =a1+ g bijr1i—5 + c11x24-1 +di1x34-1 + Uy
=1
4
Tor = az + g bajTat—j + c2171,4—1 + d2173,4—1 + U2y
Jj=1
4
T3¢ = agz + § b3jr3i—j + 317141 + d31T2,4—1 + U3y
Jj=1

then you need to specify the SURFE model as

X1 INPT X1{1-4} X2(-1) X3(-1);
X2 INPT X2{1-4} XI1(-1) X3(-1);
X3 INPT X3{1-4} X1(-1) X2(-1)

For specification of VAR models with linear non-homogeneous and/or cross-equation para-
metric restrictions you need to use the restricted SURE option (see Section 7.7.2).

Once the unrestricted SURFE model is successfully specified you will be prompted to
specify the period over which you wish to estimate the model. Microfit then starts to com-
pute ML, 25LS or 3SLS estimators of the parameters (depending on whether you selected
option 4, 6 or 8 from the System Estimation Menu) and, when successful, presents you with
the SURFE Post Estimation Menu (see Section 7.7.3). Maximum likelihood estimates are
computed using the back-substitution algorithm described in Section 22.1.1.

7.7.2 Restricted SURE options

These are options 5, 7 and 9 in the System Estimation Menu (see Section 7.3). When you
select one of these options you will be first presented with a box editor to specify the equations
in the SURFE model (see Section 7.7.1 on how to specify the SURFE model). When you have
done this you will be presented with another box editor for you to specify coefficients of the
SURFE model. These restrictions must be linear, but can include cross-equation restrictions.
For example, suppose you are interested in estimating the following system of equations

Yit = o + B; Xt + v; Wit + ui

for i = 1,2,...,4, and t = 1,2,...,n, assuming the homogeneity of the slope coefficients,
namely 3, = 8, and v, = 7, for ¢ = 1,2,...,4. In the first box editor that appears on the
screen (after you choose the restricted SURE option) type

Y1 INPT X1 WI;
Y2 INPT X2 W2
Y3 INPT X3 W3,
Y4 INPT X4 W4
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In the second box editor that appears on the screen type the restrictions

A2=B2; B2=(C2; (C2=D2;
A3=B3; B3=(C3;, (C3=D3

Note that Microfit assigns the coefficients A1, A2, and A3 to the parameters of the first
equation, B1, B2, and B3 to the parameters of the second equation, C'1, C2 and C3 to the
parameters of the third equation, and so on. Therefore,

o :A]-a Bl :A27 71 :A37

and so on.

Once the restrictions are specified successfully you will be asked to specify the period
over which you wish to estimate the model. When this is done, Microfit starts the task of
computing ML, 25LS or 3SLS estimators (depending on whether you selected option 5, 6
or 9 from the System Estimation Menu) of the parameters of the SU RE model subject to the
restrictions. You will be then presented with the SURE Post Estimation Menu, with options
for displaying the estimates and their standard errors, carrying out tests on the parameters
of the model and computing multivariate forecasts. The technical details and the relevant
formulae are given in Section 22.3.

7.7.3 SURE Post Estimation Menu

This menu appears on the screen after a SURFE model or a restricted SURFE model is
successfully estimated either by maximum likelihood, two-stages least squares, or three-
stages least squares (see Sections 7.7.1 and 7.7.2). It contains the following options

Move back to System Estimation Menu

Edit the model and estimate

Display individual equation estimation results

Display system covariance matrix of errors

Wald tests of hypotheses on the parameters of the model
Estimate/test functions of parameters of the model
Compute multivariate dynamic forecasts

OO N O

Option 0 returns you to the System Estimation Menu (see Section 7.3).

Option 1 allows you to edit the equations in the SURE model and estimate the revised
model.

Option 2 enables you to see the ML estimates of the coefficients of the equations in
the SURFE model. When you choose this option you will be asked to select the equation
in the model that you wish to inspect. You will then be presented with estimation results
together with a number of summary statistics, including the values of the AIC and SBC for
the SURE model. (See Sections 22.1 and 22.3 for computational details). If you press the
Esc key you will then be presented with the Post Regression Menu, with a number of options
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including plotting/listing/saving residuals, fitted values, and displaying the estimates of the
covariance matrix of the coefficients of the chosen equation. See the OLS option in Section
6.6 for further details. Notice, however, that if you wish to test restrictions on the coefficients
of the SURFE model, or estimate known functions of the parameters, or compute dynamic
forecasts, you need to use options 4 to 6.

Option 3 displays the estimates of the variance matrix of the error, namely f], given by
(22.31) and (22.32).

Option 4 enables you to compute Wald statistics for testing the general linear /non-linear
restrictions

Hy: h(B)=0

against
Hy: h(B)#0

where 8 = (81, 35, ..., ﬁ;n),, and h(-) is a known r x 1 vector function with continuous partial
derivatives. See Section 22.2.1.

Option 5 allows you to compute estimates of known (possibly) non-linear functions of
the coefficients, 8 = ( ’1,,8’2,...,,8’m)/.

Option 6 enables you to compute multivariate forecasts of the dependent (left-hand-side)
variables in the SURFE model. When the regressors include lagged values of the dependent
variables, the program computes multivariate dynamic forecasts. When you choose this
option you will be asked to specify the forecast period, and then to choose the variable you
wish to forecast. For each variable that you choose you will be given a choice of forecasting
the levels of the variables or their first-differences. Microfit then computes the forecasts and
presents you with the Multivariate Forecast Menu 7.4.4.



Chapter 8

Volatility Modelling Options

8.1 Introduction

This chapter describes how Microfit can be used to estimate univariate and multivariate con-
ditionally heteroscedastic models. In the following, we briefly review a variety of univariate
and multivariate models with time-varying conditional variance that can be estimated using
the volatility modelling options in Microfit. More technical details on the econometric meth-
ods and computational algorithms used are given in Chapter 23, where further references to
the literature can also be found.

Volatility of a series (say asset returns, r;) is generally measured by its conditional vari-
ance, and is denoted by

hf =Var(ry|Fi-1)-

Volatility can arise due to a number of factors: over-reaction to news, incomplete learning,
parameter variations and abrupt switches in policy regimes.

In the case of asset returns, volatility can be estimated either from option prices (when
they are available) or from historical observations. The former is referred to as the Implied
Volatility (V) approach and is subject to a number of shortcoming: it depends on the
particular option pricing model used; most option pricing models assume that volatility is
constant, which is not true; the horizon of the I'V is fixed (say 3 months) while the risk
manager is often interested in shorter horizons; the number of assets with option prices
is not sufficiently comprehensive for most risk management tasks. Measures of volatility
based on historical data are broadly known as ‘realized volatility’ typically using intra-
daily observations. Econometric approaches to volatility usually focus on daily observations.
Measures of realized volatility are also used in evaluation of econometric models of volatility.

Forecasts of volatility are used in risk management, option pricing and asset portfolio
decisions. Most of these applications involve multivariate volatility models. We begin with
univariate models of asset return volatility.

145
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8.2 Historical approaches to volatility measurement

8.2.1 RiskMetrics’” (JP Morgan) method

RiskMetrics uses an exponentially weighted moving average model. Let
2 =Ty —T,

The historical volatility of z; conditional on observations available at time ¢ — 1 is computed
as

B - NN 1)
=0
where A is known as decay factor (or 1 — A the decay rate). The weights
wr=1=XMX\", 7=0,1,2,...
add up to unity, and h? can be computed recursively
hi = by + (1= Nz

which is a special version of the GARCH(1,1) model to be discussed below.
Model (8.1) requires the initialization of the process. For a finite observation window,
denoted by H, a more appropriate specification is

H

2 _ 2

hH,t_E WHT2t—1—1
=0

where
(I =X)A\T

WHr = W, T=01,...,H (8.2)

are weights that add up to unity.
Other weighting schemes have also been considered; in particular the equal weighted

specification

1 &,

h? =77 .1 Zt—1—1>
H+1 =
where wy, = 1/(1 + H), which is a simple moving average specification.

The value chosen for the decay factor, A, and the size of the observation window, H, are
related. For example, for A = 0.9, even if a relatively large value is chosen for H, due to the
exponentially declining weights attached to past observations only around 110 observations
are effectively used in the computation of h?.
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8.2.2 Econometric approaches

Consider the regression model
re=B'%-1+e =By + Bix1-1 + &

and assume that all the classical assumptions are valid except that V (e;|F;—1) is not con-
stant, but varies over time. In the case of daily asset returns, 3; = 0. One possible
model capturing such variations over time is the Autoregressive Conditional Heteroscedas-
ticity (FARCH) model first proposed by Engle (1982). Other related models where the
conditional variance of €; is used as one of the regressors explaining the conditional mean
of 3; have also been suggested in the literature and are known as GARC H-in-Mean and
GARCH-in-Mean (or GARCH-M, for short) models. (See, for example, Engle, Lillien, and
Robins (1987)). For a useful survey of the literature on GARC H modelling see Bollerslev,
Chou, and Kroner (1992). Shephard (2005) provides selected readings of the literature.

8.3 Univariate GARCH models

The basic econometric model underlying volatility modelling options is the Generalized Au-
toregressive Conditional Heteroscedastic (GARCH) model proposed by Engle (1982) and
Bollerslev (1986). This model assumes that

yr = B'%s 4 uy (8.3)
q p
Vi(ue|Q 1) =hi =0+ aui ;+> ¢hi i+ 8w (8.4)
=1 i=1

where ht2 is the conditional variance of u; with respect to the information set £2;_1, and wy
is a vector of predetermined variables assumed to influence the conditional error variances in
addition to the past squared errors. In what follows we refer to > ¢_; cyu? , and > b_, ¢;h? ,
in (8.4) as the M A and the AR parts of the GARCH (p,q), respectively. The GARCH
model of Bollerslev, or GARCH (p, q) for short is a special case of (8.4) where § = 0.

Microfit allows to estimate a number of variants of the GARCH model, such as the
GARCH in mean, the absolute GARCH and the exponential GARCH models.

In the GARCH (p, q)-in-mean specification (for short, GARCH (p, q)-M) the conditional
error variance is used as one of the regressors explaining the conditional mean of ¥,

yr = B'x; + vh? + g (8.5)

where the conditional error variance h? = V (u; |Q_1) is defined by (8.4).
In the absolute GARCH (p, q) model the conditional standard error of the disturbances
ug in (8.3) are specified by

q p
he =/ V (ug|Q-1) = ao + Z o |ug—g| + Z bihi—i +'wy (8.6)

i=1 =1
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A variant of the GARCH (p, q)-M is the absolute value GARC H-in-Mean model (or AGARCH (p, q)-
M for short), defined by (8.5) and (8.6). This model has been introduced into the literature
by Heutschel (1991).
According to the exponential GARCH (p, q) model (EGARCH (p, q) for short) the loga-
rithm of the conditional variance of the errors in (8.3) has the following specification:

)

P
+ Z ¢;log h?_, + &'wy (8.7)
i=1

q

q . .
log hf = oap+ Zozi (Ztl> + Zozj (’Ztl
= t—i t—i

=1

where y = E( ) The value of i depends on the density function assumed for the

Ut
hi
standardized disturbances, ¢, = u;/hy. This model, which is due to Nelson (1991), allows for
the possible asymmetric effects of past errors on the conditional error variances.

A variant of the above model is the EGARCH (p, q)-in-mean model, given by (8.5) and
(8.7).

See Section 23.1 for further details on the above models and the relevant algorithms.

8.4 Multivariate GARCH models

The literature on multivariate volatility modelling is large and expanding. Bauwens, Lau-
rent, and Rombouts (2006) provide a recent review. A general class of such models is the
multivariate generalized autoregressive conditional heteroscedastic (MGARCH) specification
(Engle and Kroner (1995)). However, the number of unknown parameters of the unrestricted
MGARCH model rises exponentially with m, and its estimation will not be possible even
for a modest number of assets. The diagonal-VEC version of the MGARCH model is more
parsimonious, but still contains too many parameters in most applications. To deal with the
curse of dimensionality the dynamic conditional correlations (DCC') model is proposed by
Engle (2002), which generalizes an earlier specification by Bollerslev (1990) by allowing for
time variations in the correlation matrix. This is achieved parsimoniously by separating the
specification of the conditional volatilities from that of the conditional correlations. The lat-
ter are then modelled in terms of a small number of unknown parameters, which avoids the
curse of the dimensionality. With Gaussian standardized innovations; Engle (2002) shows
that the log-likelihood function of the DC'C model can be maximized using a two-step pro-
cedure. In the first step, m univariate GARCH models are estimated separately. In the
second step using standardized residuals, computed from the estimated volatilities from the
first stage, the parameters of the conditional correlations are then estimated. The two-step
procedure can then be iterated, if desired, for full maximum likelihood estimation.

DCC is an attractive estimation procedure which is reasonably flexible in modelling
individual volatilities, and can be applied to portfolios with a large number of assets. How-
ever, in most applications in finance the Gaussian assumption that underlies the two-step
procedure is likely to be violated. To capture the fat-tailed nature of the distribution of
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asset returns, it is more appropriate if the DCC model is combined with a multivariate
t-distribution, particularly for risk analysis where the tail properties of return distributions
are of primary concern. But Engle’s two-step procedure will no longer be applicable to such
a t-DCC' specification, and a simultaneous approach to the estimation of the parameters
of the model, including the degree-of-freedom parameter of the multivariate t-distribution,
would be needed. Pesaran and Pesaran (2007) (PP) develop such an estimation procedure
and propose the use of devolatized returns computed as returns standardized by realized
volatilities rather than by GARC H-type volatility estimates.

Microfit 5 allows you to estimate Engle’s DCC and PP’s t-DCC' specifications for a
relatively large number of asset returns. For an empirical application to risk management
see Pesaran, Schleicherc, and Zaffaroni (2009).

8.4.1 DCC and t-DCC Multivariate Volatility Models

Let ry be an m x 1 vector of asset returns at close day ¢ assumed to have mean p;_; and the
non-singular variance-covariance matrix X;_1, which we decompose as follows (see Bollerslev
(1990) and Engle (2002)):

31 =Dy 1Ri1Dy

where
01,t—1 0 0
0 09—
D, | = 21 (8.8)
0
0 0 Um,t—l
[ 1 P12t—1 P13,t—1 T Pim,t—1 |
P21,t-1 1 P23.t—1 T Pom,t—1
R 1 = : : (8.9)
: pm—l,m,t—l
| Pmil,t—1 T T Pmm—1t—1 1 ]

In (8.8)-(8.9), 07,_; is the conditional volatility defined by
O'zz,tfl =V (ri | —1)
and p;;;_, are the conditional pair-wise return correlations

Cov (rig, 1t | Q1)

Oit—104t—1

Pijt—1 =

where €);_; is the information set available at close of day ¢t — 1. Clearly, p;;,_1 = 1, for
i=j.

The MGARCH option in Microfit allows joint estimation, by maximum likelihood, of the
following system of dynamic equations, known in the literature as the dynamic conditional
correlation (DCC') model (Engle (2002)):

Uzz,tfl =52 (1 — A — )\Qi) + )\11'0'127t72 + /\Qithfl, 1=1,....m (8.10)

7
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- Qijt—1 .,
Piju (0) = —2L__izj=1,.,m (8.11)
v/ i t—1955,t—1

In (8.10), 612 is the unconditional variance of the 7th asset return, and Aq;, Ag; for i = 1, ..., m,
are unknown parameters. In (8.11), g;j¢—1 is

Gijt—1 = Py (1 — 01— 62) + 61qij,t—2 + Oafit—1751—1 (8.12)

where p;. is the unconditional pairwise correlation between r;; and r;; 01,09 are unknown
) Jt» )

parameters; and 7;;_; are standardized returns. Microfit offers two alternative ways of

standardizing returns:

1. Exponentially weighted returns 7;; (Engle (2002)):

Tit

Tit = 8.13
! Oit—1 ( )
with Uit_l given by (8.10).
2. Devolatilized returns (Pesaran and Pesaran (2007)):
- it
Tit = —5—— (8.14)
73, (p)

with 62 (p) =

Further details on the estimation of dynamic conditional correlations models are provided
in Section 23.2. See also Engle (2002), Pesaran and Pesaran (2007), and Pesaran, Schleicherc,
and Zaffaroni (2009).

8.5 Volatility Modelling Menu

The Volatility Modelling Menu contains the following options

1.  Univariate GARCH
2. Multivariate GARCH applied to a set of regressors
3. Multivariate GARCH applied to OLS residuals

Option 1 allows you to estimate a variety of conditionally heteroscedastic models, such
as GARCH, GARCH, exponential GARCH, absolute GARCH, GARCH in mean models
both for normally and Student’s ¢-distributed errors. See Section 8.6.

Option 2 enables you to estimate dynamic conditional correlation models for a set of
variables which could follow a multivariate normal or a Student’s ¢-distribution. See Section
8.7.

Option 3 enables you to estimate dynamic conditional correlation models on OLS resid-
uals, after having controlled for a set of regressors. See Sections 21.6 and 8.7.
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8.6 Univariate GARCH Estimation Menu

The Univariate GARCH Estimation Menu enables you to estimate a variety of univariate
conditional heteroscedastic models. When you click on option 1 you will be presented with
the following options:

Move to Backtracking Menu

GARCH, Auto-Regressive Conditional Heteroscedasticity
GARCH-M, GARCH in Mean

AGARCH, Absolute value GARCH

AGARCH-M, Absolute value GARCH in Mean
EGARCH, Exponential GARCH

EGARCH-M Exponential GARCH in Mean

OGN O

Option 0 takes you back to the Commands and Data Transformations box.

Option 1 allows you to estimate the GARC H model (8.3)-(8.4). The variables x; and
w; must be in Microfit’s workspace and can include lagged values of y;.

Option 2 enables you to compute M L estimates of the GARC H (p, q)-in-mean model.

Option 3 allows you to compute M L estimates of the absolute value GARCH (p, q)

Option 4 enables you to estimate the absolute value GARC H-in-Mean model.

Option 5 allows you to compute M L estimates of the exponential GARC H (p, ¢) model.

Option 6 enables you to estimate the EGARCH (p, q)-in-Mean model given by (8.5)
and (8.7).

8.6.1 Specification of the GARCH, AGARCH and EGARCH models

When you choose any one of the six estimation options in GARC H-M Estimation Menu you
will be presented with the following sub-menu

0. Return to GARCH Estimation Menu
1. Estimate assuming a normal distribution for conditional errors
2. Estimate assuming a t-distribution for conditional errors

which gives a choice between a conditional normal density and a conditional standardized
Student-¢ distribution for the disturbances.! Once you select one of these two conditional
distributions you will be asked to specify the orders of the GARCH (p, q) in the box editor
that appears on the screen. You need to type the non-zero lags in the AR and the M A parts
of the GARC'H specification, respectively.

Separate the two sets of numbers by ;. Each set of numbers should be in ascending order.

' The use of Student-t distribution for the standardized errors, €; = us/h¢, has been suggested by Bollerslev
(1987).
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A set can contain only a single 0. Examples:

To specify an GARCH (1) type 0 ; 1 0
To specify a GARCH (2,1) type 1 2 ; 1 0
To specify a restricted GARCH (4) type 0 ; 4 Q

To specify OLS/M L estimation type 0 ; 0 Q

Notice that the same rules apply when you specify AGARCH and FGARCH classes of
model.

Having specified the orders of your GARC H model the program asks you to specify the
list of the variables w; (if any), to be added to the specification of the conditional variance
equations (see (8.4), (8.6) and (8.7)). If you do not wish to include any other variables in
the equation for the conditional variances simply click the R(u) button to move to the next
stage of the program, where you will be asked to supply initial estimates for the parameters

of the GARCH-M models.

8.6.2 Specification of the initial parameter values for GARCH, AGARCH
and EGARCH models

Once you have completed the specification of your conditional heteroscedastic model you
will be asked to supply initial estimates for the parameters of your model. Type your choice
and click the 5"3 button. An appropriate choice for the initial estimates is often critical
for a successful convergence of the numerical algorithm used to compute the M L estimates.
This is particularly important in the case of generalized ARC H models with a non-zero AR
component. The following points are worth bearing in mind.

1. The algorithm often fails to converge if you try to estimate a GARCH model when
there is in fact no statistically significant evidence of an ARCH effect in the data.
After running an OLS regression to check for the presence of an ARC H effect in your
regression, use option 2 in the Hypothesis Testing Menu (see Section 6.23).

2. It is often advisable not to choose initial values that are on the boundary of the feasible
set. For example, in the case of the GARCH specification (8.4), the values of «; and
¢; should be such that Y7 ; a; +> 7 | ¢, is not too close to unity. It is important that
positive non-zero values are chosen for these parameters.

3. Make sure that the residuals in the underlying regression model are not serially cor-
related. Presence of significant residual serial correlation can create problems for the
ML estimation of the GARCH model.

4. The algorithm may fail to converge if the observations on the dependent variable are
very small. Scale up these observations and re-estimate the GARC H model.
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8.6.3 Estimation results for the GARCH-M options

The estimation results for the GARCH-M options are summarized in a table. The top
half gives the M L estimates of the regression coefficients, 3, and the estimate of v (when a
GARC H-in-Mean model is estimated), their estimated asymptotic standard errors, t-ratios,
as well as a number of summary statistics, and model selection criteria. The bottom of the
table gives the M L estimates of the parameters of the conditional variance model together
with their asymptotic standard errors.

After the estimation results you will be presented with the Post Regression Menu, with
a number of options described in detail in Section 6.20. In particular, you can plot/save
estimates of the conditional standard errors, ﬁt, and save their forecasts, if any. (To compute
forecasts of h; you need to choose options 8 or 9 in the Post Regression Menu.) You can
also plot the histogram of the standardized (or scaled) residuals, & = 4./ hy. To access these
options select option 3 in the Post Regression Menu after the GARC H estimation results.

8.7 Multivariate GARCH Menu

Option 2 and 3 in the Volatility Modelling Menu allow you to estimate dynamic conditional
correlation (DCC') models on a set of variables or regression residuals. If you choose option
2, in the screen editor you need to list the variables that you wish to include in your DCC
model; if you select option 3 you should list the dependent variable followed by its regressors
for each equation, separating the different equations by a semicolon (;).

After you specify your model (using either option 2 or 3 in the Volatility Modelling
Menu), you will be presented with the screen shown in Figure 8.1.

The Multivariate GARC H window is divided into two panels. The left panel allows you
to set a number of characteristics in your multivariate GARC H model. In particular:

- In the ‘Decay Factor for the Variance’ field you can impose the parameters Aj; and Ag;
in (8.10) to be the same for all assets, that is A\j; = A; and Ag; = Ao for i = 1,...,m.
Further, you can impose the restriction that Ai; + A9; = 1; that is that conditional
volatilities are non-mean reverting. See Section 23.2 for further details.

- In the ‘Decay Factor for the Covariance’ field you can impose the restriction on (8.11)
that §; 4+ d2 = 1; that is, that conditional correlations are non-mean reverting in the
case of all the assets.

- In the ‘Distributional assumption’ field, you can choose either the multivariate normal
distribution or the multivariate Student’s t-distribution for conditional returns r;. If
you choose t-distributed returns, a new parameter, the number of degrees of freedom
of the t-distribution (df), appears among the parameters to be estimated.

- In the ‘Standardized returns’ field you can decide the way you standardize your returns,
using the exponentially weighted returns given by (8.13), or the devolatilized returns
given by (8.14). For devolatilized returns you need to choose the lag-order, p, to
compute the realized volatilities in the ‘Rolling volatility window’ field. Note that
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Figure 8.1: The Multivariate GARCH window

p should be smaller or equal to the number of observations used for inizialization of
estimation.

- In the field ‘Observations used to initialized’ you need to set the number of observations,
Ty, used for the initialization of recursions in (8.10) and (8.11).

- In the ‘Estimation options’ you may restrict some or all parameters at their initial
values. See Section 23.2.1.

- At the bottom of the Multivariate GARC H window you can choose to estimate the
DCC model using a single, expanding or rolling window of observations. The option
‘Single window estimation’ employs all available observations in the maximum likeli-
hood estimation. The option ‘Expanding window estimation’ uses an expanding set of
observations. If you choose this option, you need to specify the observation from which
you wish to start expanding the estimation. The ‘Rolling window estimation’ option
estimates the model over successive rolling samples of a fixed length to be specified.
You can choose the size of the rolling window in the field below this option. Note that
the number of observations you specify for the expanding or rolling sample must be
greater than 20 times the number of parameters to be estimated, and smaller than
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the total number of observations used for estimation.

The left panel in the MGARCH window contains the names of the parameters to be
estimated and their initial values. You can change these initial settings by moving the cursor
to the desired position and by typing your own choice of the initial estimate. These initial
parameter values can be readily changed if the estimation method fails to converge.

8.7.1 Estimation results for the MGARCH

The estimation results for the multivariate GARC H options 2 and 3 are set out in a window
which consists of two parts. The top part gives the ML estimates of the volatility decay
parameters A1, Ag, the correlation decay parameters §; and §o, and, if the multivariate t¢-
distribution is selected, the degrees of freedom (df) of the ¢-distribution, together with their
standard errors and the associated t-ratios.

The bottom part of the result window gives a table which has on the diagonal the
unconditional variances of asset returns, computed over the initialization plus estimation
sample (see Section 23.2.1). Namely, for the ith asset

where T is the sample size of the initialization and estimation sample. The off-diagonal
elements are the unconditional correlations, estimated as

T
Zt:l TitTjt

Pij = T T
D=1 Tt Zt:lrjt

8.8 Multivariate GARCH Post Estimation Menu

This menu appears on the screen after the estimation results for the DC'C model, using either
option 2 or 3 in the Volatility Modelling Menu. The Multivariate GARCH Post estimation
Menu contains the following options

Re-specify MGARC H model and estimate or Quit

Display estimation results again

List/Plot/Save estimated conditional volatilities, correlations and eigenvalues
Wald test for linear/non-linear restrictions

Estimate/test functions of parameters of the model

Test the validity of the MGARCH model (VaR diagnostics)

Calculate the Value at Risk (VaR) of a portfolio

Compute forecasts of conditional volatilities and correlations

ootk oo

Option 0 returns you to the Multivariate GARC H window where you can re-specify
your model (see Section 8.7).
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Option 1 enables you to see the ML estimation of the MGARCH model again (see
Section 8.7.1).

Option 2 allows you to to list/plot/save the estimated conditional volatilities and cor-
relations and the eigenvalues of covariance and correlation matrices.

Option 3 enables you to carry out Wald tests for linear and non-linear restrictions on
the coefficients. For the relevant formulae see Section 21.25.

Option 4 allows you to estimate linear and non-linear functions of the coefficients. For
the relevant formulae see Section 21.24.

Option 5 allows you to test the validity of the DC'C model using a set of diagnostics
based on the VaR and on the Probability integral transforms. See Section 23.2.3.

Option 6 enables you to compute the Value at Risk (VaR) of a portfolio. See Section
23.2.3.

Option 7 computes forecasts of conditional volatilities and correlations. Using this
option, you can list or plot forecasts, or save them in a special Microfit file for later use. See
Section 23.2.4.

8.8.1 Testing the Validity of Multivariate GARCH Menu

This menu appears if you choose option 5 from the Multivariate GARCH Post Estimation
Menu and contains the following options

0. Quit
1. Tests based on Probability Integral Transforms
2. Testing for VaR Exceptions

Option 0 returns you to the MGARC H Post estimation Menu.

Option 1 allows you to compute the LM test and the K.S test of randomness of the
probability integral transforms, and to plot or save the histogram of the probability integral
transforms. Under a correct specification of the DCC model, these should reproduce the
density of a uniform random variable (see Section 23.2.3 for further details).

Option 2 enables you to list, plot and save the VaR for a given tolerance level, over the
evaluations period. This option also allows you to compute the mean VaR violations and
associated diagnostic test statistics (see Section 23.2.3 for further details).

8.8.2 Compute the VaR of a portfolio

When you select option 6 from the Multivariate GARC H Post Estimation Menu you will be
presented with the screen reported in Figure 8.2. The VaR calculator allows you to compute
the one-step ahead Value at Risk of a portfolio of your own choice for a given probability
level and to compute its probability level for a given VaR.

On the left panel of the screen you can choose the allocation of the assets in your portfolio,
as well as the return for each asset. On the right part of the screen you can choose whether
asset returns are expressed in percentage or in points, by checking the appropriate checkbox.
On the bottom of the screen you can decide whether in the computation of the VaR you want
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to use the one-step ahead forecasts of variances and covariances or the estimated variances

and covariances.

. Value at Risk Calculator x|
Asset Asset Retumn Allocation
Al 0.0000 16,6867 1= Asset Retuns in Percentages
EP 0.0000 1E.BEET
[m] 0.0000 16.6667 {0 Asset Retuns in Points [not multiplied by 100)
CH 0.0000 16.6EET
EU 0.0000 16.6EET
JY 0.0000 16,6667
¥ For a given probability calculate the VaR
' For a given VaR caleulate the probahility
Probability 0.071
Walue atRisk
X
calculate Close Help
I I”|
1% Use 1-step shead forecasts of Wariances and Covariances
7 Use estimated Variances and Covariances

Figure 8.2: Compute the VaR of a portfolio
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Chapter 9

Lessons in Data Management

The tutorial lessons in this chapter demonstrate the input/output features of Microfit. We
start these lessons with an example of how to read ASCII (text) data files, using the data
file UKSTOCK.DAT. This file contains the monthly observations on a number of financial
series for the UK economy. It is assumed that you have already gone through the steps set
out in Chapter 2, that Microfit 5.0 is properly installed on your system and that the various
tutorial data files are on your hard-disk. To open a data file from the tutorial directory,
choose ‘Open file from tutorial data files’ from the file Menu.

9.1 Lesson 9.1: Reading in the raw data file UKSTOCK.DAT

Load Microfit 5.0, and choose ‘Open file from tutorial data files’ from the file Menu. This
displays the Open file dialogue with a list of files on the left.

Initially, we suggest that you try to load into Microfit the data file UKSTOCK.DAT
which is in ASCII format. This file contains seven economic time series for the UK economy
organized by observations over the period 1970M1-1995M 5, where M denotes that the data
are monthly and the integers 1,2, ...,12 denote the months starting with January = 1. All
variables refer to the last trading day of the month. The seven variables are arranged in the
file in the following order:

Financial Times 500 Composite Share Index

FT30 Dividend Yield

Money Supply (MO)

Three Month Treasury Bill Rate (end of period)

Average Gross Redemption Yield on 20-year Government Securities
Exchange rate: US $ to 1 Pound Sterling (Spot Rate)

Retail (Consumer) Price Index

NN S e

To load (read) the data, choose .DAT data files from the List file of type box, then
double click on the file UKSTOCK.DAT. You should now see the New dataset dialogue on
the screen.

159
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For frequency of the data choose monthly. For the sample period choose the start year
and month as 70 and 1, and then the end year and month as 95 and 5. Choose to organize
your data by observation, make sure the Free format radio button is selected, then click

DKMicroﬁt assigns the variable names X1, X2, X3, X4, X5, X6, and X7 to your variables
by default. To change these variables, move to each cell of the table in turn and type in the
variable names

uk ftide ukftdy ukm0 uk3tbr uk20yr ukexch ukcpi

and then click & .

If the data are read unsuccessfully, you will see an error message. Read Section 3.2
carefully, and start the lesson again!

After the raw data file is read in successfully it is good practice to first inspect the data
in the Data window to ensure that they have been read in correctly. To check the data click
the @ option. You should see the list of monthly observations on all the seven variables
on the screen. You can use the scroll bars, and the PgUp, PgDn, Ctrl+Home keys to move
around the list.

To save the data in the workspace in binary format for subsequent use with Microfit, you
need to select the ‘Save as’ option from the File Menu (see Lesson 9.2).

9.2 Lesson 9.2: Saving your current dataset as a special M-
crofit file

Once you have satisfied yourself that the raw data file is read in correctly, you may wish
to save it as a special Microfit file for use in subsequent sessions. Special Microfit files are
saved as binary files and allow you rapid access to your data without any need to supply the
details of your data every time you wish to use them with Microfit.

To save your current dataset in a special Microfit file choose ‘Save as’ from the File
Menu (see Section 3.5). This takes you to the Save as dialogue. Make sure ‘Microfit data
files’ is selected in the List files of type box, enter the filename UKSTOCK.FIT, and click

. Since the file UKSTOCK.FIT already exists, you will be asked if you want to replace

it. Choose No to return to the Save as dialogue (but to overwrite the file UKSTOCK.FIT
choose Yes).

9.3 Lesson 9.3: Reading in the special Microfit file UKSTOCK.FIT

The file UKSTOCK.FIT is the special Microfit file corresponding to the raw data file UK-
STOCK.DAT. To read UKSTOCK.FIT you need to choose ‘Open file from tutorial data
files’ from the File Menu and choose UKSTOCK.FIT by double clicking on it (see Section
3.2). The program starts reading the data from the file, and assuming that the data have
been read in successfully, it displays the Process window (see Chapter 4).
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9.4 Lesson 9.4: Combining two special Microfit files contain-
ing different variables

Suppose you wish to add the variables in Microfit file UKSTOCK.FIT to the variables in
the special Microfit file USSTOCK.FIT. First read in the file UKSTOCK.FIT (see Lesson
9.3). Once this is done successfully, choose ‘Add a special Microfit file to workspace’ from
the File Menu and when the Open file dialogue appears select USSTOCK.FIT. If the two
files are combined successfully, a message confirming this is displayed.

Click < to return to the Process window. To make sure that the variables in
USSTOCK.FIT (USLGR, USCPI,USM1,US3TBR, USSIDX, and USDY') are cor-
rectly added to the current variables (namely the variables in UKSTOCK.FIT), click the

Q button to display the list of variables. There should be 13 variables: seven from UK-

STOCK.FIT and six from USSTOCK.FIT on your workspace. Use the ‘Save as’ option to
save the combined dataset under a different filename before proceeding further.

9.5 Lesson 9.5: Combining two special Microfit files contain-
ing the same variables

One of the tutorial files, the special Microfit file EJCON1.FIT, contains annual observations
(1948-1981) on the following eight variables':

AB  Personal bond holdings

AM  Net liquid assets net of house loans
AS  Personal share holdings

BP Bond prices

C Real consumption expenditures
PC  Nominal consumption expenditures
SP  Share prices

Y Real disposable income

Suppose you wish to update and extend this dataset with observations on the same variables
over the period 1970 to 1985, saved in the Special Microfit file EJCON2.FIT.

Select the option ‘Add 2 special Microfit files’ from the File Menu. First choose the
file EJCONLFIT, click =+, and then choose EJCON2.FIT from the Open dialogue. The
program augments the data contained in EJCON1.FIT using the new and additional obser-
vations from the file EJCON2.FIT in the manner described in Section 3.3.1. To inspect the
combined dataset click the Q button. The dataset displayed on the screen should now
contain observations on the eight variables C, PC, Y, AS, AB, AM, SP, and BP over the
extended period from 1948 to 1985, inclusive. Notice also that observations for the period
1970 to 1981 contained in the file EJCON1.FIT are now overwritten by the corresponding

'For a description and sources of this dataset see Pesaran and Evans (1984) and the manual of Microfit
3.0.
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observations in the file EJCON2.FIT. To save this revised and extended dataset in a special
Microfit file, see Lesson 9.2. We have already saved this dataset in the file EJCON.FIT and
this file should be in the tutorial directory or on your Microfit disks.

9.6 Lesson 9.6: Extending the sample period of a special Mzi-
crofit file

By combining two files you can extend the sample period of an existing special Microfit file.
Suppose you wish to extend the period of the dataset UKSTOCK.FIT from 1970(1)-1995(5)
to 1965(1)-1996(12). First start with a new dataset choosing ‘Input data from the keyboard’
from the File Menu (see Section 3.2). Choose the monthly data frequency, and enter the
start year and month as 1965 and 1, and the end year and month as 1996 and 12. Save your
file as a special Microfit file with a name of your choice. Choose ‘Add a special Microfit file
to workspace’ from the File Menu and find the file UKSTOCK.FIT. Click =« . Back in

the Process window, click the € button. You should now see the observations on the

variables, UK FTIDX, UKFTDD{}, UKMO0, UK3TBR, UK20YR, UKEXCH, UKCPI
in your workspace, now extended over the period 1965(1) to 1996(12). The values of all these
variables over the periods 1965(1) to 1969(12) and 1995(6) to 1996(12) will be set to blank.
You can replace some or all missing values by clicking on the relevant cells and typing in
new values, or by using the the FILL MISSING and FILL FORWARD commands
(see Chapter 4 on how to use these and other commands).

9.7 Lesson 9.7: Reading the CSV file UKCON.CSV into M:i-
crofit

The file UKCON.CSV is a comma delimited values file containing quarterly observations on
the following seven variables obtained from the UK Central Statistical Office (CSO95) data

bank:
AITWQA  Personal disposable income £m (seasonally adjusted)

AITXQA Consumers’ expenditure: Total £m CURR SA

CAABQA Consumers’ expenditure: Total £m CONS
(1990 prices) SA

CCBHQU Consumers’ expenditure: Total £m CONS
(1990 prices) NSA

CECOQU Real personal disposable income at 1990 prices
(seasonally unadjusted)

CECPQA Real personal disposable income at 1990 prices
(seasonally adjusted)

DQABQU Tax and prices index (Jan 1987 = 100)

The variable names and their descriptions are the same as those in the CSO95 databank.
If you read this file into Ezcel you will see that the data in the worksheet are arranged in
columns with the first column being the dates, while the first two rows contain the variable
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names and their descriptions, respectively. The last column contains observations on ‘Tax
and Prices index’, but only over the period 1987(1) to 1995(1).

To read this worksheet into Microfit, choose ‘Open file’ from the File Menu. From the
Open dialogue select UKCON.CSV by double-clicking on it. Microfit attempts to read in
the file and, if successful, displays the message

UKCON.CSV imported successfully

Click =« to move to the Process window, then click the = @ button to see the seven
variables in the file UKCON.XLS and their descriptions. To see the observations on all the
variables click the Q button. Inspect the data carefully and make sure that they are
imported into Microfit correctly. Note that the missing values of DQABQU (tax and prices

index) over the period 1955(1) to 1986(4) are set to blank.

9.8 Lesson 9.8: Reading the Excel file DAILYFUTURES.XLS
into Microfit

The file DAILYFUTURES.XLS is an FExcel file containing daily observations on futures
returns on the S&P 500 index of the US stock market (SP), the Financial Times Stock
Exchange 100 index of the London Stock Exchange (FT'SE), and the Blue chip index of the
German stock market (DAX), over the period from 01-May-02 to the 01-May-07.

To read this worksheet into Microfit, choose ‘Open file from tutorial data files’ from the
File Menu. From the Open dialogue select DAILYFUTURES.XLS by double-clicking on it.

Once Microfit has successfully loaded the data, click on the @ button. You will see
that Microfit has created three new columns, the DAY, MONTH and Y FAR, containing
for each observation the corresponding information on the day, month and year.

For further information on how to input daily data, see Section 3.2.10.

Note: Dates in the file DAILYFUTURES.XLS are expressed in the European format. If
the Windows regional settings of your computer are set to English United States, then you
will need to change the default date format to the European case in Microfit before opening
the file. To change the default date format in Microfit, go to the Options Menu, choose
the ‘European/US date format’, select the European Date format option and click s
Alternatively, you can load data in CSV format, contained in the file DAILYFUTURES.CSV
in the tutorial directory.

9.9 Lesson 9.9: Saving the DAILYFUTURES.XLS file ex-
cluding missing values

Load into Microfit the Excel file DAILYFUTURES.XLS (see Lesson 9.8), and click on the
< button. Notice that there are jumps in the data, due to the fact that the stock ex-
change does not trade during weekends, and missing values for each series, generally due to
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holidays that can vary from country to country. In the presence of missing values, Microfit
does not allow the use of some functions, such as MEAN, SUM, CSUM, and commands,
such as ADF, KPSS, SPECTRUM (see Chapter 4 for the use of these and other com-
mands). Further, in the presence of missing values in the middle of the estimation period
Microfit does not carry the estimation of any univariate or multivariate models. To deal with
this problem, you can either create a new dataset where observations with missing values are
dropped, or impute missing data using the FILL FORWARD and FILL MISSING
commands, and save the ‘filled-in’ data as a new data file for your future use.

To exclude observations with missing values, choose the ‘Save as’ option in the File Menu,
and select ‘CSV, descriptions in 2nd row, exclude rows with missing values undated and daily
data only’. A ‘Save as’ dialogue appears; type in a filename in the usual way, and click s
You will be asked to select the sample period. Specify the initial and the final period, and
click i If you wish to see the new dataset with no missing observation that Microfit
has created, select the ‘Open file’ option from the File Menu, and from the Open dialogue
double click on the file you have just saved. Once Microfit has successfully imported the
data, click on the 9 button, and check that the data do not contain blank cells.

9.10 Exercises in data management

9.10.1 Exercise 9.1

The raw data file USSTOCK.TXT contains monthly observations covering the period 1973M 3
to 1995M6 (inclusive) on the following variables

Yield on Long-Term US Government Bonds

US Consumer Price Index

US Money Supply (M1 definition)

Three-month US Treasury Bill Rate

US Share Prices - Standard and Poor 500 (SP500) Composite Index
Dividend Yield on SP500

These observations are arranged ‘variable-by-variable’ in the file in free format. Input this
file into Microfit, check that it is correctly read in, and save it as a Special Microfit file.
9.10.2 Exercise 9.2

Load the file EJCON.FIT containing the variables AB, AM, AS, BP, C, PC, SP, and Y
into Microfit and add to it the file EU.FIT, containing annual observations on the variables

E Employees in employment (1000s)
U Unemployed including school leavers
9.10.3 Exercise 9.3

Repeat the steps in Lesson 9.7 and read in the Fzcel worksheet file UKCON.XLS into
Microfit. Save them in a Microfit file and add the five variables in the file UKCON.FIT
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to the variables in the workspace. Check that the observations on the variables C' and
CAABQA are in fact identical.

9.10.4 Exercise 9.4

Load the file UKSTOCK.FIT into Microfit, and then save the variables in this file as a CSV
file. Exit Microfit and read the CSV file created by Microfit into Excel. Are the observations
exported correctly?



Chapter 10

Lessons in Data Processing

The Lessons in this chapter show how to carry out data transformations on the data on the
workspace by issuing commands and formulae in the Process window. It is assumed that
you have already gone through the steps set out in Chapter 2, that Microfit 5.0 is properly
installed on your system and that the various tutorial data files are on your hard-disk. To
open a data file from the tutorial directory, choose ‘Open file from tutorial data files’ from
the file Menu.

10.1 Lesson 10.1: Interactive data transformations

You can carry out the transformations which you require on your data either interactively
or by executing an already prepared batch/equation file. Suppose you wish to analyse the
quarterly movements in aggregate consumption expenditures in the UK. First read in the
special Microfit file UKCON.FIT (see Lesson 9.3). You should see the Commands and
Data Transformation box on the screen in which you can type a formula to carry out data
transformations on your existing variables, or issue one of the commands described above.
For example, if you type

INPT =1; P=CNOM/C; LY =LOG(Y); LC =LOG(C);
PI =LOG(P/P(-1)); DLY =LY — LY (~1);
DLC =LC-LC(-1) B

the program generates seven new variables:

INPT Intercept term, (a vector with all its elements equal to unity)

P Implicit price deflator of consumption expenditures
(1990=1.00, on average)

LY Logarithm of Y

LC Logarithm of C

PI Inflation rate (measured as the change in log of P)

DLY  Change in log of YV

DLC  Change in log of C

166
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These new variables are now added to the list of your existing variables, and you should see
them in the Variables box. If you wish to edit the variables’ descriptions, click the Q
button.

Note: The content of the Commands and Data Transformation box can be saved as an
equation file (with the extension EQU), and retrieved at a later stage. Click the Q button
to save the content of the Commands and Data Transformation box, enter the filename and
click . We have already saved this file as UKCON.EQU, and should be on the tutorial

directory (typically C:\PROGRAM FILES\MFIT5\TUTOR)).

10.2 Lesson 10.2: Doing data transformations using the BATCH
command

A convenient method of carrying out data transformations is to first to create a BATCH
file (using your preferred text editor before running Microfit), containing the instructions
(formulae and commands) that you wish carried out, and then running this BATCH file
interactively by means of the BATCH command. The file UKCON.BAT in the tutorial
directory is an example of such a BATCH file. The content of the file UKCON.BAT is
reproduced in Table 10.1.
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Table 10.1: Content of the BATCH file UKCON.BAT

$ BATCH file UKCON.BAT, to be used in conjunction
$ with the special Microfit file UKCON.FIT

$

$

$ Generate an intercept term

Inpt=1

$ Generate implicit price deflator of consumer expenditures
p=cnom/c

$ Take (natural) logarithms

ly=log(y)

le=log(c)

$ Generate rates of change of the variables computed as log-changes
pi=log(p/p(-1))

dly=ly-ly(-1)

dle=lc-le(-1)

$ Generate rates of change of the variables computed as
$ percentage change

rp=rate(p)

ry=rate(y)

rc=rate(c)

$ Note that rate (y) is computed as 100*(y—y(-1))/y(-1)
s=(y—)/y

$ End of the BATCH file

You can also see the content of this file on screen by using the option ‘View a File’ from
the File Menu and then double-clicking on UKCON.BAT.
To run the BATCH file UKCON.BAT, make sure that the file UKCON.FIT is loaded into
Microfit and that the Commands and Data Transformation box is clear. Then click on the
@h button on the right-hand side of the screen and select the desired BATCH file from the
list of file names by double clicking on the file UKCON.BAT. Wait until the computations
are completed and the message

Operations on batch file completed successfully

appears on the screen. If you now click =+ and then click the vq button, you will see
the list of the five original variables together with 11 more variables created by the program
in the process of executing the instructions contained in the BATCH file UKCON.BAT. The
variable window should now look like the screen shown in Figure 10.1.

The variables in this list will be used in other lessons on preliminary data analysis,
estimation, hypothesis testing, and forecasting.
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Figure 10.1: The Variable window

10.3 Lesson 10.3: Adding titles (descriptions) to variables

Suppose you wish to give titles to the seven variables in the special Microfit file UK-
STOCK.FIT (see Lesson 9.3). This can be done either interactively or by means of a BATCH
file. Read in the file UKSTOCK.FIT and click the Q button. Move to each of the vari-
ables’ description field in turn and type in a title. Alternatively, in the Commands and Data

Transformations box type
ENTITLE

and click R(UD . You will be prompted in the Variable window where you can supply a title

(a description not more than 80 characters long) to any variable you wish. For example, for
the variable UK FTIDX type in the title

Financial Times 500 Composite Share Index

Once you have supplied the description for all variables, click Q to save and then X
to return to the Process window. Note that you cannot undo the changes you have made to
the variable description if you click @ .

Another alternative is to run the BATCH file UKNAMES.BAT. The content of this
file is listed in Table 10.2. To run this BATCH file click the @h button in the Process
window. You will be presented with an Open file dialogue to help you search for the file

UKNAMES.BAT on your PC.
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Table 10.2: Content of the BATCH file UKNAMES.BAT

ENTITLE ukftidx ukftdy ukml uk3tbr uka0yr ukexch ukcpi
Financial Times 500 Composite 2hare Index

FT30 Dividend Vield

Money Supply M0

Three Month Treasury Eill Rate

dverage Gross Redemption Yield on Z0-Year Governwent Securities
Exchange Fate: U35 to el

Retail (Consumer) Price Index

10.4 Lesson 10.4: Creating dummy variables

In this lesson we will describe how to construct a dummy variable in Microfit. Suppose your
current sample period is 1948-1981, and you wish to construct the following dummy variable

D, =0 for 1948,1949

Dy =1 for 1950,...,1955
D; =2 for 1956, ...,1960
Dy =3 for 1961, ...,1970
Dy =4 for 1971, ...,1981

Read in the file EJCON.FIT. In the Commands and Data Transformations box type

SAMPLE 1948 1981; D = 0;
SAMPLE 1950 1955; D = 1;
SAMPLE 1956 1960;
SAMPLE 1961 1970;
SAMPLE 1971 1981;
SAMPLE 1948 1981;

)

9

oo

E2 |l
>

)
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The program now creates the variable D in your workspace, with the following values:

OBS D OBS D
1948 0 1965 3
1949 0 1966 3
1950 1 1967 3
1951 1 1968 3
1952 1 1969 3
1953 1 1970 4
1954 1 1971 4
1955 1 1972 4
1956 2 1973 4
1957 2 1974 4
1958 2 1975 4
1959 2 1976 4
1960 2 1977 4
1961 3 1978 4
1962 3 1979 4
1963 3 1980 4
1964 3 1981 4

As another example suppose you wish to create a variable which takes the value of zero over
the period 1948-1968 (inclusive), and then increases by steps of unity from 1969 onward.
You need to type

SAMPLE 1948 1968; TD = 0;
SAMPLE 1969 1981; SIM TD = TD(—1) + I;
SAMPLE 1948 1981; LIST  ©
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The variable T'D should now have the following values:

OBS TD OBS. TD
1948 0 1956 0
1949 0 1966 0
1950 0 1967 0
1951 0 1968 0
1952 0 1969 1
1953 0 1970 2
1954 0 1971 3
1955 0 1972 4
1956 0 1973 5
1957 0 1974 6
1958 0 1975 7
1959 0 1976 8
1960 0 1977 9
1961 0 1978 10
1962 0 1979 11
1963 0 1980 12
1964 0 1981 13

Alternatively you can use the cumulative sum function, CSUM(e), to construct this trend
(see Section 4.3.4). Type

SAMPLE 1948 1968; TD = 0;
SAMPLE 1969 1981; TD = CSUM(1);
SAMPLE 1948 1981; LIST D  Q

10.5 Lesson 10.5: Plotting variables against time and /or against
each other

Suppose you have loaded in the special Microfit file UKCON.FIT, and wish to plot the
variables C' (real consumption expenditures) and Y (real disposable income) against time on
the same screen. In the Commands and Data Transformations box type

PLOT C Y Q

for the graph to appear on the screen (see Figure 10.2 below).

You can alter the display of the graph, print it, or save it. To alter the display click 4
and choose one the options. For more information, see Section 5.2. To print the displayéa
graph, click @ . You will be presented with a standard Windows Print dialogue.

You can save the displayed graph in a variety of graphic formats, such as Bitmap (BMP),
Windows metafile (WMF), Enhance metafile (EMF), JPEG and PNG, by clicking the = &
button, or choosing the ‘Save as’ option from the File Menu. You can save in Olectra Chart
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Figure 10.2: Real consumption expenditure and real disposable income in the UK

Format (OC2) by selecting the ‘Save the chart (Olectra Chart Format’) option from the File
Menu. This format is useful if you want to load the graph into Microfit at a later stage
for further editing. If you click the %ﬂ button, you can also copy the displayed graph to

clipboard for pasting into other programs (see Section 5.2 for further details).

Suppose now that you wish to obtain a scatter plot of the rate of change of real con-
sumption (DLC) against the rate of change of real disposable income (DLY"). Type

BATCH UKCON; SCATTER DLC DLY 0

to see the scatter plot on your screen (see Figure 10.3). (Recall that lower- and upper-case
letters have the same effect in Microfit.) Clearly there seems to be a high degree of association
between the rate of change of consumption expenditure and the real disposable income.

10.6 Lesson 10.6: The use of command XPLOT in generating
probability density function

The command XPLOT can be used for a variety of purposes, such as for plotting probability
distributions, and Lorenz (or concentration) curves. For example, to generate a plot of the
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Figure 10.3: Scatter plot of DLC and DLY

standard normal distribution and the Cauchy distribution on the same graph, read the special
Microfit file X.FIT. This file should be in the tutorial directory and contains the variable X,
{z; = (t — 100)/10, t=1,2,...,200} (see Lesson 9.1 on how to read in a special Microfit
file). In the Commands and Data Transformations box type

MFEU = 0; Z1G =1;
BATCH DENSITY Q

When the operations in the BATCH file are completed successfully, type

XPLOT NORM CAUCHY X SUD

You will see the plot of the standard Normal and Cauchy distributions on the screen (see
Figure 10.4).

10.7 Lesson 10.7: Histogram of US stock market returns

The HIST command can be used to generate histograms and check the extent to which
the empirical distribution function of a given variable deviates from the normal distribution.
For instance, suppose you are interested in obtaining the histogram of the return on the US
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Figure 10.4: Plot of Normal and Chauchy distributions

Stock Market. The Special Microfit file USSTOCK.FIT contains 270 monthly observations
over the period 1973(1)-1995(6) on the following variables

US3TBR
USCPI
USDY

USLGR

USM1
USSIDX

US Three Month Treasury Bill Rate (per cent, per annum)
Consumer Price Index

Dividend Yield; ratio of dividends to share prices

(per cent ,per annum)

Yield of Long-term US Government Bond

(per cent, per annum)

Money Supply M1

Share Prices Index-Standard and Poor 500 Composite
(beginning of the month)

The monthly rate of return on the Standard and Poor 500 (SP500) share index is defined as
the sum of the capital gains/losses [(P; — P;—1) /Pi—1] plus the dividend yield (D;_1/P;—1).
Since in USSTOCK.FIT observations on the dividend yield variable (USDY’) are measured
in per cents and at annual rates, we first need to compute the dividends paid on SP500 per
month. To carry out the necessary computations read the file USSTOCK.FIT into Microfit,
and in the Commands and Data Transformations box type

USDIV = (USDY = USSIDX)/1200;
USSR = (USSIDX — USSIDX(—1) + USDIV(-1))/USSIDX(~1);
HIST USSR
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You should see a histogram with 15 bands on the screen. If you wish to draw a histogram
with a specific number of bands, say, you need to type

HIST USSR(20) = ©

RUN

The result should be the same as in Figure 10.5. Compared with the normal distribution,
which is given in the background of the histogram, the distribution of USSR is a little
skewed and has fat tails, that is, it displays excess kurtosis. There also seems to be an
‘outlier’, showing a 21.6 per cent decline in monthly returns, which refers to the October
1987 stock market crash.

i Microfit 5.0 Graph (=] S|

File Edit  Zoom

Histogram and Normal curve for variable USSR

Freguency
@

ra

-3 02 01 0.0 01
USSR

Sample from 1973M1 to 1995ME
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1973M1 M EEEE =1

A

Save As

Edit Graph Print

Refiesh graph over the above sample pericd |

Figure 10.5: Histogram and normal curve for variable USSR (sample from 1973M1 to
1995M6)

10.8 Lesson 10.8: Hodrick-Prescott filter applied to UK GDP

The HP filter is a two-sided filter routinely used as a method of detrending aggregate output
in the real business cycle (RBC) literature. In this lesson we use the function HPF(:,-)
described in Section 4.3.7 to detrend the logarithm of the UK GDP.

The Special Microfit files GDP95.FIT on the tutorial directory contains the following
variables:

UKGDP GDP(A) at constant market prices (1990 prices £ million)
USGNP Gross National Product (BILL.19878$) (T1.10) average
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The sample period for the US and UK output series are 1960(1)-1995(1), and 1955(1)-
1995(1), respectively. Read this file into Microfit, and in the Command and Data Transfor-
mations box type

YUK = LOG(UKGDP);
YUKT = HPF(YUK, 1600);
PLOT YUK YUKT SUE

You should now see the plot of the logarithm of UK GDP and its trend computed using the
H P procedure with A = 1600 on the screen (see Figure 10.6). The detrended series can now
be computed as

YUKD =YUK -YUKT; PLOT YUKD Su)

You should now see the Figure 10.7 on the screen. To check the sensitivity of the HP
detrending procedure to the choice of A, try other values of A and plot the results. Notice
that for the most part, the trend series are not very sensitive to the value of A in the range
[600, 3600].

Repeat the above exercise with the USGNP. But remember to reset the sample to
1960(1)-1995(1), as US output series are not defined outside this period, and the application
of the HPF function will result in missing values for the trend.
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Figure 10.7: Plot of detrended UK output series using the Hodrick-Prescott filter with
A =1600

10.9 Lesson 10.9: Summary statistics and correlation coeffi-
cients of US and UK output growths

As a part of your preliminary data analysis you may be interested to see the summary
statistics and correlation matrix of some of the variables in the variable list. For example,
suppose you have read in the file GDP95.FIT and you wish to compute summary statistics
and correlation coefficients for the variables, USGR (US output growth), and UKGR (UK
output growth). Type in the Command and Variable Transformation box

SAMPLE 1960Q1 1994Q4;
USGR = RATE(USGNP); UKGR = RATE(UKGDP);
COR USGR UKGR  Q

First you should see the summary statistics for the two variables USGR and UKGR on
the screen. If you click > the correlation matrix for these variables will be displayed (see
Table 10.3). The result in Table 10.3 shows that the US economy has enjoyed a slightly
higher growth than the UK economy over the 1960-1994 period. The US economy has grown
around 2.9 per cent per annum as compared to an average annual rate of 2.3 per cent in
the UK. Output growth has been relatively more variable in the UK. The coefficients of
variations of output growth is 1.24 for the US as compared to 1.95 for the UK.

Finally the correlation coefficient between the two output growth series is 0.22, which
is statistically significant at the 5 per cent level. In fact the Pesaran-Timmermann statistic for
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testing the association between the two growth rates, computed as PTTEST(USGR, U KGR),
is equal to 2.82, which is well above 1.96, the 5 per cent critical value of the standard normal
distribution (see Section 4.3.17 for an account of the PTTEST function).

Table 10.3: Summary statistics for UK and US output growth and estimated correlation
matrix of variables

Sample period 1196002 to 199404
Variahle (=) H T3GR TEGR
Mz irnarn H 2.959580 4.8923
Minirmam H -2.6335 -2.6096
Mean H 72763 .E71EE
3td. Deviation H 903459 1.1160
Skewness H -.56162 . 54609
Kurtosis - 3 H 1.5262 Z2.3304
Coef of Variation: 1.2417 1.952¢8
o e e e
TSGR UEGE
T3GR 1.0000 .21979
TEGER 21979 1.0000

b e o e i e o e i e ol e ol ol

10.10 Lesson 10.10: Autocorrelation coefficients of US output
growth

Suppose you are interested in computing the autocorrelation coefficients of up to order 14
for the variable USGR (the quarterly growth rate of US and GNP). Carry out the steps in
Lesson 10.9, and when presented with the Command and Data Transformation box, type

SAMPLE 1960Q1 1994Q4;
DYUS = LOG(USGNP/USGN P(—1));
COR DYUS(14) ©

The program first computes the logarithmic rate of change of the US real GNP, and then dis-
plays the summary statistics (mean, standard deviation, and so on) for the variable DYUS.
If you now click x o, the autocorrelation coefficients, the Box-Pierce and Ljung-Box sta-
tistics will be displayed (see Table 10.4).

Clicking = x  now yields a plot of the autocorrelation coefficients (see Figure 10.8). The
default value for the maximum order of the computed autocorrelation coefficients is equal to
% of the sample size. For example, if you compute the autocorrelation coefficients over the
period 1985(1)-1990(4) only the first 8 autocorrelation coefficients will be computed (see the
COR command in Section 4.4.8).

The command COR applied to a variable, say X, also computes the () statistic due
to (Box and Pierce 1970) and its modified version, the Q* statistic, due to (Ljung and
Box 1978) for X (see Section 21.1). These statistics can be used to carry out general
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tests of serial correlation. The Ljung-Box Q* statistic tends to be more reliable in small
samples. The figures in square brackets refer to the probability of falsely rejecting the
null hypothesis of no serial correlation. A small p-value provides evidence against the null
hypothesis that the variable X is serially uncorrelated. In the case of the results in Table 10.4
there is clear evidence of serial correlation in US output growth. The first- and second-order
autocorrelation coefficients 0.31864 and 0.23792 are large relative to their standard errors
(the t-ratios for these autocorrelation coefficients are 3.76, and 2.56 which are above the
critical value of the standard normal distribution at the level of 5 per cent). The remaining
autocorrelation coefficients are not statistically significant.

Table 10.4: Summary statistics and autocorrelation coefficients for US output growth

Sample period 1196002 to 199404
Variahle(s) H DYUs
Max i H 025539
Minimwnan : -.026688
Mean H 0072099
Std. Deviation H .0039935
Skewness H -.60515
Eurtosis - 3 H 1.6251
Coef of Variation: 1.2474
Wariable DYUS Sample from 196002 to 199404
e e i i i o i e e e e e e e i i i e i e e i i i i o e e e e i i e e i e e e e e e e e e
Order Autocorrelation Standard Box-Pierce Ljung-Box
Coefficient Error Jtatistic Jtatistic
e e i i i o i e e e i e i e e e i i i i e i e e e i i i e e e e i i i e e e i e e e e e e e e e
1 .31864 .0584519 14.1132[.000] 14.4200[.000]
2 L 23792 093033 21.8812[.000] ZZ.5178[.000]
3 . 044503 097312 22.2565[.000] 22.8032[.000]
4 .056147 .097458 22.65947[.000] 23.2609[.000]
5 -.057z94 .087691 23.1510[.000] 23.7410[.000]
3 028012 097932 23.2601[.001] 23.58566[.001]
7 -.071426 .057390 23.9692[.001] 24,6141[.001]
g -.14531 .053364 27.02658[.001] 27.8051[.000]
9 -.067555 .0993960 27.6612[.001] 258.5931[.001]
10 .042191 L1009 27.9086[.002] 28.8636[.001]
11 -.0054258 .loodz 27.8127[.003] 25.8681[.002]
1z -. 17486 .loo4z 32.1626[.001] 33.5865[.001]
13 -.15510 L10258 35.6813[.001] 37.5241[.000]
14 -.114z0 .1l0434 37.4541[.001] 39.5689[.000]

AR R R TR A N A T R AT A R T R A N A T R A N A N AT N AN AN A R AT R AR TR T AT RTRTRTRAANTN

10.11 Lesson 10.11: Spectral density function of the US out-
put growth

The SPECTRUM command (see Section 4.4.27) can be used to obtain different estimates
of the standardized spectral density function. As an example, consider the problem of
estimating the spectral density function for the rate of change of the US real GNP.

Use the option ‘Open File’ from the File Menu to read the GDP95.FIT file into Microfit
and in the Commands and Data Transformation box create the variables (using the full
sample)

DYUS = LOG(USGNP/USGNP(~1)) @
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Figure 10.8: Autocorrelation function of DYUS (sample from 1960Q1 to 1994Q4)

Then clear the editor type

SPECTRUM DYUS 0
You should see three different estimates of the standardized spectral density function of
DYUS on the screen. These estimates, and their asymptotic standard errors, are based on
Bartlett, Tukey, and Parzen windows (see Section 21.3 for the details of the algorithms and
the relevant references to the literature). The window size is set to the default value of 2/n,
where n is the number of observations. In the present application, n = 139, and the window
size is equal to 24 (to override the default value for the window size see Section 4.4.27).
The estimates of the spectral density are scaled and standardized using the unconditional
variance of DYUS, and if evaluated at zero frequency provide a consistent estimate of
Cochrane (1988) measure of persistence. Click @ to save these estimates in a result file,

or @ to print. If you click = x  you will be presented with four screens. The first three
show the plots of the alternative estimates of the spectral density function (under Bartlett,
Tukey and Parzen windows) and their standard error bands. For the purpose of comparing
the different windows, the fourth screen displays all three estimates of the spectral density
function on one graph (See Figure 10.9). Notice that the spectrum peaks at frequency 0.26,
suggesting a cycle with periodicity equal to 24 quarters or 6 years.
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Figure 10.9: Various estimates of standardized spectral density of DYUS (sample from

1960Q1 to 1994Q4)

10.12 Lesson 10.12: Constructing a geometrically declining
distributed lag variable: using the SIM command

Suppose you are interested in constructing a geometrically declining distributed lag function
of the UK inflation rate, stored in the special Microfit file UKCON.FIT. Let II; be the
inflation rate, and denote its geometric distributed lag function by IIf. Then

o
Iy =(1-X)) N1,  for t=1960Q1,..,1995Q1 (10.1)
=0

with A = 0.8, and HT960Q1 = IT19600Q1. First notice that (10.1) can also be written recursively

as

I = AT, + (1= MIL_y,  for ¢=1960Q1,...,1995Q1

or

IS — I, = (1— NIy — 1Y),  for t=1960Q1,...,1995Q1

The last equation is immediately recognizable as the first-order adaptive expectations model.
To compute IIf, for ¢ = 1960Q1, ...,1995Q1, load the special Microfit file, UKCON.FIT,
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and when presented with the Command and Data Transformation box, type

BATCH UKCON;

SAMPLE 1960Q1 1995Q1; PIE = PI;
SAMPLE 1960Q2 1995Q1;

SIM PIE = 0.8%PIE(—1)+ 0.2 % PI(—1);
SAMPLE 1960Q1 1995Q1 O

The variable PIE (II§) will now be created in your workspace, and you should see it added
to the list of your existing variables. For a graphical presentation of the relationship between
the inflation rate (PI), and the adaptively formed inflation expectations (PIE), type

PLOT PI PIFE Q

You should see the plot of PI and PIE against time on the screen (Figure 10.10). It can
be clearly seen from this graph that the adaptive expectations tend to underestimate the
actual rate of inflation when inflation is accelerating, and overestimate it when inflation is
decelerating. A proof of this phenomenon can be found in Pesaran (1987a), pp. 18-19.
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Figure 10.10: Actual and (adaptive) expected inflation in the UK (with adaptive coeffi-
cient=0.80)
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10.13 Lesson 10.13: Computation of OLS estimators using
formulae and commands

In this lesson we show how the function SUM, described in Section 4.3.29, can be used
to compute OLS estimators of the coefficients of a simple regression equation from first
principles. This type of application of Microfit is particularly useful for undergraduate
courses in statistics and econometrics in which students need to be shown the details of the
various steps involved in the computations.

Suppose you are interested in computing the OLS estimates of the regression of C' (the
real consumption expenditure) on Y (the real disposable income) using quarterly UK obser-
vations over the period 1960(1)-1994(4)

Ci=a+6Y:+u, t=12..,n (10.2)

where w; is the error term. The OLS estimators of the coefficients o and § in (10.2) are
given by

b= Y m-N@-0 /Y-y

t=1

_ c-py

>

where C' and Y are the arithmetic means of C' and Y, respectively.
To carry out the necessary computations, read in the special Microfit file UKCON.FIT,
and type the following instructions in the Commands and Data Transformations box

SAMPLE 1960Q1 1994Q4;
n=SUM(1);

CBAR = SUM(C)/n;CD = C — CBAR;
YBAR = SUM(Y)/N;YD = Y — Y BAR;
BHAT = SUM(Y D + CD)/SUM(Y D"2);
AHAT = CBAR— BHAT xYBAR Sug

The variables AHAT and BHAT will now contain the OLS estimates of « and 3, respec-
tively. You can list these estimates using the LIST command.

You can also use the SUM function to compute other statistics, such as the estimates
of the standard error of the OLS estimates, the squared multiple correlation coefficient
(R?), the adjusted squared multiple correlation coefficient (Ez), and the Durbin-Watson
statistic. (The formulae for these statistics can be found in Section 21.6.1). The BATCH file
OLS.BAT in the tutorial directory contains the necessary instructions for carrying out these
computations. It is reproduced here in Table 10.5. To run this BATCH file first ensure that
the variables C' and Y are in your workspace (click = @ ), then type

Variables

BATCH OLS 0
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If the operations are successful, you should see the following additional variables in the

workspace

AHAT OLS estimate of «

BHAT OLS estimates of

SEAHAT estimate of the standard error of ahat (&)
SEBHAT estimate of the standard error of bhat(f3)
ZIGMA &, the standard error of regression

RSQ

R?, the square of the multiple correlation coefficient

RBARSQ RZ?, the adjusted R?

DW
E

Durbin-Watson statistic
OLS residuals

Table 10.5: The BATCH file OLS.BAT

Content of the file OLS.BAT on the Tutorial Directory.
This is an example of a batch file for the direct
cotmputation of the OLS regression, C = a+ b ¥ + u,
estimated owver the sub-period 1960(1)-1994{4), using the
special Microfit file, UKCON.FIT. This file contains
quarterly ohserwvations on C {consumption) and ¥ {income),
over the period 1948(1)-1995{1).

B T B T B T B

sample 60l Sd4gd

§ Setting the sample size ({n)

n=sumi1)

§ Computing sample means of C and ¥ and storing the results in
$ cbar and ybar

char=sum{c)/n

yhar=sum(y)/n

$ Computing dewiations of C and ¥ from their sample means
cd=c-char

yd=y-vhar

$ Computing warinaces of ¥ and C in ywar and cvar
yvar=sumyd4d2){n-1)

cvar=sum{cd42)/{n-1)

$ Computing OLS estimates of the coefficients a and b
bhat=sum{cd®yd) /sum{ydiza)

ahat=char-bhat*ybar

$ Computing OLS residuals (el

e=c-ahat-bhat*y

$ Computing R-Sgquared, R-BAR-Sguared, standard error of
$ the regression, and the Durbin-Watson statistic
rsq=l-sum{ed2) fsum{cdiz)

zigsq=sum{ed2) {n-2)

zigma=sqrt{zigsqg)

rbarsq=1-{zigsg/cvar)

seahat=zigma*sqrt{sum{yA2)) 'sgrt(n*sum{ydiz))
sebhat=zigma/sqrt{sum{ydiz))

dummy=1

sample 6002 2404

dunmy =0

sample 60ql 92494

elsqg=sumdunny*{ed2))

sample 60q2 92494

dw=sum{{e-e(-110423/ (sum(ehr2)+elsq)

$ Re-setting the sample back to its full range

sample 55ql1 9591

§ End of the BATCH file

You can now use either the LIST or the COR commands to list/print the various
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estimators/statistics computed by the BATCH file OLS.BAT. If you type

COR C Y CBAR YBAR CVAR YVAR AHAT SEAHAT
BHAT SEBHAT ZIGMA RSQ RBARSQ DW N 0

you should obtain the results in Table 10.6.

Table 10.6: OLS regression results using the BATCH file OLS.BAT

Sample period 1196002 to 199404

Variable (=s) : C ¥ CEALR TELR CUVALR TUALR
M imum : 90399.0 100331.0 61143.5 67763.6 I.43E+08 3.05E408
Minimum : 390559.0 42059.0 61143.5 67763.6 Z.43E+083 3.05E4+03
Mean : 61301.6 67954, 1 61143 .5 67763 .6 Z.43E408 3.05E408
3td. Deviation : 15546.1 17400,.8 .1095E-9 ,1606E-9 ,2Z591E-6 ,9571E-6
Skewness : L263581 . 40399 1.00000 -1.00000 1.00000 1.0000
Furtosis - 3 : -1.0111 -.99154 -2 .0000 -2 .0000 -2.0000 -2.0000
Coef of Variation: 25360 25607 .Qooo .Qooo .0ooo .0ooo
Sample period 1196002 to 199404

Variable (s) : LHLT SELHAT BHLT SEBHAT ZIGHAL B30
Mz i r 954.1058 513.2711 LB88823  .007335%9 151z2.2 .99087
Minimum : 954 1058 513.2711 .B8823 .0073359 1512.2 L9907
Mean : 954.1058 513.2711 .B88823 .0073359 1512.2 .99067
3td. Deviation : . Qaoa . Qaoa . Qaoa o.00 . 0aoa . 0aoa
Skewness : *NOMNE * *NOMNE * *NOMNE * *NOMNE * *NOMNE * *NOMNE *
Kurtosis - 3 : *HONE * *HONE * *HONE * *HONE * *HNONE * *HNONE *
Coef of Variation: . Qaoa . Qaoa . Qaoa o.00 . 0aoa . 0aoa
Jample period 1196002 to 199404

Variable (=) : RELRSQ o ¢

M imum : .99061 .44124  140.0000

Minimum : .99061 .44194  140,0000

Mean : L99061 .44194  140,0000

3td. Deviation : . Qaoa . Qaoa 0.00

Skewness : *NONE * *NONE * *NONE *

FKurtosis - 3 : *HONE * *HONE * *HONE *

Coef of Variation: . Qaoa . Qaoa 0.00

As we shall see in Chapter 11 (see Lesson 11.1), the same results (and more) can be
readily computed by using the OLS option in the Linear Regression Menu.

10.14 Lesson 10.14: Construction of indices of effective ex-
change rates and foreign prices

In this lesson we provide an example of how a BATCH file can be used to compute the
indices of the effective exchange rate (FER) and foreign prices (PF') for a given country
(which we denote by ‘5’ ) with respect to its main trading partners.

Denote the effective exchange rate index of the jth country by Ej;. Then

N
E, %100
Be= 3w (")
i=1

7,85
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where wj; is the share of country jth trade with the ith country, so that Z,fil wj; = 1,
and Ej; is the market rate of exchange of the jth currency in terms of the ith currency,
computed as

Eji =

jth country national currency y US dollar
US dollar

1th country national currency
Ej; g5 is the average value of the Ej;; variable over the quarters in 1985,

85q4

1
Ejigs = 4 E Ejit
t=85q1

Let PF; be the jth country foreign price index, defined as the weighted average of the
wholesale price indices of the main trading partners of the jth country,

N
PFji = w;jiPy
1=1

Where Py is the wholesale price index (W PI) of the ith country.

The BATCH file GTEXCH.BAT contains the instructions for computing the variables
FEER and PF for the UK. But it can be readily modified to compute these variables for any
other G7 country (see below). Table 10.7 reproduces this BATCH file. The data needed to
run the BATCH file are stored in the file GTEXCH.FIT.

This file contains the variables E; and P;, with ¢ = 1,2, ..., 10, where

Ey = Japan market rate (Yen versus US$)

E; = Germany market rate (DM versus US$)

E5 = France market rate (FF versus USS$)

E, = UK market rate (UK£ versus US$)

Es = Ttaly market rate (Lira versus USS$)

Eg = Canada market rate (Can$ versus US$)

E; = The Netherlands market rate (NGuil versus US$)
Es = Switzerland market rate (SF versus US$)

Eg = Belgium market rate (BF versus US$)

Eq1p = Austria market rate (AS versus US$)
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Table 10.7: Content of The BATCH file GTEXCH.BAT

Content of the file GFEXCH.BAT on the Tutorial Directory.
The following batch file is an example of how to compute the
effectiwve exchange rate index (EER) and the foreign price
index ({PF) needed to test the PPP hypothesis for a giwven
country j wersus 1ts main trading partners.

B T Y B

Setting the sample period
SAMPLE 7201 920G3
k3

$ Defining the Pound Sterling/Dollar rate as the domestic
$ currency 3J

El= E4

$ Specification of UK's major trading partner currencies

EJ1O=E4
EJ1=EJ]/E1
EJ2=E]/E2
EJ3=E]1/E3
EJ4=E]/E4
EJS=E]/ES
EJ&=E]/E6&
EJ7=E]/E7
EJ2=E]/ER
EJ9=E]1/E9
EJlO:EJIElO

¥ Constructing the dummy wariable, D85, equal to zero except
$ for the four guarters in 1985 where 1t is set equal to one.

DE5=0
SAMPLE 8501 2504
DE5=1
%N"IF‘LE F2Q1l 9233

§ Computing the currency weights in the base year, 1985
DO= SUM(EJO*DE5) /4
Dl= SUM{EJ1*Da53 /4
D2= SUM{EJIZ*DE5)/4
D3= SUM{EJI3*Da5)/4
Dd= SUM{EI4+DE5 0,/
DS= SUM{EJIS*DE5)/4
D&= SUM{EJS*DE5 )4
DF= SUM{EJI7*DE5)/4
DE= SUM{EJS*DE5) /4
Do= SUM{EI9*DE5) 4
210=SUM(EJlO*D85)f4

$ Exchange rate indices with 1985=100
EJIDIND=(EJC*1007 /D0
EJ1IMD={EJ1*10C% /D1
EJ2IMD=({EJ1Z*1007/D2
E13IND={EJI3*100%/D3
EJ4THD={EJ14*100 % /D4

EJSIND=(EJI5*100) /D5
EJ&IND=(E1&*1007 /D6
EJFIND=(EJ7*100) /D7
EJEIND=(EJ&*1007 /D8
EJ9IND=(E19*1007 /D9
EJ10IND=(EJ10%100),D010

k3
¥ setting the walues of the trading weights ({ for the UK)
%

wWiG=0. 22581
wW11l=0.0530
wWlz2=0.2276
wl3=0.1552
Wld=0.0
W15=0.0814
wWlg=0,0349
Wlr=0.1422
wWlg=0.0
wW19=0,0776
wW110=0.0

i

$ Computing the EEE index

%

EER=%IO*EJOIHND+WI1*EJ1ITND+WI 2%E] 2IND+WI 3 *EJ 3 THND+E
WIl4*EJ4IND-+WI 5 *EIS TND+WI6¥EJ GIND-+HW 7 *EJ 7 TND+WI B ¥EJSIND+&
WIS*EJIIND+HWI10%EJ10IND

£

$ Computing the PF index

%

FPE=WI0*PO+HWI1* P11 2%P2+I 3 P304 *Pa4+-mI S *PSHMI 6 PE+HWI 7 P 7 +&
WIS*PEHI 9 PI+HWI10*P10

%

$ Giwing titles to the wariables

ENTITLE EER PF

Uk effectiwve exchange rate index

UK foreign price index

¥ Deleting unnecessary wariables.

DELETE EJ EJO EJ1 EJ2 EJ3 EJ4 EJS5 EJ6 EIF EJ&8 EJ3 EJ10 D25 &

0o D1 D2 03 D4 DS D6 DF DE D9 D10 &

EJOIND EJ1TWD EJZIND EJSIWD EJ4INMD EJSIND EJ&IND EJFIWD EJISIND &
EJSIND EJ10THD WID W1 W32 W33 a4 WIS Wls W17 WIE WIS w310

%
$ End of hatch file.

188
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and

Py= USA WPI
P, = Japan WPI

P, = Germany WPI
P; =  France CPI(1972-1979), WPI(1980-1992)
Py= UK WPI

P; = Ttaly WPI

Ps; = Canada WPI

P; = The Netherlands WPI

Py = Switzerland WPI
Py = Belgium WPI
Pig = Austria WPI

The chosen domestic country, 7, in the BATCH file GTEXCH.BAT is the UK, so that
Jj =4, Pj = P, F; = F4. The eight main trading partners are taken to be the USA, Japan,
Germany, France, Italy, Canada, the Netherlands and Belgium. Note, however, that the
BATCH file GTEXCH.BAT can be easily modified to compute the FER and PF indices
for the other G7 countries. You simply need to edit it so that EJ is set to the currency of
your choice, and the main trading weights in the construction of the indices are adjusted
appropriately. The relevant weights for the G7 countries are given in Table 10.8.

Table 10.8: Trading weights of the G7 countries

USA
Main trading
partners

USA -

Japan 0.2996
Germany 0.0948
France 0.0504
UK 0.0841
Italy 0.0473
Canada 0.3601
Netherlands 0.0366
Belgium 0.0261

Japan

0.7232
0.0778
0.0256
0.0488
0.0171
0.0726
0.0197
0.0151

Germany France

0.1513
0.0493
0.1951
0.1422
0.1362
0.0156
0.1803
0.1301

0.1355
0.0345
0.2654
0.1376
0.1762
0.0151
0.0927
0.1431

UK

0.2281
0.0530
0.2276
0.1552
0.0814
0.0349
0.1422
0.0776

Italy

0.1634
0.0262
0.3024
0.2432
0.1084
0.0164
0.0767
0.0632

Canada

0.8546
0.0613
0.0201
0.0111
0.0286
0.0098
0.0820
0.0061
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To compute the two indices for the UK, load the file GTEXCH.FIT into Microfit. Check
the definitions of the variables E;, P;, by clicking the q button. Run the BATCH file

G7EXCH.BAT by typing

BATCH GT7EXCH

Q

in the Commands and Data Transformations box. If the operations are successful, you should
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see the following additional variables in the workspace

EFER UK effective exchange rate index.

PF UK foreign price index.

To see a time-plot of these indices type

PLOT EER PF 0

The screen should now appear as shown in Figure 10.11.
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Figure 10.11: Effective and weighted foreign price indices for the UK (1985=100)

10.15 Lesson 10.15: Non-parametric density estimation of fu-
tures returns

In this lesson we demonstrate how to apply the NONPARM command (4.4.18) to estimate
the density function of asset returns. In particular, consider daily data on returns of the
equity futures index Nikkei (N K). The special Microfit file FUTURESDATA.FIT contains
daily data on futures returns on a number of currencies, bonds and equity indices, and
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covers the period from 31-Dec-93 to 01-Jan-07." To avoid lengthy computations in the
present application we will only use data from 2005 to 2007 (a total of 522 observations).
Go to the Commands and Data Transformations box, and type

SAMPLE 31-Dec-04 01-Jan-07; NONPARM 1 2 3 4 NK 0 Su)

Microfit carries out the necessary computations and presents you an output window with the
list of kernel density estimates for variable N K using Guassian and Epanechnikov kernels,
and Silverman and least squares cross-validation as band widths. The list of observations
on the variable NK, as well as the list of points at which the nonparametric functions are
evaluated are also provided.

Since the vector of evaluation data points is not included in the command line, these are
automatically supplied by the program. Also note that the use of the least squares cross-
validation band width requires the evaluation of the kernel function at n? data points, and
in applications where n is relatively large (for example, larger than 1000), this could take
considerable amount of time (see Section 21.2 for further details).

If you now close the output window, you will be presented with the Kernel Density
Estimation Menu, where you can display, plot or save your kernel density estimates and
evaluation data points. Select option 2, then choose to inspect the plot of Gaussian ker-
nel with least squares cross-validation band width against evaluation points. The graph is
displayed in Figure 10.12.
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Figure 10.12: Gaussian kernel and least squares cross-valication band width for the variable
NK

'See Section 20.1 for further details concerning this data set.
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Now close the graph window and in the Kernel Density Estimation Menu click on option
3. Again, choose to inspect the plot of Gaussian kernel with least squares cross-validation
band width. Results are displayed in Figure 10.13. Notice that the estimated density function
for NK has a more acute peak and thicker tails than the normal distribution (i.e., there is
evidence of excess kurtosis). As an exercise, use the command COR in the Commands and
Data Transformations box to compute the kurtosis statistic and check that by — 3 > 0 (see
also Section 21.1).
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Figure 10.13: Gaussian kernel and least squares cross-valication band width for the variable
N K, plus the normal density function

Finally, use option 4 from the Kernel Density Estimation Menu to plot the Gaussian
kernel with least squares cross-validation band width for the variable NK, together with
the Student’s t-distribution. You will be asked to specify the degrees of freedom for the
t-distribution. Type in, for example, 5, and click the button. The graph, displayed in Figure
10.14, indicates that the t-distribution captures the excess kurtosis of the distribution better
than the normal distribution.

In this application the use of Epanechnikov kernel with least squares cross-validated band
width produces a very uneven estimated density. Special care must be exercised in the choice
of the kernel and the band width procedure.

Warning: In the case of large data sets avoid using the cross validation procedure. You
can do this by using options 1 and 3 after the NONPARM command. See (4.4.18) for
further detail.
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Figure 10.14: Gaussian kernel and least squares cross-valication band width for the variable
N K, plus the t-density function

10.16 Lesson 10.16: Principal components analysis of US macro-
economic time series

In this lesson we perform a principal components analysis (PCA, 4.4.19 and 22.12) to sum-
marize the empirical content of a large number of time series for the US economy. Data
are available in the special Microfit file MSW90.FIT, from the Tutorial directory. This file
contains a well known data set on monthly data on a large number of variables. The data
set covers the period 1959 to 2002 (for a total of 528 months) on 90 variables describing
different aspects of the US economy, such as income/output, employment, and construc-
tion/inventories. We refer to Marcellino, Stock, and Watson (2006) for further details.
Due to the presence of some missing values, in this application we only consider data over
the years 1967-2000. Load this file into Microfit, and use the q button to inspect the

variables and their descriptions.” Once the data set is successfully entered, move to the
Process window and use the @5 button to select from the Tutorial directory the EQU
file PCATRANS.EQU. This ﬁle contains some instructions for creating an intercept, and
for stardardizing the set of variables that will enter in the principal components analysis,
so that they have unit (sample) variance. Clear the Commands and Data Transformations
box, and retrieve from the Tutorial directory the LST or EQU files PCAPROD.LST or
PCAPROD.EQU, which contains the list of 22 (standardized) variables on income/output

2Not all variables have a description in the data set. See Marcellino, Stock, and Watson (2006) for a
detailed description of all the variables included.
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to be included in the principal components analysis. Notice that the PCA command can be
applied to a maximum of 102 variables. By clicking = @, Microfit carries out the necessary
computations and presents you an output window with the list of non-zero eigenvalues, cu-
mulative and percent cumulative eigenvalues, and eigenvectors associated with the selected
set of variables. We refer to Section 22.12 for the relevant formula and for further infor-
mation on principal components analysis. The output screen is partly reproduced in Table
10.9. Notice that, since variables have been standardized, the sum of non-zero eigenvalues
associated to the S matrix is approximately equal to 22, the number of variables included
in the principal components analysis. Further, we observe that there are only 2 eigenvalues
larger than 1. This implies that there exist only two components, or factors, that explain
at least as much as the equivalent of one original variable. Also, the eigenvalues indicate
that these two factors account for about 97 per cent of the total variance, thus providing a
reasonable summary of the data.

Table 10.9: Principal components analysis of US macroeconomic time-series

Principal Components Analysis
EE R s s e e

Estimation periocd from 1967TM1 to 2000M12, 408 cbkbservations.

List of 22 wariabkles included in the principal components analysis:

IPS10ST IP5115T IES2995T IP5125T IES135T
IPS185T IP5255T IBIST IP5325T IES345T
IPS385T IP5435T IEDST IPNST IEMINST
IPUTST MSMQST MSDQST MSNQST WIQST
WIDQST WINQST

The abowve wariakbles have been filtered by the following wariable:
INET

List of 22 non-zero eigenvalues in descending crder:

20.1530 1.17&8%9 -417683 -080608 040982 -018841 014624
.0067359 L0053443 .0040449% L0022267 .0016353 .5906E-3 .3614E-3
-2B90E-3 -1138E-3 -4T45E-4 L2044E-4 .1454E-4 -3920E-5 -2508E-5
.1431E-5

Cumulatiwve Eigenvalues:
20.1830 21.3720 21.7894 21.8502 21.8912 21.9100 21.9248

21.9314 21.39367 21.9403 21.9430 21.9444 21.9452 21.9456
21.945%9 21.9480 21.59480 21.9481 21.9481 21.59481 21.9461
21.94861

Percent Cumalative Eigenvalues:

92.0120 97.3840 99.2870 99.5632 99.7498 99.8357 99.9023
99.9330 99.9574 99.9758 99.98460 99.94934 99.9981 99.93978
99.9991 99.99948 99.9998 949.999% 100.0000 100.0000 100.0000

Now close the output window, and choose Option 2 to plot eigenvalues and cumulative
eigenvalues from principal components analysis. These are reproduced in Figure 10.15 and
10.16, and display the eigenvalues and cumulative eigenvalues on the vertical axis and the
principal component number on the horizontal axis.

Notice that these graphs show a sudden decrease in eigenvalues in the first two principal
components, and relatively low contributions after the second principal component. This
agrees with our preceding conclusion that two principal components provide a good summary
of the data under consideration. We now save the first two principal components in a FIT
file, and produce their plot against time. To this end, close the graph window, and in the
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Figure 10.15: Plot of eigenvalues from principal components analysis

Post Estimation Menu (Principal Components Analysis) use options 3 and 4 to save the first
two principal components in the file MSW90(2PC).FIT. Click _ toreturn to the Process

window and use the option ‘Add a Special Microfit File to Workspace’ from the file menu to
add the file MSW90(2PC).FIT to the current data set. Then clear the Commands and Data
Transformations box and type

SAMPLE 1967M1 2000M12;
PLOT PC 1 PC 2 ®

The plot is reported in Figure 10.17. Notice that PC 1 summarizes a general trend of the
variables included in the principal components analysis.

10.17 Lesson 10.17: Canonical correlation analysis of bond
and equity futures

In this lesson we use canonical correlation analysis (CCA, 4.4.7 and 22.13) to explore the
relationship between returns on bond and equity futures. Daily observations on futures
returns on a number of currencies, bonds and equity indices over the period from 31-Dec-93
to 01-Jan-07 are stored in the special Microfit file FUTURESDATA.FIT.? In this lesson we
use data over the period from 31-Dec-95 to 01-Jan-07 on four government bond futures:
US ten year Treasury Note, ten year government bonds issued by Germany, UK and Japan,

3See Section 20.1 for further details regarding this data set.
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Figure 10.16: Plot of percent cumulative eigenvalues from principal components analysis

denoted by BU, BG, BE, and BJ, respectively; and five equity index futures in US, UK,
Germany, France and Japan, namely S&P 500, FTSE, DAX, CAC and Nikkei, denoted by
SP, FTSE, DAX, CAC, and, NK, respectively. Load the FUTURESDATA.FIT file into

Microfit, go to the Commands and Data Transformations box and type

SAMPLE 31-Dec-95 01-Jan-07;
CCA BU BG BE BJ & SP FISE DAX CAC NK & C RC")

where C' denotes an intercept, included in the data set. Microfit starts the computation,
and when finished, presents an output screen with the list of non-zero squared canonical
correlations, the eigenvectors, the statistic for testing the independence between the two sets
of variables and the canonical variates. Due to the length of the output, Table 10.10 only
shows part of it. Notice that we have only four canonical variates, which is equal to the
number of variables in the smaller of the two data sets. The chi-squared statistic (equal
to 277.1414) is large and highly significant, indicating that there exists a significant degree
of correlation between bond and equity futures returns. It is worth noting that the first
canonical variate explains over 63 per cent of the canonical correlation between the two sets
of variables.
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Figure 10.17: Plot of the first two principal components

Table 10.10: Canonical correlation analysis of bonds and equity futures

Canonical Correlation Analysis
Estimation period from 29-Dec-95 to 01-Jan-07, 2872 observations.

List of 4 Y-variables included in the canonical correlation analysis:

5 B6 BE B . .
List of 5 X-variables included in the canonical correlation analysis:
SP NK

The above variables have been filtered by the following variable:

C

List of 4 non-zero squared canonical correlations in descending order:
.061168 .027111 .0065116 .0017067

Cumulative Squared Canonical Correlations:
.061168 .0B8279 .094791 .096498

Test statistic for testing the_independence of ¥ and X variables distributed
as chi-squared with (4-1)*(5-1)=12 degrees of freedom = 277.1414[.000]

Percent Cumulative Variances:
63.3882 91.4835 98.2314 100.0000

The number of chosen canonical variates is 4.

List of ¥Y-eigenvectors associated with non-zero canonical correlations:

BU BG BE Bl
CCy_1 .023297 .014986 -.0048772 .053449
CCY_2 .044427 -.016182 .011457 -.040457
CcCcY_3 .025294 -.063072 .0046130 .022176
CCy_4 .033206 .050800 -.10156 -.0048740

List of X-eigenvectors associated with non-zero canonical correlations:

5P FTSE DAX CAC NK
cox_1 -.0014205 -.0025342 .0086860  -.5923E-3 .0099787
ccx_2 .5471E-3 .0050039 .013752  -.0090362  -.0082044
CCx_3 -.0098473  -.0073288 -.0053886 .022001  -.0039208

cCx_4 -.0065311 .026433  -.0056999 -.0088073 .4228E-3
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10.18 Exercises in data processing

10.18.1 Exercise 10.1

Combine the two Special Microfit files UKSTOCK.FIT and USSTOCK.FIT and compute
the rates of change of consumer prices (say USPI and UK PI) in the two countries. Compare
the histograms, estimated autocorrelation functions and spectrums of the two inflation rates.
Comment on their differences and similarities.

10.18.2 Exercise 10.2

Load the file USCON.FIT into Microfit and retrieve the file USCON.EQU into the Command
and Data Transformation box at the data processing stage. Process the content of the editor,
and then plot the scatter of the rate of change of real non-durable consumption on the rate
of change of real disposable income. Using the function RATE(e), compute the average
growth of UK real disposable income over the four sub-periods 1960(1)-1969(4), 1970(1)-
1979(4), 1980(1)-1989(4), and 1990(1)-1994(4), and comment on your results. Repeat these
calculations by computing the quarterly rate of change of real disposable income as first
differences of the logarithm of the real disposable income. Are your conclusions affected by
the method used to compute the average growth rates?

10.18.3 Exercise 10.3

Read in the file UKCON.FIT into Microfit and compute the Pesaran-Timmermann non-
parametric statistic for testing the degree of association between the rates of change of
consumption expenditure and real disposable income. Compare the results of this test with
that based on the correlation coefficient between these variables.

10.18.4 Exercise 10.4

Use the special Microfit file GTEXCH.FIT and the associated BATCH file GTEXCH.BAT to
construct the indices of effective exchange rates and foreign prices for Germany and France.
The weights to be used in the construction of these indices are shown in Table 10.8.



Chapter 11

Lessons in Linear Regression
Analysis

The lessons in this chapter are concerned with estimation, hypothesis testing, and predic-
tion problems in the context of linear regression models. They use a variety of time-series
and cross-sectional observations to show how the options in Microfit can be used to test
for residual serial correlations, heteroscedasticity, non-normal errors, structural change, and
prediction failure, how to carry out estimation of models with serially correlated errors, com-
pute recursive and rolling regressions, test linear and non-linear restrictions on the regression
coefficients, and detect when multicollinearity is likely to be a problem.

11.1 Lesson 11.1: OLS estimation of simple regression models

When you have finished your data transformations you can estimate, test, or forecast using a
variety of estimation methods. You will need to specify your regression equation, the period
over which you wish your regression to be estimated, and, in the case of linear regression, the
number of observations you would like to set aside for predictive failure/structural stability
tests.

In this lesson we shall consider two applications: first we estimate the simple regression
equation (10.2) already estimated in Lesson 10.13 by running a BATCH file containing
formulae and commands. Later we estimate a more complicated regression. Here we show
how the computations can be carried out more simply using the OLS option. The relevant
data are in the special Microfit file UKCON.FIT (see Lessons 10.1 and 10.2). Load this
file (using the ‘Open File’ option in the the File Menu), and in the Commands and Data
Transformations box create an intercept term by typing

INPT =1 O

Click the Univariate Menu button on the main menu bar, choose the Linear Regression Menu
and make sure option 1 Ordinary Least Squares is selected. Type the specifications of the
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into the Start and End fields. Click
reproduced in Table 11.1. Compare these estimates with those in Table 10.6.
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regression equation in the Commands and Data Transformations box:

C INPT Y

Now enter the sample period

1960Q1 1994Q4

Table 11.1: OLS estimates of a simple linear consumption function

Ordinary Least Sguares Estimation
B B i i e i il
Dependent wvariable is C

140 observations used for estimation from 196001 to 199404
E o o i o o i i o

Regressor Coefficient Standard Error T-Ratio[Prob]
INPT 954,1058 513.2711 1.8589[.065]
T .BB823 .0073359 121.0796[.000]
Lo o i o o o o e o o ol ol o o i ol o o o o i ol o o ol o ol o o o o o
R-Squared .99087 R-Bar-Squared .99061
2.E. of Regression 1512.2 F-Stat. Fi1,138) 14660.3[.000]
Mean of Dependent Variable 61143.5 3.D. of Dependent Variable 15602.7
Residual Sum of 3quares 3.15E405 Equation Log-likelihood -12zz .8
hkaike Info. Criterion -1224.6 Jchwarz Bayesian Criterion -1227.6
IW-statiscic 141594

e o o o o o o e o o o ol o o i i o o o ol ol o o ol o ol o o o

Diagnostic Tests
B B i i e i il

* Test Statistics * LY Version * F Version *
Lo o i o o o o e o o ol ol o o i ol o o o o i ol o o ol o ol o o o o o
* * * *
* A:Serial Correlation*CHSQ(4) = S90.9952[.000]*F(4,134) = £2.2049[,000]*
+* * L3 L3
* B:Functional Form *CHIQI1) = 4,.6340[.031] *F ({1, 137) = 4.65399[.032] %
* * * *
* CiNormality *CH3Q2) = J.6022[.165] * Not applicable *
* * * *
* D:iHeteroscedasticicy*CHSQ(1) = 25.5183[.000]*F(1,138) = 30.7e06[.000]*
Ea b o o o o o o o o o ol o o o o o ol o o o o o o o o o o o o o o

b:Lagrange multiplier test of residual serial correlation

B:Rawsey's BRESET test using the square of the fitted wvalues

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted wvalues
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02, and you will be presented with the OLS results

Consider now the estimation of a slightly more complicated consumption function involv-

ing lagged values, namely the ARDL(1, 1) specification in logarithms'

logc; = By + Bologci—1 + B3logy: + Bylogys—1 + ut

(11.1)

'In most applications the log-linear specification performs better than the linear specification. The co-
efficients of the log-linear specification, being elasticities, and hence scale-invariant, are also much easier to
interpret. For a formal test of the linear versus the log-linear specification and vice versa, see Lesson 11.9.
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For empirical analysis it is often more appropriate to consider an ’error correction’ form of
(11.1) given by

Aloger = a1 + asAlogy: + asloger 1 + aglogy: 1 + uy (11.2)

where Alog ¢; = loge;—logei—1, Alogy, = logyi—logyi—1, a1 = By, ag = B3, ag = —(1—[5)
and ay = 84+ 3. To run the regression (11.2) first return to the Process window (click = x

choose =~ in the next menu, then click & ) to generate the following variables:

LC =LOG(C); LY =LOG(Y); INPT =1;
DLC = LC — LO(~1); DLY =LY —LY(-1)  Q

Alternatively, you can either retrieve the equation file UKCON.EQU into the Commands and
Data Transformations box, or run the BATCH file UKCON.BAT. Once the above variables
have been generated, choose Linear Regression Menu from the Univariate Menu and choose
option 1 Ordinary Least Squares for the specification of the regression equation. Type the
dependent variable, DLC, followed by the regressors

DLC INPT DLY LO(-1) LY(-1) Q

Choose the start and end dates 1955(1) and 1992(4) from the drop-down lists. Click = @ .

You can save the variables list for future use in a file using the =& button. Since the

observations 1993(1)-1994(4) are not used up in the estimation, you will now be asked to
specify the number of observations to be used in the predictive failure/structural stability
tests. Type in 8 to choose all the eight remaining observations (notice that the observation
1995(1) for y; is missing) and click # . The results given in Table 11.2 should now appear
on the screen. The diagnostic statistics that follow the estimation results suggest statistically
significant evidence of residual serial correlation and non-normal errors.
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Table 11.2: Error correction form of the ARDL(1,1) model of consumption and income in
the UK

ordinary Least Sguares Estimation
WO HOW R ROW O HE W RO POH RO RO R HOH W O PE RO RO R RO WO R RO W HOR RO W
Dependent variable is DLC
151 ohservations used for estimation from 195502 to 199204

T o R R R T T o o R o e R

Regrassar Coefficient Standard Error T-rRatio[Prob]
INPT L044748 L 040844 1.0055[.275]
DLY L 27680 L 062298 4.4433[.000]
LCg-10 -. 072844 V042588 -1.7105[.088]
Ly¥(-15 L068540 040599 1.6882[.09z2]
e o e R R Tl R ol el o R Tl
R-Sguared L1925 R-Bar-Sguared L10131
S.E. of Regression ,01158%  F-stat. F(3,1470 6.6366[. 000]
mean of Dependent variable 0081324 5.0, of Dependent wvariahle L012225
residual sum of sSquares .01%743  Equation Log-1ikelihood 460, 8790
akaike Info. Criterion 456.8790  schwarz Bayesian Criteriaon 450,8445
DW-statistic 2.3424

T R R R T T T ol O

Dlagnostic Tests
B T R T R L L R d L L T T R TR R R e e

W Test statistics * LM version W F version W
R R BB B R R R BB R R W

w W W
: A:serial CDrre]atiDn:CHSQC4) = 13.5294[.009]:FC4,143) = 3.5184[.009]:
& B:Functional Farm :CHSQCL) = .01?5?0[.895]:F(1,146) = .016990[.896]:
: CiMormality :CHSQ(2) = 62.5209[.000]: Mot applicable :
: D:Heteroscedasticity:CHSQ(lj = 1.1656[.280]:F(1,149) = 1.1591[.283]:
: E:Predictive FaiWure:CHSQCB) = .84989[1.00]:F(8,14?) = .10624[.999]:
* F:Chow Test WCHSO(4Y = .27225[.992]%F(4,151) = . 068063[.001]%

e e R R R Tl R ol

AiLagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted walues

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values
E:A test of adeguacy of Eredictions (Chow's second test)

F

:Test of stability of the regression coefficients

To leave the OLS result screen click  x . You will now be presented with the Post

Close

Regression Menu (see Section 6.20), giving a number of options to further analyse your
regression results. For example, suppose you wish to test the hypothesis that in (11.2)
as = a4 = 0. Choose option 2 in this menu and then option 5 in the Hypothesis Testing
Menu (see Section 6.23) that follows, and after clearing the content of the box editor if
necessary (by clicking the = = button), type

LC(-1) LY(-1) ' Q

The results in Table 11.3 should now appear on the screen.
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Table 11.3: Statistical significance of the level variables in the ARDL(1,1) model of income
and consumption in the UK

Variable Deleticn Test (OLS case)
EEd EEd

Dependent variable is DLC
List of the wariables deleted from the regression:

LC({-1) LY ({-1)

151 ckservations used for estimation from 1955Q2 to 199204

** **
Regressor Coefficient Standard Error T-Ratio[Prob]
INET .0045088 .0010256 4.3962[.000]
OLY .23859 .058154 4.1026[.000]
£ £

Joint test of zero restrictions on the coefficients of deleted variables:

Lagrange Multiplier Statistic CHSQ{2)= 2.9891[.224]
Likelihood Ratio Statistic CHSQ(2)= 3.0191[.221]
F Statistic F{2,147)= 1.4844[.230]
£ £

The various statistics for testing the joint restrictions ag = aqy = 0 are given at the lower
end of Table 11.3. For example, the likelihood ratio (LR) statistic is 3.0191. Notice that the
critical value of this test depends on whether or not logy, is integrated. See Pesaran, Shin,
and Smith (2000), and Lesson 16.5 for further details. However, in the present application,
the value of the LR statistic is small enough for us to safely conclude that the hypothesis
that ag = a4 = 0 cannot be rejected. Therefore, the ARDL(1, 1) specification in (11.1) does
not provide a stable long relationship between real disposable income and consumption in
the UK.

To see a plot of the actual and fitted values choose option 3 in the Post Regression Menu,
and when presented with the Display/Save Residuals and Fitted Values Menu (see Section
6.21) click  « . You should see Figure 11.1 on the screen.

You can save this figure in a variety of formats by using @M (see Section 5.2 for further

details). Figure 11.1 clearly shows that none of the sharp falls in the consumption expenditure
are explained by the simple ARDL(1,1) model in (11.1).

You can also compute static forecasts of Alogc; over the period 1993(1)-1994(4). Click

x to leave Figure 11.1, then click =, and choose option 8 in the Post Regression

Menu. You will be asked to select the forecast interval, by entering the initial and the

final forecast period. Click to obtain forecasts of Alogc; together with a number of

summary statistics. If you then press the x button, you will be presented with a plot of
actual and forecast values of Alogc;. You can also obtain this graph by choosing option 9
in the Post Regression Menu (see Figure 11.2).

Note that the forecasts generated in the present application are ‘static’ in the sense
that for every quarter in the period 1993(1)-1994(4), actual values of logc;—1 are used in
forecasting log ¢;. (See Section 21.26.1 for further details).

Note that in the above example, although the estimation period is specified as 1955(1)-
1992(4), because of the missing initial values for the lagged variables logy;—1 and logc;_1,
the program automatically adjusts the sample period to take account of these missing ob-
servations and selects 1955(2)-1992(4) as the estimation period.
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Figure 11.1: Plot of actual and fitted values of Alogc,

11.2 Lesson 11.2: Two alternative methods of testing linear
restrictions

This lesson describes two different methods of testing the hypothesis of constant returns to
scale in the context of a Cobb-Douglas (CD) production function.
Consider the CD production function

Y, = AKPLPe™, t=1,2,...n (11.3)

where Y; = Output, K; = Capital Stock, L; = Employment.

The unknown parameters A, a and § are fixed, and u;s are serially uncorrelated distur-
bances with zero means and a constant variance. We also assume that u;s are distributed
independently of K; and L;. Notice that for simplicity of exposition we have not allowed for
technical progress in (11.3). The constant returns to scale hypothesis postulates that pro-
portionate changes in inputs (K; and L) result in the same proportionate change in output.
For example, doubling K; and L; should, under the constant returns to scale hypothesis,
lead also to the doubling of Y;. This imposes the following parametric restriction on (11.3):

H(): Oz-l—,@:l
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Figure 11.2: Plot of actual and single-equation static forecast(s)

which we consider as the null hypothesis and derive an appropriate test of it against the
two-sided alternative:

H1 : o+ ,3 75 1
In order to implement the test of Hy against H; we first take logarithms of both sides of
(11.3), which yields the log-linear specification
LY} =a+ OLLKt + ﬂLLt + U (114)
where
LY, =log(Y;), LK;=log(K:), LL;=1log(Ly)

and a = log (A4).

It is now possible to obtain estimates of @ and § by running OLS regressions of LY; on
LK and LL; (for t = 1,2,...,n), including an intercept in the regression. Denote the OLS
estimates of a and 8 by & and 3, and define a new parameter, J, as

S=a+p-1 (11.5)
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The hypothesis a + 8 = 1 against o 4+ 3 # 1 can now be written equivalently as

Ho: 6:0
H12 (5750

We now consider two alternative methods of testing § = 0: a direct method and a regression
method.

Direct method of testing § =0

This method directly focuses on the OLS estimates of 4, namely 0= d+Bf 1, and examines
whether this estimate is significantly different from zero. For this we need an estimate of the
variance of 5. We have

V(3) = V(@) + V(B) +2Cov (a,5)

where V() and Cov(-) stand for the variance and the covariance operators, respectively. The
OLS estimator of V() is given by

V() =V(a)+ V(B) + 2Cov(a, B)

where ~ denotes the estimate. The relevant test-statistic for testing 6 = 0 against ¢ # 0 is
now given by

’ ) a+p—1
S = —— pu— — —— —— —
VPG V(@) + P(B) +2Cov(a, B)

and under § = 0, has a t-distribution with n — 3 degrees of freedom.

(11.6)

The regression method

This method starts with (11.4) and replaces § (or «) in terms of § and « (or 3). Using (11.5)
we have
B=0—a+1

Substituting this in (11.4) for 5 now yields
LY;L - LLt =a+ Oé(LKt - LLt) + 6LLt + Ut (117)

or

Zt = CL+C¥Wt+(5LLt+’U¢ (118)

where Zt = log(Yt/Lt) == LY}/ — LLt and Wt = log(Kt/Lt) = LKt — LLt Atestof 6 =0
can now be carried out by first regressing Z; on W; and LL; (including an intercept term),
and then carrying out the usual ¢-test on the coefficient of LL; in (11.8). The t-ratio of § in
(11.7) will be identical to t; defined by (11.6).

We now apply the two methods discussed above to the historical data on Y, K, and L
used originally by Cobb and Douglas (1928). The relevant data are stored in the special
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Microfit file CD.FIT, and covers the period 1899-1922. Read this file (using the Open File

option in the File Menu), and in the Commands and Data Transformations box type

LY = LOG(Y); LL=LOG(L); INPT=1;
Z = LOG(Y/L); W =LOG(K/L)

to generate the variables LY, LL, Z and W defined above. Then move to the Univariate
Menu on the main menu bar and choose the Ordinary Least Squares option from the Linear

Regression Menu. Type
LY INPT LK LL

and click @ . You should see the OLS estimates on the screen (see Table 11.4).

RUN

Table 11.4: Estimates of the log-linear Cobb-Douglas production function

Ordinary Least Sqguares Estimation
e e i e e i i e e e e i e e e e e e i e e i e e e e e e e e e e e i e
Dependent wariable is LY

24 obzervations used for estimation from 1899 to 1922
ol o o o o o o o o o o o a  a o o o

Regressor Coefficient Standard Error T-FRatio[Prak]
INPT —-.17731 43429 -.40827[.687]
LE .23305 063530 3.6654[.001]
LL .B80728 . 14508 5.5645([.000]
oo o oo o i o o o o o ol o o ol i o o o o ol o o o o o o o o o o o o
R-Squared 95742 R-Bar-Squared L95337
3.E. of Regression .058135 F-3tat. Fiz,z1) Z36.1z19[.000]
Mean of Dependent VWarishle 5.0773 3.D. of Dependent Varisble LZ2B923
Residual Sum of Sguares 070982 Egquation Log-likelihood 35.8261
hAkaike Info. Criterion JZ.8261 Schwarz Bayesian Criterion 31.0590
DW-statistic 1.5235

oo o oo o i o o o o o ol o o ol i o o o o ol o o o o o o o o o o o o

Diaghostic Tests
i o o o o e o o o  a o o  a

- Test Ztatistics LM Version - F Version -
e e i e e i i e e e e i e e e e e e i e e i e e e e e e e e e e e i e
* * * L3
* A:Serial Correlation*CHICQ(1) = .35950[.549] *F(1,20) = .30414[.587] *
* * * *
* B:Functional Form *CH3Q(1) = 2.1448[.143]1 *Fi1,20) = 1.9827[.177] %
* * * *
* CriMNormality FCHIEQ(Z) = 1.3613[.506] % Not applicable i
* * * *
% D:Heteroscedasticity®CHIQ(1)1 = 2.5774[.108] *F(1,22) = Z.6469[.118]
e e i e e i i e e e e i e e e e e e i e e i e e e e e e e e e e e i e

L:lagrange multiplier test of residual serial correlation

E:FRamzsey's BESET test using the =zguare of the fitted wvalues

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regres=zion of squared residuals on sgquared fitted wvalues

Click =~ x  to move to the Post Regression Menu and choose option 4 and then option 1

Close

in the Standard, White and Newey-West Adjusted Variance Menu. The following estimates
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~\/
of the variance covariance matrix of (éz, ,B) should appear on the screen:

Via) Cov (045) _[ 0.004036  —0.0083831
Cov (a,8)  V(B) ~0.0083831  0.021047

Using the above OLS estimates of o and (3 given in Table 11.4 (namely & = 0.23305 and
B =0.80728 ) and the above results in (11.6) gives

o 0.23305 + 0.80728 — 1
®,/0.004036 4 0.021047 — 2(0.0083831)

= 0.442 (11.9)

Comparing t3 = 0.442 and the 5 per cent critical value of the ¢-distribution with 7'—3 = 24—
3 = 21 degrees of freedom (which is equal to 2.080), it is clear that since t5 = 0.442 < 2.080,
then the hypothesis § = 0 or v + 8 = 1 cannot be rejected at the 5 per cent level.

To implement the regression approach you need to return to the Commands and Data
Transformations box to edit the regression equation. Click = = to clear the box editor and
then type

Z INPT W LL RCUD

You should see the results given in Table 11.5 on your screen.
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Table 11.5: Log-linear estimates of the Cobb-Douglas production function in per capita

terms

Ordinary Least Squares Estimation
oo o o o o ol ol o o o ol ol ol o o o o o i e o o o o
Dependent variable iz Z

24 ogbservations used for estimation from 1895 to 1922
o o o ol o o ol ol o o o ol ol o o i o o o o ol e o o o o

Regressor Coefficient Standsard Error T-Ratio[Prok]
INPT —-. 17731 L434209 -.40827[.687]
w .23305 LOE3530 3.66584[.001]
LL .040332 .091197 L4225 663]
R B e e S i i e e i i e i i i e e i i i
R-Soquared LE3ETE B-Bar-Scquared LB0215
3.E. of Regression .058138 F-Stat. Fiz,21) 158.4052 [.000]
Nean of Dependent Variahle 11461 3.D. of Dependent Variahle 092173
Residual Sum of S3gquares 070952 Equation Log-likelihood 35.8261
Akaike Info. Criterion 3i.g2al1 Jechwarz Bayesian Criterion 31.0580
DW-statistic 1.5235

o o o ol o o ol ol o o o ol ol o o i o o o o ol e o o o o

Diagnostic Tests
oo o o o o ol ol o o o ol ol ol o o o o o i e o o o o

* Test Statistics * LM Version * F Wersion *
R o o o o o o o o o ol o o o o o o o o o o o o o o o o o R o o
* * * *
* AiSerial Correlation*CH3Q(1) = L35950[.549]1*F(1,20) = L30414[.587]*
* * * *
* B:Functional Form *CH3Q{1) = .Z608E-5[.299]*F(1,20) = .2174E-5[.999]*
* * * *
* C:iMNormality *CHIQ(2) = 1.3613[.508] % Not applicskle *
* * * *
* DiHeteroscedasticity*CH3Q(1) = 5.8809[.003] *F(1,22) = 1z,9zz27[.002]*
b i o

L:Lagrange multiplier test of residual serial correlation

B:Ramsey's BEZET test using the square of the fitted walues

C:Based on a test of skewness and kurtosis of residuals

D:EBased on the regression of squared residuals on sgquared fitted wvalues

The t-ratio of the coefficient of the LL variable in this regression is equal to 0.442 which
is identical to t3 as computed in (11.9).
It is worth noting that the above estimates of o and 5, which have played a historically
important role in the literature, are very ‘fragile’, in the sense that they are highly sensitive
to the sample period chosen in estimating them. For example, estimating the model (given
in (11.4)) over the period 1899-1920 (dropping the observations for the last two years) yields

& = 0.0807(0.1099) and 8 = 1.0935(0.2241)! The figures in brackets are standard errors.

11.3 Lesson 11.3: Estimation of long-run effects and mean

lags

In this lesson we show how option 5 in the Post Regression Menu (see Section 6.20) can be
used to estimate long-run effects, mean lags, and other functions of the underlying parameters
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of a regression model, together with their standard errors.
As an example, consider the following ARDL(1,1) model relating capital expenditure in
the US manufacturing sector (Y;) to capital appropriations (X;)

Yi = Bo + B1Yi-1 + B Xt + B3 Xe1 + wy (11.10)

Assuming that |8,] < 1, we have

__Bo B2+ B3l 1
- () ¥ ()

or

Y; =aop+0(L)X; + (1 — ByL) Ly

where L is the lag-operator such that LY; = Y;_1, and (L) is the distributed lag function
operating on X;. The long-run response of Y; to a unit change in X; is given by

(11.11)

The mean lag of response of Y; to a unit change in X} is defined by

o0

1 i ,
ML= o) > i = 6'(1)/6(1)

i=1

where 6'(1) denotes the first derivative of §(L) with respect to L, evaluated at L = 1. Tt is
now easily seen that’

ML = 0,(1) _ /81182 + 53 (1112)

0(1)  (1—=51)(By+ B3)
Suppose now you wish to compute the estimates of LR and M L and their standard errors
using observations in the special Microfit file ALMON.FIT. This file contains quarterly
observations on Y; and X; over the period 1953(1)-1967(4), which is an extended version of
the data originally analysed by Almon (1965).
Choose option 1 in the Single Equation Estimation Menu (see Section 6.4) and type

Y INPTY(-1) X X(-1) @

You should now see the OLS results on the screen. Click © x = to move to the Post Regression

Menu and choose option 5 in this menu. You will be presented with a box editor. Type the
two functional relations (11.11) and (11.12) in the following manner:

LR = (A3 + A4)/(1 — A2);
ML = (A2 « A3+ A4)/((1 — A2) x (A3 + Ad))  ©

RUN

?For more details see Dhrymes (1971) or Greene (2002), Chapter 19. Note that the concept of mean lag
is meaningful if all the lag coefficients, 0;, have the same signs.



CHAPTER 11. LESSONS IN LINEAR REGRESSION ANALYSIS 211

Notice that Microfit assigns the coefficients A1, A2, A3, and A4 to the regressors IN PT,
Y(—1),X, and X(—1), respectively.
The results in Table 11.6 should now appear on the screen.

Table 11.6: Estimates of the long-run coefficient and mean lag for the relationship between
capital expenditures and capital appropriations in US manufacturing

hAnalysis of Function(s) of Parameter (s3]
i i S i i e i e i i e e e i
Based on OL3 regression of ¥ on:
INPT Ti-1) b4 £(-1)
59 ohservations used for estimation frowm 195302 to 196704
R o o o o o o o o o o o o o o o ol o o ol o o o o o o o o o o o o
Coefficients L1 to A4 are assigned to the above regressors respectively.
List of specified functional relationshipi(s):
LE=[A3+A4)/ (1-A2) ;ML= (A2 *A3+A4)/ [ (1-AZ2) * [A3+A4)

o o i o o o o o o o ol o ol o i ol o ol ol o o ol o o ol o o o o o o

Function Eztimate 3tandard Error T-Ratioc[Proh]
LR 1.0383 .055739 15.6287[.000]
ML 4,7030 .52036 9.0381[.000]

i i S i i e i e i i e e e i

Estimated Variance Matrix of the Function(s) of the Parameters

E R o i i i i

LR HL
LR L0031068 017405
ML 017405 27077

E R o i i i i

According to these results, the hypothesis of a unit long-run coefficient on X cannot be
rejected. The mean lag is also estimated with a reasonable degree of accuracy, and suggests a
mean lag of 4.7 quarters between changes in capital appropriations and capital expenditures
in US manufacturing. Table 11.6 also reports an estimate of the covariance matrix of the
functions of parameters LR and M L.

11.4 Lesson 11.4: The multicollinearity problem

Multicollinearity is commonly attributed to situations in which there is a high degree of
intercorrelation among the explanatory variables in a multivariate regression equation. Mul-
ticollinearity is particularly prevalent in the case of time-series data where there often exists
the same common trend in two or more regressors in the regression equation. As a simple
example consider the model

Yyt = B2 + PBoTo + (11.13)
and assume for simplicity that (x14,z9;) have a bivariate distribution with the correlation

1
coefficient, p, that is, p = Cov (214, x2t) / {V (21)V (z2¢)} 2. It is clear that as p approaches
unity, separate estimation of the slope coefficients 3, and 3, becomes more and more prob-
lematic. Multicollinearity will be a problem if the coefficients of x1; and zo; are jointly
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statistically significant but neither are statistically significant when tested individually. Ex-
pressed differently, multicollinearity will be a problem when the hypotheses 5; = 0 and
B9 = 0 cannot be rejected when tested separately, while the hypothesis ; = 85 = 0, is re-
jected when tested jointly. This clearly happens when x14 (or z9;) is an exact linear function
of xg; (or x14). In this case, zo; = vy, and (11.13) reduces to the simple regression equation

Yt :a+(61 +,32’y)a:1t+ut (1114)

and it is only possible to estimate 3, 4+ v3,. Neither 5, nor 5 can be estimated (or tested)
separately. This is the case of ‘perfectly multicollinearity’ and arises out of faulty specification
of the regression equation. One such example is when four seasonal dummies are included
in a quarterly regression model that already contains an intercept term.

The multicollinearity problem is also closely related to the problem of low power when
separately testing hypotheses involving the regression coefficients. It is worth noting that no
matter how large the correlation coefficient between x1; and z9¢, so long as it is not exactly
equal to £1, a test of 51 = 0 (or B, = 0) will have the correct size, assuming that all the
other classical normal assumptions are satisfied. The high degree of correlation between x4
and x9; causes the power of the test to be low, and as a result we may end up not rejecting
the null hypothesis that 8; = 0 even if it is false.?

To demonstrate the multicollinearity problem and its relation to the problem of low
power, consider the following (simulated) model

1 N(O,l)

o = x1 + 0.15v

v ~ N(0,1)
y=a+ 21+ Byra +u
u ~ N(0,1)

with o = 8, = B9 = 1, and where 21, v and u are generated as independent standardized
normal variates using respectively the ‘seed’ of 123, 321 and 4321 in the normal random
generator (see the function NORMAL in Section 4.3.14). To generate x1,x2 and y choose
Input Data from the Keyboard from the File Menu. In the New data set dialogue choose
undated frequency, type 500 for the number of observations, and 0 for the number of variables

and then click =« . Type the following formulae in the box editor that appears on the
screen to generate the variables Y, X1 and X2,each having 500 observations:*
SAMPLE 1 500;

X1=NORMAL(123); V =NORMAL(321);

U =NORMAL(4321);

X2=X14+0.15%V; Y=14+X1+X2+U; INPT =1 0

3The power of a test is defined as the probability of rejecting the null hypothesis when it is false.
4 Alternatively, you can retrieve the equation file MULTL.EQU into the Commands and Data Transforma-

tions box and then click = @  to process.
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Then move to the Single Equation Estimation Menu (the Univariate Menu on the main menu
bar), choose option 1 and run the OLS regression of Y on INPT, X1 and X2 using only
the first 50 observations. You should see the results in Table 11.7 on the screen.

Table 11.7: An example of a multicollinear regression based on simulated data

ordinary Least sguares Estimation
R e O e R Rl R R T T Rl
pependent variable is v

50 ohservations used for estimation from 1 to 50
AR R TR R T R R PR T TR R T R T T R T R A R O R R R R R R R PR U R R R T R R R R R R R R R PR R R R PR M T TR PR T R T R

REQressor coefficient standard Error T-rRatio[Prok]
INPT LG0469 L120094 6.9625[.000]
pal 1.0850 1.0403 1.0526[. 298]
w2 L8791 1.0200 .85483[.3067]
R e O R AR Rl R R R
R-Sguared .B4582  R-Bar-sSguared LB4343
S.E. of Regression . 88503 F-Stat. F(2,47) 132.9788[. 000]
Maan of Dependent variahle 1.4024  5.0. of Dependent variahle 2. 2468
residual sum of Sguares 37.1474  Eguation Log-1ikelihood -63. 5187
akaike Info. criterion -66, 5187  Schwarz Bayesian Criterion -65. 35868
DW-statistic 2.0705

HH W R N H T H AR H AR H RN

Dlagnostic Tests
B R R R R R R R R R R

i Test Statistics LM version v F version i
R B B BB B B R R W R R R R R R W
E A:serial CDrreWatiDnECHSQ(l) = .3?159[.542]§F(1,46) = .34442[.560]E
= B:Functional Form :CHSQ(I) = .043?43[.834]:F(1,46) = .0402?9[.842]:
: Cihormality :CHSQ(2) = .21521[.898]: Mot applicahle :
: D:Heteroscedasticity:CHSQ(l) g .85284[.356]:F(1,48) £ .83293[.366]:
: E:Predictive Fai]ure:CHSQ(450]= 528.4668[.006]:F(450,4?) = 1.1?44[.253]:
w Fichow Test WCHSOCE) = . 44144[.932]%F(3,494) = .14715[.932]%

R e e e o R R R TR Rl R T

rLagrange multiplier test of residual serial correlation

tRamsey's RESET test using the sguare of the fitted values

:Based on a test of skewness and kurtosis of residuals

:Based on the regression of sguared residuals on squared fitted walues
1A test of adequacy of Eredictions (Chow's second test]

:Test of stability of the reoression coefficients

Mo mB

The value of F statistics F(2,47) for testing the joint hypothesis Hy : 81 = 85 = 0,
against H{ : 3, # 0,and/or By # 0 is equal to 132.9788, which is well above the 95 per
cent critical value of the F-distribution with 2 and 47 degrees of freedom, and strongly
rejects the joint hypothesis that 8; = 85 = 0. The t-statistics for the separate induced tests
of Hl : By = 0, against Hf : 8; # 0, and of HJ! : By, = 0, against HI! : B, # 0, are
1.0526 and 0.8548, respectively. Neither are statistically significant and do not lead to the
rejection of 8; = 0 and B, = 0 when these restrictions are considered separately. The joint
hypothesis that giand (5 are both equal to zero is strongly rejected, but neither of the
hypotheses that 5, and [, are separately equal to zero can be rejected. This is clearly a
multicollinearity problem. The sample correlation coefficient of x1 and xo computed using
the first 50 observations is equal to 0.99316, which is apparently too high given the sample
size and the fit of the underlying equation, for the ; and (3, coefficients to be estimated
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separately with any degree of precision. In short, the separate induced tests lack the necessary
power to allow rejection of 8; = 0 and/or 35 = 0, separately.

The relationship between the F' statistic used to test the hypothesis 5; = 85 = 0 jointly,
and the t-statistics used to test §; = 0 and (85 = 0 separately, can also be obtained theoret-
ically, and is given by

43+ 2ptats

2177
where p is the sample correlation coefficient between z1; and x9;.> This relationship clearly
shows that even for small values of ¢; and t5 it is possible to obtain quite large values of F
so long as p happens to be close enough to 1.

In the case of regression models with more than two regressors the detection of the
multicollinearity problem becomes even more complicated. For example, when there are three
coefficients, namely testing them separately: 8, =0, 89 = 0, 83 = 0, in pairs: 5; = 85 = 0,
By = B3 =0, B; = B3 =0, and jointly: 8; = By = B3 = 0. Only in the case where the results
of separate induced tests, the ‘pairs’ tests and the joint test are free from contradictions can
we be confident that the multicollinearity is not a problem.

There are a number of measures in the literature that purport to detect and measure the
seriousness of the multicollinearity problem. These measures include the ‘condition number’
defined as the square root of the largest to the smallest eigenvalue of the matrix X'X,
and the variance-inflation factor, defined as (1 — R?) for the 3; coefficient where R? is the
squared multiple correlation coefficient of the regression of x; on the other regressors in the
regression equation. Both these measures only examine the intercorrelation between the
regressors, and at best present a partial picture of the multicollinearity problem, and can
often ‘lead’ to misleading conclusions.

To illustrate the main source of the multicollinearity problem in the present application,
return to the simulation exercise, and use all the 500 observations (instead of the first 50
observations) in computing the regression of y on x; and z2. The results are

(11.15)

y= 09307 + 11045 zy + 0931389 +d¢  t=1,2,..,500
(0.0428)  (0.28343) (0.27981)

R? = (.8333, o = 0.95664, F5 497 = 1242.3

As compared with the estimates based on the first 50 observations (see Table 11.7), these
estimates have much smaller standard errors, and using the 95 per cent significance level we
arrive at the same conclusion whether we test 8; = 0 and 85 = 0 separately or jointly. Yet,
the sample correlation coefficient between z1; and z9; estimated over the 500 observations is
equal to 0.9895, which is only marginally smaller than the estimate obtained for the first 50
observations. By increasing the sample size from 50 to 500 we have increased the precision
with which 8, and (5 are estimated and the power of testing 8; = 0 and 85 = 0, both
separately and jointly.

In the simulation exercise we obtained t; = 1.0526, t2 = 0.8548 and p = 0.99316. Using these estimates
in (11.15) yields F = 132.9791, which is only slightly different from the F statistic reported in Table 11.7.
The difference between the two values is due to the rounding of errors.
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The above illustration also points to the fact that the main cause of the multicollinearity
problem is a lack of adequate observations (or information), and hence the imprecision with
which the parameters of interest are estimated. Assuming that the regression model under
consideration is correctly specified, the appropriate solution to the problem is to increase the
information on the basis of which the regression is estimated. The new information could be
either in the form of additional observations on y, x1 and x9, or it could be some a priori
information concerning the parameters. The latter fits well with the Bayesian approach, but
is difficult to accommodate within the classical framework. There are also other approaches
suggested in the literature such as the ridge regression and the principle component regres-
sion, to deal with the multicollinearity problem. A review of these approaches can be found
in Judge, Griffiths, Hill, Liitkepohl, and Lee (1985).

11.5 Lesson 11.5: Testing common factor restrictions

Consider the following ARDL(1,1,1) model relating logarithm of real consumption expendi-
tures (logc) to the logarithm of the real disposable income (logy;) and the rate of inflation
(IT;) in the UK:

(1 =pB1L)loger = By + (Bg + B3L)logy: + (B4 + B5 L)y + uy (11.16)

where L represents the backward lag operator. The idea of testing for common factor re-
strictions was originally proposed by Sargan (1964). The test explores the possibility of
simplifying the dynamics of (11.16) by testing the hypothesis that the lag polynomials op-
erating on log ¢, logy:, and 1I; have the same factor in common. The procedure can also
be viewed as a method of testing the dynamics in the deterministic part of the regression
model against the dynamics in the stochastic part (see Hendry, Pagan, and Sargan (1984),
Section 2.6). In the case of the present example, the common factor restrictions are’

B1By+ B3 =0
ool (1117

A test of these restrictions can be readily carried out using Microfit. Here we assume that
(11.16) is to be estimated by the OLS method, but the procedure outlined below is equally
applicable if (11.16) is estimated by the I'V method.

We use quarterly observations in the special Microfit file UKCON.FIT to carry out the
test. First read the UKCON.FIT and make sure that the variables LC = log ¢, LY = logys,
P, =CNOM/C and PI = log(P;/P;_1) are on the workspace. To generate these variables
go to the Data Processing Stage and retrieve the file UKCON.EQU, or equivalently run the
BATCH file UKCON.BAT. (See also Lessons 10.1 and 10.2).

Choose option 1 in the Single Equation Estimation Menu (the Univariate Menu on the
main menu bar: Section 6.4) and type

LC INPT LC(-1) LY LY(-1) PI PI(-1) @

5To derive the restrictions in (11.17) note that for the lag polynomials 1 — 3, L and 3, + 35 L to have the
same factor in common, it is necessary that 87, the root of 1— 3, L = 0, should also be a root of 3, +83L =0
and 8, + 8L = 0.
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You should see the OLS regression results on the screen. Move to the Post Regression Menu
and choose option 2 (see Section 6.20). This takes you to the Hypothesis Testing Menu (see
Section 6.23). Now choose option 7 in this menu to carry out a Wald test of the common
factor restrictions in (11.17). In the box editor that appears on the screen type

A2x A3+ A4=0; A2x A5+ A6=0

You should now see the test results shown in Table 11.8.

Table 11.8: Testing for common factor restrictions

WMald test of restriction(=s) imposed on parameters
o o e e i o ol o e e O el ol e o e e o

Based on OLS regression of LC on:

INPT LZi-1) LY LY (-1} PI

PI(-1)

155 observations used for estimation from 1595503 to 199404

e o e e e e e e e e e e i e e e i e e e e e e i e e e i e i e e i e i e e e e o e e

Coefficients Al to A6 are azssigned to the above regressSors respectively.

List of restriction(s) for the Wald test:

RZ*A3+A4=0; AZ¥AS+AG=0

o o e o o e e e o o o o o o o

Wald Statistic CHISQ(2)= 22.06l12[.000]
R R R R R R Y

The Wald statistic for testing the two non-linear restrictions in (11.17) is equal to 22.06,
which implies a strong rejection of the common factor restrictions. It is, however, important
to note that the Wald statistic is sensitive to the way the non-linear restrictions are specified.
See, for example, Gregory and Veall (1985) and Gregory and Veall (1987). See also Exercise
11.3.

11.6 Lesson 11.6: Estimation of regression models with seri-
ally correlated errors

Suppose now you wish to estimate the saving equation
st = o + a18i—1 + aaAlogy, + ag (I — IIY ) + wy (11.18)

using UK quarterly observations in the special Microfit file UKCON.FIT

St saving rate (the variable S on the workspace)

Alogy; the rate of change of real disposable income (DLY)

I, Actual rate of inflation (PI)

I1¢ Adaptive expectations of II; as computed in Lesson 10.12

subject to the AR(1) error specification by the Cochrane-Orcutt method

U = P1U—1 + € (1119)
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Equation (11.18) is a modified version of the saving function estimated by Deaton (1977).7

To carry out the computations for the above estimation problem first go through the
steps described in Lesson 10.12 to generate the variable PIE with A = 0.8 in your workspace.
Alternatively, read UKCON.FIT and then retrieve the file UKCON.EQU into the Commands
and Data Transformations box. If you now click = @ the variables S, DLY', PI and INPT

will be created on the workspace. Click xoto clear the editor and then type

LAMBDA=0.8; BATCH PIF Q

to generate the inflation expectations variable PIE. Then create the unanticipated inflation
variable II; — IIf by typing
DPIE =PI - PIFE O

Now move to the Single Equation Estimation Menu (the Univariate Menu), and choose
option 4 from the Linear Regression Menu (see Section 6.9). Type

S INPT S(-1) DLY DPIE

and choose the start and end dates 1960(1) and 1994(4). Click = @ and, when prompted,

type 1 and press . You will now be presented with a menu for initializing the estimation

process (see Section 6.13.1). Choose option 3 to see the plot of the concentrated log-likelihood
function, showing the log-likelihood profile for different values of p, in the range [—0.99, 0.99]
(see Figure 11.3).

As you can see, the log-likelihood function is bimodal for a positive and a negative value of
p1- The global maximum of the log-likelihood is achieved for p; < 0. Bimodal log-likelihood
functions frequently arise in estimation of models with lagged dependent variables subject to
a serially correlated error process, particularly in cases where the regressors show a relatively
low degree of variability. The bimodal problem is sure to arise if apart from the lagged values
of the dependent there are no other regressors in the regression equation.

To compute the ML estimates click > to return to the menu for initialization of the
unknown parameter p;. Choose option 2 and type —0.2 as the initial estimate for p; and click

. The results in Table 11.9 should now appear on the screen. The iterative algorithm

oK

has converged to the correct estimate of p; (i.e. p; = —0.22838) and refers to the global
maximum of the log-likelihood function given by LL(p; = —0.22838) = 445.3720. Notice also
that the estimation results are reasonably robust to the choice of the initial estimates chosen
for py, so long as negative or small positive values are chosen. However, if the iterations are
started from ng) = 0.5 or higher, the results in Table 11.10 will be obtained. The iterative
process has now converged to p; = 0.81487 with the maximized value for the log-likelihood
function given by LL(p; = 0.81487) = 444.3055, which is a local maximum. (Recall from
Table 11.9 that LL(p; = —0.22838) = 445.3720). This example clearly shows the importance
of experimenting with different initial values when estimating regression models (particularly

"However, note that the saving function estimated by Deaton (1977) assumes that the inflation expectations
II{ are time invariant.
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Figure 11.3: Log-likelihood profile for different values of p;

when they contain lagged dependent variables) with serially correlated errors. Suppose now
you wish to estimate equation (11.18) subject to the following AR(4) error process with zero
restrictions on two of its coefficients:

Up = PrUt—1 T PgUt—4 + €

Return to the Single Equation Estimation window via the Backtracking Menu and choose
option 5 in the Liner Regression estimation Menu, run the same calculation, and when
prompted, type

Lo

Choose option 1 to use the initial estimate supplied by the program. The results in Table
11.11 should now appear on the screen.
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Table 11.9: Cochrane-Orcutt estimates of a UK saving function

Cochrane-Orcutt Method AR (1) converged after 3 iterations
E i i i o i
Dependent wariable is 3

140 observations used for estimation from 196001 to 199404
i B B i o i

Regressor Coefficient Standard Error T-Ratio[Prohk]
INPT —-.0032323 0041204 —. 78448 .434)]
30-1) L599250 .040347 24.5989[.000]
LLY LBELSE 060082 11.0111[.000]
LPIE .31032 093382 3.3231[.001]
e o o o o o o o e o o ol ol o i o o o o ol o o ol o ol o o o ol
BE-Squared LTEET3 BE-Bar-Squared L3977
2.E. of Regression 010004 F-Stat. Fid4,134) 110.1102[.000]
Mean of Dependent Variable 096441 3.D. of Dependent Variable 020696
RBesidual Sum of 3gquares 015412 Equation Log-likelihood 445.3720
Akaike Info. Criterion 440,3720 Schyarz Bayesian Criterion 433.0179
LW-statistic 1.9615

e o o o o o ol o e o o ol ol o i o o o o ol o o ol o ol o o o ol o

Parameters of the Autoregressive Error Specification
e o o i o o o o o o e o o ol ol o i o o o o ol o o ol o o o o ol

U= -.2283B*U(-1]+E
[ -2.5135)[.013]

T-ratio(=s)] bhased on asymptotic standard errors in hrackets
Lo o o o o i e o o ol ol o i o o o o ol o o ol o o o ol o o ol

Table 11.10: An example in which the Cochrane-Orcutt method has converged to a local
maximum

Cochrane-Crcutt Method AR(1) converged after 7 iterations
e e e i i i i i i i e

Dependent variable is 3

140 observations used for estimation from 196001 to 199404
ol el ol Ol O el ol ol O ol O el el i O el el ol ol ol O el ol i ol e

Regressor Coefficient Standard Error T-Ratio[Prob]
INFT L075353 00958576 7.6441[.000]
2(-1) 19980 L0543585 2.3689[.019]
LLY L5E758 Lo5zaa7 10,5388 ([ .000]
LPIE L4E5E522 .10271 4.4322[.000]
Lo o o o ol ol o i o o o o ol ol o ol ol o o ol i ol o ol o o o o o o
R=-Sgquared J7E31E R-Bar-3guared L75605
3.E. of Regression 010081 F-5tat. Fi4,134) 107.9234[.000]
Mean of Dependent Varishle 096441 3.0, of Dependent Variable 020656
RBesidual Sum of 3quares 0136819 Equation Log-likelihood 444 ,3055
hkaike Info. Criterion 439.,3055 Schwarz Bayesian Criterion 431.9514
DW-statistic Z2.2421

e e e i i i i i i i e

Parameters of the Autoregressive Error Specification
Lo o o o ol ol o i o o o o ol ol o ol ol o o ol i ol o ol o o o o o o
U= .81487*0(-1) +E
i 16.1214) [.000]

T-ratio(=] based on asywptotic standard errors in hrackets
E i i A o i o o i
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Table 11.11: ML estimates of a saving equation with restricted AR(4) error process maximum
likelihood estimation: fixed initial values of disturbances

Maximun Likelihood Estimation:Fixed Initial Values of Disturbances
Error TEEM : Restricted AR(4) conwverged after 7 iterations
L o o o o o o o ol o o ol ol ol o o o o
Dependent wvariable is 3

140 observations used for estimation from 1960031 to 199404
i O o i i O o

Regressor Coefficient Standard Error T-Ratic[Praohk]
INPT —.00458180 0042275 -1.13397[.256]
2i-1) 1.0080 LO41256 24.4335([.000]
LLY L B5550 061110 10.7330([ .000]
LFPIE .29880 L93110 J.2091[.002]
E e e
B-3quared LTREET B-Bar-Squared LTE6E66
2.E. of Regression 010094 F-Stat. Fi5,130) 54.9560[ .000]
Mean of Dependent Wariahle 096441 5.0, of Dependent Variahle 020696
Fesidual Zum of Squares 013247 Equation Log-likelihood 435.1151
Akaike Info. Criterion 429.11581 Schwarz Bayesian Criterion 4z0,2932
IW-statistic 1.9595

ok o o o o i o o o

Parameters of the Autoregressive Error Specification
E e e

= —.25410%U(-1)+ -.014586%U(-4)+E
[ -2.7908)[.006] { -.l6654)[.868]

T-ratio(s) based on asywptotic standard errors in brackets
I e i e i e i i i i e e i e i i i i e e e i e i

These estimates seem to be quite robust to the choice of the initial values for p; and p,.

For example, starting the iterations with pgo) = 0.8 and p;o) = 0.0 yields the same results as
in Table 11.11.

11.7 Lesson 11.7: Estimation of a ‘surprise’ consumption func-
tion: an example of two-step estimation

A simple version of the life cycle rational expectations theory of consumption predicts that
changes in real consumption expenditures (or their logarithms) are only affected by inno-
vations in real disposable income. Muellbauer (1983), building on the seminal work of Hall
(1978), has estimated the following ‘surprise’ aggregate consumption function for the UK

Alogc = ag + ai(logy, — l@) 4wy (11.20)

where c¢; = real consumption expenditures, y; = real disposable income, and lgg-zt is the
predictor of log y; based on information at time t — 1.

In this lesson we use quarterly observations on ¢; and y; in the file UKCON.FIT to esti-
mate (11.20). This is an example of the two-step estimation method for rational expectations
discussed in Pagan (1984) and Pesaran (1987b) and Pesaran (1991).

In the first step the predicted values of log y; are obtained by running the OLS regression
of logy; on its past values, and possibly lagged values of other variables. In what follows we
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estimate a second-order autoregressive process, AR(2), in logy:. In the second step (11.20)
is estimated by running the OLS regression of Alogc; on a constant term and the residuals
obtained from the regression in the first step.

To carry out the computations in the first step, read in the special Microfit file UK-
CON.FIT, generate the variables LC' = logc; and LY = logy:, and an intercept term, and
then choose option 1 in the Single Equation Estimation Menu (Univariate Menu: see Section
6.4), make sure the OLS option is selected, and type

LY INPT LY(-1) LY(-2) @

When the table appears, click = %, and from the Post Regression Menu choose option

3. You should now see the Display/Save Residuals and Fitted Values Menu on the screen.
Choose option 6, and when prompted type

DRLY Unanticipated change in log(Y)

oK

The variable DRLY (: logy; — lo/\gyt) is saved in the workspace, and you can now carry out

the computations in the second step.
Return to the Single Equation Estimation window (making sure the OLS option from
the Linear Regression Menu is selected), click e to clear the box editor and then type

DLC INPT DRLY 0

The results in Table 11.12 should now appear on the screen.
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Table 11.12: ’Surprise’ consumption function for the UK

Ordinary Least 3gquares Estimation
o o o i O e O O e el e il o o ol O e o i el ol o o i o
Dependent varisble is DLC

158 obszervations used for estimation fromwm 195503 to 199404
o o o e e o e e o o o o o o o o o o o o

Regressor Coefficient Standard Error T-Ratio[FProb]
INPT 0061568 .8913E-3 6.9076([.000]
DELY .27385 Q56753 4.5269([.000]
e e i e e e e e e e e e e e i e e e i e i e e i e e e e e i e i e o i e e e i e e
R-Sgquared .12995 R-Bar-Sgquared 12437
5.E. of Begression 011203 F-5tat. Fil,156]) 23.2993[.000]
Mean of Dependent Warisble 0061565 3.0. of Dependent Variable 0115973
RFesidual Sum of Soguares 019551 Equation Log-likelihood 456.4768
Lkaike Info. Criterion 454 .4768 SGchwarz Bayesian Criterion 451.4142
D-ztatistic 2.4947

R R R R e R R R R R R R R R R R R R R R R R R

Diagnostic Tests
o o o o e e o e i e o o o o o o o o o o

L Tezst Statistics * LM VWersion + F Version L
o o o o e e o e i e o o o o o o o o o o
w w * *
* A:Berial Correlation®*CH3Q(4) = 13.5373[.009]*F(4,152) = 3.5609([.008] *
w w * *
* BiFunctional Form *CHIQ(1) = .19194[.661] *F (1,155 = .18852[.665] *
w w * *
* CiMormality FCH3Q(2) = 99,9521[.000]* Mot applicable *
w w * *
* DiHeterogcedasticity*CHIQ(1) = 1.1154[.290] *F(1,156) = 1.1121[.293] %
ool o R o o R i o o o o o o o o o ol ol o ol o o o o o o o o o i o ol i o o o o o

AiLagrancge multiplier test of residual serisl correlation

B:Ramsey's RESET test using the sguare of the fitted walues

C:Based on a test of skewness and kurtosiz of residuals

D:Based on the regression of squared residuals on sgquared fitted wvalues

The t-ratio of the coefficient of DRLY is 4.8269, which is much higher than the critical
value of the t distribution with 158 — 2 = 156 degrees of freedom; thus suggesting that
innovations in income growth have significant impact on consumption growth.®

Repeat the above exercise using the USCON.FIT file. Also try additional regressors,
such as Alogy; 1 and Alog ct_l/i£ (11.20). Are your results sensitive to the order of the

AR process chosen to compute logy;?

8Notice that

logy: —logy: = (logy: —logyi—1) — (logyt — log yt,l)
Alogy: — Alag\yt.
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11.8 Lesson 11.8: An example of non-nested hypothesis test-
ing

Suppose you are faced with the following models:

My : Aloges = ag +ailogy; + azlogei1 + aglogy;—1 + aglly + ug
My : Aloge; = Bg + B1(logyr — logyr) + Bally + us2

Model M; is an inflation-augmented version of the error correction model (11.1) in Lesson
11.1. The inflation rate, II;, is measured as the change in the logarithm of the implicit price
deflator of consumption.

Model M> is the inflation-augmented ‘surprise’ consumption function, and is estimated
in Lesson 11.7. First read the special Microfit file UKCON.FIT and make sure that the
following variables are in the list:

DLC  Aloge
DLY  Alogy:

PI log(p¢/pe-1)
P Implicit price Deflator of Consumption Expenditure

DRLY logy, — logu:

logys — po — p1logys—1 — palogys—2
INPT Intercept term

If one or more of these variables are not in your workspace you need to consult the relevant
lessons on how to generate them. (See Lessons 11.6 and 11.7).

Suppose now that you wish to test model M; against Ms and vice versa. Choose option
1 in the Single Equation Estimation Menu (Univariate Menu: see Section 6.4), make sure
the OLS option is selected, and type

DLC INPT DLY LC(-1) LY(-1) PI  ©

Click SUD and then xo, and select option 2 in the Post Regression Menu. You should
now see the Hypothesis Testing Menu (see Section 6.23) on the screen. Choose option 8,
and when prompted, first click _~ to clear the box editor and then type the regressors of

model Msy:
INPT DRLY PI Q

The results in Table 11.13 should now appear on the screen.
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Table 11.13: Non-nested statistics for testing ARDL and ’surprise’ consumption functions

Alternative Tests for Non-Nested Regression Models
i i e i i e i i e e i i
Dependent varisbhle iz DLC 158 chservations used from 195503 to 199404
Regressors for model HM1:

INPT DLY LCi{-1) L¥{-1) PI
Regressors for model M2:
INFT LRLY FI
i i e i i e i i e e i i
Test Statistic M1 against M2 N2 against M1
N-Test -3.6717[.000] -6.1894[.000]
NT-Test -3.4159[.001] -Z.25458([.024]
W-Test -3.3767[.001] -2.2163[.027]
J-Test 3.3888[.001] 2.7843[.005]
JA-Test 3.38858[.001] -2.7045([.007]
Encompassing Fii1,152) 11.4840([.001] Fi3,152) 6.3517[.000]
E R o i i i o i
Model M1: oW 2.15453 ;R-Bar-3guared 216259 ;Log-likelihood 497, 2737
Model M2: D 2.4300 :R-Bar-S3quared .19057 :Log-likelihood 493 . 6973
Model M14+MZ: DW 2.2193 :B-Bar-3quared .26655 ;Log-likelihood S03.0276
Akaike's Information Criterion of M1 wversus Mi= 1.5704 favours M1
Jechwarz's Bayesian Criterion of M1 wversus M:2= -1.486:2 favours M2

e o B i o i i R o O i i i e ol e i i i e i i o o

All the non-nested tests suggest that both models should be rejected. There is also
a conflict between the two model selection criteria, with the Akaike information criterion
favouring My, and the Schwarz Bayesian criterion favouring Mj. The test results point to
another model, possibly a combination of models M and Ms, as providing a more satisfactory
specification.

11.9 Lesson 11.9: Testing linear versus log-linear models

Suppose you are interested in testing the following linear form of the inflation augmented
ARDL(1,1) model:

M et = ag + arce—1 + aoyr + asyr—1 + aally + ugy

against its log-linear form

where

Mj :log ey = By + B1logcr—1 + Balogy: + Bslogyr—1 + Bally + uat

¢t Real Non-durable Consumption Expenditure in the US
1y Real Disposable Income in the US
m¢ Inflation Rate

First read the special Microfit file USCON.FIT, and generate the necessary variables for

running the above regressions, (for example by using the

Retrieve

&@» button to retrieve the file

USCON.EQU into the Commands and Data Transformation box). Choose option 1 in the
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Single Equation Estimation Menu (Univariate Menu, see Section 6.4), make sure the OLS
option is selected, and type

C INPT C(-1) Y Y(-1) PI

Click R(u) , then X, and select option 2. You should now see the Hypothesis Testing

Menu (see Section 6.23) on the screen. Choose option 9 and, when prompted, type the
regressors of model My, namely

INPT LC(-1) LY LY(-1) PI Q

You will now be asked to specify the nature of the transformation of the dependent variable
in model M;. Choose the linear option 1.

A similar menu concerning the nature of the transformation of the dependent variable in
model M now appears on the screen. Choose option 2. You will be prompted to specify the
number of replications (R) to be used in the computations of the Cox statistic by simulation
(see Section 21.9 and option 9 in Section 6.23). For most applications, values of R in the
range 100-250 will be adequate. Enter 100, and press v for computations to start. Once
the computations are completed, the results in Table 11.14 should appear on the screen. This
table gives the parameter estimates under both models. The estimates of the parameters of
M; computed under M; are the OLS estimates (&), while the estimates of the parameters
of M; computed under M, are the pseudo-true estimators (&, = & (3)). If model M is
correctly specified, one would expect & and &, to be near to one another. The same also
applies to the estimates of the parameters of model My (53).
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Table 11.14: Testing linear versus log-linear consumption functions

Hon-Neated Tests by Simulation
AR A R A R R R A A R A R A A A A R A A A A A A A A A R AR AN A A AR I I I A A A A A A I I I A A bAoAk h kv ko hhd
Dependent variable in model M1 is C©
Dependent variable in model M2 is LOG{C)

136 cbservations used from 196002 to 1994Q1. Number of replications 100
AR A R A R R R A A R A R A A A A R A A A A A A A A A R AR AN A A AR I I I A A A A A A I I I A A bAoAk h kv ko hhd

Eatimates of parameters of Ml Estimates of parameters of M2

Under M1 Under M2 Under M2 Under Ml
INET 20.1347 24.7609 INET .14429 .0984339
C({-1) .93128 .909a7 LC(-1) .89781 .94227
b4 .092935 .098593 LY .29526 L2768248
¥{-1) -.0762891 -.077510 LY (-1) -.22532 -.23860
PFI -160.9665 -156.5597 FI -.23880 -.23041
Standard Error 4.8528 4.8478 Standard Errcr .00579%4& .008102%
Zdjusted Log-L -399.5709 -404.4709 Ldjusted Log-L -399.0233 -405.2882

L L T T T T Y

Hon-Nested Test Statistics and Choice Criteria
AR A R A R R R A A R A R A A A A R A A A A A A A A A R AR AN A A AR I I I A A A A A A I I I A A bAoAk h kv ko hhd

Test Statistic Ml against M2 M2 against Ml
5-Test -2.5592[.010] -1.8879[.059]
PE-Test 2.3021[.021] -.26402[.792]
BM-Test 2.0809[.037] -.50743[.612]
DL-Test 2.0006[.045] 1.8004[.072]
Sargan's Likelihood Criterion for ML wersus M2= -.04764 favours M2
Vuong's Likelihood Criterion for M1 wersus M2= -1.7599[.078] fawvours M2

s e s s e e s e )

5-Test is the 5C c test proposed by Pesaran and Pesaran (1995) and is
the zimple wversion of the simulated Cox teat statistic.

PE-Test is the PE test duse to MacKinnon, White and Davidson.

BM-Test is due to Bera and McAleer.

[L-Test is the double-length regression test statistic due to Davidson
and MacKinnon.

The bottom part of Table 11.14 gives a number of different statistics for testing the linear
versus the log-linear model and vice versa. This table also gives the Sargan (1964) and Vuong
(1989) likelihood function criteria for the choice between the two models. For other details
and references to the literature, see Section 21.9.

In the present application all the tests reject the linear model against the log-linear model,
and none reject the log-linear model against the linear one at the 5 per cent significance level,
although the simulated Cox and the double-length tests also suggest rejection of the log-linear
model at the 10 per cent significance level. Increasing the number of replications to 500 does
not alter this conclusion. The two choice criteria also favour the log-linear specification over
the linear specification.

11.10 Lesson 11.10: Testing for exogeneity: computation of
the Wu-Hausman statistic

In this lesson we show how the variable addition test option in the Hypothesis Testing
Menu (see Section 6.23) can be used to compute the Wu (1973) T3 statistic for testing the
independence (or more precisely the lack of correlation) of the regressors, logy; and II;, and
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the disturbance term, wu;, in the following regression equation estimated on UK data:’
loger = ag + arlogei 1 + aslogy; + aslogys 1 + aully + wy (11.21)

We assume that you have read in the file UKCON.FIT and that the variables log c;, log y;,
and II; are in the variable list (these variables can be generated by running the batch file
UKCON.BAT). We also assume that the variables, log y;—1, log yi—2, log ¢i—1, log ¢i—2, I1;_1,
II;_», can be used as instruments for this test.'’

Computation of the Wu-Hausman 75 statistic can be carried out in the following manner.

1. Run OLS regressions of LY (logy;) and PI (II;) on the variables INPT, LY (—1),
LY (~2), LC(~1), LO(-2), PI(—1), and PI(~2), over the period 1960(1)-1994(4),
and save the residuals (using option 6 in the Display/Save Residuals and Fitted Values
Menu), in the variables RLY and RPI, respectively (see Lesson 11.7 on how to do this).
More specifically, choose option 1 in the Single Equation Estimation Menu (see Section
6.4), make sure the OLS option is selected, choose the estimation period 1960(1) to
1994(4), then enter

LY INPT LY {1-2} LC{1-2} PI{1-2} Q

When the table appears, click = x . Choose option 3 from the Post Regression

Menu and option 6 from the Displa;;/ Save Residuals and Fitted Values Menu. When
prompted, enter
RLY Residuals from LY regression

Press , and then choose option 0 to return to the Single Equation Estimation
window. Replace LY by PI in the screen editor box. Click S.,) and when the

table appears click X, Choose option 3 from the Post Regression Menu and Option

tlose

6 from the Display/ SZWe Residuals and Fitted Values. When prompted, enter the
following string:
RPI Residuals from PI regression

Click =« to move to the Post Regression Menu. = @ Choose option 0 to return to
the Single Equation Estimation window.

2. Make sure that the variables RLY and RPI are correctly saved in your workspace.
Then choose option 1 in the Single Equation Estimation Menu (the Univariate Menu
on the menu bar) and make sure the OLS option is selected. Click to clear the

Clear

"Wu’s T» statistic is also known as the Wu-Hausman statistic. For details see Wu (1973), Hausman (1978),
Nakamura and Nakamura (1981), and Pesaran and Smith (1990).

10The Wu-Hausman test is also asymptotically equivalent to testing the statistical significance of the dif-
ference between the OLS and the Two-Stage Least Squares estimates of the regression coefficients in (11.21).
It is also advisable to carry out Sargan’s general mis-specification test given in the result table in the case of
IV regressions.
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box editor, and ensure that the start and end dates are set to 1960(1) and 1994(4).

Then type

LC INPT LC(-1) LY{0-1} PI
click the S..E . In the Post

Regression Menu select option 2 and then choose option 6 from the Hypothesis Testing
Menu. In the box editor enter

button and proceed. When the table appears, click = x

RLY RPI Q

Table 11.15: The Wu-Hausman statistic for testing the exogeneity of LY and Pl

Variakble Addition Test (OLS case)
o o i o i o O o ol O e e e e e e e i o
Dependent wvariable is LC
List of the wariables added to the regression:
RLT RFI

140 ocbhservations used for estimation from 196001 to 199404
o o i o i o O o ol O e e e e e e e i o

Regressor Coefficient Standard Error T-FRatio[Prob]
INFT 017173 .039516 43455 [.665]
LC (-1} 1.31581 15256 §.6400([.000]
LY -1.2561 .43159 -2.6083[.010]
LY (-1] .94106 .34011 Z.7669[.006]
PI -.26192 .094080 -2.7846[.006]
RLYT 1.5019 . 45568 3.0923[.002]
RPI -.21711 15261 -1.4227[.157]

AR RS AR R R R RS AR AR R AR R R RS s R R R AR R LR R R R R

Joint test of zero restrictions on the coefficients of additional wvariables:

Lagrange Multiplier Statistic CH3Q(2)= 11.0589[.004]
Likelihood Ratio Statistic CHIQ(2)= 11.5201[.003]
F Statistic Fi2,133)= 5.7035[.004]

AR RS AR R R R RS AR AR R AR R R RS s R R R AR R LR R R R R

The Wu-Hausman statistic (Wu’s T» statistic) is equal to the value of the F-statistic in
Table 11.15, which is computed as 5.70, and under the null hypothesis (of exogeneity) is
distributed approximately as an F' with 2 and 133 degrees of freedom. The exogeneity test
can also be based on the Lagrange multiplier, or the likelihood ratio statistic reported in
the above table. All three tests are asymptotically equivalent, and in the case of the present
application, reject the null hypothesis that the income and inflation variables are exogenous
in the inflation augmented ARDL(1,1), in (11.21). However, as can be seen from Table
11.15, the t-ratio of the inflation variable, RPI, is —1.4227, and suggests that the hypothesis
that the inflation rate is exogenous cannot be rejected.

Also, the rejection of the exogeneity of logy; in (11.21) crucially depends on the exclu-
sion of logy;—o from the ARDL specification. As an exercise, include logy;—o among the
regressors of (11.21) and try the above exogeneity test again.
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11.11 Lesson 11.11: Recursive prediction of US monthly ex-
cess returns

The literature on the predictability of returns or excess returns on common stocks is quite
extensive. It has been shown that a substantial part of variations in excess returns at
different time intervals is predictable. See, for example, Campbell (1987), Fama and French
(1989), Pesaran (1991), Breen, Glosten, and Jagannathan (1989), Glosten, Jagannathan,
and Runkle (1993) and Pesaran and Timmermann (1994). In this lesson we replicate some
of the excess return regressions reported in Pesaran and Timmermann (1994) at monthly
frequencies, and show how to use such regressions to generate recursive predictions of excess
returns on Standard and Poor 500 (SP500) portfolio using only ex ante dated variables.

The special Microfit file PTMONTH.FIT contains monthly observations on a number
of financial and macroeconomic variables over the period 1948(1) to 1992(12) for the US
economy (notice, however, that there are missing observations for most of the variables
during the 1948-1951 period). Read this file and run the batch file PTMONTH.BAT on it
in the Commands and Data Transformations box. The following variables should now be in
the variables list:

DI11 il —il(—1)
DIP12  log(ipl2/ipl2(—12))
ERSP  nrsp— ((1+ (i1(—1)/100)"(1/12)) + 1

INPT 1
PI12 log (ppil2/ppil2(—12))
YSspP divsp/psp
where
DIVSP Twelve-month average of dividends on SP500
I1 One-month ¢-bill rate (Fama-Bliss)
1P Index of industrial production

IP12  MAV(ip,12)

NRSP  (psp — psp(—1) + divsp) /psp(—1)
PPI Producer price index

PPI12 MAV (ppi,12)

PSP SP500 price index (end of month)

ERSP is the excess return on SP500 defined as the difference between the nominal return
on SP500 (NRSP) minus the lagged one month Treasury Bill (TB) rate converted from an
annual rate to a monthly rate (allowing for compounding).

DI11 Change in the one-month T-bill rate of the index of
industrial production

DIP12 Rate of change of twelve-month moving average of the index
of industrial production

PI12 Rate of change of the twelve-month moving average of the
producer price index

YSP Dividend yield defined as the ratio of dividends to share prices
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Notice that in computing the twelve-month moving averages of the industrial production
and producer price indices we have made use of the ‘moving-average’ function MAV (., )
described in Section 4.3.11.

The excess return regressions reported in Pesaran and Timmermann (1994) were initially
estimated over the period 1954(1)-1990(12), but were later extended to include the two years
1991 and 1992 (see Tables III and PIII in Pesaran and Timmermann (1994)). Here we
consider estimating the following monthly excess return regression over the whole period
1954(1)-1992(12):

ERSP, = Bo+ B1YSPi_1+ B5PI12,_5+ 33DI11;, ;4
+B4 DIP12y_5 + (11.22)

Under the joint hypothesis of risk neutrality and market efficiency it should not be possible
to predict the excess returns, FRSPF;, using publicly available information. It is therefore
important that observations on the regressors in (11.22) are available publicly at time ¢ — 1,
when ERSP; is being forecast. Such information is readily available for the interest rates,
share prices and dividends, but not for the production and the producers’ price indices.
Observations on these latter variables are released by the US government with a delay. In
view of this the variables PI12 and DI P12 are included in the excess return regression with
a lag of two months.

To replicate the OLS results in table PIIT in Pesaran and Timmermann (1994), p.61,
choose option 1 in the Single Equation Estimation Menu, and when prompted type'’

ERSP INPT YSP(-1) PI12(-2) DI11(-1) DIP12(-2) = Q

The OLS results in Table 11.16 should appear on the screen. Check that these estimates
are identical with those reported by Pesaran and Timmermann (1994), p. 61. To estimate
(11.22) recursively choose option 2 in the Single Equation Estimation Menu (Section 6.4).
The following variable list should be in the box editor:

ERSP INPT YSP(—1) PI12(-2) DI11(-1) DIP12(-2)

Set the number of observations used for updating estimation equal to 1, and click Su) . The
program now carries out the necessary computations and presents you with the Recursive
OLS Regression Results Menu (see Section 6.14.1). You can use option 1 in this menu to
plot the recursive estimates. For example, if you choose to see the recursive estimates of the
coefficient of the dividend yield variable, Y'SP(—1), the plot in Figure 11.4 will appear on
the screen.

To save recursive predictions of excess return choose option 8, and when prompted type

FERHAT Recursive Predictions of Excess Return on SP500

"'The relevant variable list is saved in the special Microfit file PTMONTH.LST, and can be retrieved using
the @ button.
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Click , and you will now be asked to supply the variable name for the standard errors of

the recursive predictions, themselves computed recursively. Type'”? ERSE standard errors of
the recursive predictions of excess return on SP500, click =+ and choose option 0 to return
to the box editor. You should now see the variables ERHAT and FRSFE in the variable
list (click to = © to display). To estimate the extent to which the recursive predictions
of excess return (FRH AT') and the actual excess returns (FRSP) are correlated, you can
either compute simple correlation coefficients between these variables, or use the function
PTTEST(-,-) to compute the Pesaran and Timmermann predictive failure test statistic.
To avoid uncertain initial estimates we suggest computing these statistics over the period
type
SAMPLE 60ml 92ml12; COR FERSP ERHAT;

STAT = PTTEST(ERSP,ERHAT); LIST STAT Su)

The sample correlation between FRSP and ERH AT is 0.2066, and the coefficients of varia-
tions computed for these variables suggest that actual returns are 3 times more variable than
recursively predicted returns. The Pesaran-Timmermann test statistic is 2.8308, which is well
above 1.67, the 95 per cent critical value for a one-sided test. There is clearly significant
evidence that monthly excess returns are predictable using ex ante dated variables.

12Note that the descriptions that follow ERHAT and ERSE are optional.
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Table 11.16: Regression of excess returns on Standard and Poor 500 portfolio

ordinary Least sguares Estimation
R T e e O R R e R R R o
Dependent wvariable is ERSP

468 ohservations used for estimation from 1954Ml to 19G2mM12
LR R R R TR R R R R R R T R R R R R R R R R T R R R R R R U TR TR R PR T R T R PR P

Regrassar coefficient standard Error T-Ratio[Prob]
INPT -. 024013 0096634 -2.4850[.013]
YSP{-1) 14,2719 3.3204 4,20983[.000]
PI1Z2(-2) -. 27858 L 063504 -4.3865[.000]
pIl1f-1% —. D0AE7AR . 00245960 -2.7554[.006]
DIFL2(-2) -.15856 . 040177 -3.59465[.000]
R T T T T e T R B Rl TRl T T T o T T T T T TR R g
R-Squared . 086560  R-Bar-Sguared . 079072
s.E. of Regressiaon L 040716 F-Stat. F(4,463) 11.0243[.000]
mMmean of Dependent variable .0059055  sS.D0. of Dependent variahle L 042428
residual sum of Squares .76758  Equation Log-Tikelihood 836, 5758
akaike Info. Criterion #31.5758  schwarz Bayesian Criterian 321.2046
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A:Lagrange multiplier test of residual serial correlation

B:Ramsey s RESET Test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

11.12 Lesson 11.12: Rolling regressions and the Lucas cri-
tique

This lesson will illustrate the use of rolling regression to examine parameter variation. In an
influential paper Lucas (1976) argued that estimated econometric parameters are unlikely to
be stable, since as policy regimes change, people will change how they form their expectations,
and this will change the estimated decisions rules. The issue is discussed in more detail in
Alogoskoufis and Smith (1991b). Consider the simple expectations augmented Phillips Curve

where w; is the logarithm of money wages, u; the unemployment rate, p; the logarithm of
a general price index, and ;1 the information set at ¢t — 1. We would expect g = 1, if
workers lacked money illusion. Now suppose the evolution of inflation could be described by
a first order autoregression, with time-varying parameters

E(Apy | Q1) = me(1 = py) + pyApi—1 (11.24)
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Figure 11.4: Recursive estimates of the coefficients of the dividend yield variable in equation
(11.22)

where 7; is the steady-state rate of inflation and p, measures the persistence of inflation.
Alogoskoufis and Smith (1991b) estimate the above equations using UK data over the period
1855-1987. Over this 130-year period, with its varying policy re