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Preface

The previous edition of this manual was about using the software package called gretl to do
various econometric tasks required in a typical two course undergraduate or masters level econo-
metrics sequence. This version tries to do the same, but several enhancements have been made
that will interest those teaching more advanced courses. I have come to appreciate the power and
usefulness of gretl’s powerful scripting language, now called hansl. Hansl is powerful enough to
do some serious computing, but simple enough for novices to learn. In this version of the book,
you will find more information about writing functions and using loops to obtain basic results. The
programs have been generalized in many instances so that they could be adapted for other uses
if desired. As I learn more about hansl specifically and programming in general, I will no doubt
revise some of the code contained here. Stay tuned for further developments.

As with the last edition, the book is written specifically to be used with a particular textbook,
Principles of Econometrics, 4th edition (POE4) by Hill, Griffiths, and Lim. It could be used
with many other introductory texts. The data for all of the examples used herein are available
as a package from my website at http://www.learneconometrics.com/gretl.html. If you are
unfamiliar with gretl and are interested in using it in class, Mixon Jr. and Smith (2006) and
Adkins (2011a) have written a brief review of gretl and how it can be used in an undergraduate
course that you may persuade you to give it a try.

The chapters are arranged in the order that they appear in Principles of Econometrics. Each
chapter contains a brief description of the basic models to be estimated and then gives you the
specific instructions or gretl code to reproduce (nearly) all of the examples in the book. Where
appropriate, I've added a bit of pedagogical material that complements what you’ll find in the text.
I've tried to keep this to a minimum since this is not supposed to serve as a substitute for your
text book. The best part about this manual is that it, like gretl, is free. It is being distributed in
Adobe’s pdf format and I will make corrections to the text as I find errors.

Gretl’s ability to process user written functions greatly expands the usefulness of the appli-
cation. In several of the chapters functions are used to estimate models, select models, and to
compute various statistics. The scripting language, continues to evolve in useful ways, becoming
more transparent in use and more functional. Though not explored in this book, the ability to
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give function writers access to the basic GUI and to package things into bundles is s very exciting
development.

Functions can be shared and imported easily through gretl, especially if you are connected to
the internet. If gretl doesn’t do what you want it to now, stay tuned. It soon may. If recent
activity is any indication, I am confident that the the gretl team will continue to improve this
already very useful application. I hope that this manual is similarly useful to those using Principles
of Econometrics.

There are some significant changes in the 4th edition of POFE and that means there are some
changes in this book from the previous edition. As in the previous edition of this e-book, I have
attempted to provide gretl instructions for each and every example in the book. My solutions are
not necessarily the most elegant. In some cases elegance gives way to simplicity of programming,
especially with respect to the types of students who are likely to be using this book. I have made
an effort to generalize some of the script so that it will be easier to adapt to new needs. I've also
made liberal uses of loops and functions. These are powerful tools and a thorough understanding
of them can take your gretl and econometric skills to the next level. Feel free to send suggestions.

Another change in this version of the book is that I’ve made some effort to generalize some of
the scripts. Although that should make it easier to generalize them to a new use, it does mean that
they have become a little more complicated. A heavy reliance on user written functions is evident.
I invite users to take the time to work through these in order to advance your programming and
econometric skills.

To make things easier to find in the book, I have added an index. In the pdf, you can click on
the page number listed in the index and be taken to the relevant spot in the text. Also, the figure
numbers, equation numbers, and citations are also ‘hot’ and can be used in this fashion as well.
Since some may prefer to print the manual out rather than work from the .pdf, I opted to make
the ‘hot’ links black in color, which disguises their functionality.

Finally, I want to say that my conversion to gretl was not immediate. In fact I still use other
software as occasions require, though more infrequently. That said, I have become a true believer
in the power of gretl. It is now my go to software. I trust it. It is simple to use and to program.
In my opinion it combines the best of Gauss and Eviews. It is both a high level programming
language and a useful front-end for doing standard econometrics. The ease with which one can
move back and forth from both uses makes it truly unique. As a former Gauss user, I find gretl up
to the tasks that I choose. I heartily recommend that you take some time to work with it and to
learn it. You can’t help but come to appreciate its power. Its worth is derived from what it does,
not its price.

I want to thank the gretl team of Allin Cottrell and Riccardo Lucchetti for putting so much
effort into gretl. I don’t know how they find the time to make this such a worthwhile project. It
is a terrific tool for teaching and doing econometrics. It has many capabilities beyond the ones
I discuss in this book and other functions are added regularly. Also, Jack has kindly provided me
with suggestions and programs that have made this much better than it would have been otherwise.
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Any remaining errors are mine alone.
I also want to thank my good friend and colleague Carter Hill for suggesting I write this and
Oklahoma State University and our College of Business for continuing to pay me while I work on

it.

Copyright © 2007, 2008, 2009, 2011 Lee C. Adkins.
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Chapter

Introduction

In this chapter you will be introduced to some of the basic features of gretl. You’ll learn how
to install it, how to get around the various windows in gretl, and how to import data. At the end
of the chapter, you’ll be introduced to gretl’s powerful language.

1.1 What is Gretl?

Gretl is an acronym for Gnu Regression, Econometrics and Time-series Library. It is a software
package for doing econometrics that is easy to use and powerful. It features a very user-friendly
interface that makes it snap to use in classroom. Its flexibility, extensibility, and accuracy make it
well-suited for research as well. Gretl is distributed as free software that can be downloaded from
http://gretl.sourceforge.net and installed on your personal computer. Unlike software sold
by commercial vendors (SAS, Eviews, Shazam to name a few) you can redistribute and/or modify
gretl under the terms of the GNU General Public License (GPL) as published by the Free Software
Foundation. That means that you are free to patch or extend gretl as you see fit.

Gretl comes with many sample data files and its internet capabilities give you access to several
very useful databases served by Wake Forest University. From the gretl web site, you can download
and install sample data sets from many of the leading textbooks in econometrics, including the one
that this book is based on, Principles of Econometrics by Hill et al. (2011).

Gretl offers a full range of least-squares based estimators, either for single equations and for
systems, including vector autoregressions and vector error correction models. Several specific max-
imum likelihood estimators (e.g. probit, ARIMA, GARCH) are also provided natively; more ad-
vanced estimation methods can be implemented by the user via generic maximum likelihood or
nonlinear GMM. Gretl uses a separate Gnu program called gnuplot to generate graphs and is
capable of generating output in IXTEX format. Gretl is under constant development so you can



probably expect some bugs, but in my experience it is quite stable to use with my Windows and
Ubuntu Linux systems. The main developers, Allin Cottrell and Jack Lucchetti, participate daily
in discussions on the gretl forums and quickly sort out any bugs that are reported.

Which brings me to the final plug for gretl, which is inspired by its openness. As seen with
a lot of the better quality open source software, a community of developers and users are woven
together via active user and developer forums. The input from their many participants helps to
make gretl quite dynamic. If gretl will not estimate what you want today, tune-in tomorrow and
someone may have written the code to estimate your econometric problem.

Furthermore, gretl is enhancing its scripting language to facilitate sophisticated add-ons to its
basic functionality. In short, gretl is quickly becoming software worth getting to know for research
as well as for pedagogical uses.

1.1.1 Installing Gretl

To install gretl on your system, you will need to download the appropriate executable file
for the computer platform you are using. For Microsoft Windows users the appropriate site is
http://gretl.sourceforge.net/win32/. One of the nice things about gretl is that Mac OS
X and Linux versions are also available. If you are using some other computer system, you can
download the source code and compile it on whatever platform you’d like. This is not something
you can do with any commercial software package.

Gretl depends on some other (free) programs to perform some of its magic. If you install gretl
on your Mac or Windows based machine using the appropriate executable file provided on gretl’s
download page then everything you need to make gretl work should be installed as part of the
package. If, on the other hand, you are going to build your own gretl using the source files, you
may need to install some of the supporting packages yourself. I assume that if you are savvy enough
to compile your own version of gretl then you probably know what to do. For most, just install the
self-extracting executable, gretl_install.exe, available at the download site. Gretl comes with
an Adobe pdf manual that will guide you through installation and introduce you to the interface.
I suggest that you start with it, paying particular attention to the first 3 chapters, which discuss
installation in more detail and some basics on how to use the interface.

Since this manual is based on the examples from Principles of Econometrics, 4th edition (POE4)

by Hill et al. (2011), you should also download and install the accompanying data files that go with
this book. The file is available at

http://www.learneconometrics.com/gretl/POE4data.exe.

This is a self-extracting windows file that will install the POE4 data sets onto the c:\Program
Files (x86)\gretl\data directory of your computer’s harddrive.! If you have installed gretl

My system is 64-bit. If your copy of Windows is 32-bit then your directory structure is likely to be different from


http://gretl.sourceforge.net/win32/
http://www.learneconometrics.com/gretl/POE4data.exe

in any place other than c:\Program Files (x86)\gretl then you are given the opportunity to
specify a new location in which to install the program during setup.

1.1.2 Gretl Basics

There are several different ways to work in gretl. Until you learn to use gretl’s rather simple
and intuitive language syntax, the easiest way to use the program is through its built-in graphical
user interface (GUI). The graphical interface should be familiar to most of you. Basically, you use
your computer’s mouse to open dialog boxes. Fill in the desired options and execute the commands
by clicking on the OK button. Gretl is using your input from the dialogs, delivered by mouse
clicks and a few keystrokes, to generate computer code that is executed in the background.

Of course, you can generate your own programs directly, either by using a command line version
or by using the GUI via the gretl console or through scripts.

Gretl’s command line version is a separate executable that gives you access to gretl commands
directly from your computer’s command prompt. This bypasses the GUI altogether.

To open the command line version of gretl in Windows, open a command window and type
gretlcli. In Windows 7 choose Start>Run to open the dialog shown in figure 1.1. In the box, use

=7 Run @
= Type the name of a prograrn, folder, docurment, or Internet
rescurce, and Windows will open it for you.
Open: "C:\Program Files (B8] \grethgretlcli.exe" -
Ok l [ Cancel ] ’ Browse...

Figure 1.1: Opening the command line interface version of gretl using Start>Run

Browse button to locate the directory in which gretl is installed. On my machine it is installed
on the "C:\Program Files (x86)\gretl\gretlcli.exe" drive. Click OK and the command line
version shown in figure 1.2 opens. There are a couple of messages that certain entries could not
be found in the Windows registry, which in this case means that these programs are not installed
or registered on my particular machine. If you receive these, don’t be alarmed. Gretl will still
operate. The question mark (7) is the command prompt. To open one of the data sets that
installs with gretl, type open engel at the prompt. The gretl data set engel.gdt opens and some

mins.



B C:\Program Files (x86)\gretl\greticli.exe |£ﬂlﬁ

libgretl_init: initializing RNG
RNG ready
lgret]l version 1.9.4cus
Copyright Ramu Ramanathan,. Allin Cottrell and Riccardo “Jack" Lucchetti
This is free software with ABSOLUTELY NO WARRANTY
Current session: 2811-85-25 18:49
Couldn’t ad registry path SoftwaresxiZarima
Couldn’t read registry path Sof twarestramo
Couldn’t read registry path Sof twaresgretl
af ter gret t_paths:
:nProgram Files (xB6)\gretl’
sUserssLeesDocuments gret 1’
dotdir *CislserssLeesAppDatasRoaming gret 1%’
gnuplot = *C:“\Program Files (x86>“gretl-wgnuplot.exe’

m| s

"help" gives a list of commands
Type "open filename' to open a data set
7

Figure 1.2: The command line version of gretl

information about how much data and which variables it contains are printed to the screen. From
here one can issue gretl commands or run scripts. To close the window, type exit.

If you are in fact using the Microsoft Windows operating system, then you probably won’t be
using gretl from the command line very often anyway. This version of the program is probably
the most useful for Linux users wishing to run gretl from a terminal window. If you are using a
machine that is resource constrained, the command line interface is one way to free resources that
would otherwise be used to operate the graphical interface. We won’t be using the command line
version in this manual.

A better way to execute single gretl commands is through the gretl console. In normal
practice, the console is a lot easier to use than the gretlcli.exe. It offers some editing features
and immediate access to other ways of using gretl that aren’t available in the straight command
line version of the program. The console and its use is discussed in section 1.3.1.

If you want to execute a series of commands, you do this using scripts. One of the great things
about gretl is that it accumulates commands executed singly from the console into a command
log that can be run in its entirety at another time. This topic can be found in section 1.3.2. So,
if you have completed an analysis that involves many sequential steps, the steps can be saved to a
script file which can later be opened and run in one step to get the result.

You can use the script environment to conduct Monte Carlo studies in econometrics. Monte
Carlo studies use computer simulation (sometimes referred to as experiments) to study the prop-
erties of a particular technique. This is especially useful when the mathematical properties of
your technique are particularly difficult to ascertain. In the exercises below, you will learn a little
about doing these kinds of experiments in econometrics. Also, you can consult a separate paper of
mine Adkins (20115) which can be found at http://www.learneconometrics.com/pdf/MCgretl/
index.htm.

In Figure 1.3 you will find the main window in gretl.


http://www.learneconometrics.com/pdf/MCgretl/index.htm
http://www.learneconometrics.com/pdf/MCgretl/index.htm

r“ gretl E@g*

File Tools Data View Add Sample Variable Model Helpi_ MenuBar
engel.gdt

ID# 4 Variable name 4 Descriptive label 1
0 const autc-generated constant
1 foodexp Annual Household Food Expenditure in Belgian Francs
2 income Annual Household Income in Belgian Francs

"ttt Pl DBl et P umasnti g g

Undated: Full range1 - 235

W (2~ BWE L 4 84 B dg—— ToolBar

Figure 1.3: The main window for gretl’s GUI

Across the top of the window you find the menu bar. From here you import and manipulate
data, analyze data, and manage output. At the bottom of the window is the gretl toolbar. This
contains a number of useful utilities that can be launched from within gretl. Among other things,
you can get to the gretl web site from here, open the pdf version of the manual, or open the MS
Windows calculator (very handy!). More will be said about these functions later.

1.1.3 Common Conventions

In the beginning, I will illustrate the examples using a number of figures (an excessive number
to be sure). These figures are screen captures of gretl’s windows as they appear when summoned
from the pull-down menus. As you become familiar with gretl the frequency of these figures will
diminish and I will direct you to the proper commands that can be executed in the console or as a
script using words only. More complex series of commands may require you to use the gretl script
facilities which basically allow you to write simple programs in their entirety, store them in a file,
and then execute all of the commands in a single batch. The convention used will be to refer to
menu items as A>B>C which indicates that you are to click on option A on the menu bar, then select
B from the pull-down menu and further select option C from B’s pull-down menu. All of this is
fairly standard practice, but if you don’t know what this means, ask your instructor now.

There are a few tricks used in this manual to make scripts work on various platforms without
much modification. Gretl contains special macros for the location of commonly used files. There is
a working directory that gretl reads and writes to. This location can be defined by the user using
the file menu. To refer to this location generically, use the @workdir macro. The gretl installation
director is referenced by @gretldir, and temporary storage can be accessed via @dotdir. If any of
these directories have spaces in their names, then be sure to enclose the command in double quotes.



For example, on my Windows 7 system, gretl is installed in the "C:\Program\ ;Files (x86) \gretl"
directory. The data sets for POE/ are in "@gretldir\data\poe\". To refer to this location I can
simply use "@gretldir\data\poe".

1.2 Importing Data

Obtaining data in econometrics and getting it into a format that can be used by your software
can be challenging. There are dozens of different pieces of software and many use proprietary data
formats that make transferring data between applications difficult. You’ll notice that the authors
of your book have provided data in several formats for your convenience. In this chapter, we will
explore some of the data handling features of gretl and show you (1) how to access the data sets
that accompany your textbook (2) how to bring one of those data sets into gretl (3) how to list the
variables in the data set and (4) how to modify and save your data. Gretl offers great functionality
in this regard. Through gretl you have access to a very large number of high quality data sets from
other textbooks as well as from sources in industry and government. Furthermore, once opened in
gretl these data sets can be exported to a number of other software formats.

First, we will load the food expenditure data used in chapter 2 of POEJ. The data set contains
two variables named z and y. The variable y is weekly expenditures on food in a household and z
is weekly income measured in $100 increments.

Open the main gretl window and click on File>Open data>Sample file as shown in Figure
1.4.

E gretl o
Eile | Tools Data View Add 5Sample Variable Model Help
Open data Y[ Userfile... Ctrl+0
Sppeclitata [ Samplefile...
gg Save data Ctrl+5
o »
Save data as 3 :
Export data L 1. htv.gdt
E Send To.. 2. athlet2.gdt
3. data3-8.gdt
D Mew data set Ctrl+N
4, hstarts.gdt
& Clear data set 5. 401k.gdt

6. canada.gdt

Working directory...

Script files L4
Session files 4
Natahazec 3

Figure 1.4: Opening sample data files from gretl’s main window

Alternately, you could click on the open dataset button on the toolbar. The button looks like
a folder and is on the far right-hand side of the toolbar. This will open another window (Figure
1.5) that contains tabs for each of the data compilations that you have installed in the gretl/data



directory of your program. If you installed the data sets that accompany this book using the self
extracting windows program then a tab will appear like the one shown in Figure 1.5.

© h
gretl: data files E@g
< O0BX o

| Gretll I-_—I'Ml Greene| POE 4th ed. | R,amanathanl Stock-Watson 2e| Wooldridge|
]
File 1 Summary ke
[l andy Big Andy's Burger Barn Ell
| bangla Price and Area for farmers
beer Mmrmmm!
bond AA railroad bond yields
br 1080 home sales in Baton Rouge, LA during mid-2005
|
br2 1080 home sales in Baton Rouge, LA during mid-2005
brumm Brumm's Meoney Growth, Output Growth, and Inflation
byd returns to shares in BrightenYeourDay (BYD) Lighting
canada Canada / L5, Fereign Exchange Rate
capmd maonthly rates of return
cars Data on 392 cars taken from consumer choice magazines. it
4 I|” - - . Irrr - 3
I &

Figure 1.5: This is gretl’s data files window. Notice that in addition to POE, data sets from
Ramanathan (2002), Greene (2003), Stock and Watson (2006), and others are installed on my
system.

Click on the POE 4th ed. tab and scroll down to find the data set called ‘food’, highlight

it using the cursor, and open it using the ‘open’ button |§| at the top of the window. This will
bring the variables of the food expenditure data set into gretl. At this point, select Data on the
menu bar and then Display values as shown in Figure 1.6.

File Tools | Data | View Add Sample Variable Model Help
food.gdt
ID# 4 Variak

Select all Ctri+A |

Define or edit Jist...

Set selection from list...
glsplay = _

Add observations...

Eemove extra ohservations

Figure 1.6: Use the cursor to highlight all of the variables. Then click Data>Display values to
list the data set.

From the this pull-down menu a lot can be accomplished. You can edit, add observations, and
impose a structure of your dataset. The structure of your dataset is important. You can choose
between time-series, cross sections, or panel data structures. The options Gretl gives you depend

7



on this structure. For instance, if your data are structured as a time-series, gretl will allow you
to take lags and differences of the variables. Certain procedures that can be used for time-series
analysis will only be available to you if your dataset has been structured structured for it. If a
gretl command is not available from the defined dataset structure, then it will be greyed out in
the pull-down menus.

Notice in Figure 1.4 that gretl gives you the opportunity to import data. Expanding this
(File>Open data>Import) gives you access to several other formats, including Stata, Excel, Eviews,
SPSS, and SAS (if installed). For instance, simply dragging a Stata dataset onto the main gretl
window will bring the data into gretl.

Also, from the File pull-down menu you can export a data set to another format. The export
feature is particularly useful for getting data into R.

If you click on File>Databases>0n database server (Figure 1.4) you will be taken to a web
site (provided your computer is connected to the internet) that contains a number of high quality
data sets. You can pull any of these data sets into gretl in the same manner as that described
above for the POFE4 data sets. If you are required to write a term paper in one of your classes,
these data sets may provide you with all the data that you need. The database server is discussed
in more detail below.

1.3 Using the gretl Language

The gretl GUI is certainly easy to use. However, you can get results even faster by using gretl’s
language. The language can be used from the console or by collecting several lines of programming
code into a file and executing them all at once in a script. Gretl now has a name for its scripting
language, hansl. Hansl is a recursive acronym for hansl’s a neat scripting language (or handy
scripting language), and it is certainly that. There are many things you can do using this powerful
tool. Hansl’s syntax is particularly easy to use, in my opinion, and I strongly recommend that you
learn to use it.

An important fact to keep in mind when using gretl is that its language is case sensitive. This
means that lower case and capital letters have different meanings in gretl. The practical implication
of this is that you need to be very careful when using the language. Since gretl considers = to be
different from X, it is easy to make programming errors. If gretl gives you a programming error
statement that you can’t quite decipher, make sure that the variable or command you are using is
in the proper case.

1.3.1 Console

Gretl’s console provides you a way to execute programs interactively. A console window opens
and from the prompt (?7) you can execute gretl commands one line at a time. You can open the



gretl console from the Tools pull-down menu or by a left mouse click on the “Gretl console”

button on the toolbar. This button is the third one on the left side of the toolbar in Figure
1.3. From the console you execute commands, one by one by typing gretl code after the command
prompt. Each command that you type in is held in memory so that you can accumulate what
amounts to a “command history.” To reuse a command, simply use the up arrow key to scroll
through the commands you've typed in until you get to the one you want. You can edit the
command to fix any syntax errors or to make any changes you desire before hitting the enter key
to execute the statement.

From the command prompt, ‘7> you can type in commands from the gretl language. For
instance, to estimate the food expenditure model in section 2.4 using least squares type

? ols y const x

The results will be output to the console window. You can use the window’s scroll bar on the right
hand side to scroll up if you need to.

Remember, (almost) anything that can be done with the pull-down menus can also be done
through the console. Of course, using the console requires you to use the correct language syntax,
which can be found in the gretl command reference. The command reference can be accessed from
the toolbar by clicking the button that looks like a lifesaver. It’s the fourth one from the right hand
side of the toolbar.

m 2 EA~BREL 8B
Ad A

Command
Reference
User Guide
Session Open
Data

Console
Script

Calculator

Figure 1.7: The toolbar appears at the bottom of the main menu.

The Command Reference is also accessible from the menu bar through Help. The option
marked plain text F1 actually brings up all of the commands in a hypertext format. Clicking
on anything in blue will take you to the desired information for that command. Obviously, the
keyboard shortcut F1 will also bring up the command reference (Figure 1.8). You'll also notice



that .pdf versions of the Command and Function references can also be retrieved from the Help
drop-down menu.

H gretl: command reference =NRCN X
Qax 4| |this page B
Index it
Tests Gretl Command Reference
Statistics add adf anova append ar arl
Dataset arbond arch arima biprobit boxplot break
Estimation catch chow clear coeffsum coint coint2
corr corrgm cusum data dataset debug
Graphs delete diff difftest discrete dpanel durmi £y
Programming duration elif else end endif endloop
egnprint equation estimate feast foreign fractint
Transformations freg function garch genr [=1i0i} gnuplot
Printing graphpg hausman heckit help hsk hurst L
if include info intreg kalman kpss b~
Prediction labels lad lags 1diff leverage lewvinlin
Utilities logistic logit logs loop mahal makepkg
meantest mle modeltabk modprint modtest npols
negbin nls normtest nulldata ols omit
open orthdewv outfile panel pca pergm
poisson print printf probit pvalue glrtest
gqgplot gquantreg gquit rename reset rescrict
rmplot run runs scatters =sdiff set
setinfo setobs setmiss shell smpl spearman
sprintf sguare sscanf store Sunmary system
tabprint textplot tobit tsls wvar wvarlist
vartest vecm wif wls XCorrgm xtab i

Figure 1.8: The command reference can be accessed in a number of ways: The ‘life-saver’ icon on
the toolbar, Help>Command reference from the pull-down menu, or keyboard shortcut F1.

Notice that you can also search for commands by topic from the command syntax window. On
the left side is a panel headed as Index (see Figure 1.9). Choose the desired category from the list
and then select the command you want help with (e.g., Estimation>arch). The words indicated
in blue text are links to related commands. For instance, clicking on garch will take you to the
reference entry for garch modeling.

The function reference is a relatively new addition to gretl that will help you to locate the
names gretl uses to temporarily store results (called accessors), to transform variables, and to
write your own programs. To access the function reference, click Help>Function reference from
the pull-down menu as shown in Figure 1.10.

1.3.2 Scripts

Gretl commands can be collected and put into a file that can be executed at once and
saved to be used again. This is accomplished by opening a new command script from the
file menu. The command File>Script files>New script from the pull-down menu opens the
command script editor shown in Figure 1.11. Type the commands you want to execute in the
box using one line for each command. Notice that in the first line of the script, "I:\Program
Files\gretl\data\poe\food.gdt", the complete file and path name are enclosed in double quotes,
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P
“ gretl: command reference NG *X

Q QK ©, | this page EI
Index ~ || &zch i
Tests Arguments; order depvar indepvars
Statistics Example: arch 4 v 0 x1 x2 x3
Dataset [
il This command is retained at present for backward compatibility, but you are better
E off using the maximum likelihood estimator offered by the garch command; for a
e T plain ARCH model, set the first GARCH parameter to 0.
arl Estimates the given model specification allowing for ARCH (Autoregressive L
arbend Conditional Heteroskedasticity). The model is first estimated via OLS, then an 1
@ auxiliary regression is run, in which the squared residual from the first stage is
regressed on its own lagged values. The final step is weighted least squares
arima estimation, using as weights the reciprocals of the fitted error variances from the
biprobit auxiliary regression. (If the predicted variance of any cbservation in the auxiliary
P regression is not positive, then the corresponding squared residual is used instead).
dpanel
duration The alpha values displayed below the coefficients are the estimated parameters of
) the ARCH process from the auxiliary regression.
equation
estimate See also garch and modtest (the --azch option).

Figure 1.9: Finding help on the arch command using the Command Reference

" " This is necessary because the Program Files directory in the pathname includes a space. If
you have gretl installed in a location that does not include a space, then these can be omitted.

If you have a very long command that exceeds one line, use the backslash (\) as a continuation
command. Then, to save the file, use the “save” button at the top of the box (first one from the
left). If this is a new file, you’ll be prompted to provide a name for it.

To run the program, click your mouse on the “gear” button. In the figure shown, the food.gdt
gretl data file is opened. The series commands are used to take the logarithm of y and x, and
the ols command discussed in section 2.4 is used to estimate a simple linear regression model that
has In(y) as its dependent variable and In(x) as the independent variable. Note, the model also
includes constant.

A new script file can also be opened from the toolbar by mouse clicking on the “new script”

button Ei or by using the keyboard command, Ctrl+N.2

One of the handy features of the command script window is how the help function operates.

At the top of the window there is an icon that looks like a lifesaver e . Click on the help button
and the cursor changes into a question mark. Move the question mark over the command you want
help with and click. Voila! You either get an error message or you are taken to the topic from the
command reference. Slick!

24Ctrl+N” means press the “Ctrl” key and, while holding it down, press “N”.
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1.3.3 Sessions

Gretl also has a “session” concept that allows you to save models, graphs, and data files into
a common “iconic” space. The session window appears below in Figure 1.12. The session window
is very handy. It contains icons that give you immediate access to information about the data set,
that opens the edit data window, that display any scalars you have computed, summary statistics,
correlations and any notes you may want to make.

Objects are represented as icons and these objects can be saved for later use. When you save
your session, the objects you have added should be available again when you re-open the session.
To add a model to your session, use the File>Save to session as icon option from the model’s
pull-down menu. To add a graph, right click on the graph and choose the option save to session
as icon. If you want to save the results in your session, don’t forget to do so; right click on the
session window and choose Save session or from the main gretl window, select File>Session
files>Save session as shown below in Figure 1.13.

Once a model or graph is added, its icon will appear in the session icon view window. Double-
clicking on the icon displays the object, while right-clicking brings up a menu which lets you display
or delete the object. You can browse the dataset, look at summary statistics and correlations, and
save and revisit estimation results (Models) and graphs.

The model table is a way of combining several estimated models into a single table. This is very
useful for model comparison. From the gretl manual ((Cottrell and Lucchetti, 2011, pp. 16-17)):

In econometric research it is common to estimate several models with a common depen-
dent variable the models contain different independent variables or are estimated using
different estimators. In this situation it is convenient to present the regression results
in the form of a table, where each column contains the results (coefficient estimates
and standard errors) for a given model, and each row contains the estimates for a given
variable across the models.

In the Icon view window gretl provides a means of constructing such a table (and
copying it in plain text, IWTEX or Rich Text Format). Here is how to do it:

1. Estimate a model which you wish to include in the table, and in the model display
window, under the File menu, select Save to session as icon or Save as icon
and close.

2. Repeat step 1 for the other models to be included in the table (up to a total of six
models).

3. When you are done estimating the models, open the icon view of your gretl session,
by selecting Icon view under the View menu in the main gretl window, or by
clicking the session icon view icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled Model table. Decide which model you
wish to appear in the left-most column of the model table and add it to the table,
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either by dragging its icon onto the Model table icon, or by right-clicking on the
model icon and selecting Add to model table from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second
model selected will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on
its icon. Under the Edit menu in the window which appears, you have the option
of copying the table to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on
the model table icon and select Clear table. Then go back to step 4 above and
try again.

In section 6.4 you'll find an example that uses the model table and a Figure (6.13) that illustrates
the result.

1.3.4 Generating New Variables

In this manual, we will be generating new variables, computing statistics based on gretl out-
put, and performing matrix calculations using gretl’s scripting language. That means we will be
generating series, scalars, matrices, lists, and even strings. How does gretl handle these?

Gretl is actually very forgiving in the generation of new results. The ‘mother’ command for
doing this is genr. The genr command pretty much does it all. In the appropriate context, series,
scalar and matrix are synonyms for this command.

So, to create a new scalar result, say create a constant c that is equal to 3, you could use scalar
¢ = 3or genr ¢ = 3. The scalar and genr commands let gretl know that you are calculating
something and calling it c.

To create a new variable, you can use the series command or genr. Suppose you have a variable
in your dataset called food_exp. You want to create a new variable as the natural logarithm of
food_exp. This can be done using series or genr (e.g., series 1 food_exp = 1ln(food_exp)). In
the context of a genr or series formula, variables must be referenced by their names, not their ID
numbers. The formula should be a well-formed combination of variable names, constants, operators
and functions. Further details on some aspects of this command can be found in the Gretl Users

Guide.

As you have seen, a genr command may yield either a series or a scalar result. For example,
the formula x2 = x * 2 naturally yields a series if the variable x is a series and a scalar if x is
a scalar. The formulae x = 0 and mx = mean(x) naturally return scalars. The genr command
handles both cases seamlessly.

Under some circumstances you may want to have a scalar result expanded into a series or vector.
You can do this by using series as an “alias” for the genr command. For example, series x =
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0 produces a series all of whose values are set to 0. You can also use genr as an alias for scalar.
It is not possible to coerce a vector result into a scalar, but use of this keyword indicates that the
result should be a scalar: if it is not, an error occurs.

In many cases, you can even omit the genr, series, scalar, or matrix statements and gretl
will figure out what to compute based on what is on the right-hand side of your equation. This is
dangerous though, because you may inadvertently be trying to compute objects with incompatible
dimensions or of incompatible types.

In this book, I may at times use genr instead of the preferred series command to create new
variables. I am told by members of the gretl team that it is better practice to call things what they
are and so series, scalar, and matrix are better than the generic (but equally effective) genr.
One of the amazing things about the gretl language is that omitting these commands altogether
usually works anyway. Still, I think there are good reasons to get started on the right foot by
adopting good programming practices.® There are at least three commands that demand the use of
genr, rather than series. These involve creating a time index (genr time) and dummy variables
(genr unitdum and genr dummy). These cases will be pointed out when we get to them.

One of the advantages of using descriptive prefixes to series, scalars, and matrices occurs when
you write functions. Gretl functions are a very powerful way to extend gretl’s capabilities. They
are finicky though. The inputs must be identified by type as does any output. Type mismatches
are a common source of error. So, the more thought that goes into daily use will pay dividends
later should you decide to start writing your own gretl functions.

1.4 GNUPLOT

At the end of each chapter that follows you will find listings of the entire gretl script used to
generate the results that are contained in it. When a graph is generated using gnuplotin a script
or from the console, the output is written to a file that is placed in the working directory of gretl.
If you are not sure where that is, click File>Working directory in the main gretl window to
find or change this location. The location of the file will also be echoed to the screen so locating it
should be fairly easy.

To view the graph and to edit it requires you to open the gnuplot program. In Windows, the
easiest way to do this is to open the gretl console and type:

launch wgnuplot

This will look like

3 Astute programmers will note that my own programming leaves much to be desired. Adopting better practices
when learning to program would have made doing econometrics much easier.
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r“ gretl console o | B |-
| & 0XND R

gretl console: type 'help' for a list of commands
? launch wgnuplot

This opens gnuplot in a new window. Now, navigate to the gnuplot window and at the gnuplot
command prompt type

load ’C:\Temp\gpttmpO1l.plt’

The path and filename inside the single quotes locates the file on your harddrive. Gretl places
these plots into your working directory, which can be set using File>Working directory from the
main gretl window. Figure 1.14 shows what this looks like.

Another way to do this is to open a command window (Figure 1.1) and type "C:\Program
Files (x86)\gretl\wgnuplot" at the command prompt. The double quotes are necessary since
the folder name has a space in it. This will open the gnuplot program shown in Figure 1.14, from
which you can search for and open graphs that are written to the harddrive. This implementation
is a bit clumsy and is not very well documented in the gretl Users Guide at this point, but as with
most things gretl it is a work in progress. By the time you read this, the situation could be much
improved.

Although scripts are given to generate graphs in this text, the best way to do it is by using the
GUI or from the console. Graphs generated via GUI or the console open to the screen. Once the
graph is generated and visible on screen, a right-click of the mouse allows you to edit the graph
and to save it in a variety of useful formats. That is what I have done in a number of graphs that
follow to make them easier to read from the .pdf. Using gnuplot manually is really only necessary
if your graphs are being generated in a script as some of the ones in this text are.

You do not have to accept gretl’s default graph name. You can assign one yourself using the
—-—output=filename, which sends your output to the specified filename.

Finally, there are a number of other types of plots you can do in gretl. These include boxplots,
histograms, qgplots, and range/mean plots. The underlying engine that generates these is gnuplot
, but gretl gives you easy access to their generation. You can also access gnuplot by script through
File>Script files>New script>gnuplot script from the main menu.
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Figure 1.10: The function reference can be accessed by Help>Function reference from the pull-
down menu.
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open engel

genr 1y = 1ln({income)
genr lc = 1n|(foodexp)
ols lc const 1y

Figure 1.11: The Command Script editor is used to collect a series of commands into what gretl
calls a script. The script can be executed as a block, saved, and rerun at a later time.
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Figure 1.12: The session window
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Figure 1.13: Saving a session
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GNUPLOT

UJersion 4.5 patchlevel A
last modified Septembher 26010
System: MS-—Windows 32 hit

Copyright (C> 1986-19932, 1998, 28684, 2887-2018
Thomas Williams, Colin Kelley and many others

gnuplot home: http: /v gnuplot.info
mailing list: gnuplot—hetalflists.sourceforge . net
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lot> load ’C:\Temp\gpttmp@l.plt’ ) ant
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Figure 1.14: The GNUPLOT program window. This is opened from within gretl by typing launch
wgnuplot from the console. Type load ’filename’ to load ’filename’, which should include the
correct path. In this case the file to load is ’C:\Temp\gpttmpO1.plt’.
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Chapter

Simple Linear Regression

In this chapter you are introduced to the simple linear regression model, which is estimated
using the principle of least squares.

2.1 Simple Linear Regression Model

The simple linear regression model is
food_exp, = B1 + Poincome, +e; t=1,2,...,T (2.1)

where food_exp, is your dependent variable, income; is the independent variable, e; is random
error, and (1 and [ are the parameters you want to estimate. The errors of the model, e,
have an average value of zero for each value of income;; each has the same variance, o2, and
are uncorrelated with one another. The independent variable, income;, has to take on at least two
different values in your dataset. If not, you won’t be able to estimate a slope! The error assumptions
can be summarized as e;|income; iid N(0,02%). The expression #id stands for independently and
identically distributed and means that the errors are statistically independent from one another
(and therefore uncorrelated) and that each has the same probability distribution. Taking a random
sample from a single population accomplishes this.

2.2 Retrieve the Data

The first step is to load the food expenditure and income data into gretl. The data file is
included in your gretl sample files—provided that you have installed the Principles of Econometrics
data supplement that is available from our website. See section 1.1.1 for details.
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Eile Tools Data Miew Add Sample Variable Meodel Help

food.gdt

ID # 4 Variable name 4 Descriptive label \
0 const auto-generated constant
1 food_exp household food expenditure per week
2 income weekly household income

Undated: Full range1 - 40

WACFERBEHL 2 8B

L o

Figure 2.1: The main gretl window. The food expenditure data is loaded from food.gdt using
File>Open data>sample file and choosing the food dataset from the sample files that accompany
POEj4.

Load the data from the data file food.gdt. Recall, this is accomplished by the commands
File>Open data>Sample file from the menu bar.! Choose food from the list. When you bring
the file containing the data into gretl your window will look like the one in Figure 2.1. Notice that
in the Descriptive label column contains some information about the variables in the program’s
memory. For some of the datasets included with this book, it may be blank. These descriptions,
when they exist, are used by the graphing program to label your output and to help you keep track
of variables that are available for use. Before you graph your output or generate results for a report
or paper you may want to label your variables to make the output easier to understand. This can
be accomplished by editing the attributes of the variables.

File Tools Data View Add Sample Variable Model Help

food.gdt
ID# 4 Variable name 4 Descriptive label
0  const auto-generated constant

M e

7 income Display values
Descriptive statistics
Frequency distribution
Boxplo

Edit attributes
Editvaines

Copy to clipboard

Delete [ Undated: Full range 1

W @& ]

Define new variable...

Figure 2.2: Highlight the desired variable and right-click to bring up the pull-down menu shown
here. You can also use F2 or keyboard shortcut ‘CTRL+-€’ to bring up the dialog.

! Alternately, you could click on the open data button on the toolbar. It’s the one that looks like a folder on the
far right-hand side.
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To do this, first highlight the variable whose attributes you want to edit, right-click and the
menu shown in (see Figure 2.2) appears. Select Edit attributes to open a dialog box (Figure
2.3) where you can change the variable’s name, assign variable descriptions and display names.
Describe and label the variable food_exp as ‘Food Expenditure’ and income as ‘Weekly Income
($100).” The dialog can also be opened using F2 from the main gretl window or using the keyboard

-

E gretl: variable attributes ﬁ
MName: | food_exp ID number: |1 ‘ ';j-' @ Jk
Description:

househeold food expenditure per week
Display name (shown in graphs): | Food Expenditure

Treat this variable as discrete

o =

Figure 2.3: Variable edit dialog box

shortcut, ‘E.” Finally, the setinfo command can be used to set the description and the label used

. ™y
Ed greti: define graph I. = | (5] &J

XY scatterplot
food_exp X-axis vaniable
¥-axis variables
food_exp
Help I l Clear I [ Cancel I [ oK

L oy

Figure 2.4: Use the dialog to plot of the food expenditure against Weekly Income

in graphs.

In the following example a script is generated that opens the food.gdt dataset, and adds variable
descriptions, and assigns a label to be used in subsequent graphs.

21



open "@gretldir\data\poe\food.gdt"

setinfo food_exp -d "household food expenditure per week" \
-n "Food Expenditure"

setinfo income -d "weekly household income" -n "Weekly Income"

labels

The -d flag is given followed by a string in double quotes. It is used to set the descriptive label.
The -n flag is used similarly to set the variable’s name in graphs. Notice that in the first and
last uses of setinfo in the example that I have issued the continuation command (\) since these
commands are too long to fit on a single line. If you issue the labels command, gretl will respond
by printing the descriptions to the screen.

2.3 Graph the Data

To generate a graph of the food expenditure data that resembles the one in Figure 2.6 of POE,

you can use the L button on the gretl toolbar (third button from the right). Clicking this button
brings up a dialog to plot the two variables against one another. Figure 2.4 shows this dialog where
x is placed on the x-axis and y on the y-axis. The result appears in Figure 2.5. Notice that the
labels applied above now appear on the axes of the graph.

“ gretl: graph l = i

Food Expenditure versus Weelkly Income (with least squares fit)
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Click on graph for pop-up menu

Figure 2.5: XY plot of the food expenditure data
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Figure 2.5 plots food expenditures on the y axis and Weekly Income on the x. Gretl, by default,
also plots the fitted regression line. The benefits of assigning labels to the variables becomes more
obvious. Both X- and Y-axes are informatively labeled and the graph title is changed as well. More

on this later.
File Tools Data View Add Sample Variable Model Help
food.gdt Ordinary Least Squares...
ID# 4 Variable name 4 Descriptive label Instrumental vanables

3
0 const auto-generated constant Other linear models 4
1 food_exp household food expenditure Neonlinear models 4
2 income weekly household income Time series 4

Figure 2.6: From the menu bar, select Model>0rdinary Least Squares to open the least squares
dialog box

rd ™%
“ gretl: specify model l = | E é,l
oLs

const Dependent variable

income
[T] Set as default

Independent variables

‘%'> const
income

[T] Robust standard errors | Configure

(o ] [ o ) [onea ][ o

e A

Figure 2.7: The Specify Model dialog box opens when you select Model>0rdinary least squares

2.4 Estimate the Food Expenditure Relationship

Now you are ready to use gretl to estimate the parameters of the food expenditure equation.
food_exp, = B1 + Paincome, +e; t=1,2,...,T (2.2)

From the menu bar, select Model>0rdinary Least Squares from the pull-down menu (see Figure
2.6) to open the dialog box shown in Figure 2.7. From this dialog you’ll need to tell gretl which
variable to use as the dependent variable and which is the independent variable. Notice that by
default, gretl assumes that you want to estimate an intercept (/1) and includes a constant as
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an independent variable by placing the variable const in the list by default. To include x as an
independent variable, highlight it with the cursor and click the ‘Add->’ button.

The gretl console (see section 1.3.1) provides an easy way to run a regression. The gretl

console is opened by clicking the console button on the toolbar, . The resulting console window
is shown in Figure 2.8.

-

r“ gretl console =NACIN X
BEDADXR

gretl console: type 'help' for a list of commands

? olz food exp const income

W -

Figure 2.8: The Gretl console window. From this window you can type in gretl commands directly
and perform analyses very quickly—if you know the proper gretl commands.

At the question mark in the console simply type

ols y const x

to estimate your regression function. The syntax is very simple, ols tells gretl that you want
to estimate a linear function using ordinary least squares. The first variable listed will be your
dependent variable and any that follow, the independent variables. These names must match the
ones used in your data set. Since ours in the food expenditure example are named, y and x,
respectively, these are the names used here. Don’t forget to estimate an intercept by adding a
constant (const) to the list of regressors. Also, don’t forget that gretl is case sensitive so that x
and X are different entities.

This yields window shown in Figure 2.9 below. The results are summarized in Table 2.1.

An equivalent way to present results, especially in very small models like the simple linear
regression, is to use equation form. In this format, the gretl results are:

food_exp = 83.4160 + 10.2096 income
(43.410)  (2.0933)

T =40 R*=0.3688 F(1,38)=23.789 & =89.517
(standard errors in parentheses)

Finally, notice in the main gretl window (Figure 1.3) that the first column has a heading called
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Table 2.1: OLS estimates using the 40 observations 1-40.

OLS, using observations 1-40
Dependent variable: food_exp

Coefficient Std. Error t¢-ratio p-value
const 83.4160 43.4102 1.9216 0.0622

income 10.2096 2.09326  4.8774 0.0000
Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 23.78884  P-value(F) 0.000019
Log-likelihood —235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan—Quinn 476.2389

ID #. An ID # is assigned to each variable in memory and you can use the ID # instead of its
variable name in your programs. For instance, the following two lines yield identical results:

1 ols food_exp const income
2 ols 1 02

One (1) is the ID number for food_exp and two (2) is the ID number of income. The constant has
ID zero (0). If you tend to use long and descriptive variable names (recommended, by the way),
using the ID number can save you a lot of typing (and some mistakes).

2.4.1 Elasticity

Elasticity is an important concept in economics. It measures how responsiveness one variable
is to changes in another. Mathematically, the concept of elasticity is fairly simple:

_ percentage change iny  Ay/y

= = 2.3
c percentage change in z  Ax/x (2:3)

In terms of the regression function, we are interested in the elasticity of average food expenditures
with respect to changes in income:

_AEW)/E) _ 5 @
Az/z E(y)

E(y) and z are usually replaced by their sample means and (3, by its estimate. The mean of
food_exp and income can be obtained by using the cursor to highlight both variables, use the

(2.4)
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View>Summary statistics from the menu bar as shown in Figure 2.10, and the computation can
be done by hand. However, you can make this even easier by using the gretl language to do all of
the computations—no calculator needed! Simply open up a new script and type in:

1 ols food_exp const income --quiet
2 scalar elast=$coeff (income)*mean(income)/mean(food_exp)

This yields the output shown in figure 2.11.

Following a least squares regression, Gretl stores the least squares estimates of the constant and
the slope in variables called $coeff (const) and $coeff (income), respectively. In addition, it uses
mean (income) and mean(food_exp)to compute the mean of the variables income and food_exp.
The --quiet option is convenient when you don’t want or need the output from the regression
printed to the screen. The result from this computation appears below in Figure 2.12.

2.4.2 Prediction

Similarly, gretl can be used to produce predictions. The predicted food expenditure of an
average household having weekly income of $2000 is:

foo/d\,expt = 83.42 + 10.21income; = 83.42 4+ 10.21(20) = 287.61 (2.5)

Remember, income is measured in $100, so 20 in the above expression represents 20¥$100=%$2,000.
The gretl script is:

scalar yhat = $coeff(const) + $coeff (income)*20

which yields the desired result.

2.4.3 Estimating Variance

In section 2.7 of POE/, you are given expressions for the variances of the least squares estimators
of the intercept and slope as well as their covariance. These estimators require that you estimate
the overall variance of the model’s errors, o2. Gretl does not explicitly report the estimator, &2,
but rather, its square root, 6. Gretl calls this “S.E. of regression” which you can see from the
output is 89.517. Thus, 89.517? = 8013.29. Gretl also reports the sum of squared residuals, equal
to 304505.2, from which you can calculate the estimate. Dividing the sum of squared residuals by

the estimator’s degrees of freedom yields 62 = 304505/38 = 8013.29.
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The estimated variances and covariance of the least squares estimator can be obtained once the
model is estimated by least squares by selecting the Analysis>Coefficient covariance matrix
command from the pull-down menu of the model window as shown in Figure 2.13. The result is:

Covariance matrix of regression coefficients:

const income
1884.44 -85.9032 const
4.38175 income

So, estimated variances of the least squares estimator of the intercept and slope are 1884.44 and
4.38175, respectively. The least squares standard errors are simply the square roots of these num-
bers. The estimated covariance between the slope and intercept —85.9032.

You can also obtain the variance-covariance matrix by specifying the ——vcv option when esti-
mating a regression model. For the food expenditure example use:

ols food_exp const income --vcv

to estimate the model using least squares and to print the variance covariance matrix to the results
window.

2.5 Repeated Sampling

Perhaps the best way to illustrate the sampling properties of least squares is through an exper-
iment. In section 2.4.3 of your book you are presented with results from 10 different regressions
(POE/ Table 2.2). These were obtained using the dataset table2-2.gdt which is included in the
gretl datasets that accompany this manual. To reproduce the results in this table you could
estimate 10 separate regressions

open "@gretldir\data\poe\table2_2.gdt"
ols yl1 const x
ols y2 const x

ols y10 const x

The ten regressions can be estimated more compactly using one of gretl’s loop constructs. The
first step is to create a list that contains the variable names for the dependent variables as in line
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1 of the script below. The statement 1ist ylist is used to put data series into a collection called
ylist; each of the series, y1, y2, ..., y10 are included. Such named lists can be used to make your
scripts less verbose and repetitious, and easier to modify. Since lists are in fact lists of series ID
numbers they can be used only when a dataset is in place. The foreach loop in line 2 uses an
index variable, i, to index a specified list of strings. The loop is executed once for each string in
the list. The numerical value of the index starts at 1 and is incremented by 1 at each iteration. To
refer to elements of the list, use the syntax listname.$i. Be sure to close the loop using endloop.

1 open "@gretldir\data\poe\table2_2.gdt"

2 list ylist = yl y2 y3 y4 yb5 y6 y7 y8 y9 y10
3 loop foreach i ylist

4 ols ylist.$i 0 x

5 endloop

In the gretl GUI, named lists can be inspected and edited under the Data menu in the main
window, via the item Define or edit list. This dialog is shown in Figure 2.14

A simple modification of the hansl script enables one to collect the results of the 10 samples
and find the average values of the estimated coefficients. Simply add the progressive option to
line 3 as in:

3 loop foreach i ylist --progressive

This is an example of how easy it is to conduct a Monte Carlo simulation in gretl. This will be
discussed at length below in section 2.8.

You can also generate your own random samples and conduct a Monte Carlo experiment using
gretl. In this exercise you will generate 100 samples of data from the food expenditure data,
estimate the slope and intercept parameters with each data set, and then study how the least
squares estimator performed over those 100 different samples. What will become clear is this, the
outcome from any single sample is a poor indicator of the true value of the parameters. Keep this
humbling thought in mind whenever you estimate a model with what is invariably only 1 sample
or instance of the true (but always unknown) data generation process.

We start with the food expenditure model:
food_exp, = B1 + Baincome; + e (2.6)

where food_exp, is total food expenditure for the given time period and income; is income. Suppose
further that we know how much income each of 40 households earns in a week. Additionally, we
know that on average a household spends at least $80 on food whether it has income or not and
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that an average household will spend ten cents of each new dollar of income on additional food. In
terms of the regression this translates into parameter values of 81 = 80 and B = 10.

Our knowledge of any particular household is considerably less. We don’t know how much
it actually spends on food in any given week and, other than differences based on income, we
don’t know how its food expenditures might otherwise differ. Food expenditures are sure to vary
for reasons other than differences in family income. Some families are larger than others, tastes
and preferences differ, and some may travel more often or farther making food consumption more
costly. For whatever reasons, it is impossible for us to know beforehand exactly how much any
household will spend on food, even if we know how much income it earns. All of this uncertainty
is captured by the error term in the model. For the sake of experimentation, suppose we also know
that e; ~ N (0, 882).

With this knowledge, we can study the properties of the least squares estimator by generating
samples of size 40 using the known data generation mechanism. We generate 100 samples using the
known parameter values, estimate the model for each using least squares, and then use summary
statistics to determine whether least squares, on average anyway, is either very accurate or precise.
So in this instance, we know how much each household earns, how much the average household
spends on food that is not related to income (/57 = 80), and how much that expenditure rises on
average as income rises. What we do not know is how any particular household’s expenditures
responds to income or how much is autonomous.

A single sample can be generated in the following way. The systematic component of food
expenditure for the t** household is 80 + 10 * income;. This differs from its actual food expenditure
by a random amount that varies according to a normal distribution having zero mean and standard
deviation equal to 88. So, we use computer generated random numbers to generate a random
error, e, from that particular distribution. We repeat this for the remaining 39 individuals. The
generates one Monte Carlo sample and it is then used to estimate the parameters of the model.
The results are saved and then another Monte Carlo sample is generated and used to estimate the
model and so on.

In this way, we can generate as many different samples of size 40 as we desire. Furthermore,
since we know what the underlying parameters are for these samples, we can later see how close
our estimators get to revealing these true values.

Now, computer generated sequences of random numbers are not actually random in the true
sense of the word; they can be replicated exactly if you know the mathematical formula used to
generate them and the ‘key’ that initiates the sequence. In most cases, these numbers behave as if
they randomly generated by a physical process.

To conduct an experiment using least squares in gretl use the script found in below:

2 open "@gretldir\data\poe\food.gdt"
3 set seed 3213789
4 loop 100 --progressive --quiet
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5 series u = normal(0,88)

6 series yl= 80+10*income+u
7 ols yl1 const income

8 endloop

Let’s look at what each line accomplishes. The first line opens the food expenditure data set
that resides in the poe folder of the data directory. The next line, which is actually not necessary
to do the experiments, initiates the pseudo-random numbers at a specific point. This is useful,
since it will allow you to get the same results each time you run the script.

In Monte Carlo experiments loops are used to estimate a model using many different samples
that the experimenter generates and to collect the results. The simplest loop construct in gretl
begins with the command loop NMC --progressive --quiet and ends with endloop. This is
called a count loop. NMC in this case is the number of Monte Carlo samples you want to use and
the option --progressive is a command that suppresses the individual output at each iteration
from being printed; the -—quiet option will suppress some printing to the screen as well.

Optionally you could add a couple of additional commands. The print command collects
(scalar) statistics that you have computed and finds their averages and standard deviations. The
store command allows you to store these in a gretl data file. These are discussed further below.

Within the loop itself, you tell gretl how to generate each sample and state how you want that
sample to be used. The series command is used to generate new variables. In the first line w
is generated using the gretl command normal (), which when used without arguments produces
a computer generated standard normal random variable. In this case, the function contains two
arguments (e.g., series u = normal(0,88)). The normal function takes an ordered pair as inputs
(commonly referred to as ‘arguments’), the first of which is the desired mean of the random normal
and the second is the standard deviation. The next line adds this random element to the systematic
portion of the model to generate a new sample for food expenditures (using the known values of
income from the dataset).

Next, the model is estimated using least squares. After executing the script, gretl prints out
some summary statistics to the screen. These appear as a result of using the --progressive loop
option. The result appears in Figure 2.15. Note that the average value of the intercept is about
88.147. This is getting close to the truth. The average value of the slope is 9.55972, also reasonably
close to the true value. If you were to repeat the experiments with larger numbers of Monte Carlo
iterations, you will find that these averages get closer to the values of the parameters used to
generate the data. This is what it means to be unbiased. Unbiasedness only has meaning within
the context of repeated sampling. In your experiments, you generated many samples and averaged
results over those samples to get close to finding the truth. In actual practice, you do not have
this luxury; you have one sample and the proximity of your estimates to the true values of the
parameters is always unknown.

In section 2.8 and in the script at the end of this chapter, you will find another example of
Monte Carlo that is discussed in POEJ. In this example, a sample of regressors is generated using
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a simple loop and the properties of least squares is examined using 1000 samples. The use of the
print and store commands will be examined in section 2.8 as well.

2.6 Estimating Nonlinear Relationships

Since economic relationships are often not linear, we often need to allow for the possibility that
the independent and dependent variable are nonlinearly related. Consider the following simple
regression

price = 1 + Posqft + e (2.7)
The parameter, 8o measures the expected change in price given an additional square foot of living
space in the home. As specified, this marginal effect is the same for homes of every size. It might
make more sense to allow the size of this marginal effect to depend on the size of the house. Larger
houses also tend to be more luxurious and therefore another square foot of living area might add
more to the average home price. This can be modeled by using a quadratic term in the model.

price = oy + agsqftt +e (2.8)

The marginal effect of another square foot is now dprice/0sqft = 22 sqft. The estimated elasticity
is equal to

& = slope x saft _ (262) x saft
Obviously, the slope and elasticity depend on the size and price of the home. Thus, the user must
select values at which these are to be evaluated. This is done in the script below where sloped
for houses of size 2000, 4000, and 6000 square feet are computed. The elasticities are computed
for prices of $117461.77, $302517.39, and $610943.42. The scalar and series that are used are
not strictly necessary in gretl. I've used them here to make things more clear and it is a good
programming practice in general.

(2.9)

price price

open "@gretldir\data\poe\br.gdt"

series sqft2 = sqft”2

ols price const sqft2

scalar slope_2000 = 2*$coeff (sqft2)*2000
scalar slope_4000 = 2*$coeff (sqft2)*4000
scalar slope_6000 = 2x$coeff (sqft2)*6000
scalar elast_2000 = slope_2000%2000/117461.77
scalar elast_4000 = slope_4000%4000/302517.39
scalar elast_6000 = slope_6000%6000/610943.42

© 0 N O s W N

The output from the regression is

price = 55776.6 + 0.0154213 sqft2
(2890.4)  (0.00031310)

T =1080 R>=0.6921 F(1,1078) =2426.0 & = 68207.

(standard errors in parentheses)
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and the graph of home price against size is shown on the righthand side of Figure 2.16.

Another way to estimate a nonlinear relationship between price and sgft is to alter the functional
form of the model. A log-linear model uses the logarithm of a variable as the dependent variable,
and the untransformed value of regressor as the independent variable. In the simple home price
model this is

In price = v1 + y2sqft + e (2.10)

The logarithmic transformation is often used on data that come from a heavily skewed distribution
that has a long-tail to the right. Taking a look at the histograms for price and it natural logarithm
shown in Figure 2.17 reveals just this sort of data and how the natural log can ‘regularize’ the series.
These graphs were produced by first taking the natural log and then using the freq function to
generate the histograms. The code is

1 series 1_price = 1ln(price)
2 freq price
3 freq l_price

Finally, the log-linear model is estimated and the predicted values from the regression are plotted
against house size.

logs price

ols 1_price const sqft

series 1_yhat = $yhat

series yhat = exp(l_yhat)

gnuplot price yhat sqft --output=display --suppress-fitted

[ N

In the first line, an alternative method of generating the natural logarithms is used. The logs
command can be handy, especially if more than one series is put into logarithms; just list the other
series after the logs command. The regression is estimated in line 2, the predicted values from the
regression saved to a new series called yhat in line 3, and then converted back to price by taking
the antilog in line 4. The price and predicted values are plotted against sqft in the last line, with
the output sent to the computer display.

The estimated equation is:

—

In(price) = 10.839 + 0.0004113 sqft
(0.0246)  (9.708¢-006)
T=1080 R?>=0.6244 F(1,1078) = 1794.8 & = 0.32147

(standard errors in parentheses)

The graph appears on the lefthand side of Figure 2.16 below. Comparing the log-linear model
to the quadratic shows that the nonlinearity estimated by the log-linear is similar, but a bit more
pronounced.
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2.7 Regression with an Indicator Variable

An indicator variable is a variable that can be equal to one of two possible values. Commonly,
this an indicator variable can be a 1 or a 0. So for instance, if a house is located in the University
Town subdivision the variable is given the value of 1 and if not it is equal to 0.

wtown — {1 if house is in University Town (2.11)

0 if not

One can look at the empirical distributions of the two sets of home prices using histograms. In this
case, the smpl command is used to limit the sample to each of the two cases.

open "C:\Program Files (x86)\gretl\data\utown.gdt"
smpl utown = 0 --restrict

freq price --show-plot --nbins=13

smpl utown = 1 --replace --restrict

freq price --show-plot --nbins=13

[ N

In line 2 the --restrict option of the smpl command is used to restrict the sample to the obser-
vations for which the series utown is zero. The freq command is used to generate the histogram
for the price series. The --show-plot option will send the plot to the computer screen and the
--nbins=13 option sets the number of bins for the histogram to 13. The latter ensures that the
plots look just like the ones in Figure 2.18 of POFEJ.

The regression model becomes
price = 1 + Bautown + e (2.12)

As pointed out in POFE/, taking the expected value of a regression is very useful when it contains
an indicator variable. This will reveal how to interpret its coefficient. In this model

B+ By if utown =1

) (2.13)
1 if utown =0

E(price) = 1 + Poutown = {

So, estimating the model using the utown.gdt data yields

price = 215.732 + 61.5091 utown
(1.3181)  (1.8296)

T =1000 R?=0.5306 F(1,998) =1130.2 6 = 28.907

(standard errors in parentheses)

This implies that the average home price (in $1000) in University Town is 215.7325 + 61.5091 =
277.2416 and the average price elsewhere is 215.7325.

The script that produces the same result is straightforward:
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open "@gretldir\data\poe\utown.gdt"

ols price const utown --quiet

scalar ut = $coeff (const)+$coeff (utown)

scalar other = $coeff(const)

printf "\nThe average in Utown is %.4f and the average elsewhere is %.4f\n",ut,other

G W N =

2.8 Monte Carlo Simulation

The first step in a Monte Carlo exercise is to model the data generation process. This requires
what Davidson and MacKinnon (2004) refer to as a fully specified statistical model. A fully
specified parametric model “is one for which it is possible to simulate the dependent variable
once the values of the parameters are known” (Davidson and MacKinnon, 2004, p. 19). First you’ll
need a regression function, for instance:

E(y|) = p1 + Pozy (2.14)

where 7 is your dependent variable, x; the dependent variable, €; the current information set,
and 81 and 2 the parameters of interest. The information set ); contains z; as well as other
potential explanatory variables that determine the average of y;. The conditional mean of y; given
the information set could represent a linear regression model or a discrete choice model. However,
equation (2.14) is not complete; it requires some description of how the unobserved or excluded
factors affect y;|€2;.

To complete the the specification we need to specify an “unambiguous recipe” for simulating the
model on a computer (Davidson and MacKinnon, 2004, p. 17). This means we’ll need to specify a
probability distribution for the unobserved components of the model and then use a pseudo-random
number generator to generate samples of the desired size.

In this example the data generation process will be as follows. We will let N = 40 and consider
a linear model of the form

yi =P+ Poxi+e; i=1,2,---,40. (2.15)

The errors of the model will iid N(0,88). The parameters 51 = 100 and Sy = 10. Finally, let
r1,%2, - ,2T20 = 10 and let xo1, x99, -+ , x40 = 20. This gives us enough information to simulate
samples of y; from the model. The hansl script (hansl is an acronym for hansl’s a neat scripting
language is:

nulldata 40
# Generate X
series x = (index>20) ? 20 : 10

Ul W N =

# Generate systematic portion of model
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6 series ys = 100 + 10%*x

7

g loop 1000 --progressive --quiet

9 y = ys + normal(0,50)

10 ols y const x

11 scalar bl = $coeff (const)

12 scalar b2 = $coeff (x)

13 scalar sig2 = $sigma”2

14 print bl b2 sig2

15 store "@workdir\coef.gdt" bl b2 sig2

16 endloop

17

18 open "@workdir\coef.gdt"
19 summary

20 freq b2 --normal

The first line creates an empty dataset that has room for 40 observations. Line 3 contains a
ternary conditional assignment operator.? Here is how it works. A series x is being created.
The statement in parentheses is checked. The question mark (?) is the conditional assignment. If
the statement in parentheses is true, then x is assigned the value to the left of the colon. If false
it gets the value to the right. So, when index (a gretl default way of identifying the observation
number) is greater than 20, x is set to 20, if index is less than or equal to 20 it is set to 10.

Next, the systematic portion of the model is created. For this we need x and the known values of
the parameters (100, 10). Then we loop from 1 to 1000 in increments of 1. Normal random variates
are added to the model, it is estimated by ols, and several statistics from that computation are
retrieved, printed, and stored in a specified location.

The normal (0,50) statement generates normal random variables with mean of 0 and a variance
of 50. The print statement used in this context actually tells gretl to accumulate the things that
are listed and to print out summary statistics from their computation inside the loop. The store
command tells gretl to output b1, b2, and sig2 to an external file. The --progressive option
to the loop command alters the print and store commands a bit, and you can consult the Gretl
Users Guide for more information about how.

Here is the output from the Monte Carlo. First, the output from the progressive loop:

2A ternary operator has three parts. In this case, the parts give us a fancy way of creating if/else statements. The
first part, a, lies to the left of ?, the second, b, falls between the question mark and the colon and the last, c, is to
the right of the colon, e.g., a?b:c. If a is true, then b if not, then c.
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QL5 estimates using the 40 observations 1-40
Statistics for 1000 repetitions
Dependent wvariable: vy

mean of std. dewv. of mean of std. dewv. of

estimated estimated estimated estimated

Variable coefficients coefficients =ztd. errors =ztd. errors
const 100.491 24.5847 24.8304 2.7T7586

X 9.96204 1.57931 1.57042 0.175561

In a progressive loop, gretl will print out the mean and standard deviation from the series of
estimates. It works with all single equation estimators in gretl and is quite useful for Monte Carlo
analysis. From this you can see that the average value of the constant in 1000 samples is 100.491.
The average slope was 9.962. The third column gives the mean of the standard error calculation
from the simulation. If the standard errors are being estimated consistently, then these should be
fairly close to the standard deviation of estimated coefficients to their left. The outcome from the
print command is:

Statistics for 1000 repetitions

Variable mean =td. dev.
bl 100.491 24,5847
b2 9.96204 1.57931
sig2 2497.03 551.720

When the print command is issued, it will compute and print to the screen the ‘mean’ and
‘std. dev.” of the estimated scalar. Notice that bl and b2 match the output produced by the
--progressive option. The print command is useful for studying the behavior of various statistics
(like tests, confidence intervals, etc) and other estimators that cannot be handled properly within
a progressive loop (e.g., mle, gmm, and system estimation commands).

The store statement works behind the scenes, but yields this informative piece of information:

store: using filename c:“temp'\coef.gdt
Data written OK.

This tells you where gretl wrote the dataset that contains the listed scalars, and that is was written
properly. Now you are ready to open it up and perform additional analysis. In this example, we
have used the @workdir macro. This basically tells gretl to go to the working directory to write
the file. You could write files to gretl’s temporary directory using @dotdir\coef.gdt.

The data set is opened and the summary statistics generated (again, if needed)
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1 open "@workdir\coef.gdt"
2 summary
3 freq b2 --normal

From here you can plot frequency distribution and test to see whether the least squares estimator

of slope is normally distributed.

0.3 T T T T T
Test statistic for normality: [}l m—

Chi-square(2) = 1.540 [0.4629] N{9.962,1.5801)

Censity

b2

The histogram certainly appears to be normally distributed compared to the line plot of the normal.
Also, the hypothesis test of the normality null against nonnormality cannot be rejected at any

reasonable level of significance.

2.9 Script

The script for chapter 2 is found below. These scripts can also be found at my website http:

//www.learneconometrics.com/gretl.

set echo off

open "@gretldir\data\poe\food.gdt"

setinfo food_exp -d "household food expenditure per week" \
-n "Food Expenditure"

setinfo income -d "weekly household income" -n "Weekly Income"

Gl W N =
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labels

#Least squares
ols food_exp const income --vcv
ols 1 0 2

#Summary Statistics
summary food_exp income

#Plot the Data
gnuplot food_exp income

#List the Data
print food_exp income --byobs

#Elasticity
ols food_exp const income --quiet
scalar elast=$coeff (income)*mean(income)/mean(food_exp)

#Prediction
scalar yhat = $coeff(const) + $coeff (income)*20

#Table 2.2
open "@gretldir\data\poe\table2_2.gdt"
list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 yi10
loop foreach i ylist --progressive
ols ylist.$i comst x
endloop

# slopes and elasticities at different points
open "@gretldir\data\poe\br.gdt"

series sqft2 = sqft”2

ols price const sqft2

scalar slope_2000 = 2*$coeff (sqft2)*2000
scalar slope_4000 = 2*$coeff (sqft2)*4000
scalar slope_6000 = 2*$coeff (sqft2)*6000
scalar elast_2000 = slope_2000%2000/117461.77
scalar elast_4000 = slope_4000%4000/302517.39
scalar elast_6000 = slope_6000*6000/610943.42

# histogram for price and log(price)
series 1_price = 1ln(price)

freq price

freq 1l_price

# plots for the nonlinear regressions
open "@gretldir\data\poe\br.gdt"
square sqft

ols price const sqft

ols price sq_sqft

series yhat = $yhat
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57 gnuplot price yhat sqft --output=display --suppress-fitted
58

50 logs price

60 ols 1l_price const sqft

61 series l_yhat = $yhat

62 series yhat = exp(l_yhat)

63 gnuplot price yhat sqft --output=display --suppress-fitted
64

65 # regression using indicator variables

66 # Histograms for the prices of both neighborhoods
67 open "C:\Program Files (x86)\gretl\data\utown.gdt"
68 smpl utown = 0 --restrict

6o freq price —-—-show-plot --nbins=13

70 smpl utown = 1 --replace --restrict

71 freq price --show-plot --nbins=13

72

73 # regression

74 open "@gretldir\data\poe\utown.gdt"

75 0ls price const utown -—quiet

76 scalar ut = $coeff (const)+$coeff (utown)

77 scalar other = $coeff(const)

7s printf "\nThe average in Utown is %.4f and the \
79 average elsewhere is %.4f\n",ut,other

80

g1 # Monte Carlo simulation

s2 open "@gretldir\data\poe\food.gdt"

83 set seed 3213789

84 loop 100 --progressive -—quiet

85 series u = normal(0,88)
86 series yl= 80+10*income+u
87 ols yl1 const income

g8 endloop

89

90 # Monte Carlo simulation #2

91 # Generate systematic portion of model
92 nulldata 40

93 # Generate X

94 series x = (index>20) 7 20 : 10

95

96 # Generate systematic portion of model
97 series ys = 100 + 10%*x

98

99 loop 1000 --progressive --quiet

100 series y = ys + normal(0,50)

101 ols y const x

102 scalar bl = $coeff (const)

103 scalar b2 = $coeff (x)

104 scalar sig2 = $sigma”2

105 print bl b2 sig2

106 store "@workdir\coef.gdt" bl b2 sig2

107 endloop
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108
109
110
111

open "@workdir\coef.gdt"
summary
freq b2 --normal
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e ™
Ed gretl: model 2 LEE_LEEJ!!gg!d

Eile Edit Tests Save Graphs Analysis LaTeX

Model 2: QOLS5, using observations 1-40
Dependent wvariable: food exp

coefficient =td. error t-ratio p-value
const 83.4160 43.4102 1.322 0.0622 *
income 10.20%96 2.0932¢6 4,877 1.95e-05 #*#%

HMean dependent wvar 283.573% 5.0. dependent wvar 112.68752

Sum sguared resid 304505.2 S5.E. of regression 89.51700
BE-=guared 0.385002 Adjusted R-sgquared 0.368818
F(1, 38) 23.78884 B-value (F) 0.000019
Log-likelihood —-235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan-Quinn 476.2389

Figure 2.9: The model window appears with the regression results. From here you can conduct
subsequent operations (graphs, tests, analysis, etc.) on the estimated model.

File Tools Data View Add Sample Varigble Model Help

food.gdt * Icon view |
ID# 4 Variable nam Scalars
0 const Windows L4

1 food exp

2  income Graph specified vars 3

Multiple graphs

Cross Tabulation

Figure 2.10: Using the pull-down menus to obtain summary statistics. Highlight the desired vari-
ables and use View>Summary statistics from the pull-down menu.

' ™y
EH gret: summary statistics E@g
EREREN S
Summary statistics, using the observations 1 - 40

Mean Median Minimum Maximum
food exp 283.57 264.48 109.71 587.66
income 15.605 20.030 3.63900 33.400
5td. Dev. c.v. Skewness Ex. kurtosis
food_exp 112.68 0.39734 0.49208 -0.14848
income 6.8478 0.3492%9 -0.628651 0.27973

b= A

Figure 2.11: Summary statistics
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H gretl: script output = (- [ S

Boaw: o5 x

gretl wersion 1.9.5cvs
Current session: 2011-06-30 15:06
? ols food exp const income --guiet

? genr elast,=5(:oeff(incorr.e]*rr.ean(incorr.e],-"rr.ean(food_exp]
Generated scalar elast = 0.70584

Figure 2.12: Results from the script to compute an elasticity based on a linear regression.

File Edit Tests Save Qra@Tﬂ
Model 4: OL3, using obs Display actual, fitted, residual
Dependent warizakle: food Forecasts...
Confidence intervals for coefficients
coefficient . e
const 23.4160 Coefficient covariance matrix -
income 10.2096 ANOVA D5 #%%
Bootstrap...
Mean dependent wvar 283 75TIT o, DOEpengent var IriZ.6752
Sum =guared resid 304505.2 5.E. of regres=sion 88.51700
E—=sguared 0.385002 Adjusted R-sguared 0.368818
F(1l, 38) 23.78884 P-wvalue (F) 0.000019
Log-likelihood -235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3854 Hannan-Quinn 476.23889

Figure 2.13: Obtain the matrix that contains the least squares estimates of variance and covariance
from the pull-down menu of your estimated model.
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B Define st = | B S
Define named list

Mame of list: | ylist [:J
Awailable vars Selected vars
const ¥l
x y2
y2 vd
¥3 ¥3
v4 y6
| ¥5 ¥
¥ 8
¥I 3
¥a
y10
’ Clear ] [ Cancel ] [ OK
L "

Figure 2.14: Choose Data>Define or edit list from the gretl menu bar

QLS estimates using the 40 observations 1-40
Statistice for 100 repetitions
Dependent wariakle: vl

mean of ztd. dewv. of mean of =ztd. dew. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors
cConst 88.1474 40.3705 42.1154 4.49704
income 9.59723 2.0152%9 2.03102 0.21&850

S5tatistics for 100 repetitions

Variable mean =td. dev.
bl 88.1474 40.3705
b2 9.52723 2.0152%9

store: using filename c:‘\temp\coeff.gdt
Data written CKE.

Figure 2.15: The summary results from 100 random samples of the Monte Carlo experiment.
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Figure 2.16: Price versus size from log-linear and quadratic models.
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Figure 2.17: Price and its natural logarithm.
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Chapter

Interval Estimation and Hypothesis Testing

In this chapter, I will discuss how to generate confidence intervals and test hypotheses using
gretl. Gretl includes several handy utilities that will help you obtain critical values and p-values
from several important probability distributions. As usual, you can use the dialog boxes or hansl
— gretl’s programming language — to do this.

3.1 Confidence Intervals

It is important to know how precise your knowledge of the parameters is. One way of doing
this is to look at the least squares parameter estimate along with a measure of its precision, i.e.,
its estimated standard error. The confidence interval serves a similar purpose, though it is much
more straightforward to interpret because it gives you upper and lower bounds between which the
unknown parameter will lie with a given probability.!

In gretl you can obtain confidence intervals either through a dialog or by manually building
them using saved regression results. In the ‘manual’ method one can use the genr or scalar
commands to generate upper and lower bounds based on regression results that are saved in gretl’s
memory, letting gretl do the arithmetic. You can either look up the appropriate critical value from
a table or use the gretl’s critical function. Both are demonstrated below.

I This is probability in the frequency sense. Some authors fuss over the exact interpretation of a confidence interval
(unnecessarily I think). You are often given stern warnings not to interpret a confidence interval as containing the
unknown parameter with the given probability. However, the frequency definition of probability refers to the long
run relative frequency with which some event occurs. If this is what probability is, then saying that a parameter
falls within an interval with given probability means that intervals so constructed will contain the parameter that
proportion of the time.
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Consider the equation of a confidence interval from POFE4
P[bk — tcse(bk) < B < b+ tcse(bk)] =1—« (31)

Recall that by is the least squares estimator of i, and that se(by) is its estimated standard error.
The constant t. is the «/2 critical value from the ¢-distribution and « is the total desired probability
associated with the “rejection” area (the area outside of the confidence interval).

You’ll need to know the critical value t., which can be obtained from a statistical table,
the Tools>Statistical tables dialog contained in the program, or using the gretl command
critical. First, try using the dialog box shown in Figure 3.1. Pick the tab for the ¢ distribution
and tell gretl how much weight to put into the right-tail of the probability distribution and how
many degrees of freedom your ¢-statistic has, in our case, 38. Once you do, click on OK. You'll get
the result shown in Figure 3.2. It shows that for the ¢(38) with «/2 right-tail probability of 0.025
and o = 0.05, the critical value is 2.02439.2 Then generate the lower and upper bounds (using

-

rﬂ gretl;;ri_tﬁ:lvalues =RREN X
| norm I| t ”hi—squarel E | binomiall poissonl weibulll Dw

right-tail probability IU.UES

. A

Figure 3.1: Obtaining critical values using the Tools>Statistical tables dialog box.

“ gretl: critical values = | B S
HEeDAaDR
t(38) p

right-tail probakility = 0.025
complementary probability = 0.975
two-tailed probability = 0.05

Critical walue = 4

. A

m

Figure 3.2: The critical value obtained from Tools>Statistical tables dialog box.

the gretl console) with the commands:

%You can also get the o level critical values from the console or in a script by issuing the command scalar ¢ =
critical(t,38,a). Here « is the desired area in the right-tail of the ¢-distribution.
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open "@gretldir\data\poe\food.gdt"

ols food_exp const income

scalar 1b = $coeff(income) - 2.024 * $stderr(income)
scalar ub = $coeff(income) + 2.024 * $stderr(income)
print 1b ub

ook W N =

The first line opens the dataset. The second line (o0ls) solves for the estimates that minimize
the sum of squared errors in a linear model that has food_exp as the dependent variable with a
constant and income as independent variables. The next two lines generate the lower and upper
bounds for the 95% confidence interval for the slope parameter 8s. The last line prints the results
of the computation.

The gretl language syntax needs a little explanation. When gretl makes a computation, it will
save certain results like coefficient estimates, their standard errors, sum of squared errors and so
on in memory. These results can then be used to compute other statistics, provided you know the
accessor’s name that gretl uses to store and recall the computation. These so-called accessors
carry $ prefixes and a list of what can be accessed after estimation can be found in the function
reference. Lines 3 and 4 use accessors for the coefficients ($coeff (income)) and standard errors
($stderr(income)) of the variable in parentheses. The list of accessors is actually growing quite
rapidly in response to user requests, so a trip to the function reference may be worth your while to
see what is available.

In the above example, gretl uses the least squares estimates and their estimated standard errors
to compute confidence intervals. Following the ols command, least squares estimates are stored in
$coeff (variable mame). Since [o is estimated using the variable income, its coefficient estimate
is saved in $coeff (income). The corresponding standard error is saved in $stderr (income). Also,
don’t forget that the function reference (Figure 1.10) includes a list of accessors.

Equivalently, you could use gretl’s built-in critical function to obtain the desired critical
value. The general syntax for the function depends on the desired probability distribution. This
follows since different distributions contain different numbers of parameters (e.g., the ¢-distribution
has a single degrees of freedom parameter while the standard normal has none!). This example
uses the t-distribution and the script becomes:

open "@gretldir\data\poe\food.gdt"

ols food_exp const income

scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
print 1b ub

[ N

The syntax for the ¢-distribution is critical(t,degrees of freedom,«/2). The degrees of
freedom from the preceding regression are saved as $df and for a 1 — a = 95% confidence interval,
a/2 = 0.025.

47



The example found in section 3.1.3 of POE/ computes a 95% confidence interval for the income
parameter in the food expenditure example. The gretl commands above were used to produce the
output found in Figure 3.3.

Generated scalar 1lb = 5.897205

Generated scalar ub 14.4472
1k = 5.89720525
ub = 14.447233

Figure 3.3: Obtaining the 95% confidence interval for the income coefficient in the food expenditure
example.

To use the dialogs to get confidence intervals is easy as well. First estimate the model using
least squares in the usual way. Choose Model>Ordinary least squares from the main pull-
down menu, fill in the dependent and independent variables in the ols dialog box and click OK.
The results appear in the model window. Now choose Analysis>Confidence intervals for
coefficients from the model window’s pull-down menu (seen in Figure 4.1). This generates the
result shown in Figure 3.4. The circled « icon can be used to change the size of the confidence

r“ gretl: coefficient confidence intervals =[S &ﬁ
& Elfk(é)ﬁxkj &
t(38, 0.025) = 2.024
VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL
const 83.4160 -4.46328 171.285
income 10.209¢ 2.97205 14.4472

. 4

Figure 3.4: The 95% confidence interval for the income coefficient in the food expenditure example
using the dialog.

interval, which can be set to any (integer) percentage level you desire.

3.2 Repeated Sampling

In this section, the ten samples in table2_2.gdt are used to produce ten sets of 95% confidence
intervals. To make the program simpler, the loop construct introduced in chapter 2 is employed.
The script to estimate these in the loop is:

1 open "Ogretldir\data\poe\table2_2.gdt"
2 list ylist = y1 y2 y3 y4 yb5 y6 y7 y8 y9 y10
3 loop foreach i ylist --progressive --quiet
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4 ols ylist.$i const x

5 scalar bl = $coeff(const) # in gretl you can use genr or scalar
6 scalar b2 = $coeff (x)

7 scalar sl = $stderr(const)

8 scalar s2 = $stderr(x)

9

10 # 2.024 is the .025 critical value from the t(38) distribution
11 scalar clL = bl - critical(t,$df,.025)*s1
12 scalar cl1R = bl + critical(t,$df,.025)*s1
13 scalar c2L = b2 - critical(t,$df,.025)*s2
14 scalar c2R = b2 + critical(t,$df,.025)*s2

16 scalar sigma2 = $sigma”2
17 store @workdir\coeff.gdt bl b2 sl s2 clL clR c2L c2R sigma2
18 endloop

As in chapter 2, the dataset is opened and a list is created that contains each of the ten samples of
the dependent variable. The foreach loop is initiated in line 3 and the --progressive and --quiet
options are chosen. The model is estimated using least squares and the coefficients, standard errors,
lower and upper confidence limits and variance are generated and stored in the dataset coeff.gdt,
which is placed in c:\temp on the harddrive.

As if that is not easy enough, there is an even simpler syntax that will accomplish the same
thing. It uses the fact that the dependent variables all begin with the letter ‘y’ and have number
suffixes. In this case the foreach loop can be simplified by replacing lines 2-4 with:

loop foreach i yi1..y10
ols $i const x

Once this is executed, one can open coeff.gdt and perform further analysis. In this case, I will print
the upper and lower confidence bounds as Hill et al. have done in their Table 3.2 of POE/.

open @workdir\coeff.gdt
print clL clR c2L c2R --byobs

The --byobs option is used with the print command, otherwise each of the series will be printed
out separately. The result appears below in Figure 3.5. Recall that the true value of 8o = 10 and
each of the estimated intervals contains it. The actual value of the intercept is 80, and 5y falls also
falls within the estimated boundaries in each of the samples. In a large number of samples, we
would expect about 5% of the intervals would not contian the true value of the parameters. This
is explored in the next section.
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“ gretl: script output = | B |
B2 O&% o0 R
7 print cll clR c2L c2R --byobs i
clL clR cZL cZR
1 49,.54218 213.3462 2.51842% 10.44127
2 -95.83110 124,.323% 7.648383 14.11735
3 28.55668 179.2635 4,.505533 11.77271
4 -20.895944 113.9680 8.648168 15.1544%5
5 0.93117 167.5339 5.271201 13.30488
& —-66.04485 119.3018 9.081885 18.01941
T -0.62975 129.0463 T7.806179 14.05823
g 15.15472 140.1231 6.848891 12.63042 i
9 38.31570 156.2870 5.206310 10.89496 5
10 20.659174 171.2318 4.139676 11.39880 &
P T r
L A

Figure 3.5: Confidence intervals for 10 samples.

3.3 Monte Carlo Experiment

Once again, the consequences of repeated sampling can be explored using a simple Monte Carlo
study. In this case, we will generate 100 samples and count the number of times the confidence
interval includes the true value of the parameter. The simulation will be based on the food.gdt
dataset.

The new script looks like this:

[

open "@gretldir\data\poe\food.gdt"
2 set seed 3213798

3 loop 100 --progressive --quiet

4 series u = normal(0,88)

series y = 80 + 10*income + u
ols y const income

ot

scalar clL $coeff(const) - critical(t,$df,.025)*$stderr(const)
scalar clR = $coeff(const) + critical(t,$df,.025)*$stderr(const)
10 scalar c2L = $coeff(income) - critical(t,$df,.025)*$stderr (income)

© 0w N O

11 scalar c2R = $coeff(income) + critical(t,$df,.025)*$stderr(income)
12

13 # Compute the coverage probabilities of the Confidence Intervals
14 scalar pl = (80>ciL && 80<ciR)

15 scalar p2 = (10>c2L && 10<c2R)

16

17 print pl p2
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18 store Qworkdir\cicoeff.gdt clL clR c2L c2R
19 endloop

The results are stored in the gretl data set cicoeff.gdt. Opening this data set (open @workdir\
cicoeff.gdt) and examining the data will reveal interval estimates that vary much like those in
Tables 3.1 and 3.2 of POFE4. In line 4 of this script pseudo-random normals are drawn using the
normal (mean,sd) command, and the mean has been set to 0 and the standard deviation to 88. The
samples of y are generated linearly (80+10*food_exp) to which the random component is added in
line 5. Then, the upper and lower bounds are computed. In lines 14 and 15 gretl’s “and” logical
operator, &%, is used to determine whether the coefficient (80 or 10) falls within the computed
bounds. The operator && actually yields the intersection of two sets so that if 80 is greater than
the lower bound and smaller than the upper p1, then the condition is true and p1 is equal to 1. If
the statement is false, it is equal to zero. Averaging pl and p2 gives you the proportion of times
in the Monte Carlo that the condition is true, which amounts to the empirical coverage rate of the
computed interval.

With this seed, I get the following (Figure 3.6) result: You can see that the intercept falls within

CLS e=stimates using the 40 observations 1-40
Stati=stiecs for 100 repetitions
Dependent wariakle: v

mean of std. dewv. of mean of std. dev. of

estimated estimated estimated estimated

WVariable coefficients coefficients std. errors std. errors
const T72.8601 42,6305 41.6874 4,99E525
income 10.3817 2.04380 2.01018 0.240874

Statistics for 100 repetitions

Variable mean std. dev.
pl 0.930000 0.255147
B2 0.920000 0.271283

store: using filename c:\templcicoeff.gdt
Data written OK.

Figure 3.6: The empirical coverage rates of nominal 95% confidence intervals from 100 random
samples.

the estimated interval 93 out of 100 times and the slope within its interval 92% of the time.

3.4 Hypothesis Tests

Hypothesis testing allows us to confront any prior notions we may have about the model with
what we actually observe. Thus, if before drawing a sample, I believe that autonomous weekly food
expenditure is no less than $40, then once the sample is drawn I can determine via a hypothesis
test whether experience is actually consistent with this belief.
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In section 3.4 of your textbook the authors test several hypotheses about §. In 3.4.1a the null
hypothesis is that Sy = 0 against the alternative that it is positive (i.e., B2 > 0). The test statistic
is:

t= (bg - 0)/8€(b2) ~ t38 (3.2)

provided that B2 = 0 (the null hypothesis is true). Select a = 0.05 which makes the critical value
for the one sided alternative (82 > 0) equal to 1.686. The decision rule is to reject Hy in favor
of the alternative if the computed value of your t-statistic falls within the rejection region of your
test; that is if it is larger than 1.686.

The information you need to compute ¢ is contained in the least squares estimation results
produced by gretl:

Model 1: OLS, using observations 1-40
Dependent variable: food_exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622
income 10.2096 2.09326 4.8774 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752

Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 23.78884  P-value(F) 0.000019
Log-likelihood —235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan—Quinn 476.2389

The computations
t = (ba — 0)/se(b2) = (10.21 — 0)/2.09 = 4.88 (3.3)

Since this value falls within the rejection region, then there is enough evidence at the 5% level of
significance to convince us that the null hypothesis is incorrect; the null hypothesis rejected at this
level of significance.

-

E gretl: p-value finder (0 e

| normal| t |chi—square| F | gammal binomiall poissonl weibull

df |38

value |4.88

L 4

Figure 3.7: The dialog box for obtaining p-values using the built in statistical tables in gretl.
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We can use gretl to get the p-value for this test using the Tools pull-down menu. In this
dialog, you have to fill in the degrees of freedom for your ¢-distribution (38), the value of by (10.21),
its value under the null hypothesis—something gretl refers to as ‘mean’ (0), and the estimated
standard error from your printout (2.09). This will yield the information:

t(38): area to the right of 4.88 = 9.65032e-006
(two-tailed value = 1.93006e-005; complement = 0.999981)

This indicates that the area in one tail is almost zero. The p-value is well below the usual level of
significance, o = .05, and the hypothesis is rejected.

Gretl also includes a programming command that will compute p-values from several distri-
butions. The pvalue function works similarly to the critical function discussed in the preceding
section. The syntax is:

scalar p = pvalue(distribution, parameters, xval)

The pvalue function computes the area to the right of xval in the specified distribution. Choices
include z for Gaussian, ¢ for Student’s t, X for chi-square, F for F', G for gamma, B for binomial,
P for Poisson, W for Weibull, or E for generalized error. The argument parameters refers to the
distribution’s known parameters, as in its degrees of freedom. So, for this example try

open "@gretldir\data\poe\food.gdt"

ols food_exp const income

scalar t2 = ($coeff(income)-0)/$stderr(income)
scalar p2 = pvalue(t,$df,t2)

=W N =

The result is 9.72931e-006, which is very close to the value produced by the dialog box. This values
differ because the value in the dialog box was rounded to 4.88 whereas the computed value here
has many more significant digits to use in the computation.

In the next example, the authors of POE test the hypothesis that S, = 5.5 against the
alternative that B2 > 5.5. The computations

t = (by — 5.5)/se(by) = (10.21 — 5.5)/2.09 = 2.25 (3.4)

The significance level in this case is chosen to be 0.01 and the corresponding critical value can be
found using a tool found in gretl. The Tools>Statistical tables pull-down menu bring up the
dialog found in Figure 3.1.

This result is found in Figure 3.8. The 0.01 one-sided critical value is 2.42857. Since 2.25 is less
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-
“ gretl: critical values o | E] |-

t(38) -
right-tail probability = 0.01
complementary probability = 0.99
two-tailed probability = 0.02

m

Critical walue = 2.42857

e A

Figure 3.8: The results from the dialog box for obtaining critical values using the built in statistical
tables in gretl.

than this, we cannot reject the null hypothesis at the 1% level of significance.

In section 3.4.2 of POFE4, the authors conduct a one-sided test where the rejection region falls
within the left tail of the ¢-distribution. The null hypothesis is S = 15 and the alternative is
B2 < 15. The test statistic and distribution is

t= (bg — 15)/S€(b2) ~ t38 (3.5)
provided that 82 = 15. The computation is
t = (bg — 15)/se(by) = (10.21 — 15)/2.09 = —2.29 (3.6)

Based on the desired level of significance, o = 0.05, we would reject the null in favor of the one-sided
alternative if t < —1.686. It is and therefore we conclude that the coefficient is less than 15 at this
level of significance.

In section 3.4.3 of POE/ examples of two-tailed tests are found. In the first example the
economic hypothesis that households will spend $7.50 of each additional $100 of income on food.
So, Hy : f2 = 7.50 and the alternative is H; : f2 # 7.50. The statistic is t = (bg — 7.5)/se(ba) ~ t3g
if Hy is true which is computed ¢t = (ba — 7.5)/se(by) = (10.21 — 7.5)/2.09 = 1.29. The two-sided,
a = 0.05 critical value is 2.024. This means that you reject Hy if either ¢t < —2.024 or if ¢t > 2.024.
The computed statistic is neither, and hence we do not reject the hypothesis that 85 is $7.50. There
simply isn’t enough information in the sample to convince us otherwise.

You can draw the same conclusions from using a confidence interval that you can from this
two-sided ¢-test. The 100(1 — )% confidence interval for fa is

by — tcse(bz) < By < by + tcse(bg) (37)
In terms of the example the compute interval is
10.21 — 2.024(2.09) < B2 < 10.21 + 2.024(2.09) (3.8)

which as we saw earlier in the manual is 5.97 < (o < 14.45. From a hypothesis testing standpoint,
you would not be able to reject the hypothesis that 3o is different from 7.5 at the 5% level of
significance because 7.5 falls within this interval.
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In the next example a test of the overall significance of (5 is conducted. As a matter of routine,
you always want to test to see if your slope parameter is different from zero. If not, then the
variable associated with it may not belong in your model. So, Hy : 2 = 0 and the alternative
is Hy : B2 # 0. The statistic is t = (bo — 0)/se(ba) ~ tsg, if Hy is true, and this is computed
t = (by — 0)/se(b2) = (10.21 — 0)/2.09 = 4.88. Once again, the two-sided, o = 0.05 critical value
is 2.024 and 4.88 falls squarely within the 5% rejection region of this test. These numbers should
look familiar since this is the test that is conducted by default whenever you run a regression in
gretl.

As we saw earlier, gretl also makes obtaining one- or two-sided p-values for the test statistics
you compute very easy. Simply use p-value finder dialog box available from the Tools pull-down
menu (see Figure 3.8) to obtain one or two sided p-values.

3.5 Script for t-values and p-values

One thing we’ve shown in this chapter is that many of the results obtained using the pull-down
menus (often referred to as the GUI) in gretl can be obtained using hansl from the console or
in a script. In fact, the gretl’s GUI is merely a front-end to its programming language.? In this
chapter we used the pvalue and critical functions to get p-values or critical values of statistics.
The following script accumulates what we’ve covered and completes the examples in the text.

open "@gretldir\data\poe\food.gdt"
ols food_exp const income

#0ne sided test (Ha: b2 > zero)

scalar tratiol = ($coeff(income) - 0)/ $stderr(income)
scalar cl1 = critical(t,$df,.05)

scalar pl = pvalue(t,$df,tratiol)

printf "The statistic = %.4f, 5%% critical value = %.4f and\
pvalue = %.4f\n",tratiol, ci,pl

© 0 N A W N
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#0ne sided test (Ha: b2>5.5)

scalar tratio2 = ($coeff(income) - 5.5)/ $stderr(income)
scalar c2 = critical(t,$df,.05)

scalar p2 = pvalue(t,$df,tratio2)

printf "The statistic = %.4f, 5%% critical value = %.4f and\
pvalue = %.4f\n",tratio2, c2,p2

[ T S S e
N O O Re W N =

#0ne sided test (Ha: Db2<15)

scalar tratio3 = ($coeff(income) - 15)/ $stderr(income)
scalar c3 = -1*critical(t,$df,.05)

scalar p3 = pvalue(t,$df,abs(tratio3))

22 printf "The statistic = %.4f, 5%k critical value = %.4f and\

NN = =
= O © o

3This is true in Stata as well.
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23 pvalue = %.4f\n",tratio3, c3,p3

24

25 #Two sided test (Ha: b2 not equal 7.5)

26 scalar tratio4 = ($coeff(income) - 7.5)/ $stderr(income)

27 scalar c4 = critical(t,$df,.025)

28 scalar p4 = 2*pvalue(t,$df,abs(tratiod))

20 printf "The statistic = %.4f, 5%% critical value = %.4f and\

30 pvalue = %.4f\n",tratio4, c4,pd

31

32 #Confidence interval

33 scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
34 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
35 printf "The 95%J confidence interval is (%.4f, %.4f)\n",lb,ub

36

37 #Two sided test (Ha: b2 not equal zero)

38 scalar tratio5 = ($coeff(income) - 0)/ $stderr(income)

39 scalar c5 = critical(t,$df,.025)

40 scalar pb = 2*pvalue(t,$df,abs(tratiob))

41 printf "The statistic = %.4f, 5%% critical value = %.4f and\

42 pvalue = %.4f\n",tratio5, c5,pb

The pvalue function in gretl measures the area of the probability distribution that lies to the
right of the computed statistic. If the computed t¢-ratio is positive and your alternative is two-
sided, multiply the result by 2 to measure the area to the left of its negative; this can be seen in
lines 28 and 40. The other function used here is printf. This function is a fancy way of printing
your results to the screen and its use is explained in detail in section 5.2.2. Because the lines are
long, the continuation command (\) discussed in chapter 1 was also used. This tells gretl that the
current line continues to the next.

If the t-ratio is negative, gretl won’t compute the area (and you wouldn’t want it to, anyway).
This is what happened for tratio3 in the script and I used the absolute value function, abs( ),
in line 21 to get its positive value. The area to the right of the positive value is equivalent to the
area left of the negative value. Hence, the computation is correct.

Basically, proper use of the pvalue in one-sided tests of a single hypothesis requires a little
thought. Too much thought, in my opinion. I would avoid it unless you are comfortable with its
use. In other hypothesis testing contexts (e.g., x> and F-tests) p-values are much easier to use
correctly. I use them freely in those cases. With t-tests or z-tests (normal distribution), it is just
easier conduct a test by comparing the computed value of your statistic to the correct critical value.

The output from the script is nice and neat, thanks to the use of printf and the use of set echo
off. This appears in Figure 3.9 below. The set echo off command used at the beginning of the
chapter ending scripts reduces what is printed to the screen when the script is executed. Ordinarily,
gretl will write (echo) each command executed back to the screen before it produces the requested
output. This is useful in most cases, but when running a longer script, it is bothersome. The set
echo off turns the default echoing of commands off. To turn it back on, use set echo on.
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Model 1: CLS, using observations 1-40
Dependent variable: food_exp

coefficient std. error t-ratio p-value

const 83.4160 43.4102 1.922 0.0622 *
income 10.2096 2.09326 4.877 1.95e-05 #**

Mean dependent var 283.5735 5.D. dependent wvar 112.8752

Sum =gquared resid 304505.2 5.E. of regression 89.51700

RE-sguared 0.385002 Bdjusted E-sguared 0.368818

F(1, 38) 25.78884  P-value(F) 0.000019
Log-likelihood -235.5088 Bkaike criterion 475.0176

Schwarz criterion 478.3854 Hannan-Quinn 476.2389

The statistic = 4.8774, 5% critical walue = 1.6860 and pvalue = 0.0000
The =statistic = 2.2499, 5% critical walue = 1.6860 and pvalue = 0.0152
The statistic = -2.2885, 5% critical walue = -1.6860 and pvalue = 0.0139
The statistic = 1.2945, 5% critical walue = 2.0244 and pvalue = 0.2033
The 95% confidence interval is (5.9721, 14.4472)

The statistic = 4.8774, 5% critical walue = 2.0244 and pvalue = 0.0000

Figure 3.9: The results produced by the script to test hypotheses in the simple regression.

3.6 Linear Combination of Parameters

Since gretl stores and gives access to the estimated values of the coefficients and the variance-
covariance matrix, testing hypotheses about linear combinations of parameters is very simple.
Suppose you want an estimate of the average weekly food expenditure for a family earning $2000
per week. The average for any level of income is modeled using linear regression:

E(food_explincome) = 1 + Baincome (3.9)

It can easily be shown that E(c1 X + c2Y + ¢3) = a1 E(X) + ©2E(Y) 4 ¢3 where ¢y, c2, and c3 are
constants. If least squares is unbiased for the intercept and slope then E(b;) = 81 and E(by) = (a.
Hence, an estimate of the food expenditure for a family earning $2000 per week is

food_exp = by + b220 = 83.416 + 10.2096 x 20 = 287.6089 (3.10)

The hypothesis that the average is statistically greater than $250 can be formally tested as:
Hy:B1+B2<0 Hy:pB1+208 > 250 (3.11)
The statistic
B b1 + 20by — 250
~ se(by + 20by — 250)
Taking the variance of a linear combination is only slightly more complicated than finding the
mean since in the variance calculation any covariance between X and Y needs to be accounted for.
In general, var(c; X + oY + ¢3) = ctvar(X) + c3var(Y) + 2cicacov(X,Y). Notice that adding a
constant to a linear combination of random variables has no effect on its variance—only its mean.

For a regression model, the elements needed to make this computation are found in the variance-
covariance matrix.

~ tn_9 under Hy (3.12)

The precision of least squares (and other estimators) is summarized by the variance-covariance
matrix, which includes a measurement of the variance of the intercept and the slope, and covari-
ance between the two. The variances of the least squares estimator fall on the diagonal of this
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square matrix and the covariance is on the off-diagonal.

var(by)  cov(by,bs)

COU(bla b2) = COU(bla bz) Ua’r(b2)

(3.13)

All of these elements have to be estimated from the data. To print an estimate of the variance-
covariance matrix following a regression use the —-vcv option with your regression in gretl:

ols food_exp const income --vcv

In terms of the hypothesis, var(by + 20bs — 250) = 12var(by) + 202var(be) + 2(1)(20)cov(by, by).
The covariance matrix printed by this option is:

Covariance matrix of regression coefficients:

const income
1884.44 -85.9032 const
4.38175 income

The arithmetic for variance is var(b; + 20b2 — 250) = 1884.44 + (400)(4.38175) + (40)(—85.9032) =
201.017. The square root of this is the standard error, i.e., 14.178.

Of course, once you know the estimated standard error, you could just as well estimate an
interval for the average food expenditure. The script to do just that is found below. Using hansl
to do the arithmetic makes things a lot easier.

scalar vc = $vcv[l,1]1+20"2%$vcv[2,2]+2%20*x$vcv[2,1]
scalar se = sqrt(vc)
scalar tval = ($coeff (const)+20*$coeff (income)-250)/se

scalar p = pvalue(t,$df,tval)

scalar avg_food_20 = $coeff (const)+20*$coeff (income)
scalar 1b = avg_food_20-critical(t,$df,0.025)*se
scalar ub = avg_food_20+critical(t,$df,0.025)*se

© 0w N O s W N
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print vc se tval p avg_food_20 1lb ub

In the first line, the accessor $vcv is used. In it is the variance-covariance from the previously
estimated model. (The square brackets contain the row and column location of the desired element.
That is, the estimated variance of by is the element located in the first row and first column, hence
$vcv[1,1]. The covariance between b; and by can be found either in the first row, second column
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or the second row, first column. So, $vcv[1,2]=$vcv[2,1]. The script also produces the p-value
associated with a 5% one sided test.

In line 6 the average food expenditure is computed at income = 20, which corresponds to
$2000/week (income is measured in $100). The lower and upper 95% confidence intervals are
computed in lines 7 and 8.

? print vc se tval p avg_food_20 1b ub

vec = 201.01688
se = 14.178042
tval = 2.6526132

p = 0.0057953880
avg_food_20 = 287.60886
1b = 258.90692
ub = 316.31081

You can see that the manual calculation and that from gretl are the same. The p-value is less
than 0.05 and we would reject Hp in favor of the alternative in this case. The average food
expenditure for a family earning $2000/week is $287. The 95% confidence interval for the average
is ($258.907, $316.311).

3.7 Script

set echo off

# confidence intervals

open "@gretldir\data\poe\food.gdt"

ols food_exp const income

scalar 1b = $coeff(income) - 2.024 * $stderr(income)
scalar ub = $coeff(income) + 2.024 * $stderr(income)
print 1b ub

© 0 9 O A W N

# using the critical function to get critical values

scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
print 1b ub

e e =
w N = O

# t-ratio
open "@gretldir\data\poe\food.gdt"
ols food_exp const income

e
N O O s

#0ne sided test (Ha: b2 > zero)

scalar tratiol = ($coeff(income) - 0)/ $stderr(income)
scalar cl = critical(t,$df,.05)

scalar pl = pvalue(t,$df,tratiol)

N e
S © ®
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

printf
pvalue

"The statistic = %.4f, 5%% critical value = %.4f and\
= %.4f\n",tratiol, ci,pl

#0ne sided test (Ha: b2>5.5)

scalar
scalar
scalar
printf
pvalue

tratio2 = ($coeff(income) - 5.5)/ $stderr(income)

c2 = critical(t,$df,.05)

p2 = pvalue(t,$df,tratio?2)

"The statistic = %.4f, 5%% critical value = %.4f and\
= %.4f\n" ,tratio2, c2,p2

#0ne sided test (Ha: b2<15)

scalar
scalar
scalar
printf
pvalue

tratio3 = ($coeff(income) - 15)/ $stderr(income)

c3 = -1*xcritical(t,$df,.05)

p3 = pvalue(t,$df,abs(tratio3))

"The statistic = %.4f, 5%% critical value = %.4f and\
= %.4f\n",tratio3, c3,p3

#Two sided test (Ha: b2 not equal 7.5)

scalar
scalar
scalar
printf
pvalue

tratio4 = ($coeff(income) - 7.5)/ $stderr(income)

c4 = critical(t,$df, .025)

p4 = 2*xpvalue(t,$df,tratiod)

"The statistic = %.4f, 5%% critical value = %.4f and\
= %.4f\n" ,tratio4, c4,pd

#Confidence interval

scalar
scalar
printf

1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
"The 95%% confidence interval is (%.4f, %.4f)\n",1lb,ub

#Two sided test (Ha: b2 not equal zero)

scalar
scalar
scalar
printf
pvalue

tratio5s = ($coeff(income) - 0)/ $stderr(income)

c5 = critical(t,$df, .025)

p5 = 2*pvalue(t,$df,tratiob)

"The statistic = %.4f, 5%% critical value = %.4f and\
= %.4f\n",tratiob5, c5,p5

# linear combinations of coefficients
open "@gretldir\data\poe\food.gdt"
ols food_exp const income --vcv

scalar
scalar
scalar
scalar

scalar
scalar
scalar

ve = $vev[l,1]1+207°2x$vev[2,2] +2%x20%$vev[2,1]

se = sqrt(vc)

tval = ($coeff (const)+20*$coeff (income)-250)/se
p = pvalue(t,$df,tval)

avg_food_20 = $coeff (const)+20*$coeff (income)
1b = avg_food_20-critical(t,$df,0.025)*se
ub = avg_food_20+critical(t,$df,0.025)*se

print vc se tval p avg_food_20 1b ub
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And for the repeated sampling exercise, the script is:

set echo off

Jun

2 open "Ogretldir\data\poe\table2_2.gdt"

3 list ylist = yl1 y2 y3 y4 yb5 y6 y7 y8 y9 y10
4 loop foreach i ylist --progressive --quiet
5 ols ylist.$i const x

6 scalar bl = $coeff (const)

7 scalar b2 = $coeff (x)

8 scalar sl = $stderr(const)

9 scalar s2 = $stderr(x)

-
o

11 # 2.024 is the .025 critical value from the t(38) distribution
12 scalar clL = bl - critical(t,$df,.025)*s1
13 scalar clR = bl + critical(t,$df,.025)*s1
14 scalar c2L = b2 - critical(t,$df,.025)*s2
15 scalar c2R = b2 + critical(t,$df,.025)*s2

17 scalar sigma2 = $sigma”2
18 store @workdir\coeff.gdt bl b2 sl s2 clL clR c2L c2R sigma2
19 endloop

21 open Qworkdir\coeff.gdt
22 print clL cl1R c2L c2R --byobs

Monte Carlo to measure coverage probabilities of confidence intervals

set echo off
open "@gretldir\data\poe\food.gdt"
set seed 3213798
loop 100 --progressive -—quiet
series u = normal(0,88)
series y = 80 + 10*income + u
ols y const income
# 2.024 is the .025 critical value from the t(38) distribution
scalar clL = $coeff(const) - critical(t,$df,.025)*$stderr(const)
10 scalar cl1R = $coeff(const) + critical(t,$df,.025)*$stderr(const)

[
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11 scalar c2L = $coeff(income) - critical(t,$df,.025)*$stderr(income)
12 scalar c2R = $coeff(income) + critical(t,$df,.025)*$stderr(income)
13

14 # Compute the coverage probabilities of the Confidence Intervals
15 scalar pl = (80>ciL && 80<c1R)

16 scalar p2 = (10>c2L && 10<c2R)

17

18 print pl p2

19 store Oworkdir\cicoeff.gdt clL clR c2L c2R

20 endloop
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Chapter

Prediction, Goodness-of-Fit, and Modeling
Issues

Several extensions of the simple linear regression model are now considered. First, conditional
predictions are generated using results saved by gretl. Then, a commonly used measure of the
quality of the linear fit provided by the regression is discussed. We then take a brief detour to
discuss how gretl can be used to provide professional looking output that can be used in your
research.

The choice of functional form for a linear regression is important and the RESET test of the
adequacy of your choice is examined. Finally, the residuals are tested for normality. Normality of
the model’s errors is a useful property in that, when it exists, it improves the the performance of
least squares and the related tests and confidence intervals we’ve considered when sample sizes are
small (finite).

4.1 Prediction in the Food Expenditure Model

Generating predicted values of food expenditure for a person with a given income is very simple
in gretl. After estimating the model with least squares, you can use the genr or series to get
predicted values for all the observations or use scalar to get a prediction at a specific point. In the
example, a household having income, = $2000 of weekly income is predicted to spend approximately
$287.61 on food. Recalling that income is measured in hundreds of dollars in the data, the gretl
commands to compute this from the console are:

1 open "@gretldir\data\poe\food.gdt"
2 ols food_exp const income
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3 scalar yhatO = $coeff (const) + $coeff (income)*20

This yields fo&i-,\ea:po = 287.609. We could have used genr rather than scalar (or nothing at all
before yhat0) and the correct result would be computed. Using scalar makes it clear to someone
else reading the program that you intend this to compute a single number, not a series.

Obtaining the 95% confidence interval is slightly harder in that there are no internal commands
in gretl that will do this. The information needed is readily available, however. The formula is:

52
var(f) = 6% + % + (income, — income)*var(by) (4.1)

In section 2.4 we estimated 62 = 8013.29 and var(by) = 4.3818. The mean value of income is found
by highlighting the variable income in the main gretl window and the selecting View>Summary
Statistics from the pull-down menu. This yields income = 19.6047.1 The t3g 5% critical value is
2.0244 and the computation?

_ 8013.2941

var(f) = 8013.2941 + T + (20 — 19.6047)? % 4.3818 = 8214.31 (4.2)
Then, the confidence interval is:

food_exp, + tose(f) = 287.6069 + 2.0244+/8214.31 = [104.132, 471.086] (4.3)

The complete script to produce the computed results in gretl is:

ols food_exp const income

scalar yhatO = $coeff(const) + $coeff (income)*20

scalar £=8013.2941+(8013.2941/40)+4.3818%(20-19.6047) "2
scalar ub=yhat0+2.0244*sqrt(f)

scalar lb=yhat0-2.0244x*sqrt (f)

[ N N

At this point, you may be wondering if there is some way to use the internal functions of gretl
to produce the same result? As we’ve seen, gretl saves many of the results we need internally and
these can in turn be called into service in subsequent computations using their accessors.

For instance, the sum of squared errors from the least squares regression can be accessed using
$ess. The degrees of freedom and number of observations are saved as $df and $nobs, respectively.
Also, you can use an internal gretl function to compute income, mean(income), and the critical
function discussed in the preceding chapter to get the desired critical value. Hence, the prediction
interval can be automated and made more precise by using the following script.

Your result may vary a little depending on how many digits are carried out to the right of the decimal.
%You can compute this easily using the gretl console by typing in: scalar f = 8013.2941 + (8013.2941/40) +
4.3818%(20-19.6047) **2
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ols food_exp const income

scalar yhatO=$coeff (const)+20*$coeff (income)

scalar sig2 = $ess/$df

scalar f = sig2 + sig2/$nobs + ((20-mean(income)) "2)*($stderr(income) "2)
scalar 1b = yhatO-critical(t,$df,0.025)*sqrt(f)

scalar ub = yhatO+critical(t,$df,0.025)*sqrt (f)

print yhatO sig2 f 1b ub

B > B | B N N

This produces

yhatO 287.60886
sig2 8013.2941
f = 8214.3110

1b = 104.13228

ub = 471.08545

which are the values we expect.

4.2 Coeflicient of Determination

One use of regression analysis is to “explain” variation in dependent variable as a function of
the independent variable. A summary statistic that is used for this purpose is the coefficient of
determination, also known as R2.

There are a number of different ways of obtaining R? in gretl. The simplest way to get R? is
to read it directly off of gretl’s regression output. This is shown in Figure 4.3. Another way, and
probably the most difficult, is to compute it manually using the analysis of variance (ANOVA)
table. The ANOVA table can be produced after a regression by choosing Analysis>ANOVA from
the model window’s pull-down menu as shown in Figure 4.1. Or, one can simply use the --anova
option to ols to produce the table from the console of as part of a script.

ols income const income —--anova

The result appears in Figure 4.2.

In the ANOVA table featured in Figure 4.2 the SSR, SSE, and SST can be found. Gretl also
does the R? computation for you as shown at the bottom of the output. If you want to verify
gretl’s computation, then

SST = SSR + SSE = 190627 + 304505 = 495132 (4.4)
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Eile Edit Tests 3Save Grapks Analysis LaJeX

Model 4: CL3, using obse Display actual, fitted, residual
Dependent wvariable: food

Forecasts...

Confidence intervals for coefficients
cosfficient . .
Confidence gllipse...

const a23.4160 nefficient covariance matrix
income 10.2036 m
oootstrap..

Mean dependent wvar 28357 3 - T T L8752
Sum sguared resid 304505.2 5.E. of regression 89.51700
BE-sguared 0.385002 Adjusted BR-sguared 0.368818
F{l, 38) 23.78884 P-value (F) 0.000018
Log-likelihood -235.5088 Lkaike criterion 475.0176
Schwarz criterion 478.3954 Hannan-Quinn 476.2389

Figure 4.1: After estimating the regression, select Analysis>ANOVA from the model window’s pull-
down menu.

(B gret: ANOVA SRl X
HeoaDx

Inalysis of Variance:

Sum of sgquares df Mean sgquare
Regression 190627 190627
Residual 304505 38 8013.29
Total 495132 12695.7

R™~2 = 190627 / 495132 = 0.38500
2

2
F(1, 38) = 120627 / 28013.29 = 23,7888 [p-value 1.95e2-005]

Figure 4.2: The ANOVA table

and
SSR SSE 190627

SST ~~  SST 495132
Different authors refer to regression sum of squares, residual sum of squares and total sum of squares
by different acronyms. So, it pays to be careful when computing R? manually. POE/ refers to the
regression sum of squares as SSR and the residual sum of squares as SSE (sum of squared errors).

— 385 (4.5)

Finally, you can think of R? is as the squared correlation between your observations on your
dependent variable, food_exp, and the predicted values based on your estimated model, food_exp. A
gretl script to compute this version of the statistic is is found below in section 4.5.4.

To use the GUI you can follow the steps listed here. Estimate the model (equation 2.1) using
least squares and add the predicted values from the estimated model, food_exp, to your data set.
Then use the gretl correlation matrix to obtain the correlation between food_exp and food_exp.

Adding the fitted values to the data set from the pull-down menu in the model window is

illustrated in Figure 4.4 below. Highlight the variables food_exp, income, and yhatl by holding
the control key down and mouse-clicking on each variable in the main gretl window as seen in
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P
“ gretl: model 5 =NACN X

File Edit Tests Save Graphs Analysis LaTeX

Model 5: OLS, using observations 1-40
Dependent varlable: food exp

coefficient std. error t-ratio p-value
const 83.4160 43.4102 1.922 0.0822 *
income 10.2096 2.09326 4.877 1.95e-05 ***

Mean dependent wvar 283.5735 5.D. dependent war 112.8752
Syum—ae FESLd et 5.E. of regression 89.51700
R-squared 0.385002 Adjusted R-sgquared 0.368818

58 Ik P-wvalue (F) 0.000019
Log-likelihood -235.5088 Bkaike criterion 475.0176
Schwarz criterion 478.3954 Hannan-Quinn 476.2389

Figure 4.3: In addition to some other summary statistics, Gretl computes the unadjusted R? from
the linear regression.

File Edit Tests Graphs

Analysis  LaTeX

Fitted values

Model 5: CLS,

Dependent wvary Eesidoals
Squared residuals
o p-valus
Errer sum of squares

const Standard error of the regression 0.0622 .
income R-squared 1.95e-05 ***
T*R-squared
Mean dependen Log likelihood var 112.68752

Sum sguared x

3ion 85.51700

Akaike Information Criterion

Figure 4.4: Using the pull-down menu in the Model window to add fitted values to your data set.

Figure 4.5 below. Then, View>Correlation Matrix will produce all the pairwise correlations
between each variable you’ve chosen. These are arranged in a matrix as shown in Figure 4.6.
Notice that the correlation between food_exp and income is the same as that between food_exp and
food_exp (i.e., 0.6205). As shown in your text, this is no coincidence in the simple linear regression
model. Also, squaring this number equals R? from your regression, 0.6205? = .385.

You can generate pairwise correlations from the console using

cl = corr(food_exp,$yhat)

In yet another example of the ease of using gretl, the usual scalar or genr is not used before
cl. Gretl identifies correctly that the result is a scalar and you can safely omit the command. In
longer scripts, however, its generally a good idea to tell gretl what you intend to compute and if
the result doesn’t match you’ll get an error message.
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4.3 Choosing a Functional Form

There is no reason to think that the relationship between food_exp and income is a linear one.
In fact, it is likely to be nonlinear. A low wage earner might spend nearly all of an additional dollar
on food whereas a high income earner might spend very little. The linear model above implies that
rich and poor spend the same amount of an additional dollar of income. As seen in the previous
chapters, nonlinearities can be modeled by transforming the dependent or independent variable.
This complicates interpretation a bit, but some simple differential calculus can quickly sort things
out.

Linear regression is considerably more flexible than its name implies. There are many relation-
ships in economics that are known to be nonlinear. The relationship between production inputs
and output is governed in the short-run by the law of diminishing returns, suggesting that a convex
curve is a more appropriate function to use. Fortunately, a simple transformation of the variables
(z, y, or both) can yield a model that is linear in the parameters (but not necessarily in the
variables).

The important point to remember is, the functional form that you choose should be consistent
with how the data are actually being generated. If you choose an inappropriate form, then your
estimated model may at best not be very useful and at worst be downright misleading.

In gretl you are given some very useful commands for transforming variables. From the main
gretl window the Add pull-down menu gives you access to a number of transformations; selecting
one of these here will automatically add the transformed variable to your data set as well as its
description.

Figure 4.7 shows the available selections from this pull-down menu. In the upper part of the
panel two options appear in black, the others are greyed out because they are only available is you
have defined the dataset structure to consist of time-series observations. The available options
can be used to add the natural logarithm or the squared values of any highlighted variable to your
data set. If neither of these options suits you, then the next to last option Define new variable
can be selected. This dialog uses the scalar command and the large number of built in functions
to transform variables in different ways. Just a few of the possibilities include square roots (sqrt),

B ot [ESNE=)

File Tools Data View Add Ssmple UVariasble Model Help
food.gdt
ID# 4 Variable name 4 Descriptive label 1

0 const auto-generated constant
food_exp household food expenditure per week

income weekly household income

3 yhatl Syhat

control+click on each variable to highlight

Undated: Full range 1 - 40

| @@ ®rREL 8 e

Figure 4.5: Hold the control key and click on food_exp, income, and food/,\ewp = yhat2 from the food
expenditure regression to select them.
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H gretl: correlation matrix =REE X

Correlation Coefficients, using the observations 1 - 40

5% critical wvalue (two-tailed) = 0.3120 for n = 40
food exp inecome yvhatl
1.0000 0.6205 0.6205 food_exp
1.0000 1.0000 income

1.0000 vwhatl

Figure 4.6: The correlation matrix for food_exp, income, and fooTi?exp = yhat2 is produced by
selecting View>Correlation matrix from the pull-down menu.

sine (sin), cosine (cos), absolute value (abs), exponential (exp), minimum (min), maximum (max),
and so on. Later in the book, we’ll discuss changing the dataset’s structure to enable some of the
other variable transformation options.

4.3.1 Linear-Log Specification

The linear-log specification of the food expenditure model uses the natural logarithm of income
as the independent variable:

food_exp = 1 + P2 In (income) + e (4.6)

Taking the logarithm of income and estimating the model

1 series 1l_income = 1ln(income)
2 ols food_exp const 1l_income

There is a short-cut that enables you to take the natural logs of several variables at a time. The
logs function could be use do create In(income) as

logs income

This command produces a new variable called 1_income and adds it to the variables list.

Estimation of the model yields

food_exp = —97.1864 + 132.166 Lincome
(84.237) (28.805)

T =40 R?=0.3396 F(1,38)=21.053 & = 91.567

(standard errors in parentheses)
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Add  Sample (UariobI2) Model Help

Logs of selected variables

Squares of selected variables

Lags of selected variables

First differences of selected variables
Log differences of selected variables

Seasonal differences of selected variak

leg nuapy

Index vanable

Time trend
Random vanable...

Periodic dummies
Unit dummies
Time dummies

Dummies for selected discrete variables

Define new vanable...

Define matrix...

Figure 4.7: The variable pull-down menu is used to add new variables to gretl

In Figure 4.6 of POFE4 the authors plot food_exp against food/,\exp. A positive (nonlinear)
relationship between the two is expected since the the model was estimated using the natural
logarithm of income. To produce this plot, estimate the regression to open the model window.
Add the predicted values of from the regression to the dataset using Save>Fitted values from
the model window’s pull-down menu. Name the fitted value, yhat2 and click OK. Now, return to
the main window, use the mouse to highlight the three variables (food_exp, yhat2, and income),?
then select View>Graph specified vars>X-Y scatter from the pull-down menu.* This opens the
define graph dialog box. Choose yhat2 and food_exp as the Y-axis variables and income as the
X-axis variable and click OK. A graph appears that looks similar to Figure 4.8

A simpler approach is to open a console or a new script window and use the following commands:
To save the predicted values and plot them against the actual observations add

1 ols food_exp const 1l_income
2 series yhat2 = $yhat
3 gnuplot yhat2 food_exp income

The first line estimates the regression. The predicted values are held in the accessor, $yhat, and are
assigned to a new variable called yhat2 using the series command. Then, call gnuplot with the
predicted values, yhat2, as the first variable and the actual values of food expenditure, food_exp,

3Remember, press and hold Ctrl, then click on each variable
4You can also right-click the mouse once the variables are selected to gain access to the scatter plot. If you choose
this method, gretl will prompt you to specify which of the selected variables is to be used for the X-axis.
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Figure 4.8: Graphing the linear-log model

as the second.

Finally, if you execute these commands using a script, the graph is written to a file on your
computer rather than opened in a window. For this reason, I recommend executing these commands
from the console rather than from the script file that appears at the end of this chapter.

4.3.2 Residual Plots

Inadvertently choosing an inappropriate functional form can lead to some serious problems
when it comes to using your results for decision-making. There are a number of formal tests that
one can do to diagnose problems of specification, but researchers often start by looking at residual
plots to get a quick idea if there are any problems.

If the assumptions of the classical normal linear regression model hold (ensuring that least
squares is minimum variance unbiased) then residuals should look like those found in ch4simI.gdt
shown in Figure 4.9 below.

open "@gretldir\data\poe\ch4siml.gdt"
gnuplot e x
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Figure 4.9: Random residuals from chjsim1.qgdt

If there is no apparent pattern, then chances are the assumptions required for the Gauss-Markov
theorem to hold may be satisfied and the least squares estimator will be efficient among linear
estimators and have the usual desirable properties.

The next plot is of the least squares residuals from the linear-log food expenditure model (Figure
4.10). These do not appear to be strictly random. Rather, they are heteroskedastic, which means
that for some levels of income, food expenditure varies more than for others (more variance for
high incomes). Least squares may be unbiased in this case, but it is not efficient. The validity of
hypothesis tests and intervals is affected and some care must be taken to ensure proper statistical
inferences are made. This is discussed at more length in chapter 8.

Finally, the chjsim2.gdt dataset contains least squares residuals from a linear regression fit to
quadratic data. To treat the relationship as linear would be like trying to fit a line through a
parabola! This appears in Figure 4.11. The script to generate this is:

open "@gretldir\data\poe\ch4sim2.gdt"
ols y const x

series ehat = $uhat

gnuplot ehat x

=W NN =

Notice that another accessor has been used to store the residuals into a new variable. The residuals
from the preceding regression are stored and can be accessed via $uhat. In line 3 these were
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Figure 4.10: Heteroskedastic residuals from the linear-log model of food expenditures.

accessed and assigned to the variable ehat. Then, they can be plotted using gnuplot.

Looking at the plot in Figure 4.11, there is an obvious problem with model specification. The
errors are supposed to look like a random scatter around zero. There are clearly parabolic and the
model is NOT correctly specified.

4.3.3 Testing for Normality

Your book, Principles of Econometrics, discusses the Jarque-Bera test for normality which is
computed using the skewness and kurtosis of the least squares residuals. To compute the Jarque-
Bera statistic, you’ll first need to estimate your model using least squares and then save the residuals
to the data set.

From the gretl console

1 ols food_exp const income
2 series uhatl = $uhat
3 summary uhatl

The first line is the regression. The next accesses the least squares redsiduals, $uhat, and places
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Figure 4.11: Correlated residuals from estimating a quadratic relationship using a line.

them into a new series called uhat1.? You could also use the point-and-click method to add the
residuals to the data set. This is accomplished from the regression’s output window. Simply choose
Save>Residuals from the model pull-down menu to add the estimated residuals to the dataset.
The last line of the script produces the summary statistics for the residuals and yields the output
in Figure 4.12. One thing to note, gretl reports excess kurtosis rather than kurtosis. The excess

Summary Statistics, using the observations 1 - 40
for the variable ’uhatl’ (40 valid observations)

Mean 0.00000
Median -6.3245
Minimum -223.03
Maximum 212.04
Standard deviation 88.362

C.V. 2.4147E+015
Skewness -0.097319
Ex. kurtosis -0.010966

Figure 4.12: The summary statistics for the least squares residuals.

kurtosis is measured relative to that of the normal distribution which has kurtosis of three. Hence,
your computation is

(4.7)

JB - % < Skewness? - (Excess Izurtosis)2)

®You can’t use uhat instead of uhat1 because that name is reserved by gretl.
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Which is )
40 —0.011
JB == (—0.0972 + 4> =.063 (4.8)

Normal random variables have no skewness nor any excess kurtosis. The JB statistic is zero in this
case. It gets larger the higher the skewness and the greater the degree of excess kurtosis displayed
by the data. In section C.1 hansl is used to compute skewness and excess kurtosis and you could
use these computations to compute your own JB test. Fortunately, there is no need to compute
your own because gretl will compute the Jarque-Bera test for you. After saving the residuals into
$uhat1l issue the command

ols food_exp const income
series uhatl = $uhat
normtest uhatl --jbera
normtest uhatl --all

This yields a value of Jarque-Bera test = 0.0633401, with p-value 0.968826, which is exactly what
the manual calculation yields. Gretl performs other tests for the normality of residuals including
one by Doornik and Hansen (2008). Computationally, it is more complex than the Jarque-Bera
test. The Doornik-Hansen test has a x? distribution if the null hypothesis of normality is true. It
can be produced from normtest along with several others using the --all option. Output from
normtest --all is shown in Figure 4.13. Obviously, one of the advantages of using normtest is

-

r“ gretl: normality test =NNCN X
BEODADX

Test for normality of uhat3:

Doornik-Hansen test = 0.693888, with p-wvalue 0.70&6845
Shapiro-Wilk W = 0.988384, with p-wvalue 0.949283
Lilliefors test = 0.0670258, with p-value ~= 0.93

Jarque-Bera test = 0.0633401, with p-value 0.968826

4

Figure 4.13: Using normtest residual ——all tests the variable residual for normality after running
a linear regression.

that you can test for the normality of any series, not just residuals.

Another possibility is to use the modtest function after estimating a model using least squares.

ols food_exp const income
modtest --normality

The modtest command is actually is a generic function that allows you to test a number of different
hypotheses regarding the specification of your model. This function operates on the residuals of
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the last model estimated. Using it after a regression with the ——-normality option produces the
following output

Frequency distribution for uhat2, obs 1-40
number of bins = 7, mean = -2.45137e-014, sd = 89.517

interval midpt frequency rel. cum.
< -186.77 -223.03 1 2.50% 2.50%
-186.77 - -114.26  -150.51 3 7.50% 10.00% *x*
-114.26 - -41.747 -78.002 8 20.00%  30.00% **kxkxk
-41.747 - 30.765  -5.4907 14 35.00%  65.00% sxxkkkskkkskokk
30.765 - 103.28 67.021 20.00%  85.00% ***kxkx

12.50%  97.50% **xx
2.50% 100.00%

103.28 - 175.79 139.53
>= 175.79 212.04

= o1

Test for null hypothesis of normal distribution:
Chi-square(2) = 0.694 with p-value 0.70684

The distribution of the residuals is collected and plotted in a basic graph and the results for the
DH test are given. If modtest is executed from GUI using Tests>Normality of residuals in
the model results window, a gnuplot histogram of the errors is generated with a normal density
overlaid. The results of the DH test are again printed on the graph.

4.4 Reporting Results

In case you think gretl is just a toy, the program includes a very capable utility that enables it
to produce professional looking output. IATEX, usually pronounced “Lay-tek”, is a typesetting pro-
gram used by mathematicians and scientists to produce professional looking technical documents.
It is widely used by econometricians to prepare manuscripts for wider distribution. In fact, this
book is produced using KTEX.

Although ITEX is free and produces very professional looking documents, it is not widely used
by undergraduate and masters students because 1) most degree programs don’t require you to write
a lot of technical papers and 2) it’s a computer language and therefore it takes some time to learn
its intricacies and to appreciate its nuances. Heck, I've been using it for years and still scratch my
head when I try to put tables and Figures in the places I'd like them to be!

In any event, gretl includes a facility for producing output that can be pasted directly into
ITEX documents. For users of XTEX, this makes generating regression output in proper format a
breeze. If you don’t already use KTEX, then this will not concern you. On the other hand, if you

already use it, gretl can be very handy in this respect.

In Figure 4.3 you will notice that on the far right hand side of the menu bar is a pull-down menu
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for BTEX. From here, you click LaTeX on the menu bar and a number of options are revealed as
shown in Figure 4.14. You can view, copy, or save the regression output in either tabular form or

LaTeX
WView
Copy
Save

- v v v

Equation ocptions
Tabular epticns...

Figure 4.14: Several options for defining the output of INTEX are available.

in equation form. You can tell gretl whether you want standard errors or t-ratios in parentheses
below parameter estimates, and you can define the number of decimal places to be used of output.
Nice indeed. Examples of tabular and equation forms of output are found in Tables 4.1 and 4.2,
respectively.

OLS, using observations 1-40
Dependent variable: food_exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622

income  10.2096 2.09326  4.8774 0.0000
Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 23.78884  P-value(F) 0.000019
Log-likelihood —235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan—Quinn 476.2389

Table 4.1: This is an example of KTEX output in tabular form.

food_exp = 83.4160 + 10.2096 income
(43.410)  (2.0933)

T =40 R?>=0.3688 F(1,38)=23.789 & =89.517

(standard errors in parentheses)

Table 4.2: Example of INTEX output in equation form
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4.5 Polynomial Models

Using polynomials to capture nonlinearity in regression is quite easy and often effective. Stu-
dents of economics are quite used to seeing U-shaped cost curves and S-Shaped production functions
and these shapes are simply expressed using quadratic and cubic polynomials, respectively. Since
the focus so far has been on simple regression, i.e., regression models with only one independent
variable, the discussion in POFE/ is simplified to include only a single squared or cubed value of
the independent variable.

The general form of a quadratic equation y = ag + a1z + asz? includes a constant, the level of x
and its square. The latter two terms are multiplied times coeflicients, a; and as that determine the
actual shape of the parabola. A cubic equation adds a cubed term, y = ag+ a1z + asx® +azx?. The
simple regressions considered in this section include only the constant, ag and either the squared
term in a quadratic model or the cubed term in the cubic model.

The simple quadratic regression has already been considered. The regression and its slope are

y = B + Pa®
dy/dx = 2Pz

From this you can see that the function’s slope depends on the parameter 8 as well as the value of
the variable z.

The cubic model and its slope are

y = B1+ o’
dy/dx = 3Byz>

Since z is squared in the slope, the algebraic sign of 52 determines whether the slope is positive or
negative. Both of these models are considered using examples below.

4.5.1 Wheat Yield

Figure 4.15 plots the average wheat yield in Greenough Shire over time (in tonnes per hectare—
we're in OZ!) using the data in wa_wheat.gdt. The results from the example in section 4.4 of your
textbook is easily produced in gretl. Start by loading the data and estimating the effect of time,
time on yield greenough using least squares. The following script will load the data file, estimate the
model using least squares, and generate a graph of the actual and fitted values of yield (greenough)
from the model.

1 open "Ogretldir\data\poe\wa-wheat.gdt"
2 ols greenough const time
3 gnuplot greenough time
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The resulting plot appears below in Figure 4.15. The fitted line can be added. Right-clicking on
r“ gretl: graph l = S| )

Wheat Yield in Greenbrough Shire 1950-1937

2.4 T T T T T T T T T
Actual Yield —5—
ool Y =059 +0.0210t P
I

2

1.5

1.6

1.4

Yield in tannes

1.z
1
0.8

0.6

1 1 1 1
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Year

0.4 1 1 1 1 1

Click on graph for pop-up menu

L

Figure 4.15: The plot of the actual yield in Greenough Shire over time

the graph brings up a menu of choices. Choose Edit and the plot controls dialog box appears as
shown in Figure 4.16. There is a pull-down menu in the box called fitted line from which you can
choose to fit a line, a quadratic, or a cubic equation. I chose line and the result appears in the
figure. From the lines tab a few of the defaults; the legend for the series is changed to Actual
Yield and the line style was changed to line/points. The X-axis tab was used to change the axis
label to ‘Year.’

The simple gnuplot command works well enough. However, I took advantage of having declared
the dataset structure to be time-series to improve the look. I also added a description and label to
be used in the graph using the -d and -n switches for setinfo. The commands are

1 setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"
2 gnuplot greenough --with-lines --time-series --linear-fit

There are three options listed after the plot. The first (-—with-1lines) tells gnuplot to connect
the points using lines. The second option (--time-series) tells gnuplot that the graph is of time-
series. In this case, the dataset’s defined time variable will be used to locate each point’s position
on the X-axis. The final option plots the least squares fit of a line. To make the graph look like
Figure 4.15 some further manipulation was done using the plot controls.

To explore the behavior of yield further, create a new variable using the series command from
t3 = time®/1,000,000 as shown below. This rescaling of time cubed merely changes the scale of

the coefficient by a corresponding amount and has no effect on the shape or fit of the model. It
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Main |){-axis| ‘f’-axisl Linesl LabelslArrowsl Palette|

Title of plot

key position left top

fitted line lingar:y = a + b*t
Show full bord| none !
[] Show grid linear: y = a+ b*t

D Show bars quadratic: y = a + b* + c*t*2

cubic y = a+ b+ cth2 + d*t"3
loess (locally weighted fit)

[] Set as default

[ Help ” Apply H 0K

L

Figure 4.16: The graph dialog box can be used to change characteristics of your graphs. Use the
Main tab to give the graph a new name and colors; use the X- and Y-axes tabs to refine the behavior
of the axes and to provide better descriptions of the variables graphed.

is particularly useful for long time-series since cubing large integers may exceed your computer’s
capacity to yield accurate results (i.e., numerical overflow). The new plot appears in Figure 4.17.

1 series t3=time~3/1000000
2 ols greenough const t3
3 gnuplot greenough --with-lines --time-series

4.5.2 Growth Model

Below you will find a script that reproduces the results from the growth model example in
section 4.5.1 of POFE4. If yield grows at a constant rate of g, then yield at time ¢ = 1 will be
yield; = yieldy(1 + g). For constant growth rates, repeated substitution produces

yield, = yieldo(1 + g)* (4.9)
Taking the natural log
In(yield,) = In(yieldy) + tIn(1 + g) = S1 + Pat (4.10)

add an error and you have a regression model. The parameter, f2 = In(1 + g). This is an example
of a log-linear model where the independent variable is time. The slope coefficient in such a model
measures the approximate annual growth rate in the dependent variable.
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Figure 4.17: The plot of the residuals from a linear model. There is some visual evidence of serial
correlation, suggesting that the linear model is misspecified.

1 open "@gretldir\data\poe\wa-wheat.gdt"
2 series lyield = log(greenough)
3 ols lyield const time

This produces

1_greenough = —0.343366 + 0.0178439 time
(0.058404) (0.0020751)

T =48 R>=0.6082 F(1,46) =73.945 & =0.19916

(standard errors in parentheses)

The estimated coefficient by = In(1 4 g) = 0.0178. This implies that the growth rate in wheat yield
is approximately 1.78% annually over the course of the sample.®

4.5.3 Wage Equation

Below you will find a script that reproduces the results from the wage equation example in
section 4.5.2 of POE/. In this example the log-linear model is used to measure the approximate

SFor small g, In(1 +g) = g.
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Figure 4.18: The plot of the residuals from a linear model. There is some visual evidence of serial
correlation, suggesting that the linear model is misspecified.

return to another year of education. The example uses a thousand observations from the CPS
monthly survey from 2008.

1 open "@gretldir\data\poe\cps4_small.gdt"

2 series l_wage = log(wage)

3 ols l_wage const educ

4 scalar 1lb = $coeff(educ) - 1.96 * $stderr(educ)
5 scalar ub = $coeff(educ) + 1.96 * $stderr(educ)
6 print 1b ub

The regression results are:

l.wage = 1.60944 + 0.0904082 educ
(0.086423)  (0.0061456)

T =1000 R?>=0.1774 F(1,998) =216.41 & = 0.52661

(standard errors in parentheses)

and the 95% confidence intervals for the slope is

Variable Coefficient 95% confidence interval

educ 0.0904082 0.0783484 0.102468
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That is, an additional year of education is worth between 7.8% and 10.2% wage increases annually.
Sign me up!

4.5.4 Generalized R?

A generalized version of the goodness-of-fit statistic R? can be obtained by taking the squared
correlation between the actual values of the dependent variable and those predicted by the regres-
sion. The following script reproduces the results from section 4.4.4 of your textbook.

open "@gretldir\data\poe\cps4_small.gdt"
logs wage

ols 1_wage const educ

series y = exp($yhat)

scalar corrl = corr(y, wage)

scalar Rsquare = corrl~2

print corrl Rsquare

N O O W N =

This yields an estimated correlation of 0.4312 and a squared correlation of 0.1859.

4.5.5 Predictions in the Log-linear Model

In this example, you use the regression to make predictions about the log wage and the level
of the wage for a person having 12 years of schooling. The naive prediction of wage merely takes
the antilog of the predicted In(wage). This can be improved upon by using properties of log-
normal random variables. It can be shown that if In(w) ~ N(u,0?) then E(w) = e#t°*/2 and
var(w) = €249 (e — 1).

That means that the corrected prediction is ¢ = exp (by + box + 62/2) = e(b1+020)¢8%/2 The
script to generate these is given below.

open "@gretldir\data\poe\cps4_small.gdt"

logs wage

ols 1_wage const educ

scalar 1_wage_12 = $coeff (const)+$coeff (educ)*12
scalar nat_pred = exp(l_wage_12)

scalar corrected_pred = nat_pred*exp($sigma~2/2)
print 1_wage_12 nat_pred corrected_pred

B B > T L B S R R

The results from the script are
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1l_wage_12 = 2.6943434
nat_pred = 14.795801
corrected_pred = 16.996428

That means that for a worker with 12 years of schooling the predicted wage is $14.80/hour using the
natural predictor and $17.00/hour using the corrected one. In large samples we would expect the
corrected predictor to be a bit better. Among the 1000 individuals in the sample, 328 of them have
12 years of schooling. Among those, the average wage is $15.99. Hence the corrected prediction
overshoots by about a dollar/hour. Still, it is closer than the uncorrected figure.

To get the average wage for those with 12 years of schooling, we can restrict the sample using
the script below:

smpl educ=12 --restrict
summary wage
smpl full

The syntax is relatively straightforward. The smpl command instructs gretl that something is
being done to the sample. The second statement educ=12 is a condition that gretl looks for within
the sample. The —--restrict option tells gretl what to do for those observations that satisfy the
condition. The summary wage statement produces

Summary Statistics, using the observations 1-328
for the variable wage (328 valid observations)

Mean Median Minimum  Maximum

15.9933 14.2050 2.50000 72.1300

Std. Dev. C.V. Skewness Ex. kurtosis
8.84371 0.552963 2.31394 9.08474

which shows that the mean for the 328 observations is almost $16.00. The last line smpl full
restores the full sample.

4.5.6 Prediction Interval

To generate a complete confidence interval for every year of schooling between 1 and 21 years,
you can use the following script. The result looks very similar to Figure 4.15 in POE}.
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open "@gretldir\data\poe\cps4_small.gdt"

logs wage

ols 1_wage const educ

scalar sig2 = $ess/$df

matrix sem = zeros(21,5)

loop for i 1..21 --quiet
scalar yh = ($coeff(const) + $coeff (educ)*i)
scalar f = sig2 + sig2/$nobs + ((i-mean(educ)) 2)*($stderr(educ)~2)
sem[i,1]=i
sem[i,2]= yh
sem[i,3]=sqrt(f)
sem[i,4]=exp(yh-critical(t,$df,0.025)*sqrt(£))
sem[i,5]=exp(yh+critical(t,$df,.025)*sqrt(f))

endloop

print sem

© 0w N O s W N

e S T e e
N O ks W N = O

nulldata 21 --preserve
series ed = sem[,1]

series wage = exp(sem[,2])
series 1lb = seml[,4]

series ub = sem[,5]

NN = =
= O © w

Although there are probably more elegant ways to do this, this script works. It will take a bit
of explanation, however. In lines 1-4 the dataset is opened, log wage is created, the regression is
estimated as is the overall variance of the model.

In line 5 a matrix of zeros is created that will be used to store results created in a loop. The loop
starts at i=1 and iterates, by one, to 21. These are the possible years of schooling that individuals
have in our dataset. For each number of years the forecast and its forecast variance are estimated
(lines 7 and 8). Notice that these will have different values at each iteration of the loop thanks to
their dependence on the index, i. In line 9 the matrix sem gets i placed on the i*" row of the first
column. The next line puts the prediction in the second column. In the third column I've placed
the forecast standard error and in the next two the lower and upper boundaries for the interval.
The loop ends at i=21, at which point the matrix sem is full; then it is printed.

Although you can plot the columns of matrices, I find it easier to put the columns into a dataset
and use the regular gretl commands to make plots. First, create an empty dataset using nulldata
21. The 21 puts 21 observations into the dataset. The --preserve option is required because
without it the contents of the matrix sem would be emptied—definitely not what we want. In the
next lines the series command is used to put each column of the matrix into a data series. Once
this is done, the variables will show up in the data window and you can graph them as usual. Below
in Figure 4.19 is the graph that I created (with a little editing).
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Figure 4.19: This is a plot generated using a loop to estimate forecast standard errors.
4.5.7 Log-Log Model

Finally, a log-log model is used. This functional form is often used to estimate demand equations
as it implies a constant price elasticity for the commodity in question. This example uses the
newbroiler.gdt which is adapted from Epple and McCallum (2006). The variable @ is per capita
consumption of chicken, in pounds and P is the real price in dollars. The sample is from 1950-2001.
The estimated log-log model is

Lq= 3.71694 — 1.12136 1p
(0.022359)  (0.048756)

T=52 R*=009119 F(1,50) = 528.96 & = 0.11799

(standard errors in parentheses)

The coefficient on logarithm of P is 1.121 which means that a 1% increase in the real price of
chicken will decrease quantity demanded by 1.121%.

Once again, the predictor of quantity needs to be corrected since the model is estimated in

logarithms. Q° = exp (by + by In(z) + 62/2) = (@ e°/2. The R? statistic can be computed as the
squared correlation between @@ and ). The script for this exercise is:

85



open "@gretldir\data\poe\newbroiler.gdt"
logs q p

ols 1_q const 1_p

series yht=$yhat

series pred = exp(yht)

series corrected_pred=pred*exp($sigma~2/2)
scalar r2= corr(corrected_pred,q) "2
gnuplot corrected_pred q p

(e e A

The results are

7 scalar r2= corr(corrected_pred,q) "2
Generated scalar r2 = 0.881776

and the corresponding graph is found in Figure 4.20.
rE gretl: graph l = &1
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Figure 4.20: This is a plot generated from a log-log model of chicken demand.

The figure looks good. The nonlinear relationship between weight and price is quite evident
and the fit is reasonable good.

4.6 Script
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14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

set echo off

# estimate model by LS and predict food_exp
open "@gretldir\data\poe\food.gdt"

ols food_exp const income

scalar

yhatO = $coeff (const) + $coeff (income)*20

# prediction interval
ols food_exp const income

scalar
scalar
scalar
scalar

yhatO = $coeff(const) + $coeff (income)*20

£=8013.2941+(8013.2941/40)+4.3818%(20-19.6047) "2

ub=yhat0+2.0244*sqrt (£)
1b=yhat0-2.0244*sqrt (£)

# prediction interval using accessors
ols food_exp const income

scalar
scalar
scalar
scalar
scalar

yhatO=$coeff (const)+20*$coeff (income)
sig2 = $ess/$df

f = sig2 + sig2/$nobs + ((20-mean(income)) "2)*($stderr(income) ~2)

1b = yhatO-critical(t,$df,0.025)*sqrt (f)
ub = yhatO+critical(t,$df,0.025)*sqrt(f)

# correlations
ols food_exp const income --anova
cl = corr(food_exp,$yhat)

# linear-log model

series

1_income = 1ln(income)

ols food_exp const 1l_income

series

yhat2 = $yhat

gnuplot yhat2 food_exp income

# simple data plot
open "@gretldir\data\poe\ch4siml.gdt"
gnuplot e x

# residual plot
open "@gretldir\data\poe\ch4sim2.gdt"
ols y const x

series

ehat = $uhat

gnuplot ehat x

# normality tests
open "@gretldir\data\poe\food.gdt"
ols food_exp const income

series

uhatl = $uhat

summary uhatl

normtest uhatl --jbera
normtest uhatl --all
modtest --normality

# polynomial
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

open "@gretldir\data\poe\wa-wheat.gdt"
ols greenough const time
gnuplot greenough time

setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"
gnuplot greenough --with-lines --time-series

series t3=time~3/1000000
ols greenough const t3
gnuplot greenough --with-lines --time-series

open "@gretldir\data\poe\wa-wheat.gdt"
series lyield = log(greenough)
ols lyield const time

# log-linear model
open "@gretldir\data\poe\cps4_small.gdt"

ols 1_wage const educ

scalar 1b = $coeff(educ) - 1.96 * $stderr(educ)
scalar ub = $coeff(educ) + 1.96 * $stderr(educ)
print 1b ub

open "@gretldir\data\poe\cps4_small.gdt"

ols 1_wage const educ
series y = exp($yhat)
scalar corrl
scalar Rsquare
print corrl Rsquare

corr(y, wage)

# simple prediction in log-linear model
open "@gretldir\data\poe\cps4_small.gdt"

ols 1_wage const educ

scalar 1_wage_12 = $coeff (const)+$coeff (educ)*12
scalar nat_pred = exp(l_wage_12)

scalar corrected_pred = nat_predxexp($sigma”2/2)
print 1_wage_12 nat_pred corrected_pred

smpl educ=12 --restrict
summary wage

# prediction intervals using a loop

open "@gretldir\data\poe\cps4_small.gdt"
logs wage

ols 1_wage const educ

scalar sig2 = $ess/$df

matrix sem = zeros(21,5)

loop for i = 1..21 --quiet
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103

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

scalar yh = ($coeff(const) + $coeff (educ)*i)
scalar f = sig2 + sig2/$nobs + ((i-mean(educ)) 2)*($stderr(educ)~2)

sem[i,1]=i
sem[i,2]= yh
sem[i,3]=sqrt (f)

sem[i,4]=exp(yh-critical(t,$df,0.025)*sqrt(f))
sem[i,5]=exp(yh+critical(t,$df,.025)*sqrt(f))

endloop
print sem

nulldata 21 --preserve
series ed=sem[,1]

series wage=exp(sem[,2])
series lb=sem[,4]

series ub=sem[,5]

# corrected predictions in log-linear model

open "@gretldir\data\poe\newbroiler.gdt"

logs q p

ols 1_q const 1_p
series yht=$yhat
series pred = exp(yht)

series corrected_pred=pred*exp($sigma~2/2)

scalar r2= corr(corrected_pred,q) 2
gnuplot corrected_pred q p
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Chapter

Multiple Regression Model

The multiple regression model is an extension of the simple model discussed in chapter 2. The
main difference is that the multiple linear regression model contains more than one explanatory vari-
able. This changes the interpretation of the coefficients slightly and requires another assumption.
The general form of the model is shown in equation (5.1) below.

Yi = 1+ Boxio + -+ Brwixk +e; 1=1,2,...,N (5.1)

where y; is your dependent variable, z;;, is the i*" observation on the k" independent variable,
k=223,...,K, e is random error, and f1, 0o, ..., 8k are the parameters you want to estimate.
Just as in the simple linear regression model, each error, e;, has an average value of zero for each
value of the independent variables; each has the same variance, o2, and are uncorrelated with any
of the other errors. In order to be able to estimate each of the §s, none of the independent variables
can be an exact linear combination of the others. This serves the same purpose as the assumption
that each independent variable of the simple linear regression take on at least two different values
in your dataset. The error assumptions can be summarized as e;|z;2, ;3, - . . ;x id (0, 02). Recall
from chapter 2 that expression 4id means that the errors are statistically independent from one
another (and therefore uncorrelated) and each has the same probability distribution. Taking a
random sample from a single population accomplishes this.

The parameters 52, 83, ..., Bk are referred to as slopes and each slope measures the effect of a
1 unit change in x;; on the average value of y;, holding all other variables in the equation constant.
The conditional interpretation of the coefficient is important to remember when using multiple
linear regression.

The example used in this chapter models the sales for Big Andy’s Burger Barn. The model
includes two explanatory variables and a constant.

sales; = 1 + Baprice; + Psadvert; +e; i=1,2,...,N (5.2)

where sales; is monthly sales in a given city and is measured in $1,000 increments, price; is price
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of a hamburger measured in dollars, and advert; is the advertising expenditure also measured in
thousands of dollars.

5.1 Linear Regression

The parameters of the model are estimated using least squares which can be done using the pull-
down menus and dialog boxes (GUI) or by using gretl’s handy scripting language (affectionately
called hansl). Both of these will be demonstrated below. The GUI makes it easy to estimate this
model using least squares. There are actually two ways to open the dialog box. The first is to
use the pull-down menu. Select Model>0Ordinary Least Squares from the main gretl window as
shown below in Figure 5.1. This brings up the dialog box shown in Figure 5.2. As in chapter 2

File Tools Data View Add Sample HariablelModellﬂelp

andy.gdt |Qrdinar}r Least Squares...

ID# 4 Variable name 4 Descriptive label Instrumental variables

0  const

Figure 5.1: Using the pull-down menu to open the ordinary least squares dialog box.

1
2 price

auto-generated constant

Monthly sales revenue ($1000)

A price index for all products

Other linear models
Monlinear models

Time series

v v v W

-
n gretl: specify model

= | B [ |

const

sales

price
adwvert

oLs
Dependent variable

sales

H

[7] Set as default

Independent variables

-
advert
[7] Robust standard errers | Configure
[ Help ] l Clear l ’ Cancel l [ OK ]

A

Figure 5.2: The specify model dialog box for ordinary least squares (OLS)
you need to put the dependent variable (sales) and the independent variables (const, price, and

advert) in the appropriate boxes. Click OK and the model is estimated. The results appear in
Table 5.1 below.
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There is a shortcut to get to the specify model dialog box. On the toolbar located at the bottom
of the main gretl window is a button labeled 3. Clicking on this button as shown in Figure 5.3
will open the OLS specify model dialog box in Figure 5.2.

“ gretl E‘EI&J

File Tools Data View Add Sample Variable Model Help
andy.gdt

ID# 4 Variable name 4 Descriptive label hl
0 const auto-generated constant
1 sales Monthly sales revenue ($1000s)

price A price index for all products seld in a given month,

2
3 advert Expenditure on advertising (51000s)

Click here to openthe OLS dialog

Undated: Full range1 - 75

Elfx'@@u(ﬂ;e
‘\__/’

Figure 5.3: The OLS shortcut button on the toolbar.

5.2 Big Andy’s Burger Barn

Hansl is used to estimate the model for Big Andy’s. The following two lines are typed into a
script file, which is executed by clicking your mouse on the “gear” button of the script window.

1 open "@gretldir\data\poe\andy.gdt"
2 ols sales const price advert
3 scalar S_hat = $coeff(const) + $coeff(price)*5.5 + $coeff (advert)*1.2

This assumes that the gretl data set andy.gdt is installed at c: \ProgramFiles (x86) \gretl\data\
poe. The results, in tabular form, are in Table 5.1 and match those in POFE4.

In addition to providing information about how average sales change when price or advertising
changes, the estimated equation can be used for prediction. To predict sales revenue for a price of
$5.50 and an advertising expenditure of $1,200 we can use genr or scalar to do the computations.
From the console,

Generated scalar S_hat (ID 4) = 77.6555

which also matches the result in POFEJ.
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Model 1: OLS, using observations 1-75
Dependent variable: sales

Coefficient  Std. Error  t-ratio  p-value

const  118.914 6.35164 18.7217  0.0000
price —7.90785  1.09599 —7.2152  0.0000
advert 1.86258  0.683195 2.7263 0.0080

Mean dependent var 77.37467 S.D. dependent var  6.488537

Sum squared resid 1718.943 S.E. of regression 4.886124
R? 0.448258  Adjusted R? 0.432932
F(2,72) 29.24786  P-value(F) 5.04e-10
Log-likelihood —223.8695 Akaike criterion 453.7390
Schwarz criterion 460.6915 Hannan—Quinn 456.5151

Table 5.1: The regression results from Big Andy’s Burger Barn

5.2.1 Variances and Covariances of Least Squares

The variances and covariances of the least squares estimator give us information about how
precise our knowledge of the parameters is from estimating them. Smaller standard errors mean
that our knowledge is more precise.

The precision of least squares (LS) depends on a number of factors.

1. Smaller variation in the dependent variable about its mean, o2, makes LS more precise.
2. Larger samples, IV, improve LS precision.

3. More variation in the independent variables about their respective means makes LS more
precise.

4. Less correlation between the least squares estimates, corr(be, b3), also improves LS precision.

The precision of least squares (and other estimators) is summarized by the variance-covariance
matrix, which includes a measurement of the variance of the intercept, each slope, and covariance
between each pair. The variances of the least squares estimator fall on the diagonal of this square
matrix and the covariances in the off-diagonal elements.

var(by)  cov(by,by) cov(by,bs)
cov(by, ba,b3) = |cov(bi,be)  war(bs)  cov(be,bs) (5.3)
cov(by,bs) cov(be,b3)  wvar(bs)

All of these have to be estimated from the data, and generally depends on your estimate of the
overall variance of the model, 4% and correlations among the independent variables. To print an
estimate of the variance-covariance matrix following a regression use the --vcv option with your
regression in gretl :
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ols sales const price advert --vcv

The result is

Coefficient covariance matrix

const price advert
40.343 —6.7951 —0.74842 const
1.2012 —0.01974 price
0.46676 advert

For instance, the estimated variance of bj—the intercept—is 40.343 and the estimated covariance
between the LS estimated slopes bo and b3 is —0.01974.

A (estimated) standard error of a coefficient is the square root of its (estimated) variance,

se(bg) = y/var(by). These are printed in the output table along with the least squares estimates,
t-ratios, and their p-values.

5.2.2 Confidence Intervals

Confidence intervals are obtained using the scalar command in the same way as in chapter 3.
A 95% confidence interval for (s, the coefficient of the price variable is generated:

ols sales const price advert --vcv

scalar bL = $coeff(price) - critical(t,$df,0.025) * $stderr(price)
scalar bU = $coeff(price) + critical(t,$df,0.025) * $stderr(price)
printf "\nThe lower = %.2f and upper = %.2f confidence limits\n", bL, bU

=W N =

The output from the script is:
The lower = -10.09 and upper = -5.72 confidence limits

This nifty piece of output uses the function called, printf. printf stands for print format and
it is used to gain additional control over how results are printed to the screen. In this instance
we’ve combined descriptive text and numerical results. The syntax is a bit tricky, so I will explain
a little about it. I will be using it extensively in the rest of this book so that you get the used to
it. Once used, its mystery quickly evaporates—the syntax is really quite elegant.

The printf function is divided into two parts. The first part consists of what you want to write
to the screen, and the second contains the numbers from your output that you want placed within

the text.
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Dressing up printed output with printf
printf "\nThe lower = %.2f and upper = %.2f confidence limits\n", bL, bU

The first part, called the format string, is enclosed in double quotes. The \n command stands
for ‘new line’ and it tells gretl to issue a line feed (in old computer lingo, that means go to a new
line). It is used at the beginning and the end of the format string and is not strictly necessary. In
this case, a line feed is given before and after the format string to give a little more white space
to your printed output. If you want line feeds, be sure to put these inside the double quotes that
enclose the format string.

Within this ‘sentence’ or ‘format string’ are two format commands. A format command tells
gretl how the numerical results are to be printed. A format command begins with the % symbol
and is followed by instructions about how many digits of the numerical result you want it to print.
These formats are adopted from the C programming language. The format %f is a fixed point
format and the number that falls between the percent sign % and the desired format f indicates
the overall width of what is to be printed and the number decimal places to print. So, %.2f tells
gretl to print only two numbers to the right of the decimal without limiting the overall number of
characters for the number.

Recognized numeric formats are %s, %e, %E, %f, %g, %G and %d!, in each case with the various
modifiers available in C. Examples: the format %. 10g prints a value to 10 significant figures; %12 .61
prints a value to 6 decimal places, with a width of 12 characters. The format %s should be used
for strings.

The second part of the printf command contains the values to be printed at the each of the
format commands. There has to be one result for each format command. These are separated by
commas. Since there are two format commands, gretl is expecting two results to be listed. The
result computed and stored in bL will be printed at the first format command, %.2f, and the one
in bU will be printed at the second %.2f. The values to be printed must follow the format string,
separated by commas. These values should take the form of either (a) the names of variables, (b)
expressions that are valid for the genr command, or (c) the special functions varname () or date ().

Remember, you can also summon the 95% confidence intervals from the model window us-
ing the pull-down menu by choosing Analysis>Confidence intervals for coefficients. The
confidence interval for S5 is shown below in Figure 5.4.

You can also estimate intervals for linear combinations of parameters as we did in chapter

4. Suppose Big Andy wants to increase sales next week by lowering price and spending more on

advertising. If he increases advertising by $800 and lowers price by 40 cents the change in expected
sales would be

A = E(sales;) — E(salesy) = —0.4/35 + 0.803 (5.4)

The estimate of A is obtained by replacing the unknown parameters with the least squares estimates.
The standard error of this linear combination can be calculated in the same fashion as discussed in

196 is for scientific notation with lower case e, %E is scientific upper case, %g picks the shorter of %e or %f, and %G
picks the shorter of %E or %f. The format command %d is for a signed decimal integer.
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“ greth: coefficient confidence intervals =NACN X

S B & o ™ K8

t{72, 0.025) = 1.993
VLARILELE COEFFICIENT 95% CCNFIDENCE INTERVAL
const 118.914
price -T7.90785
advert 1.86258

W 4

Figure 5.4: The confidence intervals produced from the GUI through the model window. In the
model window, choose Analysis>Confidence intervals for coefficients

section 3.6. A 90% interval is constructed using the script:

scalar chg = -0.4*$coeff(price)+0.8*$coeff (advert)

scalar se_chg=sqrt((-0.4) "2*$vcv[2,2]+(0.872)*$vcv[3,3]+2x(-0.4)*(0.8) *$vcv[2,3])
scalar 1b = chg-critical(t,$df,.05)*se_chg

scalar ub = chg+critical(t,$df,.05)*se_chg

printf "\nExpected Change = J.4f and SE = 7%.4f\n",chg,se_chg

printf "\nThe 90%% confidence interval is [%.3f, %.3f]\n",1lb,ub

[ I

This produces the expected result:

Expected Change = 4.6532 and SE = 0.7096
The 90% confidence interval is [3.471, 5.836]

The only trick here is to get the percent % symbol into the print statement; to do so it must be
preceded by another percent symbol, %; hence, 90%% appears in line 6 to print 90%.

5.2.3 t-Tests, Critical Values, and p-values

In section 3.4 the GUI was used to obtain test statistics, critical values and p-values. However,
it is often much easier to use the the genr or scalar commands from either the console or as a
script to compute these. In this section, the scripts will be used to test various hypotheses about
the sales model for Big Andy.

Significance Tests

Multiple regression models includes several independent variables because one believes that
each as an independent effect on the mean of the dependent variable. To confirm this belief it is
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customary to perform tests of individual parameter significance. If the parameter is zero, then the
variable does not belong in the model. In gretl the t-ratio associated with the null hypothesis that
Br = 0 against the alternative 8 # 0 is printed in the regression results along side the associated
p-value. For the sake of completeness, these can be computed manually using a script as found
below. For t¢-ratios and one- and two-sided hypothesis tests the appropriate commands are:

ols sales
scalar t1
scalar t2 = ($coeff(advert)-0)/$stderr
printf "\n The t-ratio for HO: b2=0 is
The t-ratio for HO: b3=0 is = %.3f.\n"

o

const price advert

gk W N

($coeff (price)-0)/$stderr(price)

(advert)
%.3f . \n\
, t1, t2

The results shown in Figure 5.5 As you can see,

the automatic results and the manually generated

-
H gretl: script output

-
=

o8 X

& @& = AL <

Model 7: CLS, using observations 1-75

? genr tl =
Replaced scalar tl = -7.21524
? genr t2
Replaced scalar t2

2.72628

Dependent wariable: sales
coefficient std. error t-ratio p-value

const 118.914 6.35164 18 72 2.21e-023 #*#

price -7.80785 1.095%% -7.215 4.42e-010 #**#*

advert 1.86258 0.683195 2.726 0.0080 HEE
Mean dependent wvar T77.37467 5.D. dependent wvar 6.488537
Sum squared resid 1718.943 5.E. of regrelgsion 4.886124
R-=squared 0.448258 Adjusted R-sguared 0.432932
F(2, 72) 29.24786  P-value(F) 5.04e-10
Log-likelihood -223.8695 Lkaike criterionh 453,7390 =
Schwarz criterion 460.6915 Hannan-Quinn 456.5151

($coeff (price)-0)/$stderr (price

($coeff (advert)-0) /S$stderr(advert)

? printf "\n The t-ratic for HO: b2=0 is = %.3f.\n [[he t-ratio for HO: b3=0 is \
= %.3f.\n", ©l, t2

The t-ratio for HO: b2=0 is|= -7.215.

The t-ratio for HO: b3=0 is|= 2.72&

Manual computation
matches the model table

Figure 5.5: Notice that the usual model estimation results produced by gretl prints the t-ratios
needed for parameter significance by default. These match the manual computation.

ones match perfectly.

One of the advantages of doing ¢-tests manually is that you can test hypotheses other than
parameter significance. You can test hypothesis that the parameter is different from values other
than zero, test a one-sided hypotheses, or test a hypotheses involving a linear combinations of

parameters.
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One-tail Alternatives

If a decrease in price increases sales revenue then we can conclude that demand is elastic. So,
if By > 0 demand is elastic and if By < 0 it is inelastic. To test Hy : B3 > 0 versus H; : 8 < 0, the
test statistic is the usual t-ratio.

1 scalar tl = ($coeff(price)-0)/$stderr(price)
2 pvalue t $df t1

The rejection region for this test lies to the left of —t., which is the « level critical value from the
distribution of ¢. This is a perfect opportunity to use the pvalue function. The result is:

t(72): area to the right of -7.21524 =~ 1
(to the left: 2.212e-010)
(two-tailed value = 4.424e-010; complement = 1)

You can see that the area to the left of —7.21524 is close to zero. That is less than 5% nominal
level of the test and therefore we reject that (o is non-negative.

A test of whether a dollar of additional advertising will generate at least a dollar’s worth of
sales is expressed parametrically as Hy : 83 < 1 versus H; : 83 > 1. This requires a new t-ratio and
again we use the pvalue function to conduct the test.

1 scalar t3 = ($coeff(advert)-1)/$stderr(advert)
2 pvalue t $df t3

The results are

t(72): area to the right of 1.26257 = 0.105408
(two-tailed value = 0.210817; complement = 0.789183)

The rejection region for this alternative hypothesis lies to the right of the computed t-ratio. That
implies that the p-value is 0.105. At 5% level of significance, this null hypothesis cannot be rejected.

Linear Combinations of Parameters

Big Andy’s advertiser claims that dropping the price by 20 cents will increase sales more than
spending an extra $500 on advertising. This can be translated into a parametric hypothesis that
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can be tested using the sample. If the advertiser is correct then —0.285 > 0.583. The hypothesis
to be tested is:

Ho:—0.28, — 0.58; <0
Hy:—0.285—0.583 >0
The test statistic is 0.2by — 0.5b
—U.202 — U.003
. o~ 5.5
se(—0.2by — 0.5b3) "

provided the null hypothesis is true. The script is

ols sales const price advert --vcv

scalar chg = -0.2*$coeff (price)-0.5*$coeff (advert)

scalar se_chg=sqrt((-0.2) 2x$vcv[2,2]1+((-0.5)"2)*$vcv[3,3]\
+2%(-0.2)*(-0.5)*$vcv([2,3])

scalar t_ratio = chg/se_chg

pvalue t $df t_ratio

= T L B N N

which generates the needed information to perform the one-sided test.

t(72): area to the right of 1.62171 = 0.0546189
(two-tailed value = 0.109238; complement = 0.890762)

The p-value is P(t72 > 1.62171) = 0.0546189. At 5% we cannot reject the null (but we could at
10%).

5.3 Polynomials

One way to allow for nonlinear relationships between independent and dependent variables is
to introduce polynomials of the regressors into the model. In this example the marginal effect of
an additional dollar of advertising is expected to diminish as more advertising is used. The model
becomes:

sales; = By + Paprice; + Bsadvert; + Biadvert? +e; i=1,2,...,N (5.6)

To estimate the parameters of this model, one creates the new variable, advert?, adds it to the
model, and uses least squares.

1 series a2 = advert”2
2 ols sales price advert a2
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which produces

OLS, using observations 1-75
Dependent variable: sales

Coefficient  Std. Error  t-ratio  p-value
const  109.719 6.79905 16.1374  0.0000

price —7.64000 1.04594 —7.3044 0.0000
advert  12.1512 3.55616 3.4170 0.0011
a2 —2.76796  0.940624 —2.9427 0.0044

Mean dependent var 77.37467 S.D. dependent var 6.488537

Sum squared resid 1532.084 S.E. of regression 4.645283
R? 0.508235 Adjusted R? 0.487456
F(3,71) 24.45932  P-value(F) 5.60e-11
Log-likelihood —219.5540 Akaike criterion 447.1080
Schwarz criterion 456.3780 Hannan—Quinn 450.8094

The variable a2, which is created by squaring advert, is a simple example of what is sometimes
referred to as an interaction variable. The simplest way to think about an interaction variable
is that you believe that its effect on the dependent variable depends on another variable-the two
variables interact to determine the average value of the dependent variable. In this example, the
effect of advertising on average sales depends on the level of advertising itself.

Another way to square variables is to use the square command

square advert

This creates a variable sq_advert and adds it to the variable list. Notice that gretl just adds the
sq- prefix to the existing variable name. You can square multiple variables at a time by just by
adding them to the square command’s list.

5.3.1 Marginal Effects

When variables interact, the marginal effect of one variable on the mean of another has to be
computed manually based on calculus. Taking the partial derivative of average sales with respect
to advertising yields produces the marginal effect on average sales of an increase in advertising;

OE(sales)

= 2B4advert .
Odadvert Ps +2fsadver (5:7)
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The magnitude of the marginal effect depends on the parameters as well as on the level of adver-
tising. In the example marginal effect is evaluated at two points, advert=.5 and advert=2. The
code is:

scalar mel = $coeff (advert)+2*(0.5)*$coeff (a2)

scalar me2 = $coeff (advert)+2*2*$coeff (a2)

printf "\nThe marginal effect at $500 (advert=.5) is \
%.3f and at $2000 (advert=2) is %.3f\n",mel,me2

P

and the result is:

The marginal effect at $500 (advert=.5) is 9.383 and at $2000 (advert=2) is 1.079

5.3.2 Optimal Advertising: Nonlinear Combinations of Parameters

The optimal level of advertising, advert,, is defined in this example to be the amount that
maximizes net sales. Andy will advertise up to the point where another dollar of expenditure adds
at least one dollar of additional sales-and no more. At this point the marginal effect is equal to
one,

B3 + 2B4advert, = 1 (5.8)
Solving advert in terms of the parameters
1—
A = advert, = B (5.9)
204

which is nonlinear in the parameters of the model. A consistent estimate of the optimal level of
advertising can be obtained by substituting the least squares estimates for the parameters on the
right-hand side. Estimating the standard error via the Delta method requires some calculus, but
it is quite straightforward to do in gretl.

The Delta method is based on a first-order Taylor’s series expansion of a function that involves
the parameters of the model. It relies on the asymptotic normality of the estimator you are using.
Let B be a 2x 1 vector of parameters; an intercept and slope. Consider a possibly nonlinear function
of a parameters g(3). Also, let’s say that we estimate a set of parameters 3 using an estimator
called b and that b ~ N (B,V). So far, we've described the least squares estimator of the simple
regression. Then, by the Delta theorem, the nonlinear function evaluated at the estimates has the
following approximate distribution:

g(b) ~ N(g(B), G(B)VG(B)) (5.10)

where G(8) = dg(8)/08T. In order to use the Delta Method, you have to take the partial deriva-
tives of the function, which in our example is a hypothesis, with respect to each parameter in the
model. That is, you need the Jacobian.
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In the example, g(B) = 1 — B3/25,4. Taking the derivatives with respect to each of the parame-
ters, 617 627 631 and 54 yields:

_ Oadvert,

dy = o 0

dy = 8@;1;27”750 _o
d3:8a§zm’z —2;4 (5.11)
d4:aa;;iﬁ°:—12_5§3 (5.12)

Note that the derivatives with respect to 51 and 8y are 0. To use the Delta method, simply replace
the unknown parameters in equation (5.9) with least squares estimates. Then to get the estimated
standard error of A, substituted estimates into the derivatives d3 and d4, and compute

var(A\) = (0 0 ds dy) [ov(b1, by, b3, bs)] (5.13)

Bao o

This looks harder to do than it actually is. The gretl script to compute the variance and standard
error is:

ols sales const price advert a2 --vcv
matrix b = $coeff

matrix cov = $vcv

scalar lambda = (1-b[3])/(2xb[4])

© 0 9 s W N

scalar d3 = -1/(2*b[4])
scalar d4 = -1%(1-b[3])/(2%b[4]"2)
matrix d = { 0, 0, d3, d4}
scalar v = dxcovx*d’
scalar se = sqrt(v)
10 scalar 1b = lambda - critical(t,$df,.025)*se

-
—

scalar ub = lambda + critical(t,$df,.025)*se
printf "\nThe estimated optimal level of advertising is $%.2f.\n",1000*lambda
printf "\nThe 95%% confidence interval is ($%.2f, $%.2f).\n",1000%1b,1000*ub

=
w N

The first line estimates the model using least sqaures and the --vcv option is used to print the
covariance matrix. In line 2 the entire set of coefficents is saved into a vector (a one row matrix
in this case) called b. This will make the syntax that follows easier since each coefficient can
be referred to by its position in the vector, e.g., the third coefficient in b is b[3]. In line 3 the
covariance matrix is saved as cov. In line 4 the least squares estimates are substituted for the
unknown parameters. In lines 5 and 6 the analytical derivatives are evaluated at the estimates.
The matrix d is 1 x 4 and contains the derivatives of the hypothesis with respect to each of the
parameters. The next line computes variance in equation (5.13). Finally, the square root is taken
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to get the standard error and the confidence bounds are computed in lines 10 and 11 and printed
in 12 and 13.

The estimated optimal level of advertising is $2014.34.
The 95% confidence interval is ($1757.67, $2271.01).

According to this estimate the optimal level of advertising is $2014.34 and the 95% confidence
interval is ($1758, $2271).

5.4 Interactions

Interaction among variables was introduced in the preceding section for creating polynomial
terms. The concept is very general can be applied to any situation where the effect of a change in
one variable on the mean of the dependent variable depends on another variable.

5.4.1 Basic Interactions of Continuous Variables

The basic model considered is
pizza = 31 + Poage + B3income + e (5.14)

It is proposed that as a person grows older, his or her marginal propensity to spend on pizza
declines-this implies that the coefficient 83 depends on a person’s age.

B3 = Ba + Bsage (5.15)
Substituting this into the model produces
pizza = B1 + Paage + Pyincome + Ba(income X age) + e (5.16)

This introduces a new variable, income x age, which is an interaction variable. The marginal effect
of unit increase in age in this model depends on income and the marginal effect of an increase in
income depends on age.

The interaction could be created in gretl using the genr or series command. The data for
the following example are found in the pizza4.gdt dataset.

1 open "Ogretldir\data\poe\pizza4.gdt"
2 genr inc_age = income*age
3 ols pizza const age income inc_age
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The result is

Model 1: OLS, using observations 1-40

const
age
income
inc_age

Mean dependent var
Sum squared resid

R2
F(3,36)
Log-likelihood

Schwarz criterion

Dependent variable: pizza

Coefficient ~ Std. Error t-ratio  p-value
161.465 120.663 1.3381 0.1892
—2.97742 3.35210 —0.8882 0.3803
6.97991 2.82277 2.4727 0.0183
—0.123239 0.0667187 —1.8471 0.0730
191.5500 S.D. dependent var 155.8806
580608.7 S.E. of regression 126.9961
0.387319 Adjusted R? 0.336262
7.586038 P-value(F) 0.000468
—248.4166  Akaike criterion 504.8332
511.5887 Hannan—Quinn 507.2758

The marginal effect of age on pizza expenditure can be found by taking the partial derivative of
the regression function with respect to age

OE(pizza)
age

= B9 + Byincome

(5.17)

Comparing the marginal effect of another year on average expenditures for two individuals, one
with $25,000 in income

= by + by X 25 = —2.977 + (—0.1232)25 = —6.06.

To carry this out in a script with income at $25,000 and $90,000

© 0 N O s W N

open "@gretldir\data\poe\pizzad.gdt"

series inc_age=incomex*age

ols pizza const age income inc_age

scalar mel = $coeff (age)+$coeff (inc_age)*25
scalar me2 = $coeff(age)+$coeff (inc_age)*90
printf "\nThe marginal effect of age for one \
with $25,000/year income is %.2f.\n",mel
printf "\nThe marginal effect of age for one \
with $90,000/year income is %.2f.\n",me2

This yields:

The marginal effect of age for one with $25,000/year income is -6.06.

The marginal effect of age for one with $90,000/year income is -14.07.
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5.4.2 Log-Linear Model

In this example the simple regression first considered in chapter 4 is modified to include more
variables and an interaction. The model adds experience to the model

In(wage) = p1 + Paeduc + Psexper+ e (5.19)

In this model suppose that the marginal effect of another year of schooling depends on how much
experience the worker has. This requires adding an interaction

In(wage) = p1 + Paeduc + Psexper+ La(educ X exper) + e (5.20)

The marginal effect of another year of experience is

OFE[In(wage)]

|educ fixzed = 63 + 64€duc (521)
exper

In percentage terms the marginal effect of another year of experience is 100(8s + Sieduc). The
model can be estimated and the marginal effect computed easily with hansl

open "@gretldir\data\poe\cps4_small.gdt"

logs wage

series ed_exp=educ*exper

ols 1_wage const educ exper ed_exp

scalar me8 = $coeff (exper)+8*$coeff (ed_exp)
scalar mel6 = $coeff (exper)+16x$coeff (ed_exp)
printf "\nThe marginal effect of exper for one \
with 8 years of schooling is %.3£f%%\n",100*me8
printf "\nThe marginal effect of exper for one \
with 16 years of schooling is %.3f%%.\n",100*mel6
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The result is

The marginal effect of exper for one with 8 years of schooling is 0.6047%.
The marginal effect of exper for one with 16 years of schooling is 0.575%.

5.5 Goodness-of-Fit

Other important output is included in Table 5.1. For instance, you’ll find the sum of squared
errors (SSE) which gretl refers to as “Sum squared resid.” In this model SSE = 1718.94. To obtain
the estimated variance, 62, divide SSE by the available degrees of freedom to obtain

52 _ SSE  1718.94
- N—-K 75-3

— 23.874 (5.22)
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The square root of this number is referred to by gretl as the “S.E. of regression” and is reported
to be 4.88612. Gretl also reports R? in this table. If you want to compute your own versions of
these statistics using the total sum of squares from the model, you’ll have to use Analysis>ANOVA
from the model’s pull-down menu to generate the ANOVA table. Refer to section 4.2 for details.

To compute your own from the standard gretl output recall that

. [8sT

The statistic ¢, is printed by gretl and referred to as “S.D. of dependent variable” which is reported
to be 6.48854. A little algebra reveals

SST = (N —1)6; = 74 x6.48854 = 3115.485 (5.24)

Then,
_SSE_ 171894
SST ~~  3115.485

Otherwise, the goodness-of-fit statistics printed in the gretl regression output or the ANOVA table
are perfectly acceptable.

R*=1 = 0.448 (5.25)

Gretl also reports the adjusted R? in the standard regression output. The adjusted R? imposes
a small penalty to the usual R? when a variable is added to the model. Adding a variable with
any correlation to y always reduces SSE and increases the size of the usual R?. With the adjusted
version, the improvement in fit may be outweighed by the penalty and adjusted R? could become
smaller as variables are added. The formula is:

w2, SSE/(N - K)

R*=1- TN 1) (5.26)

This sometimes referred to as “R-bar squared,” (i.e., R? ) although in gretl it is called “adjusted
R-squared.” For Big Andy’s Burger Barn the adjusted R-squared is equal to 0.4329.

Once again the the printf command gives us some additional control over the format of the
output. At the end of line 3 you’ll find an extra \. This is gretl’s line continuation command. It
tells gretl to continue reading the next line. It joins lines 3 and 4. The continuation command
makes programs easier to print on a page. It looks slightly odd here since it immediately follows
the line feed \n, but \n\ actually consists of two commands: a line feed and a continuation.

In this the critical values for the t75 and the p-values for the two statistics can be easily obtained
using the command

1 scalar c=critical(t,$df,0.025)
2 pvalue t $df t1
3 pvalue t $df t2

These last three commands produce the output shown below:
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Generated scalar c¢ (ID 8) = 1.99346
t(72): area to the right of -7.21524 =~ 1
(to the left: 2.212e-010)

(two-tailed value = 4.424e-010; complement = 1)
t(72): area to the right of 1.26257 = 0.105408
(two-tailed value = 0.210817; complement = 0.789183)

It is interesting to note that when a negative t-ratio is used in the pvalue function, gretl returns
both the area to its right, the area to its left and the sum of the two areas. So, for the alternative
hypothesis that the coefficient on price is less than zero (against the null that it is zero), the
p-value is the area to the left of the computed statistic, which in this example is essentially zero.

The pvalue command can also be used as a function to return a scalar that can be stored by
gretl.

scalar c=critical(t,$df,0.025)
scalar pl=pvalue(t, $df, t1)

scalar p2=pvalue(t, $df, t2)

printf "\nThe .025 critical value from the t with J%d degrees of freedom \
is %.3f.\n The pvalue from HO: b2=0 is %.3f and \

from HO: b3=1 is %.3f.\n",$df,c,pl,p2

N o oA W NN

This prints the following to the screen:

The .025 critical value from the t with 72 degrees of freedom is 1.993.
The pvalue from HO: b2=0 is 1.000 and from HO: b3=1 is 0.105
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5.6 Script

set echo off
open "@gretldir\data\poe\andy.gdt"
#Change the descriptive labels and graph labels
setinfo sales -d "Monthly Sales revenue ($1000)" -n "Monthly Sales ($1000)"
setinfo price -d "$ Price" -n "Price"
setinfo advert -d "Monthy Advertising Expenditure ($1000)" -n \
"Monthly Advertising ($1000)

[
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# print the new labels to the screen
labels

=
o

11

12 # summary statistics

13 summary sales price advert

14

15 # confidence intervals

16 ols sales const price advert --vcv

17 scalar bL = $coeff(price) - critical(t,$df,0.025) * $stderr(price)
18 scalar bU = $coeff(price) + critical(t,$df,0.025) * $stderr(price)
19 printf "The lower = %.2f and upper = %.2f confidence limits", bL, bU
20

21 # linear combination of parameters

22 0ls sales const price advert --vcv

23 scalar chg = -0.4*$coeff (price)+0.8*$coeff (advert)

24 scalar se_chg=sqrt((-0.4) " 2*$vcv[2,2]+(0.872)*$vcv[3,3]\

25 +2*%(-0.4)*(0.8)*$vcv[2,3])

26 scalar 1b chg-critical(t,$df,.05)*se_chg

27 scalar ub chg+critical(t,$df,.05)*se_chg

28 printf "\nExpected Change = J.4f and SE = J.4f\n",chg,se_chg
29 printf "\nThe 90%% confidence interval is [%.3f,%.3f]\n",1b,ub
30

31 # significance tests

32 o0ls sales const price advert

33 scalar tl = ($coeff(price)-0)/$stderr(price)

34 scalar t2 = ($coeff(advert)-0)/$stderr(advert)

35 printf "\n The t-ratio for HO: b2=0 is = %.3f.\n\

36 The t-ratio for HO: b3=0 is = %.3f.\n", t1, t2

37

38 pvalue t $df ti1

39 scalar t3 = ($coeff(advert)-1)/$stderr(advert)

10 pvalue t $df t3

41

42 # t-test of linear combination

43 ols sales const price advert --vcv

14 scalar chg = -0.2*$coeff (price)-0.5x$coeff (advert)

45 scalar se_chg=sqrt((-0.2)"2*$vcv[2,2]1+((-0.5) "2)*$vcv[3,3]\

16 +2%(-0.2)*(-0.5)*$vcv[2,3])

47 scalar t_ratio = chg/se_chg

48 pvalue t $df t_ratio
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50 # interaction creates nonlinearity

51 series a2 = advert*advert

52 ols sales const price advert a2 --vcv

53 scalar mel = $coeff(advert)+2*(0.5)*$coeff (a2)

54 scalar me2 = $coeff (advert)+2*2*x$coeff (a2)

55 printf "\nThe marginal effect at \$500 (advert=.5) is %.3f \
56 and at \$2000 is %.3f\n",mel,me2

58 # delta method for nonlinear hypotheses
59 ols sales const price advert a2 --vcv

60 matrix b = $coeff

61 matrix cov = $vcv

62 scalar lambda = (1-b[3])/(2*b[4])

63 scalar d3 = -1/(2*b[4])

64 scalar d4 = -1x(1-b[3])/(2*b[4]"2)

65 matrix 4 = { 0, 0, 43, d4}

66 scalar v d*covx*d’

67 scalar se = sqrt(v)

68 scalar 1b = lambda - critical(t,$df,.025)+*se

60 scalar ub = lambda + critical(t,$df,.025)+*se

70 printf "\nThe estimated optimal level of advertising is $%.2f.\n",1000*lambda
71 printf "\nThe 95%) confidence interval is ($%.2f, $%.2f).\n",1000%1b,1000*ub

73 # interaction and marginal effects

74 open "@gretldir\data\poe\pizzad.gdt"

75 sSeries inc_age=income*age

76 0ls pizza const age income inc_age

77 scalar mel = $coeff (age)+$coeff (inc_age)*25

78 scalar me2 = $coeff(age)+$coeff (inc_age)*90

79 printf "\nThe marginal effect of age for someone\
so with $25,000/year income is %.2f.\n",mel

s1 printf "\nThe marginal effect of age for someone\
s2 with $90,000/year income is %.2f.\n",me2

s4a open "@gretldir\data\poe\cps4
85 logs wage

86 series ed_exp=educ*exper

g7 ols l_wage const educ exper ed_exp

ss scalar me8 = $coeff (exper)+8*$coeff (ed_exp)

8o scalar mel6 = $coeff (exper)+16x$coeff (ed_exp)

90 printf "\nThe marginal effect of exper for someone\
91 with 8 years of schooling is %.3£f%%.\n",100*me8

92 printf "\nThe marginal effect of exper for someone\
93 with 16 years of schooling is %.3f%%.\n",100*mel6

small.gdt"
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Chapter

Further Inference in the Multiple Regression
Model

In this chapter several extensions of the multiple linear regression model are considered. First,
we test joint hypotheses about parameters in a model and then learn how to impose linear restric-
tions on the parameters. A condition called collinearity is also explored.

6.1 F-test

An F-statistic can be used to test multiple hypotheses in a linear regression model. In linear
regression there are several different ways to derive and compute this statistic, but each yields the
same result. The one used here compares the sum of squared errors (SSE) in a regression model
estimated under the null hypothesis (Hp) to the SSE of a model under the alternative (H;). If the
sum of squared errors from the two models are similar, then there is not enough evidence to reject
the restrictions. On the other hand, if imposing restrictions implied by Hg alter SSE substantially,
then the restrictions it implies don’t fit the data and we reject them.

In the Big Andy’s Burger Barn example we estimated the model
sales; = 1 + Baprice + Bszadvert + Byadvert’ + e (6.1)

Suppose we wish to test the hypothesis that advertising has no effect on average sales against the
alternative that it does. Thus, Hy : 83 = B4 = 0 and Hy : B3 # 0 or 84 # 0. Another way to
express this is in terms of the models each hypothesis implies.

Hy :B1 + Baprice+ e
H, :B1 + Boprice + Bsadvert + Byadvert + e
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The model under Hj is restricted compared to the model under H; since in it 83 = 0 and 84 = 0.
The F-statistic used to test Hg versus Hp estimates each model by least squares and compares
their respective sum of squared errors using the statistic:

(SSE, — SSE,)/J

F = SE. (N~ K)

~Fin_K if Hy is true (6.2)

The sum of squared errors from the unrestricted model (H;) is denoted SSE, and that of the
restricted model (Hp) is SSE,. The numerator is divided by the number of hypotheses being
tested, J. In this case that is 2 since there are two restrictions implied by Hy. The denominator
is divided by the total number of degrees of freedom in the unrestricted regression, N — K. N is
the sample size and K is the number of parameters in the unrestricted regression. When the errors
of your model are (1) independently and identically distributed (iid) normals with zero mean and
constant variance (e; iid N (0,0?)) and (2) Hy is true, then this statistic has an F' distribution with
J numerator and N — K denominator degrees of freedom. Choose a significance level and compute
this statistic. Then compare its value to the appropriate critical value from the F' table or compare
its p-value to the chosen significance level.

The script to estimate the models under Hy and H; and to compute the test statistic is given
below.

open "@gretldir\data\poe\andy.gdt"

square advert

ols sales const price advert sq_advert

scalar sseu = $ess

scalar unrest_df = $df

ols sales const price

scalar sser = $ess

scalar Fstat=((sser-sseu)/2)/(sseu/(unrest_df))
pvalue F 2 unrest_df Fstat

© 0w N O s W N

The first thing to notice is that a gretl function is used to create advert’. In line 2 the square
command will square any variable or variables that follow. In doing so, the string sq_ is appended
as a prefix to the original variable name, so that squared advertising (advert?) becomes sq_advert.

Gretl refers to the sum of squared residuals (SSE) as the “error sum of squares” and it is
retrieved from the regression results using the accessor $ess (i.e., in line 3 scalar sseu = $ess.
In this case, the accessor $ess points to the error sum of squares computed in the regression that
precedes it. You’ll also want to save the degrees of freedom in the unrestricted model so that you
can use it in the computation of the p-value for the F-statistic. In this case, the F-statistic has 2
known parameters (J=1 and N — K=unrest_df) that are used as arguments in the pvalue function.

There are a number of other ways within gretl to do this test. These are available through

scripts, but it may be useful to demonstrate how to access them through the GUI. First, you’ll
want to estimate the model using least squares. From the pull-down menu (see Figure 5.1) se-
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lect Model>Ordinary Least Squares, specify the unrestricted model (Figure 5.2), and run the
regression. This yields the result shown in Figure 6.1.

I; gretl: model 3 = | -

File Edit Tests Sawe Graphs Analysis LaTeX

Model 3: COL53, using observations 1-75
Dependent wariable: sales

coefficient 2td. error t-ratio p-value
cConst 108.718 6.79905 16.14 1.87e-025 #**=*
price -7.64000 1.04594 -T7.304 3.24e-010 ***
advert 1z2.1512 3.556l6 3.417 0.0011 wEE
sgq_advert -2.76736 0.5940624 -2.5943 0.0044 FEE

Mean dependent var TT7.37467 5.D0. dependent war 6.488537

Sum sgquared resid 1532.084 5.E. of regression 4.645283
RE-sguared 0.508235 Adjusted R-sguared 0.487456
F{3, 71) 24.45332 P-wvalue (F) 5.60e-11
Log-likelihood -219.5540 Akaike criterion 447.1080
Schwarz criterion 456.3780 Hannan-Quinn 450.8054

Figure 6.1: The model results from least squares regression using the pull-down menu

You'll notice that along the menu bar at the top of this window there are a number of options
that are available to you. Choose Tests and the pull-down menu shown in Figure 6.2 will be
revealed. The first four options in 6.2 are highlighted and these are the ones that are most pertinent

File Edit §ave Grapts — Analysis — LaTeX

Model 3: Omit variables 1-75
Depender Add vanables

Sum of coefficients

. .- t- t
______ Linear restrictions _fff?f_____ff_i?____f
const Mon-linearity (squares) 9303 16.14 1
price Maon-linearity (logs) 4594 -7.304 3
adwvert R '« RESET S6l6 3.417 0
sq_ady  OTEE 40624 -2.943 0
Heteroskedasticity »
HMean dey Normality of residual 5.0. dependent *:rar
Sum =qug ) ) 5.E. of regression
R—squars Influential cbservations Adjusted R-squared
F(3, 71)  Collinearity P-value (F)
Log-like Chow test Akaike criterion
Schwarz Hannan-{uinn

Autocorrelation

Figure 6.2: Choosing Tests from the pull-down menu of the model window reveals several testing
options

to the discussion here. This menu provides you an easy way to omit variables from the model, add
variables to the model, test a sum of your coefficients, or to test arbitrary linear restrictions on the
parameters of your model.

Since this test involves imposing a zero restriction on the coefficient of the variable price, we can
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use the Omit variables option. This brings up the dialog box shown in Figure 6.3. Notice the two
radio buttons at the bottom of the window. The first is labeled Estimate reduced model and this
is the one you want to use to compute equation 6.2. If you select the other, no harm is done. It is
computed in a different way, but produces the same answer in a linear model. The only advantage
of the Wald test (second option) is that the restricted model does not have to be estimated in
order to perform the test. Consequently, when you use the —-wald option, the restricted model is
not estimated and the unrestricted model remains in gretl’s memory where its statistics can be

accessed.
' i
“ gretl: model tests = | E] |-
Select variables to omit
Available vars Selected vars
const @ adwert
price sq_advert
adwvert —
sq_advert é

| @ Estimate reduced model
(") Wald test, based on covariance matrix

-~ Sequential elimination of variables 010
~ using two-sided p-value: -

Test anly selected variables

Help || Glear || oneel || ok

. A

Figure 6.3: The Omit variables dialog box available from the Tests pull-down menu in the model
window.

Select the variable P and click OK to reveal the result shown in Figure 6.4. The interesting
thing about this option is that it mimics your manual calculation of the F' statistic from the script.
It computes the sum of squared errors in the unrestricted and restricted models and computes
equation (6.2) based on those regressions. Most pieces of software choose the alternative method
(Wald) to compute the test, but you get the same result.!

You can also use the linear restrictions option from the pull-down menu shown in Figure
6.2. This produces a large dialog box that requires a bit of explanation. The box appears in Figure
6.5. The restrictions you want to impose (or test) are entered here. Each restriction in the set should
be expressed as an equation, with a linear combination of parameters on the left and a numeric
value to the right of the equals sign. Parameters are referenced in the form b[variable number],
where variable number represents the position of the regressor in the equation, which starts with
1. This means that f3 is equivalent to b[3]. Restricting 83 = 0 is done by issuing b[3]=0 and
setting B4 = 0 by b[4]=0 in this dialog. Sometimes you’ll want to use a restriction that involves a

LOf course, if you had used the --robust option with ols, then a Wald calculation is done. This is discussed in
chapter 8.
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E gretl: model 4

Compariszon of Mode

Hull hypothesis:

File Edit Tests Save Graphs Analysis LaTeX
Model 4: OLS5, using observations 1-75
Dependent wariable: sales
coefficient std. error t-ratio p-value
const 121.900 6.52 18.68 1.59e-029 #**#
price -7.825907 1.142¢ -6.850 1.97e-08 *#==
Mean dependent wvar T77.37467 5.0. dependent wvar 6.488537
Sum squared resid 1896.391 5.E. of regression 5.096858
R-=sgquared 0.391301 Adjusted R-squared 0.382963
Fi1, 73) 4§.92730 B-wvalue (F) 1.97e-09
Log-likelihood —-227.5538 Lkaike criterion 459.1073
Schwarz criterion 463.7422 Hannan-Quinn 460.9580

advert, sg_advert

1 3 and Model 4:

the regression parameters are zero for the wariables

Test statistic:

F(2, 71) = 8.44136, with p-value = 0.000514159

Of the 3 model s

election statistics, U have 1lmproved.

Figure 6.4: The results using the Omit variables dialog box to test zero restrictions on the

parameters of a linear model.

multiple of a parameter e.g., 383 = 2. The basic principle is to place the multiplier first, then the

parameter, using * to multiply.

So, in this case the restriction in gretl becomes 3*b[3] 2.

When you use the console or a script instead of the pull-down menu to impose restrictions,
you’ll have to tell gretl where the restrictions start and end. The restrictions start with a restrict
statement and end with end restrict. The statement will look like this:

open "@gretldir\data\poe\andy.gdt"
ols sales const price advert sq_advert

restrict
b[3] =0
bl4] =0

end restrict

Put each restriction on its own
script:

restrict
b[1] =0
b[2] - b[3] =0
b[4] + 2xb[5] = 1

end restrict

If you use the pull-down menu

line. Here is another example of a set of restrictions from a gretl

to impose these you can omit the restrict and end restrict
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i~ hl
EH gretl: linear restrictions @

Specify restrictions:
(Please refer to Help for guidance)

b [3]j0 List restrictions here.
b[2]=0 Each restriction should
be on a separate line

b’ﬂ--."-‘-I-r'---"-‘-.III--""‘--'-'__“-"'H-I---i“

Figure 6.5: The linear restriction dialog box obtained using the Linear restrictions option in
the Tests pull-down menu.

statements. The results you get from using the restrict statements appear in Figure 6.6. The
test statistic and its p-value are highlighted in green. Notice also that the restricted estimates are
printed; the coefficients on advert and sq_advert are zero.

EH gretl: linear restrictions [ = |6 éj
SRER =

Restriction set -
1: bladvert] = 0

2: blsg_advert] = 0

Test statistic: |[F(2, 71) = 82.44136, with p-wvalus = 0.00051415%9

Restricted estimates:

m

coefficient std. error t-ratio p-value
const 121.800 6.52628 18.68 1.58e-029 *=**
price -7.82907 1.14286 -6.850 1.97e-09 *=*
advert 0.000000 0.000000 Jor:y Ha =
sgq_advert 0.000000 0.000000 M Jure
- A

Figure 6.6: The results obtained from using the restrict dialog box.

6.2 Regression Significance

To statistically determine whether the regression is actually a model of the average behavior
of your dependent variable, you can use the F-statistic. In this case, Hy is the proposition that y
does not depend on any of the independent variables, and H; is that it does.

H,: Bl‘f‘ei
Hy - B1+ Bazio + ...+ Brxik + e

The null hypothesis can alternately be expressed as fs2,33,...,8x = 0, a set of K — 1 linear
restrictions. In Big Andy’s Burger Barn the script is
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open "@gretldir\data\poe\andy.gdt"
square advert
ols sales const price advert sq_advert
restrict
b[2] =0
b[3] =0
bl4] =0
end restrict

0 N O s W N

In lines 3-8 the model is estimated and the three slopes are restricted to be zero. The test result
is shown in Figure 6.7 below. You can see that the F-statistic for this test is equal to 24.4593.

-

H gretl: model 4 = | B |

Eile Edit Tests Save Graphs Analysis LaTeX

HModel 4: CL5, using observations 1-75 -
Dependent wariakle: sales

coefficient std. error t-ratio p-value
const 105.713 6.79905 16.14 1.87e-025 #**
price -7.64000 1.04554 -7.304 3.24e-010 ##*%
advert 12.151z2 3.55616 3.417 0.0011 R
sq_advert -2.76796 0.940624 -2.943 0.0044 HEE
HMean dependent wvar T77.37467 5.D. dependent war 6.488537
Sum sgquared resid 1532.084 5.E. of regression 4.645283 L
E-sguared 0.508235 Adjusted BR—sguared 0.487456 3
|F(3, 71) 24.45932 P-value (F) 5.60e-11
Log-likelihood -215.5340 Akaike criterion 447 . 1080
Schwarz criterion 456.3780 Hannan-Quinn 450.8094

Test for omission of wariables -
Null hypothesis: parameters are zero for the wariables

price
advert
=g advert
Teast =statistic: F(3, 71) = 24.4583
with p-value = P(F(3, T1l) > 24.459%3) = 5.58%%6e-011 B
\ J

Figure 6.7: The results obtained from using the restrict statements via the dialog box to conduct
the overall F-test of regression significance.

You should also notice that the same number appears in the regression results as F'(3, 71). This
is not coincidental. The test of regression significance is important enough that it appears on the
default output of every linear regression estimated using gretl. The statistic and its p-value are
highlighted in Figure 6.7. Since the p-value is less than = 0.05, we reject the null hypothesis that
the model is insignificant at the five percent level.

This is also a good opportunity to use the omit statement and to show the effect of the —-wald
option. Consider the script
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1 open "Ogretldir\data\poe\andy.gdt"
square advert

list xvars = price advert sq_advert
ols sales const xvars -—quiet

omit xvars --wald

[S2 L B VU N

omit xvars

The regressors that carry slopes are collected into the list called xvars. Then, the overall F-test
can be performed by simply omitting the xvars from the model. This tests the hypothesis that
each coefficient is zero against the alternative that at least one is not. The --wald option will
perform the test without imposing the restrictions. The chi-square form is actually very similar to
the F-form; divide the chi-square form by its degrees of freedom and you will get the F. Their are
slight differences in the X?} /J and the Fj y_f distributions, which accounts for the small difference
in the reported p-values.

The second omit xvars statement will then repeat the test, this time imposing the restrictions
on the model. The output is shown if Figure 6.8. You can see that the F-form in the top portion

HNull hypothesis: the regression parameters are zero for the wvariables
price, advert, sg_advert omit xwvars --wald

Asymptotic test statistic:
Wald chi-sgquare(3) = 73.3779, with p-value = B.06688e-016
F-form: F(3, 71) = 24.4583, with p-value = 5.5999ge-011

Model 2: CL5, using observations 1-T75

Dependent wvariable: sales Omlt xvars
coefficient atd. error t-ratio p-value
const 77.3747 0.749232 103.3 9.62e-082 #&%
Mean dependent wvar TT.37487 5.0. dependent wvar 6.488537
Sum sguared resid 3115.482 5.E. of regression 6.488537
B-=squared 0.000000 Adjusted R-sguared 0.000000
Log-likelihood -246.1698 Lkaike criterion 494 .3396
Schwarz criterion 496.6571 Hannan-Quinn 495.2650

Comparison of Model 1 and Model 2: omit with HQ ODtIOn estimates
restricted model

HNull hypothesis: the regression parameters are zero for the wariables
price, advert, sg advert

Test statistic: F(3, 71) = 24.4593, with p-value = 5.59996e-011
Cf the 3 model selection statistics, 0 have improved.

Figure 6.8: The results obtained from using the omit statements to conduct the overall F-test of
regression significance.

of the output and the test statistic at the bottom match each other as well as the one obtained
using restrict. No regression output follows the first version because of the --wald option. In
the second instance, the model is restricted and the estimate of the constant (the series mean in
this case) is given before printing the test result.
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One can also perform the test manually using saved results from the estimated model. The
script to do so is:

ols sales const price advert sq_advert
scalar sseu = $ess

scalar unrest_df = $df

ols sales const

scalar sser = $ess

scalar rest_df = $df

scalar J = rest_df - unrest_df
scalar Fstat=((sser-sseu)/J)/(sseu/(unrest_df))
pvalue F J unrest_df Fstat

© 0 N9 3 s W N
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Since there are three hypotheses to test jointly the numerator degrees of freedom for the F-statistic
is J = K — 1 = 3. The saved residual degrees of freedom from the restricted model can be used
to obtain the number of restrictions imposed. Each unique restriction in a linear model reduces
the number of parameters in the model by one. So, imposing one restriction on a three parameter
unrestricted model (e.g., Big Andy’s), reduces the number of parameters in the restricted model
to two. Let K, be the number of regressors in the restricted model and K, the number in the
unrestricted model. Subtracting the degrees of freedom in the unrestricted model (N — K,,) from
those of the restricted model (N — K,) will yield the number of restrictions you've imposed, i.e.,
(N-K,)—(N-K,)=(K,—K,)=J.

6.2.1 Relationship Between t- and F-tests

You can certainly use an F-test to test the significance of individual variables in a regression.
Consider once again the model for Big Andy

sales; = B1 + Paprice + Bzadvert + Byadvert® + e (6.3)

and suppose we want to test whether price affects sales. Using the omit command produces the
F-test

1 ols sales const price advert sq_advert
2 omit price

The output window is shown in Figure 6.7. The F(1, 71) statistic is equal to 53.3549 and has a
p-value that is much smaller than 0.05; the coefficient is significant at the 5% level. Notice also that
in the unrestricted model (Model 6 in the output) that the usual t-ratio is -7.304, also significant
at 5%. The t-ratio has a t7; distribution if the coefficient is zero. Squaring (—7.304)? = 53.3549,
suggesting that there is a relationship between these two statistics. In fact, t2 is equivalent to
F(1,n). This hold for any degrees of freedom parameter, n.
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6.2.2 Optimal Level of Advertising

The optimal level of advertising is that amount where the last dollar spent on advertising results
in only 1 dollar of additional sales (we are assuming here that the marginal cost of producing and

selling another burger is zero!). Find the level of level of advertising, advert,, that solves:

OFE[sales|

Oadvert P + 2Bsadver $

(6.4)

Plugging in the least squares estimates from the model and solving for advert, can be done in gretl.

A little algebra yields
$1 — B3
284

advert, =

The script in gretl to compute this follows.

open "@gretldir\data\poe\andy.gdt"

square advert

ols sales const price advert sq_advert

scalar Ao =(1-$coeff(advert))/(2x$coeff (sq_advert))

which generates the result:

7 scalar Ao =(1-$coeff (advert))/(2*«$coeff (sq_advert))
Generated scalar Ao (ID 7) = 2.01434

This implies that the optimal level of advertising is estimated to be approximately $2014.

To test the hypothesis that $1900 is optimal (remember, advert is measured in $1000)

Hy: fB3+2819=1
H: B3+ 28419 # 1

you can use a t-test or an F-test. Following the regression, use

restrict
b[3] + 3.8*b[4]=1
end restrict

(6.5)

Remember that b[3] refers to the coefficient of the third variable in the regression (A) and b[4]
to the fourth. The output from the script is shown in Figure 6.9. The F-statistic is =0.936 and

has a p-value of 0.33. We cannot reject the hypothesis that $1900 is optimal at the 5% level.
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H gretl: script output =NASN X
BE&BEAR T o XR

Restriction: -
bladvert] + 3.8%blsg_advert] = 1

Test statistic:@, T71) = 0.936195, with p-value = 0.336549

Restricted estimates:

coefficient std. error t-ratio p-value
const 110.35%9 6.76380 16.32 6.84e-028 #=**
price -7.60310 1.04478 =-T7.277 3.40e-010 *#**
advert 11.5308 3.54728 3.363 0.0012 kil
=sg_advert -2.87652 0.933496 -3.081 0.0029 R

Standard error of the regression = 4,64322

Figure 6.9: Testing whether $1900 in advertising is optimal using the restrict statement.

A one-tailed test would be a better option in this case. Andy decides he wants to test whether
the optimal amount is greater than $1900.

Hp:p3+3.83,<1
Hy:pB3+3884>1

A one-sided alternative has to be tested using a t-ratio rather than the F-test. The script below
computes such a test statistic much in the same way that we did in chapter 5.

# One-sided t-test

ols sales const price advert sq_advert --vcv

scalar r = $coeff(advert)+3.8*$coeff (sq_advert)-1

scalar v = $vcv[3,3]1+((3.8)"2)*x$vcv[4,4]+2%(3.8)*$vcv[3,4]
scalar t = r/sqrt(v)

pvalue t $df t

G s W N =

Notice that in line 3 we had to compute the variance of a linear combination of parameters. This
was easily done in the script. The results are:

t(71): area to the right of 0.967572 = 0.168271
(two-tailed value = 0.336543; complement = 0.663457)

The t-ratio is .9676 and the area to the right is 0.168. Once again, this is larger than 5% and the
hypothesis cannot be rejected at that level.

Finally, Big Andy makes another conjecture about sales. He is planning to charge $6 and use
$1900 in advertising and expects sales to be $80,000. Combined with the optimality of $1900 in
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advertising leads to the following joint test:

Hy 85 +3.88s=1and B + 682 + 1.985 + 1.928, = 80
H1 : not H()

The model is estimated and the hypotheses tested:

ols sales const price advert sq_advert

restrict

b[1]1+6%b[2]+1.9%b[3]+3.61*b[4]=80

1
2
3 b[3]+3.8*b[4]=1
4
5

end restrict

The result is shown in Figure 6.10 below. Andy is disappointed with this outcome.

w

-
“ gretl: linear restrictions =HACN X

HEODAaDX

Restriction set
1: bladvert] + 3.8%b[sg_advert] =1
2: blconst] + &*b[price] + 1.%*b[advert] + 3.61*b[sg_advert] = 80

Test statistic: Gi}, T1) = 5.74123, with p-value = Q.OG&BS&&E:)

Restricted estimates:

coefficient std. error t-ratio p-value
const 96.9038 5.88695 17.0 3.76e-027 *#=*
price -6.19415 1.01082 -6.128 4.,11e-08 | wx*
advert 20.3274 2.58394 T.867 2.50e-011 **=*
=gq_advert -5.08617 0.679384 -7.480 1.33e-010 #*#*=%

Standard error of the regression = 4,93778

-

P

The null

Figure 6.10: Andy muses about whether $1900 in advertising is optimal and whether this will
generate $80000 in sales given price is $6. It is not supported by the data.

hypothesis is rejected since the p-value associated with the test is 0.0049 < .05. Sorry Andy!

6.3 Nonsample Information

In this section we’ll estimate a beer demand model. The data are in beer.gdt and are in level
form. The model to be estimated is

In(q) = B1 + B2 In(pd) + B3 In(pl) + B4ln(pr) + B51n(i) + e

(6.6)

The first thing to do is to convert each of the variables into natural logs. Gretl has a built in
function for this that is very slick. From the main window, highlight the variables you want to
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transform with the cursor. Then go to Add>Logs of selected variables from the pull-down
menu as shown in Figure 6.11. This can also be done is a script or from the console using the

File Tools Data View
beer.gdt
ID# 4 Variable name 4 Dy

const

Add ) Sample  Variable Model Help
Logs of selected variables__)

Squares of selected variables

Lags of selected variables
First differences of selected variables

Log differences of selected variables

W ra = s

Seasonal differences of selected variables

Index variable

4
5

Time trend

Randnm wariahle...
Highlight the desired variables
using the mouse.

Figure 6.11: Use the pull-down menu to add the natural logs of each variable

command logs q pb pl pr i. The natural log of each of the variables is obtained and the result
stored in a new variable with the prefix 1_ (“el” underscore). An even easier way to add the logs
is to highlight the variables and right-click the mouse. A pop-up menu appears and the Add logs
option is available.

auto-generated constant

income (%)
litres of beer consumed
Peizeof basr (U

Display values

4= W kg = un el

Descriptive statistics rvices (an index)

Correlation matrix
XY scatterplot

highlight ;
variables, then Copy to clipboard
I"ight_cli,ck Edit values

Delete

SN—»

Add logs

A no money illusion restriction can be parameterized in this model as 83 + 83 + B4 + 85 = 0. This
is easily estimated within gretl using the restrict dialog or a script as shown below.

1 open "@gretldir\data\poe\beer.gdt"
logs q pb pl pr i
ols 1_q const 1_pb 1_pl 1 _pr 1_i --quiet
restrict
b2+b3+b4+b5=0
end restrict

s W N
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Restriction:
b[1l_pb]l + b[1l_pl] + b[1l_pr] + b[1_i] =0

Test statistic: F(1, 25) = 2.49693, with p-value = 0.126639
Restricted estimates:

Restricted estimates:

coefficient std. error t-ratio p-value

const -4.79780 3.71390 -1.292 0.2078
1_pb -1.29939 0.165738 -7.840 2.58e-08 *x*x
1_pl 0.186816 0.284383 0.6569  0.5170
1_pr 0.166742 0.0770752 2.163 0.0399 *%
1.1 0.945829 0.427047 2.215 0.0357  *xx

Standard error of the regression = 0.0616756

Figure 6.12: gretl output for the beer demand

The syntax for the restrictions is new. Instead of using b[2]+b[3]+b[4]+b[5]=0, a simpler form
is used. This is undocumented in the gretl version I am using (1.9.5cvs) and I am uncertain of
whether this will continue to work. It does for now and I've shown it here. Apparently gretl is
able to correctly parse the variable number from the variable name without relying on the brackets.
The output from the gretl script output window appears in Figure 6.12.

6.4 Model Specification

There are several issues of model specification explored here. First, it is possible to omit relevant
independent variables from your model. A relevant independent variable is one that affects the
mean of the dependent variable. When you omit a relevant variable that happens to be correlated
with any of the other included regressors, least squares suffers from omitted variable bias.

The other possibility is to include irrelevant variables in the model. In this case, you include
extra regressors that either don’t affect y or, if they do, they are not correlated with any of the
other regressors. Including irrelevant variables in the model makes least squares less precise than
it otherwise would be—this increases standard errors, reduces the power of your hypothesis tests,
and increases the size of your confidence intervals.

The example used in the text uses the dataset edu_inc.gdt. The first regression
famine = B1 + Bahe + Pzwe + B4kl6 + Bsxi5 + Bexic + €; (6.7)

where faminc is family income, he is husband’s years of schooling, we is woman’s years of schooling,
and kl6 are the number of children in the household under age 6. Several variations of this model are
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estimated. The first includes only he, another only he and we, and one includes the two irrelevant
variables, x5 and xg. The gretl script to estimate these models and test the implied hypothesis
restrictions follows. If you type this in yourself, omit the line numbers.

list all_x = const he we kl6 xtra_xb xtra_x6
ols faminc all_x

modeltab add

omit xtra_x5 xtra_x6

modeltab add

omit k16

modeltab add

omit we

modeltab add

modeltab show

© 00 N O o ks W N

=
o

The models can be estimated and saved as icons (File>Save to session as icon) within gretl.
Once they’ve all been estimated and saved as icons, open a session window (Figure 1.12) and
drag each model onto the model table icon. Click on the model table icon to reveal the output
shown in Figure 6.13.

In the above script, we have used the modeltab function after each estimated model to add it
to the model table. The final line tells gretl to display (show) the resulting model table.

One word of caution is in order about the given script and its interpretation. The omit statement
tests the implied restriction (the coefficient on the omitted variable is zero) versus the estimated
model that immediately precedes it. Thus, when we test that the coefficient on k16 is zero in
line 6, the alternative model is the restricted model from line 4, which already excludes xtra x5,
and xtra x6. Thus, only one restriction is being tested. If your intention is to test all of the
restrictions (omit xtra x5, xtra x6 and k16) versus the the completely unrestricted model in line
2 that includes all of the variables, you’ll need to modify your code. I'll leave this an an exercise.

6.5 Model Selection: Introduction to gretl Functions

Choosing an appropriate model is part art and part science. Omitting relevant variables that are
correlated with regressors causes least squares to be biased and inconsistent. Including irrelevant
variables reduces the precision of least squares. So, from a purely technical point, it is important
to estimate a model that has all of the necessary relevant variables and none that are irrelevant.
It is also important to use a suitable functional form. There is no set of mechanical rules that one
can follow to ensure that the model is correctly specified, but there are a few things you can do to
increase your chances of having a suitable model to use for decision-making.

Here are a few rules of thumb:
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p
H gretl: model table =NASN X
S B G ™=K
OLS5S estimates
Dependent wvariable: faminc
1) (2} (3) (4) (3} (6}
const -5248 -5534 -7559 -7755 -5534 2.619e404%*
(-0.4662) (-0.4928 (-0.8752) (-0.6947) (-0.4928) (3.068)
he 3553%% 3l3a=* 3340%% 32lz=# 313z2=% 5155%%
(2.825) (3.300) (2.672) (4.031) (3.300) (7.830)
we Sea6%* 4523%% 5869%% 4TTTR* 4523%%
(2.468) (4.241) (2.576) (4.502) (4.241)
xtra x5 603.7 gBE.8
(0.2673) (0.3964)
xtra x6 -1101 -10&87
(-0.5509) (-0.5385)
kle -1.420e404%* -1,431e+04%%*
(-2.815) (-2.860)
n 428 428 428 428 428 428
Rdj. R#**2 0.1544 0.1574 0.1681 0.1714 0.1574 0.1237
1nL -514& -514& -5142 -5142 —-5146 —-5155
t-statistics in parentheses
* indicates significance at the 10 percent level
*#*% indicates significance at the 5 percent level

Figure 6.13: Save each model as an icon. Open the session window and drag each model to the
model table icon. Click on the model table icon to reveal this output.

1. Use whatever economic theory you have to select a functional form. For instance, if you
are estimating a short-run production function then economic theory suggests that marginal
returns to factors of production diminish. That means you should choose a functional form
that permits this (e.g., log-log).

2. If the estimated coefficients have the wrong signs or unreasonable magnitudes, then you
probably want to reevaluate either the functional form or whether relevant variables are
omitted.

3. You can perform joint hypothesis tests to detect the inclusion of irrelevant sets of variables.
Testing is not fool-proof since there is always positive probability that type 1 or type 2 error
is being committed.

4. You can use model selection rules to find sets of regressors that are ‘optimal’ in terms of an
estimated bias/precision trade-off.

5. Use a RESET test to detect possible misspecification of functional form.

In this section, I will give you some gretl commands to help with the last two: model selection
and RESET.
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In this section we consider three model selection rules: R?, AIC, and SC. I'm not necessarily
recommending that these be used, since there are plenty of statistical problems caused by using
the sample to both specify, estimate, and then test hypotheses in a model, but sometimes you have
little other choice. Lag selection discussed later in this book is a reasonable application for these.

6.5.1 Adjusted R?

The adjusted R? was introduced in chapter 5. The usual R? is ‘adjusted’ to impose a small
penalty when a variable is added to the model. Adding a variable with any correlation to y always
reduces SSE and increases the size of the usual R?. With the adjusted version, the improvement
in fit may be outweighed by the penalty and it could become smaller as variables are added. The
formula is:

w2, SSE/(N — K)

RE=1= SST/(N —1) (68)

This sometimes referred to as “R-bar squared,” (i.e., R? ) although in gretl it is called “adjusted
R-squared.” The biggest drawback of using R? as a model selection rule is that the penalty it
imposes for adding regressors is too small on average. It tends to lead to models that contain
irrelevant variables. There are other model selection rules that impose larger penalties for adding
regressors and two of these are considered below.

6.5.2 Information Criteria

The two model selection rules considered here are the Akaike Information Criterion (AIC) and
the Schwarz Criterion (SC'). The SC is sometimes called the Bayesian Information Criterion (BIC).
Both are computed by default in gretl and included in the standard regression output. The values
that gretl reports are based on maximizing a log-likelihood function (normal errors). There are
other variants of these that have been suggested for use in linear regression and these are presented
in the equations below:

AIC =In(SSE/N) + 2K /N (6.9)
BIC = SC = In(SSE/N) + K In(N)/N (6.10)

The rule is, compute AIC or SC for each model under consideration and choose the model that
minimizes the desired criterion. The models should be evaluated using the same number of obser-
vations, i.e., for the same value of N. You can convert the ones gretl reports to the ones in (6.9)
using a simple transformation; add (1 + In(27)) and then multiply everything by N. Since sample
size should be held constant when using model selection rules, you can see that the two different
computations will lead to exactly the same model choice.

Since the functions have to be evaluated for each model estimated, it is worth writing a function

in gretl that can be reused. The use of functions to perform repetitive computations makes
programs shorter and reduced errors (unless your function is wrong, in which case every computation
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is incorrect!) In the next section, I will introduce you to gretl functions and offer one that will
compute the three model selection rules discussed above.

6.5.3 A gretl Function to Produce Model Selection Rules

Gretl offers a mechanism for defining functions, which may be called via the command line,
in the context of a script, or (if packaged appropriately via the programs graphical interface. The
syntax for defining a function looks like this:

function return-type function-name (parameters)
function body
end function

The opening line of a function definition contains these elements, in strict order:

1. The keyword function.

2. return-type, which states the type of value returned by the function, if any. This must be
one of void (if the function does not return anything), scalar, series, matrix, list or string.

3. function-name, the unique identifier for the function. Names must start with a letter. They
have a maximum length of 31 characters; if you type a longer name it will be truncated.
Function names cannot contain spaces. You will get an error if you try to define a function
having the same name as an existing gretl command. Also, be careful not to give any of your
variables (scalars, matrices, etc.) the same name as one of your functions.

4. The functionss parameters, in the form of a comma-separated list enclosed in parentheses.
This may be run into the function name, or separated by white space as shown.

The model selection function is designed to do two things. First, we want it to print values of
the model selection rules for B2, AIC' and SC. While we are at it we should also print how many
regressors the model has (and their names) and the sample size. The second thing we want is to be
able to send the computed statistics to a matrix. This will allow us to collect results from several
candidates into a single table.

The basic structure of the model selection function is

function matrix modelsel (series y, list xvars)
[some computations]
[print results]
[return results]

end function
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As required, it starts with the keyword function. The next word, matrix, tells the function that a
matrix will be returned as output. The next word is modelsel, which is the name that we are giving
to our function. The modelsel function has two arguments that will be used as inputs. The first is
a data series that we will refer to inside the body of the function as y. The second is a 1ist that
will be referred to as xvars. The inputs are separated by a comma and there are spaces between
the list of inputs. Essentially what we are going to do is feed the function a dependent variable
and a list of the independent variables as inputs. Inside the function a regression is estimated,
the criteria are computed based on it, the statistics are printed to the screen, and collected into
a matrix that will be returned. The resulting matrix is then available for further manipulation
outside of the function.

1 function matrix modelsel (series y, list xvars)
2 ols y xvars --quiet
3 scalar sse = $ess
4 scalar N = $nobs
scalar K = nelem(xvars)

6 scalar aic = 1n(sse/N)+2*K/N

7 scalar bic = 1n(sse/N)+K*N/N

8 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)

9 matrix A = { K, N, aic, bic, rbar2 }

10 printf "\nRegressors: %s\n",varname(xvars)

11 printf "K = %d, N = %d, AIC = %.4f, SC = %.4f, and\
12 Adjusted R2 = %.4f\n", K, N, aic, bic, rbar2

13 return A

14 end function

In line 2 the function inputs y and the list xvars are used to estimate a linear model by least
squares. The --quiet option is used to suppress the least squares output. In lines 3-5 the sum
of squared errors, SSFE, the number of observations, NV, and the number of regressors, K, are put
into scalars. In lines 6-8 the three criteria are computed. Line 9 puts various scalars into a matrix
called A. Lines 10 and 11 sends the names of the regressors to the screen. Line 11 sends formatted
output to the screen. Line 12 sends the matrix A as a return from the function. The last line closes
the function.?

At this point, the function can be highlighted and run.
To use the function create a 1list that will include the desired independent variables (called x

in this case). Then to use the function you will create a matrix called a that will include the output
from modelsel.

1 list x = const he we xtra_x5 xtra_x6
2 matrix a = modelsel(faminc,x)

2To get the gretl value of AIC: scalar aic_g = (1+1n(2+pi)+aic)*N
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The output is:

Regressors: const,he,we,kl6,xtra_x5,xtra_x6
K =6, N =428, AIC = 21.2191, SC = 27.1911, and Adjusted R2 = 0.1681

You can see that each of the regressor names is printed out on the first line of output. This is
followed by the values of K, N, AIC, SC, and R?.

To put the function to use, consider the following script where we create four sets of variables
and use the model selection rules to pick the desired model.

list x1 = const he

list x2 = const he we

list x3 = const he we k16

list x4 = const he we xtra_xb xtra_x6
matrix a = modelsel(faminc,x1)
matrix b = modelsel(faminc,x2)
matrix ¢ = modelsel (faminc,x3)
matrix d = modelsel(faminc,x4)
matrix MS = alblcld
colnames(MS,"K N AIC SC Adj_R2" )
printf "%10.5g",MS

function modelsel clear

© 0w N9 s W N

= e
(SIS

In this example the model selection rules will be computed for four different models. Lines 1-4
construct the variable list for each of these. The next four lines run the model selection function
for each set of variables. Each set of results is saved in a separate matrix (a, b, ¢, d). The
colnames function is used to give each column of the matrix a meaningful name. Then, the printf
statement prints the matrix. The last line removes the modelsel function from memory. This is
not strictly necessary. If you make changes to your function, just recompile it. The biggest problem
with function proliferation is that you may inadvertently try to give a variable the same name as
one of your functions that is already in memory. If that occurs, clear the function or rename the
variable.

The first part of the output prints the results from the individual calls to modelsel.

Regressors: const,he

K =2, N =428, AIC = 21.2618, SC = 21.2807, and Adjusted R2 = 0.1237
Regressors: const,he,we

K =3, N =428, AIC = 21.2250, SC = 21.2534, and Adjusted R2 = 0.1574
Regressors: const,he,we,kl6

K =4, N =428, AIC = 21.2106, SC = 21.2485, and Adjusted R2 = 0.1714

129



Regressors: const,he,we,xtra_x5,xtra_x6
K =5, N =428, AIC = 21.2331, SC = 21.2805, and Adjusted R2 = 0.1544

The last part prints the matrix MS.

N AIC SC Adj_R2
428 21.262 21.281 0.12375
428 21.225 21.253 0.15735
428 21.211 21.248 0.17135
428 21.233 21.281 0.15443

o WX

In this example all three criteria select the same model: K = 4 and the regressors are const, he,
we, k16. This model minimized AIC and SC and maximizes the adjusted R2.

Later in the book, this model selection function will be refined to make it more general.

6.5.4 RESET

The RESET test is used to assess the adequacy of your functional form. The null hypothesis is
that your functional form is adequate. The alternative is that it is not. The test involves running
a couple of regressions and computing an F-statistic.

Consider the model
Yi = 1+ Baziz + B3wiz + € (6.11)

and the hypothesis

Hy:  Ely|zio, xi3) = b1+ Pawiz + B3z
Hy not Hy

Rejection of Hy implies that the functional form is not supported by the data. To test this, first
estimate (6.11) using least squares and save the predicted values, g;. Then square and cube g and
add them back to the model as shown below:

yi = B1+ Powio + Baziz + M7 + e
yi = B1+ Powio + Baziz + 107 + 20 + e

The null hypotheses to test (against alternative, ‘not Hy’) are:

Estimate the auxiliary models using least squares and test the significance of the parameters of §?
and/or §°. This is accomplished through the following script. Note, the reset command issued

130



after the first regression computes the test associated with Hy : v = 9 = 0. It is included here so
that you can compare the ‘canned’ result with the one you compute using the two step procedure
suggested above. The two results should match.

1 ols faminc x3 --quiet
2 reset --quiet
3 reset --quiet --squares-only

The results of the RESET for the family income equation is

RESET test for specification (squares and cubes)
Test statistic: F = 3.122581,
with p-value P(F(2,422) > 3.12258) = 0.0451

RESET test for specification (squares only)
Test statistic: F = 5.690471,
with p-value = P(F(1,423) > 5.69047) = 0.0175

The adequacy of the functional form is rejected at the 5% level for both tests. It’s back to the
drawing board!

6.6 Cars Example

The data set cars.gdt is included in package of datasets that are distributed with this manual.
In most cases it is a good idea to print summary statistics of any new dataset that you work
with. This serves several purposes. First, if there is some problem with the dataset, the summary
statistics may give you some indication. Is the sample size as expected? Are the means, minimums
and maximums reasonable? If not, you’ll need to do some investigative work. The other reason is
important as well. By looking at the summary statistics you’ll gain an idea of how the variables
have been scaled. This is vitally important when it comes to making economic sense out of the
results. Do the magnitudes of the coefficients make sense? It also puts you on the lookout for
discrete variables, which also require some care in interpreting.

The summary command is used to get summary statistics. These include mean, minimum,
maximum, standard deviation, the coefficient of variation, skewness and excess kurtosis. The corr
command computes the simple correlations among your variables. These can be helpful in gaining
an initial understanding of whether variables are highly collinear or not. Other measures are more
useful, but it never hurts to look at the correlations. Either of these commands can be used with
a variable list afterwards to limit the list of variables summarized of correlated.

Consider the cars example from POFE4. The script is
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open "c:\Program Files\gretl\data\poe\cars.gdt"
summary

corr

ols mpg const cyl eng wgt

vif

G W N =

The summary statistics appear below:

Summary Statistics, using the observations 1-392

Variable Mean Median Minimum Maximum
mpg 23.4459 22.7500 9.00000 46.6000
cyl 5.47194 4.00000 3.00000 8.00000
eng 194.412 151.000 68.0000 455.000
wgt 2977.58 2803.50 1613.00 5140.00
Variable Std. Dev. C.V. Skewness Ex. kurtosis
mpg 7.80501 0.332894 0.455341 —0.524703
cyl 1.70578 0.311733 0.506163 —1.39570
eng 104.644 0.538259 0.698981 —0.783692
wgt 849.403 0.285266 0.517595 —0.814241

and the correlation matrix

Correlation coefficients, using the observations 1-392
5% critical value (two-tailed) = 0.0991 for n = 392

mpg cyl eng wgt
1.0000 —-0.7776 —0.8051 —0.8322 mpg
1.0000 0.9508 0.8975 cyl
1.0000 0.9330 eng
1.0000 wgt

The variables are quite highly correlated in the sample. For instance the correlation between weight
and engine displacement is 0.933. Cars with big engines are heavy. What a surprise!

The regression results are:

OLS, using observations 1-392
Dependent variable: mpg
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Coefficient Std. Error t-ratio  p-value

const  44.3710 1.48069 29.9665 0.0000
cyl —0.267797 0.413067 —0.6483 0.5172
eng —0.0126740  0.00825007  —1.5362 0.1253
wgt —0.00570788 0.000713919 —7.9951 0.0000

Mean dependent var 23.44592 S.D. dependent var  7.805007

Sum squared resid 7162.549 S.E. of regression 4.296531
R? 0.699293 Adjusted R? 0.696967
F(3,388) 300.7635 P-value(F') 7.6e-101
Log-likelihood —1125.674 Akaike criterion 2259.349
Schwarz criterion 2275.234 Hannan—Quinn 2265.644

The test of the individual significance of cyl and eng can be read from the table of regression
results. Neither are significant at the 5% level. The joint test of their significance is performed
using the omit statement. The F-statistic is 4.298 and has a p-value of 0.0142. The null hypothesis
is rejected in favor of their joint significance.

The new statement that requires explanation is vif. vif stands for variance inflation factor
and it is used as a collinearity diagnostic by many programs, including gretl. The vif is closely
related to the statistic suggested by Hill et al. (2011) who suggest using the R? from auxiliary
regressions to determine the extent to which each explanatory variable can be explained as linear
functions of the others. They suggest regressing x; on all of the other independent variables and
comparing the RJQ- from this auxiliary regression to 10. If the RJZ exceeds 10, then there is evidence
of a collinearity problem.

The wvif; actually reports the same information, but in a less straightforward way. The wvif
associated with the j* regressor is computed

. 1
J

which is, as you can see, simply a function of the RJQ» from the j** regressor. Notice that when
R]z > .80, the vif; > 10. Thus, the rule of thumb for the two rules is actually the same. A wvif;
greater than 10 is equivalent to an R? greater than .8 from the auxiliary regression.

The output from gretl is shown below:

Variance Inflation Factors

Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem

cyl 10.516
eng 15.786
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wgt  7.789

VIF(j) = 1/(1 - R(j)"2), where R(j) is the multiple correlation coefficient
between variable j and the other independent variables

Properties of matrix X’X:

1-norm = 4.0249836e+009
Determinant = 6.6348526e+018
Reciprocal condition number = 1.7766482e-009

Once again, the gretl output is very informative. It gives you the threshold for high collinearity
(vif;) > 10) and the relationship between vif; and RJQ-. Clearly, these data are highly collinear. Two
variance inflation factors above the threshold and the one associated with wgt is fairly large as well.

The variance inflation factors can be produced from the dialogs as well. Estimate your model

then, in the model window, select Tests>Collinearity and the results will appear in gretl’s
output.

6.7 Script

set echo off

# f-test

open "@gretldir\data\poe\andy.gdt"
square advert

ols sales const price advert sq_advert
scalar sseu = $ess

scalar unrest_df = $df

ols sales const price

scalar sser = $ess

scalar Fstat=((sser-sseu)/2)/(sseu/(unrest_df))
pvalue F 2 unrest_df Fstat

© 0 N9 3 s W N
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12

13 # f-test using omit

14 ols sales const price advert sq_advert
15 omit advert sq_advert

16

17 # f-test using restrict

18 o0ls sales const price advert sq_advert
19 restrict

20 b[3]=0

21 b[4]=0

22 end restrict

23

24 # overall £

25 open "Ogretldir\data\poe\andy.gdt"

134



square advert
ols sales const price advert sq_advert
restrict

b[2]
b[3]
b[4]

0
0
0

end restrict

ols sales const price advert sq_advert
scalar sseu = $ess

scalar unrest_df = $df

ols sales const

sser = $ess

scalar rest_df = $df

scalar

scalar

J

= rest_df - unrest_df

scalar Fstat=((sser-sseu)/J)/(sseu/(unrest_df))

pvalue

F

# t-test
ols sales const price advert sq_advert
omit price

J unrest_df Fstat

# optimal advertising

open "@gretldir\data\poe\andy.gdt"

square advert

ols sales const price advert sq_advert

scalar Ao =(1-$coeff(advert))/(2x$coeff (sq_advert))
# test of optimal advertising

restrict
b[3]+3.8xb[4]=1
end restrict

open "@gretldir\data\poe\andy.gdt"

square advert

ols sales const price advert sq_advert

scalar Ao =(1-$coeff(advert))/(2x$coeff (sq_advert))

# One-sided t-test
ols sales const price advert sq_advert --vcv
scalar r = $coeff(advert)+3.8*$coeff (sq_advert)-1

scalar
scalar
pvalue

v
t
t

$vev[3,3]1+((3.8)"2)x$vcv[4,4]+2%(3.8) *$vcv[3,4]
r/sqrt(v)
$daf ¢

# joint test

ols sales const price advert sq_advert

restrict
b[3]+3.8%b[4]=1
b[1]+6%b[2]+1.9%b[3]+3.61%b[4]=80

end restrict
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78 # restricted estimation

79 open "@gretldir\data\poe\beer.gdt"

g0 logs q pb pl pr i

g1 ols 1_q const 1_pb 1_pl 1_pr 1_i --quiet

82 restrict

83 b2+b3+b4+b5=0

84 end restrict

85 restrict

86 b[2]+b[3]+b[4]+b[5]=0

87 end restrict

88

8o # model specification -- relevant and irrelevant vars
90 open "@gretldir\data\poe\edu_inc.gdt"

91 ols faminc const he we

92 omit we

93

94 COrTr

95

96 list all_x = const he we k16 xtra_xb xtra_x6
97 ols faminc all_x

98

99 # reset test

100 ols faminc const he we k16

101 reset --quiet --squares-only

102 reset --quiet

103

104 # model selection rules and a function

105 function matrix modelsel (series y, list xvars)

106 ols y xvars --quiet

107 scalar sse = $ess

108 scalar N = $nobs

109 scalar K = nelem(xvars)

110 scalar aic = 1ln(sse/N)+2*K/N

111 scalar bic = 1n(sse/N)+K*x1n(N)/N

112 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)

113 matrix A = { K, N, aic, bic, rbar2}

114 printf "\nRegressors: %s\n",varname(xvars)

115 printf "K = %d, N = %d, AIC = %.4f, SC = %.4f, and\

116 Adjusted R2 = J.4f\n", K, N, aic, bic, rbar2
117 return A

118 end function

119

120 list x1 = const he

121 list x2 = const he we

122 list x3 = const he we k16

123 list x4 = const he we xtra_xb xtra_x6
modelsel (faminc,x1)

125 matrix b = modelsel(faminc,x2)

126 matrix c¢ = modelsel(faminc,x3)

127 matrix d = modelsel(faminc,x4)

124 matrix a

136



128

1290 matrix MS = alblcld

130 colnames(MS,"K N AIC SC Adj_R2" )
131 printf "%10.5g",MS

132 function modelsel clear
133

134 ols faminc all_x

135 modeltab add

136 omit xtra_xb xtra_x6
137 modeltab add

138 omit k16

139 modeltab add

140 omit we

141 modeltab add

142 modeltab show

143

144

145 ols faminc x3 --quiet
146 reset

147

148 # collinearity

149 open "@gretldir\data\poe\cars.gdt"
150 summary

151 COrTr

153 ols mpg const cyl

154 ols mpg const cyl eng wgt ——quiet
155 omit cyl

156 ols mpg const cyl eng wgt —-—quiet
157 omit eng

158 ols mpg const cyl eng wgt --quiet
159 omit eng cyl

161 # Auxiliary regressions for collinearity

162 # Check: r2 >.8 means severe collinearity

163 ols cyl const eng wgt

162 scalar rl = $rsq

165 0ls eng const wgt cyl

166 scalar r2 = $rsq

167 ols wgt const eng cyl

168 scalar r3 = $rsq

169 printf "R-squares for the auxillary regresions\nDependent Variable:\

170 \n cylinders %3.3g\n engine displacement %3.3g\n weight %3.3g\n", rl, r2, r3

172 ols mpg const cyl eng wgt
173 vif
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Chapter

Using Indicator Variables

In this chapter we will explore the use of indicator variables in regression analysis. The discussion
will include how to create them, estimate models using them, and how to interpret results that
include them in the model. Several applications will be discussed as well. These include using them
to create interactions, regional indicators, and to perform Chow tests of regression equivalence
across different categories. Finally, their use in linear probability estimation is discussed and their
use in evaluating treatment effects and the differences-in-difference estimators that are used in their
estimation.

7.1 Indicator Variables

Indicator variables allow us to construct models in which some or all of the parameters of a
model can change for subsets of the sample. As discussed in chapter 2, an indicator variable
basically indicates whether a certain condition is met. If it does the variable is equal to 1 and if
not, it is 0. They are often referred to as dummy variables, and gretl uses this term in a utility
that is used to create indicator variables.

The example used in this section is again based on the utown.gdt real estate data. First we will
open the dataset and examine the data.

1 open "Ogretldir\data\poe\utown.gdt"

2 smpl 1 8

3 print price sqft age utown pool fplace --byobs
4 smpl full

5 summary
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The sample is limited to the first 8 observations in line 2. The two numbers that follow the smpl
command indicate where the subsample begins and where it ends. Logical statements can be used
as well to restrict the sample. Examples of this will be given later. In the current case, eight
observations are enough to see that price and sqft are continuous, that age is discrete, and that
utown, pool, and fplace are likely to be indicator variables. The print statement is used with
the —-byobs option so that the listed variables are printed in columns.

p

248

W ~NO O WN -

205.
185.

154.
221.
199.
272.
250.

rice

452
328
.422
690
801
119
134
631

sqft

23.46
20.03
27.77
20.17
26.45
21.56
29.91
27.98

age
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=
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el
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e

fplace

O O OO OO OO
O O O O O O O o
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The sample is restored to completeness, and the summary statistics are printed. These give an
idea of the range and variability of price, sqft and age. The means tell us about the proportions
of homes that are near the University and that have pools or fireplaces.

Summary Statistics, using the observations 1-1000

Variable

price
sqft
age
utown
pool
fplace

Variable

price
sqft
age
utown
pool
fplace

Mean

247.656
25.2097
9.39200
0.519000
0.204000
0.518000

Std. Dev.

42.1927
2.91848
9.42673
0.499889
0.403171
0.499926

Median

245.833
25.3600
6.00000
1.00000
0.000000
1.00000

C.V.

0.170368
0.115768
1.00370
0.963177
1.97633
0.965108

Minimum Maximum
134.316 345.197
20.0300 30.0000

0.000000 60.0000

0.000000 1.00000
0.000000 1.00000
0.000000 1.00000

Skewness Ex. kurtosis

0.0905617 —0.667432
—0.0928347 —1.18500

1.64752 3.01458
—0.0760549  —1.99422
1.46910 0.158242

—0.0720467 —1.99481

You can see that half of the houses in the sample are near the University (519/1000). It is also
pretty clear that prices are measured in units of $1000 and square feet in units of 100. The oldest
house is 60 years old and there are some new ones in the sample (age=0). Minimums and maximums
of 0 and 1, respectively usually mean that you have indicator variables. This confirms what we
concluded by looking at the first few observations in the sample.
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7.1.1 Creating indicator variables

It is easy to create indicator variables in gretl . Suppose that we want to create a dummy
variable to indicate that a house is large. Large in this case means one that is larger than 2500
square feet.

1 series 1ld = (sqft>25)
2 discrete 1d
3 print 1d sqft --byobs

The first line generates a variable called 1d that takes the value 1 if the condition in parentheses
is satisfied. It will be zero otherwise. The next line declares the variable to be discrete. Often this
is unnecessary. “Gretl uses a simple heuristic to judge whether a given variable should be treated
as discrete, but you also have the option of explicitly marking a variable as discrete, in which case
the heuristic check is bypassed.” (Cottrell and Lucchetti, 2011, p. 53) That is what we did here.
Also from the Gretl Users Guide:

To mark a variable as discrete you have two options.

1. From the graphical interface, select “Variable, Edit Attributes” from the menu. A
dialog box will appear and, if the variable seems suitable, you will see a tick box
labeled “Treat this variable as discrete”. This dialog box [see Figure 7.1 below]
can also be invoked via the context menu (right-click on a variable and choose Edit
attributes) or by pressing the F2 key.

2. From the command-line interface, via the discrete command. The command
takes one or more arguments, which can be either variables or list of variables.

So, the discrete declaration for 1d in line 2 is not strictly necessary. Printing the indicator and
square feet by observation reveals that the homes where sqft > 25 in fact are the same as those
where ld = 1.

1d sqft
1 0 23.46
2 0 20.03
3 1 27.77
4 0 20.17
5 1 26.45
6 0 21.56
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r“ gretl: variable attributes @ﬁ
MName: | Id ID number: |7 = & 4 &
Description: IE‘

(sqft=25)

Display name (shown in graphs):

ETreatthisvariable as discre@

(o )]

“ ’

Figure 7.1: From the main gretl window, F2 brings up the variable attributes dialog. From here
you can declare a variable to be discrete. The keyboard shortcut CRTL+-e also initiates this dialog.

7.1.2 Estimating a Regression

The regression is also based on the University town real estate data. The regression is:

price = 1 + d1utown + Pasqft + v(sqft X utown)
+B3age + dapool + dsfplace + e

The estimated model is

OLS, using observations 1-1000
Dependent variable: price

Coefficient  Std. Error  t-ratio  p-value

const 24.5000 6.19172 3.9569 0.0001

utown 27.4530 8.42258 3.2594  0.0012

sqft 7.61218  0.245176 31.0477 0.0000

sqft_utown 1.29940  0.332048 3.9133  0.0001

age —0.190086 0.0512046 —3.7123 0.0002

pool 4.37716  1.19669 3.6577 0.0003

fplace 1.64918  0.971957 1.6968 0.0901
Mean dependent var 247.6557 S.D. dependent var 42.19273
Sum squared resid 230184.4 S.E. of regression 15.22521
R? 0.870570 Adjusted R? 0.869788
F(6,993) 1113.183  P-value(F) 0.000000
Log-likelihood —4138.379 Akaike criterion 8290.758
Schwarz criterion 8325.112 Hannan—Quinn 8303.815
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The coefficient on the slope indicator variable sqft x utown is significantly different from zero at
the 5% level. This means that size of a home near the university has a different impact on average
home price. Based on the estimated model, the following conclusions are drawn:

e The location premium for lots near the university is $27,453

e The change in expected price per additional square foot is $89.12 near the university and

$76.12 elsewhere

e Homes depreciate $190.10/year

e A pool is worth $4,377.30

e A fireplace is worth $1649.20

The script that generates these is:

© 0w NN O s W N

= = e
N o= O

scalar premium = $coeff (utown)*1000

scalar sq_u = 10*($coeff(sqft)+$coeff (sqft_utown))
scalar sq_other = 10*$coeff (sqft)

scalar depr = 1000*$coeff (age)

scalar sp = 1000*$coeff (pool)

scalar firep = 1000x$coeff (fplace)

printf "\n University Premium = $%8.7g\n\

Marginal effect of sqft near University = $%7.6g\n\
Marginal effect of sqft elsewhere = $47.6g\n\
Depreciation Rate = $%7.2f\n\

Pool = $)7.2f\n\

Fireplace = $%7.2f\n",premium,sq_u,sq_other,depr,sp,firep

Notice that most of the coefficients was multiplied by 1000 since home prices are measured in
$1000 increments. Square feet are measured in increments of 100, therefore its marginal effect is
multiplied by 1000/100 = 10. It is very important to know the units in which the variables are
recorded. This is the only way you can make ecnomic sense from your results.

7.2

Applying Indicator Variables

In this section a number of examples will be given about estimation and interpretation of
regressions that include indicator variables.
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7.2.1 Interactions

Consider the simple wage equation

wage = (1 + Baeduc + 61 black + dofemale
+7(female x black) + e

where black and female are indicator variables. Taking the expected value of In(wage) reveals each
of the cases considered in the regression

B1 + Baeduc White, Males
£l | B1 + 01 + Baeduc Black, Males (7.1)
wage] = )
I B1 + 02 + Breduc White, Females

B1+ 61 + 02 + v + Boeduc  Black, Females

The reference group is the one where all indicator variables are zero, i.e., white males. The
parameter d; measures the effect of being black, relative to the reference group; d2 measures the
effect of being female relative to the reference group, and v measures the effect of being both black
and female.

The model is estimated using the cps4_small.gdt data which is from 2008. The results appear
below:

Model 3: OLS, using observations 1-1000
Dependent variable: wage

Coefficient Std. Error  t-ratio  p-value

const —5.28116  1.90047 —2.7789  0.0056
educ 2.07039  0.134878 15.3501  0.0000
black —4.16908  1.77471 —2.3492  0.0190
female  —4.78461  0.773414 —6.1863 0.0000
blk_fem 3.84429  2.32765 1.6516  0.0989

Mean dependent var 20.61566 S.D. dependent var 12.83472

Sum squared resid 130194.7 S.E. of regression 11.43892
R? 0.208858 Adjusted R? 0.205677
F(4,995) 65.66879 P-value(F') 2.53e-49
Log-likelihood —3853.454  Akaike criterion 7716.908
Schwarz criterion 7741.447 Hannan—Quinn 7726.234

Holding the years of schooling constant, black males earn $4.17/hour less than white males. For
the same schooling, white females earn $4.78 less, and black females earn $5.15 less. The coefficient
on the interaction term is not significant at the 5% level however.

A joint test of the hypothesis that d; = do = = 0 is performed via the script
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open "@gretldir\data\poe\cps4_small.gdt"
series blk_fem = black*female
ols wage const educ black female blk_fem
restrict

b[3]=0

b[4]1=0

b[5]1=0
end restrict

0o N O g A W N

and the result is

Restriction set
1: b[black] = 0
2: bl[female] = 0
3: blblk_fem] = 0

Test statistic: F(3, 995) = 14.2059, with p-value = 4.53097e-009

Restricted estimates:

coefficient std. error t-ratio p-value
const -6.71033 1.91416 -3.506 0.0005 *kok
educ 1.98029 0.136117 14.55 1.25e-043 *xx
black 0.000000 0.000000 NA NA
female 0.000000 0.000000 NA NA
blk_fem 0.000000 0.000000 NA NA

Standard error of the regression = 11.6638

The F-statistic is 14.21 and has a p-value less than 5%. The null hypothesis is rejected. At least
one of the coefficients is nonzero. The test could be done even more easily using the omit statement
after the regression since each of the coefficients in the linear restrictions is equal to zero.

7.2.2 Regional indicators

In this example a set of regional indicator variables is added to the model. There are four
mutually exclusive regions to consider. A reference group must be chosen, in this case for the
northeast. The model becomes:

wage = B + Boeduc + 81 south + domidwest + dswest + e
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where black and female are indicator variables. Taking the expected value of In(wage) reveals each
of the cases considered in the regression

Elwage] =

B1 + Baeduc Northeast
B1 + 01 + Poeduc  South
B1+ 02 + Boeduc  Midwest
B1 + 03 + Baeduc  West

Once again, the omitted case (Northeast) becomes the reference group.

(7.2)

The regional dummy variables are added to the wage model for black females and is estimated
by least squares. The regional indicator variables are tested jointly for significance using the omit

statement.

1 ols wage const educ black female blk_fem south midwest west

2 omit south midwest west

3 series sser = $ess

The results appear below:

Model 4: OLS, using observations 1-1000

const
educ
black
female

blk_fem

Mean dependent var
Sum squared resid

RQ
F(4,995)

Log-likelihood

Schwarz criterion

First, notice that the sum-of-squared errors has been saved for future use.

Dependent variable: wage

Coefficient  Std. Error  t-ratio  p-value
—5.28116  1.90047 —2.7789 0.0056
2.07039  0.134878 15.3501  0.0000
—4.16908  1.77471 —2.3492  0.0190
—4.78461  0.773414 —6.1863 0.0000
3.84429  2.32765 1.6516  0.0989
20.61566 S.D. dependent var 12.83472
130194.7 S.E. of regression 11.43892
0.208858 Adjusted R? 0.205677
65.66879  P-value(F) 2.53e-49
—3853.454  Akaike criterion 7716.908
7741.447 Hannan—Quinn 7726.234

The only regional

indicator that is individually significant at 5% is midwest. The joint test results are

Comparison of Model 3 and Model 4:
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Null hypothesis: the regression parameters are zero for the variables
south, midwest, west

Test statistic: F(3, 992) = 4.24557, with p-value = 0.00542762
0f the 3 model selection statistics, 1 has improved.

The test statistic has an F'(3, 992) distribution under the null and is equal to 4.25. The p-value is
less than 5% and we conclude that the indicators are jointly significant.

7.2.3 Testing Equivalence of Two Regions

The question arises, is the wage equation different for the south than for the rest of the country?
There are two ways to do this in gretl. One is very easy and the other not so easy, but makes for
a useful example of how to use loops to create interactions among variables.

A Chow test is used to test for structural breaks or changes in a regression. In other words,
one subsample has different intercept and slopes than another. It can be used to detect structural
breaks in time-series models or to determine whether, in our case, the south’s wages are determined
differently from those in the rest of the country. The easy method uses gretl’s built-in chow
command to test for a change in the regression. It must follow a regression and you must specify
the indicator variable that identifies the two subsets.

To illustrate its use, consider the basic wage model

wage = (1 + Baeduc + 61 black + dofemale
+7(black x female) + e

Now, if wages are determined differently in the south, then the slopes and intercept for southerners
will be different. The null hypothesis is that the coefficients of the two subsets are equal and the
alternative is that they are not. The gretl commands to perform the test are:

1 list x = const educ black female blk_fem
2 ols wage x
3 chow south --dummy

Since the regressors are going to be used again below, I put them into a 1ist to simplify things later.
Line 2 estimates the model using least squares. Line 3 contains the test command. It is initiated
by chow followed by the indicator variable that is used to define the subsets, in this case south.
The option is used to tell gretl that south is an indicator. When the —-dummy option is used, chow
tests the null hypothesis of structural homogeneity with respect to that dummy. Essentially, gretl
is creating interaction terms between the indicator and each of the regressors and adding them to
the model. We will replicate this below in a script.
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gretl: Chow test

===

500

south

) Observation at which to split the sample:

@ Name of dummy variable to use:

[=]

I Cancel

I

ok |

Figure 7.2: Click Tests>Chow test from a model window to reveal the dialog box for the Chow
test. Select an indicator variable or a break point for the sample.

The dialog box to perform the Chow test is found in the model window. After estimating the
regression via the GUI the model window appears. Click Tests>Chow test on its menu bar to
open the dialog box in Figure 7.2. The results from the test appear below.

Augmented regression for Chow test
OLS, using observations 1-1000

.0048
.89e-036
.0544
.33e-08
.1296
.3302
.2805
.6391
.6113
.5399

12.83472
11.45851
0.202955
2.00e-45
7725.292
7743.944

Dependent variable: wage
coefficient std. error t-ratio
const -6.60557 2.33663 -2.827 0
educ 2.17255 0.166464 13.05 4
black -5.08936 2.64306 -1.926 0
female -5.00508 0.899007 -5.567 3
blk_fem 5.30557 3.49727 1.517 0
south 3.94391 4.04845 0.9742 0
so_educ -0.308541 0.285734 -1.080 0
so_black 1.70440 3.63333 0.4691 O
so_female 0.901120 1.77266 0.5083 0
so_blk_fem -2.93583 4.78765 -0.6132 0
Mean dependent var 20.61566 S.D. dependent var
Sum squared resid 129984.4 S.E. of regression
R-squared 0.210135 Adjusted R-squared
F(9, 990) 29.26437  P-value(F)
Log-likelihood -3852.646  Akaike criterion
Schwarz criterion 7774.369 Hannan-Quinn

Chow test for structural difference with respect to south
F(5, 990) = 0.320278 with p-value 0.9009

* % %
* % %

k k%

Notice that the p-value associated with the test is 0.901, thus providing insufficient evidence to

convince us that wages are structurally different in the south.

The other way to do this uses a loop to manually construct the interactions. Though the chow
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command makes this unnecessary, it is a great exercise that demonstrates how to create more
general interactions among variables. The variable south will be interacted with each variable in
a list and then added to a new list. The script is:

1 list x = const educ black female blk_fem
list dx = null
loop foreach i x
series south_$i = south * $i
list dx = dx south_$i
endloop

(2L B VU N

The first line includes each of the variables in the model that are to be interacted with south. The
statement list dx = null creates a new list called dx that is empty (i.e., = null). In line 3 a
foreach loop is initiated using the index i and it will increment through each element contained
in the list, x. Line 4 creates a new series named south_varname that is constructed by interacting
south with each variable in x. This is added to the new list, dx and the loop is closed.

To make it clear, let’s go through a couple of iterations of the loop:

column 1 of x = const
series south_const = south * const
dx = dx south_const
implies dx = null south_const
so, dx = south_const
loop ends--increment i
i=2
column 2 of x = educ
series south_educ = south * educ
dx = dx south_educ
so, dx = south_const south_educ
loop ends--increment i
i=3
column 3 of x = black
series south_black = south * black
dx = dx south_black
so, dx = south_const south_educ south_black
loop ends--increment i
i=4
and so on ...

The interactions are created and a series of regressions are estimated and put into a model table.
The remaining script is:
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modeltab clear
ols wage x dx
scalar sseu=$ess
scalar dfu = $df
modeltab add

smpl south=1 --restrict
ols wage x

modeltab add

smpl full

© 0w N O s W N

= o= e
N o= O

smpl south=0 --restrict
ols wage x

modeltab add

smpl full

modeltab show

[ e ~ S
o vk W

Notice that the smpl command is used to manipulate subsets. It is restricted to observations in
the south in line 7, restored to full in line 10, and then restricted to nonsouth observations in
line 12. Also, the sum of squared errors from the unrestricted model is saved. These will be used
to manually construct a Chow test below.

The model table appears below

OLS estimates
Dependent variable: wage

(1) (2) (3)
const —6.606** —2.662 —6.606**
(2.337) (3.420) (2.302)
educ 2.173** 1.864** 2.173**
(0.1665) (0.2403) (0.1640)
black —5.089* -3.385 —5.089*
(2.643) (2.579) (2.604)
female —5.005**  —4.104** —5.005**
(0.8990) (1.581) (0.8857)
blk_fem 5.306 2.370 5.306
(3.497) (3.383) (3.446)
south_const 3.944
(4.048)
south_educ —0.3085
(0.2857)
south_black 1.704
(3.633)
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south_female 0.9011

(1.773)
south_blk_fem —2.936

(4.788)
n 1000 296 704
R? 0.2030 0.1730 0.2170
14 —3853 —1149 —2703

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The first column contains the results from the model with all of the interactions. The second
column is for workers in the south, and the third is for workers elsewhere.

The code to perform the Chow test uses the sum-of-squared errors and degrees of freedom that
were saved in the unrestricted estimation and computes an F-statistic using that from the restricted
regression.

smpl full

ols wage x

scalar sser = $ess

scalar fstat = ((sser-sseu)/5)/(sseu/dfu)
pvalue f 5 dfu fstat

[ B N N

Be sure to restore the full sample before estimating the restricted model. The restricted regression
pools observations from the entire country together and estimates them with common coefficients.
It is restricted because the parameters are the same in both subsets.

F(5, 990): area to the right of 0.320278 = 0.900945
(to the left: 0.0990553)

These results match those from the built-in version of the test.

7.2.4 Log-Linear Models with Indicators

In this example an indicator variable is included in a log-linear model. It is based on a wage
example used earlier.
In(wage) = p1 + Paeduc + dfemale + e (7.3)
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Estimation of this model by least squares allows one to compute percentage differences between
the wages of females and males. As discussed in POF4, the algebra suggests that the percentage
difference is

100(e5~1)% (7.4)

The model is estimated and the computation carried out in the following script.

open "@gretldir\data\poe\cps4_small.gdt"

logs wage

ols 1_wage const educ female

scalar differential = 100*(exp($coeff (female))-1)

=W N =

The natural logarithm of wage is taken in line 2. Then the model is estimated an the percentage
difference computes.

OLS, using observations 1-1000
Dependent variable: 1_wage

Coefficient Std. Error t-ratio  p-value

const 1.6539 0.0844  19.60 1.3e-072
educ 0.0962 0.0060  15.94 3.76e-051
female —0.2432 0.0327 —7.43 2.31e-013

Sum squared resid 262.2387 S.E. of regression (0.512862
R? 0.221337 Adjusted R? 0.219775
F(2,997) 141.7000  P-value(F) 6.88¢-55

The computed difference is —21.5896, suggesting that females earn about 21.59% less than males
who have comparable levels of education.

7.3 Linear Probability

A linear probability model is a linear regression in which the dependent variable is an indicator
variable. The model is estimated by least squares.

Suppose that

1 if alternative is chosen
Yi = . . (7.5)
0 if alternative is not chosen
Suppose further that the Pr(y; = 1) = m;. For a discrete variable
Ely|=1xPr(y;=1)+0x Pr(y; =0) =m; (7.6)
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Thus, the mean of a binary random variable can be interpreted as a probability; it is the probability
that y = 1. When the regression E[y;|zi2, T3, . . . , ;] is linear then E[y;] = S1+faxia+. . .+ Br ik
and the mean (probability) is modeled linearly.

Elyilzia, xi3, . . .y vix| = mi = B1 + Bazia + ... + BrTik (7.7)
The variance of a binanry random variable is
varly;] = mi(1 — m;) (7.8)

which means that it will be different for each individual. Replacing the unobserved probability,
E(y;), with the observed indicator variable requires adding an error to the model that we can
estimate via least squares. In this following example we have 1140 observations from individuals
who purchased Coke or Pepsi. The dependent variable takes the value of 1 if the person buys
Coke and 0 if Pepsi. These depend on the ratio of the prices, pratio, and two indicator variables,
disp_coke and disp_pepsi. These indicate whether the store selling the drinks had promotional
displays of Coke or Pepsi at the time of purchase.

OLS, using observations 1-1140
Dependent variable: coke
Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio  p-value

const 0.8902 0.0656  13.56  5.88e-039
pratio —0.4009 0.0607 —6.60 6.26e-011
disp_coke 0.0772 0.0340 2.27 0.0235
disp_pepsi —0.1657 0.0345 —4.81 1.74e-006

Sum squared resid 248.0043 S.E. of regression 0.467240
R? 0.120059 Adjusted R? 0.117736
F(3,1136) 56.55236  P-value(F) 4.50e-34

The model was estimated using a variance-covariance matrix estimator that is consistent when the
error terms of the model have variances that depend on the observation. That is the case here. I'll
defer discussion of this issue until the next chapter when it will be discussed at some length.

7.4 Treatment Effects

In order to understand the measurement of treatment effects, consider a simple regression model
in which the explanatory variable is a dummy variable, indicating whether a particular individual
is in the treatment or control group. Let y be the outcome variable, the measured characteristic
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the treatment is designed to affect. Define the indicator variable d as

1 if treated
4= LHee (7.9)
0 if not treated
The effect of the treatment on the outcome can be modeled as
yi=p1+ Podi +e; i=1,2,...,N (7.10)

where e; represents the collection of other factors affecting the outcome. The regression functions
for the treatment and control groups are

(7.11)

E(y) = B1+ B2 if individual is treated
R if not treated

The treatment effect that we want to measure is 82. The least squares estimator of 3 is

N n _
by = Zz‘:1(}\‘fiz - d)(yf — %) = 71 — To (7.12)
Zi:l(di —d)?
where g1 is the sample mean for the observations on y for the treatment group and gy is the sample
mean for the observations on y for the untreated group. In this treatment/control framework the
estimator by is called the difference estimator because it is the difference between the sample
means of the treatment and control groups.

To illustrate, we use the data from project STAR described in POFE4, chapter 7.5.3.

The first thing to do is to take a look at the descriptive statistics for a subset of the variables.
The list v is created to hold the variable names of all the variables of interest. Then the summary
command is issued for the variables in v with the --by option. This option takes an argument,
which is the name of a discrete variable by which the subsets are determined. Here, small and
regular are binary, taking the value of 1 for small classes and 0 otherwise. This will lead to two
sets of summary statistics.

open "@gretldir\data\poe\star.gdt"

list v = totalscore small tchexper boy freelunch white_asian \
tchwhite tchmasters schurban schrural

summary v --by=small --simple

summary v —--by=regular --simple

Gl W N =

Here is a partial listing of the output:

regular = 1 (n = 2005):

Mean Minimum Maximum Std. Dev.
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totalscore 918.04

small 0.00000
tchexper 9.0683
boy 0.51322
freelunch 0.47382
white_asian 0.68130
tchwhite 0.79800
tchmasters 0.36509
schurban 0.30125
schrural 0.49975
small = 1 (n = 1738):

Mean
totalscore 931.94
small 1.0000
tchexper 8.9954
boy 0.51496
freelunch 0.47181
white_asian 0.68470
tchwhite 0.86249
tchmasters 0.31761
schurban 0.30610
schrural 0.46260

635.00
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

O O O O O OO oo

Minimum
747 .00
1.0000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

O O O O O O oo

1229.0
0.00000

24.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

N e e e

Maximum
1253.0
1.0000
27.000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

e e e e

73.138
0.00000
5.7244
.49995
.49944
.46609
.40159
.48157
.45891
.50012

O O O O O O O

Std. Dev.

76.359

0.00000
5.7316
.49992
.49935
LA46477
.34449
.46568
.46100
.49874

O O O O O O o

The --simple option drops the median, C.V., skewness and excess kurtosis from the summary
statistics. In this case we don’t need those so the option is used.

Next, we want to drop the observations for those classrooms that have a teacher’s aide and to

construct a set of variable lists to be used in the regressions that follow.

-

ook N

smpl aide != 1 --restrict
list x1 = const small
list x2 = x1 tchexper

list x3 = x2 boy freelunch white_asian

list x4 = x3 tchwhite tchmasters schurban schrural

In the first line the smpl command is used to limit the sample (--restrict) to those observations
for which the aide variable is not equal (!=) to one. The 1ist commands are interesting. Notice
that x1 is constructed in a conventional way using 1ist; to the right of the equality is the name
of two variables. Then x2 is created with the first elements consisting of the list, x1 followed by
the additional variable tchexper. Thus, x2 contains const, small, and tchexper. The lists x3
and x4 are constructed similarly. New variables are appended to previously defined lists. It’s quite
seamless and natural.

Now each of the models is estimated with the --quiet option and put into a model table.
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OLS estimates

Dependent variable: totalscore

(1) (2) (3) (4)
const 918.0** 907.6** 927.6** 936.0**
(1.667) (2.542) (3.758) (5.057)
small 13.90** 13.98** 13.87** 13.36**
(2.447) (2.437) (2.338) (2.352)
tchexper 1.156** 0.7025** 0.7814**
(0.2123) (0.2057) (0.2129)
boy —15.34** —15.29**
(2.335) (2.330)
freelunch —33.79** —32.05**
(2.600) (2.666)
white_asian 11.65** 14.99**
(2.801) (3.510)
tchwhite —2.775
(3.535)
tchmasters —8.180**
(2.562)
schurban —8.216™*
(3.673)
schrural —9.133**
(3.210)
n 3743 3743 3743 3743
R? 0.0083 0.0158 0.0945 0.0988
!/ —2.145e+004 —2.144e+004 —2.128e+004 —2.127e+004

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient on the small indicator variable is not affected by adding or dropping variables from
the model. This is indirect evidence that it is not correlated with other regressors. The effect
of teacher experience on test scores falls quite a bit when boy, freelunch, and white_asian are
added to the equation. This suggests that it is correlated with one or more of these variables and
that omitting them from the model leads to biased estimation of the parameters by least squares.
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7.4.1 School Fixed Effects

It may be that assignment to treatment groups is related to one or more of the observable
characteristics (school size or teacher experience in this case). One way to control for these omitted
effects is to used fixed effects estimation. This is taken up in more detail later. Here we introduce
it to show off a useful gretl function called dummify.

The dummify command creates dummy variables for each distinct value present in a series, x.
In order for it to work, you must first tell gretl that x is in fact a discrete variable. We want
to create a set of indicator variables, one for each school in the dataset. First declare the schid
variable to be discrete and then dummify it.

Here is the code and another model table that mimics Table 7.7 in POEJ.

discrete schid

list d = dummify(schid)

ols totalscore x1 --quiet
scalar sser = $ess

scalar r_df = $df

modeltab add

ols totalscore x2 --quiet
modeltab add

ols totalscore x1 d --quiet
scalar sseu = $ess

scalar u_df = $df

modeltab add

ols totalscore x2 d --quiet
modeltab add

modeltab show

modeltab free

© ~ =] ot - W [ —

T S S g
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The discrete function in line 1 makes schid into a discrete variable. The next line creates a 1ist
that includes each of the variables created by dummify(schid). Then, all you have to do is add it
to the variable list that includes the fixed effects. Gretl smartly avoids the dummy variable trap
by dropping one of the indicator variables from the regression.

Here is what you get with the indicator coefficients suppressed:

OLS estimates
Dependent variable: totalscore

(1) (2) 3) (4)

const 918.0** 907.6** 838.8* 830.8**
(1.667) (2.542) (11.56) (11.70)
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small 13.90** 13.98** 16.00** 16.07**

(2.447) (2.437) (2.223) (2.218)
tchexper 1.156** 0.9132**
(0.2123) (0.2256)
School Effects no no yes yes
n 3743 3743 3743 3743
R? 0.0083 0.0158 0.2213 0.2245
l —2.145e+004 —2.144e+004 —2.096e+004 —2.095e+004

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The estimated slopes in columns (3) and (4) match those in POE4. The intercepts are different
only because a different reference group was used. The substance of the results is unaffected.

Testing the null hypothesis that the fixed effects are zero is very simple. Compare the restricted
and unrestricted sum of squared errors using a F-statistic. The restricted sum of squared errors is
saved for model (1) and the unrestricted for model (3). The statistic is computed using

1 scalar J = r_df-u_df
2 scalar fstat = ((sser - sseu)/J)/(sseu/u_df)
3 pvalue £ J u_df fstat

and the result is:

Generated scalar J = 78

Generated scalar fstat = 14.1177

F(78, 3663): area to the right of 14.1177 = 1.70964e-154
(to the left: 1)

Notice how the difference in the number of degrees of freedom reveals how many restrictions are
imposed on the model. Given the number of times we’ve used this computation, it may pay to
write a gretl function to automate it.

7.4.2 Using Linear Probability to Verify Random Assignment

A number of variables are omitted from the model and it is safe to do so as long as they are
not correlated with regressors. This would be evidence of assignments to the control group that
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are systematic. This can be checked using a regression. Since small is an indicator, we use a linear
probability regression.

The independent variables include a constant, boy white_asian, tchexper and freelunch.
The result is

OLS, using observations 1-3743
Dependent variable: small
Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio  p-value

const 0.4665 0.0253  18.46 7.33e-073
boy 0.0014 0.0163 0.09 0.931
white_asian 0.0044 0.0197 0.22 0.823
tchexper —0.0006 0.0014 —0.42 0.676
freelunch —0.0009 0.0183 —0.05 0.961

Sum squared resid 930.9297 S.E. of regression  0.499044
R? 0.000063 Adjusted R? -0.001007
F(4,3738) 0.059396  P-value(F) 0.993476

The overall-F' statistic is not significant at 10%. None of the individual ¢-ratios are significant.
Finally, a test of the hypothesis that the constant is §; = 0.5 cannot be rejected. A value of 0.5
would be consistent with assigning children to a small or large class by a fair coin flip. I think it is
safe to omit these regressors from the model.

7.5 Differences-in-Differences Estimation

If you want to learn about how a change in policy affects outcomes, nothing beats a randomized
controlled experiment. Unfortunately, these are rare in economics because they are either very
expensive of morally unacceptable. No one want to determines what the return to schooling is by
randomly assigning people to a prescribed number of schooling years. That choice should be yours
and not someone else’s.

But, the evaluation of policy is not hopeless when randomized controlled experiments are im-
possible. Life provides us with situations that happen to different groups of individuals at different
points in time. Such events are not really random, but from a statistical point of view the treatment
may appear to be randomly assigned. That is what so-called natural experiments are about.
You have two groups of similar people. For whatever reason, one group gets treated to the policy
and the other does not. Comparative differences are attributed to the policy.

In the example, we will look at the effects of a change in the minimum wage. It is made possible
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because the minimum wage is raised in one state and not another. The similarity of states is
important because the non-treated state is going to be used for comparison.

The data come from Card and Krueger and are found in the file njmin3.gdt. We will open it
and look at the summary statistics by state.

open "@gretldir\data\poe\njmin3.gdt"
smpl d = 0 --restrict

summary fte --by=nj --simple

smpl full

smpl d = 1 --restrict

summary fte --by=nj --simple

smpl full

~ [=2] ot - W [ -

Since we want to get a picture of what happened in NJ and PA before and after NJ raised the
minimum wage we restrict the sample to before the increase. Then get the summary statistics for
fte by state in line 3. Restore the full sample and then restrict it to after the policy d=1. Repeat
the summary statistics for fte. The results suggest not much difference at this point.

nj =0 (n=79) d=0:

Mean Minimum Maximum Std. Dev.
fte 23.331 7.5000 70.500 11.856
nj =1 (n = 331) d=0:

Mean Minimum Maximum Std. Dev.
fte 20.439 5.0000 85.000 9.1062
nj =0 (n=79) d=1:

Mean Minimum Maximum Std. Dev.
fte 21.166 0.00000 43.500 8.2767
nj =1 (n = 331) d=1:

Mean Minimum Maximum Std. Dev.
fte 21.027 0.00000 60.500 9.2930

Now, make some variable list and run a few regressions

list x1 = const nj d d_nj
list x2 = x1 kfc roys wendys co_owned
list x3 = x2 southj centralj pal

=W N =
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ols fte x1
modeltab add
ols fte x2
modeltab add
ols fte x3
10 modeltab add
11 modeltab show

© 0 N O«

The first set of variables include the indicator variables nj, d and their interaction. The second set
adds more indicators for whether the jobs are at kfc, roys, or wendys and if the store is companied
owned. The final set add more indicators for location.

The results from the three regressions appear below:

OLS estimates
Dependent variable: fte

(1) (2) (3)
const 23.33** 25.95** 25.32**
(1.072) (1.038) (1.211)
nj —2.892**  —2.377**  —0.9080
(1.194) (1.079) (1.272)
d —2.166 —2.224 —2.212
(1.516) (1.368) (1.349)
d_nj 2.754 2.845* 2.815*
(1.688) (1.523) (1.502)
kfc —10.45**  —10.06**
(0.8490) (0.8447)
roys —1.625* —1.693**
(0.8598) (0.8592)
wendys —1.064 —1.065
(0.9292) (0.9206)
co_owned —1.169 —0.7163
(0.7162) (0.7190)
southj —3.702**
(0.7800)
centralj 0.007883
(0.8975)
pal 0.9239
(1.385)
n 794 794 794
R? 0.0036 0.1893 0.2115
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4 —2904 —2820 —2808

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient on d_nj is the difference-in-differences estimator of the change in employment due
to a change in the minimum wage. It is not significantly different from zero in this case and we can
conclude that raising the minimum wage in New Jersey did not adversely affect employment.

In the previous analysis we did not exploit an important feature of Card and Krueger’s data.
The same restaurants were observed before and after in both states—in 384 of the 410 observations.
It seems reasonable to limit the before and after comparison to the same units.

This requires adding an individual fixed effect to the model and dropping observations that
have no before or after with which to compare. Also, you will need to limit the sample to the
unique observations (in the original, each is duplicated).

1 smpl missing(demp) != 1 --restrict
2 smpl d = 1 --restrict
3 ols demp const nj

Fortunately, the data set includes the AFTE where it is called demp. Dropping the observations for
demp that are missing and using least squares to estimate the parameters of the simple regression
yield:

demp = —2.28333 + 2.75000 nj
(1.0355) (1.1543)

T =768 R2=0.0134 F(1,766) =11.380 & = 8.9560

(standard errors in parentheses)

The coefficient on nj is not significantly less than zero at the 5% level and we conclude that the
increase in minimum wage did not reduce employment.

7.6 Script

1 set echo off
2 open "@gretldir\data\poe\utown.gdt"
3 # print first 8 observations
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51
52
53

smpl 1 8

print price sqft age utown pool fplace --byobs

# obtain summary statistics for full samp
smpl full
summary

le

# create indicator variable for large homes

series 1d = (sqft>25)
discrete 1d

smpl 1 8

print 1d sqft --byobs
smpl full

# create interaction and estimate model
series sqft_utown=sqft*utown
ols price const utown sqft sqft_utown age

# generate some marginal effects
scalar premium = $coeff (utown)*1000

pool fplace

scalar sq_u = 10*($coeff(sqft)+$coeff (sqft_utown))

scalar sq_other = 10*$coeff (sqft)

scalar depr = 1000*$coeff (age)

scalar sp = 1000x$coeff (pool)

scalar firep = 1000*$coeff (fplace)

printf "\n University Premium = $%8.7g\n\
Marginal effect of sqft near University =

$%7.6g\n\

Marginal effect of sqft elsewhere = $77.6g\n\

Depreciation Rate = $%7.2f\n\
Pool = $%7.2f\n\

Fireplace = $J7.2f\n",premium,sq_u,sq_other,depr,sp,firep

omit sqft_utown

# testing joint hypotheses
open "@gretldir\data\poe\cps4_small.gdt"
series blk_fem = black*female
ols wage const educ black female blk_fem
restrict

b[3]1=0

b[4]1=0

b[5]1=0
end restrict

ols wage const educ black female blk_fem
omit south midwest west
scalar sser = $ess

# creation of interactions using a loop
list x = const educ black female blk_fem
list dx = null
loop foreach i x

series south_$i = south * $i
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55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

list dx = dx south_$i
endloop
modeltab clear
ols wage x dx
scalar sseu = $ess
scalar dfu = $d4f
modeltab add

# estimating subsets
smpl south=1 --restrict
ols wage x

modeltab add

smpl full

smpl south=0 --restrict
ols wage x

modeltab add

modeltab show

# Chow tests

smpl full

ols wage x

scalar sser = $ess

scalar fstat = ((sser-sseu)/5)/(sseu/dfu)
pvalue £ 5 dfu fstat

ols wage x
chow south --dummy

# log-linear model--interpretation

open "@gretldir\data\poe\cps4_small.gdt"

logs wage

ols 1_wage const educ female

scalar differential = 100*(exp($coeff (female))-1)

# linear probability model with HCCME
open "@gretldir\data\poe\coke.gdt"
ols coke const pratio disp_coke disp_pepsi --robust

# treatment effects

open "@gretldir\data\poe\star.gdt"

list v = totalscore small tchexper boy freelunch \
white_asian tchwhite tchmasters schurban schrural

summary v —--by=small --simple

summary v —--by=regular --simple

smpl aide != 1 --restrict

list x1 = const small

list x2 = x1 tchexper

list x3 = x1 boy freelunch white_asian

list x4 = x1 tchwhite tchmasters schurban schrural
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106

108
109
110
111
112
113
114

116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156

ols totalscore x1 --quiet
modeltab add
ols totalscore x2 --quiet
modeltab add
ols totalscore x3 --quiet
modeltab add
ols totalscore x4 --quiet
modeltab add
modeltab show
modeltab free

# manual creation of multiple indicators for school id
discrete schid

list d = dummify(schid)

ols totalscore x1 --quiet
scalar sser = $ess

scalar r_df = $df

modeltab add

ols totalscore x2 --quiet
modeltab add

ols totalscore x1 d --quiet
scalar sseu = $ess

scalar u_df = $df

modeltab add

ols totalscore x2 d --quiet
modeltab add

modeltab show

modeltab free

scalar J = r_df-u_df
scalar fstat = ((sser - sseu)/J)/(sseu/u_df)
pvalue £ J u_df fstat

# testing random assignment of students
ols small const boy white_asian tchexper freelunch
restrict
b[1]=.5
end restrict

# differences-in-differences

open "@gretldir\data\poe\njmin3.gdt"
smpl d = 0 --restrict

summary fte --by=nj --simple

smpl full

smpl d = 1 --restrict

summary fte --by=nj --simple

smpl full

list x1 = const nj d d_nj
list x2 = x1 kfc roys wendys co_owned
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157

159
160
161
162
163
164
165

167
168
169
170
171
172

list x3 = x2 southj centralj pal
summary x1 fte

ols fte x1
modeltab add
ols fte x2
modeltab add
ols fte x3
modeltab add
modeltab show
modeltab free

smpl missing(demp) != 1 --restrict
smpl d = 1 --restrict
ols demp const nj
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Chapter

Heteroskedasticity

The simple linear regression models of chapter 2 and the multiple regression model in Chapter
5 can be generalized in other ways. For instance, there is no guarantee that the random variables
of these models (either the y; or the e;) have the same inherent variability. That is to say, some
observations may have a larger or smaller variance than others. This describes the condition known
as heteroskedasticity. The general linear regression model is shown in equation (8.1) below.

yi=P1+ Bowig + -+ Bprik +ei 1=1,2,... N (8.1)
where y; is the dependent variable, z;; is the i*" observation on the k' independent variable,
k=223,...,K, e is random error, and f1, 5o, ..., 8k are the parameters you want to estimate.

Just as in the simple linear regression model, ¢;, have an average value of zero for each value of
the independent variables and are uncorrelated with one another. The difference in this model
is that the variance of e; now depends on %, i.e., the observation to which it belongs. Indexing
the variance with the ¢ subscript is just a way of indicating that observations may have differ-
ent amounts of variability associated with them. The error assumptions can be summarized as
ei’.mz, Ti3y .- UiK i1d N(O, 0’12)

The intercept and slopes, B1, B2, ..., Ok, are consistently estimated by least squares even if
the data are heteroskedastic. Unfortunately, the usual estimators of the least squares standard
errors and tests based on them are inconsistent and invalid. In this chapter, several ways to detect
heteroskedasticity are considered. Also, statistically valid ways of estimating the parameters of 8.1
and testing hypotheses about the 8s when the data are heteroskedastic are explored.

8.1 Food Expenditure Example

First, a simple model of food expenditures is estimated using least squares. The model is

food_exp; = B1 + Baincome; +e¢; i=1,2,...,N (8.2)
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where food_exp; is food expenditure and income; is income of the i*" individual. When the errors
of the model are heteroskedastic, then the least squares estimator of the coefficients is consistent.
That means that the least squares point estimates of the intercept and slope are useful. However,
when the errors are heteroskedastic the usual least squares standard errors are inconsistent and
therefore should not be used to form confidence intervals or to test hypotheses.

To use least squares estimates with heteroskedastic data, at a very minimum, you’ll need a
consistent estimator of their standard errors in order to construct valid tests and intervals. A
simple computation proposed by White accomplishes this. Standard errors computed using White’s
technique are loosely referred to as robust, though one has to be careful when using this term,;
the standard errors are robust to the presence of heteroskedasticity in the errors of model (but not
necessarily other forms of model misspecification).

Open the food.gdt data in gretl and estimate the model using least squares.

1 open "@gretldir\data\poe\food.gdt"
2 ols food_exp const income
3 gnuplot food_exp income --linear-fit

This yields the usual least squares estimates of the parameters, but produces the wrong standard
errors when the data are heteroskedastic. To get an initial idea of whether this might be the case a
plot of the data is generated and the least squares line is graphed. If the data are heteroskedastic
with respect to income then you will see more variation around the regression line for some levels
of income. The graph is shown in Figure 8.1 and this appears to be the case. There is significantly
more variation in the data for high incomes than for low.

To obtain the heteroskedasticity robust standard errors, simply add the -—robust option to the
regression as shown in the following gretl script. After issuing the ——robust option, the standard
errors stored in the accessor $stderr (income) are the robust ones.

ols food_exp const income --robust

# confidence intervals (Robust)

scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
printf "\nThe 95%% confidence interval is (%.3f, %.3f).\n",lb,ub

[ N N S

In the script, we have used the critical(t,$df,0.025) function to get the desired critical value
from the t-distribution. Remember, the degrees of freedom from the preceding regression are stored
in $df. The first argument in the function indicates the desired distribution, and the last is the
desired right-tail probability (/2 in this case).

The script produces
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“ gretl: graph = S|
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Figure 8.1: Plot of food expenditures against income with least squares fit.

The 95% confidence interval is (6.391, 14.028).

This can also be done from the pull-down menus. Select Model>0Ordinary Least Squares (see
Figure 2.6) to generate the dialog to specify the model shown in Figure 8.2 below. Note, the check
box to generate ‘robust standard errors’ is circled. You will also notice that there is a button
labeled Configure just to the right of the ‘Robust standard errors’ check box. Clicking this button
reveals a dialog from which several options can be selected. In this case, we can select the particular
method that will be used to compute the robust standard errors and even set robust standard errors
to be the default computation for least squares. This dialog box is shown in Figure 8.3 below.

To reproduce the results in Hill et al. (2011), you’ll want to select HC1 from the pull-down list.
As you can see, other gretl options can be selected here that affect the default behavior of the
program. The particular variant it uses depends on which dataset structure you have defined for
your data. If none is defined, gretl assumes you have cross-sectional data.

The model results for the food expenditure example appear in the table below. After estimating
the model using the dialog, you can use Analysis>Confidence intervals for coefficients to
generate 95% confidence intervals. Since you used the robust option in the dialog, these will be
based on the variant of White’s standard errors chosen using the ‘configure’ button. In this case, 1
chose HC3, which some suggest performs slightly better in small samples. The result is:

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL
const 83.4160 25.4153 141.417
income 10.2096 6.39125 14.0280
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OLS, using observations 1-40
Dependent variable: food_exp
Heteroskedasticity-robust standard errors, variant HC3

Coefficient  Std. Error t¢-ratio p-value

const 83.4160 28.6509 2.9115 0.0060
income 10.2096 1.88619 5.4128 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 29.29889 P-value(F) 3.63e—06

Table 8.1: Least squares estimates with the usual and robust standard errors.

8.2 Detecting Heteroskedasticity

In the discussion above we used a graph of the data and the regression function to give us an
initial reading of whether the data are heteroskedastic. Residual plots are equally useful, but some
care must be taken in generating and interpreting them. By their very nature, plots allow you to
‘see’ relationships one variable at a time. If the heteroskedasticity involves more than one variable
they may not be very revealing.

In Figure 8.4 is a plot of the least squares residuals against income. It appears that for larger
levels of income there is much higher variance in the residuals. The graph was generated from the
model window by selecting Graphs>Residual plot>Against income. I also right-clicked on the
graph, chose Edit and altered its appearance a bit. Summoning the dialog looks like

H gretl: model 4 =RNEN X |

F|
File Edit Tests Sawve @ Analysis  LaTeX
Model 4: OLS5, usir Residual plot 4 By observation number ‘

Dependent variable Eitted, actual plot » Against food_exp
Heteroskedasticicy ::A . . "‘:
1 . ainst iIncome
Residual Q-0 plot | =9
| caoefficient =ztd. error t-ratio p-value

Of course, you can also generate graphs from a script, which in this case is:

ols food_exp const income --robust

series res = $uhat

setinfo res -d "Least Squares Residuals" -n "Residual"
gnuplot res income --output=c:\Temp\olsres

=W N =
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In this script we continue to expand the use of gretl functions. The residuals are saved in line 2.
Then in line 3 the setinfo command is used to change the description and the graph label using
the -d and -n switches, respectively. Then gnuplot is called to plot res against income. This
time the output is directed to a specific file. Notice that no suffix was necessary. To view the file
in MS Windows, simply launch wgnuplot and load ’c:\Temp\olsres’.

Another graphical method that shows the relationship between the magnitude of the residuals
and the independent variable is shown below:

1 series abs_e = abs(res)

2 setinfo abs_e -d "Absolute value of the LS Residuals"\

3 -n "Absolute Value of Residual"

4 gnuplot abs_e income --loess-fit --output=c:\temp\loessfit.plt

The graph appears in Figure 8.5. To generate this graph two things have been done. First, the
absolute value of the least squares residuals have been saved to a new variable called abs_e. Then
these are plotted against income as a scatter plot and as a locally weighted, smoothed scatterplot
estimated by process called loess.

The basic idea behind loess is to create a new variable that, for each value of the dependent
variable, y;, contains the corresponding smoothed value, y7. The smoothed values are obtained
by running a regression of y on x by using only the data (z;,y;) and a few of the data points
near this one. In loess, the regression is weighted so that the central point (z;,y;) gets the highest
weight and points that are farther away (based on the distance | z; — x; |) receive less weight.
The estimated regression line is then used to predict the smoothed value y; for y;s only. The
procedure is repeated to obtain the remaining smoothed values, which means that a separate
weighted regression is performed for every point in the data. Obviously, if your data set is large,
this can take a while. Loess is said to be a desirable smoother because of it tends to follow the data.
Polynomial smoothing methods, for instance, are global in that what happens on the extreme left
of a scatterplot can affect the fitted values on the extreme right.

One can see from the graph in Figure 8.5 that the residuals tend to get larger as income rises,

reaching a maximum at 28. The residual for an observation having the largest income is relatively
small and the locally smoothed prediction causes the line to start trending downward.

8.3 Lagrange Multiplier Tests

There are many tests of the null hypothesis of homoskedasticity that have been proposed else-
where. Two of these, based on Lagrange multipliers, are particularly simple to do and useful. The
first is sometimes referred to as the Breusch-Pagan (BP) test. The second test is credited to White.
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The null and alternative hypotheses for the Breusch-Pagan test are

20'2

Hy: o

2
7
Hy : o?

o ::h(a1+-a22ﬂ-+...asas)

The null hypothesis is that the data are homoskedastic. The alternative is that the data are
heteroskedastic in a way that depends upon the variables z;s, i = 2,3,...,S5. These variables are
exogenous and correlated with the model’s variances. The function A(), is not specified. It could
be anything that depends on its argument, i.e., the linear function of the variables in z. Here are
the steps:

1. Estimate the regression model

2. Save the residuals

3. Square the residuals

4. Regress the squared residuals on z;, 1 =2,3,...,5.

5. Compute NR? from this regression and compare it to the « level critical value from the
x*(5 — 1) distribution.

The gretl script to perform the test manually is

ols food_exp const income
series sq_ehat = $uhat*$uhat
ols sq_ehat const income
scalar NR2 = $trsq

pvalue X 1 NR2

ook W N =

The only new item in this script is the use of the accessor, $trsq. This is the saved value of NR?
from the previously estimated model. The output from the script is

1 Replaced scalar NR2 = 7.38442
2 Chi-square(1): area to the right of 7.38442 = 0.00657911
3 (to the left: 0.993421)

The p-value is less than 5% and we would reject the homoskedasticity null at that level. The
heteroskedasticity seen in the residual plots appears to be confirmed.

Gretl has a built-in function that will compute a special case of the BP test that yields the
same result in this example. The
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1 ols food_exp const income
2 modtest --breusch-pagan

Produces

Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-40
Dependent variable: scaled uhat”2

coefficient std. error t-ratio p-value

const -0.756949 0.633618 -1.195 0.2396
income 0.0896185 0.0305534 2.933 0.0057  *xx

Explained sum of squares = 14.6879

Test statistic: LM = 7.343935,
with p-value = P(Chi-square(1) > 7.343935) = 0.006729

The functionality of modtest --breusch-pagan is limited in that it will include every regressor
in the model as a z. It matches the result we derived manually because the model only includes
income as the regressor. The modtest --breusch-pagan uses it as z. This means that you can’t
test a subset of the regressors with this function, nor can you use it to test for heteroskedasticity
of exogenous variables that are not included in the regression function. In either of these cases, use
the manual method described above; it is very easy to do.

8.3.1 The White Test

White’s test is in fact just a minor variation on the Breusch-Pagan test. The null and alternative
hypotheses are

2

Hy:0?=0? foralli

leag#ajz for at least 14 # j

This is a composite alternative that captures every possibility other than the one covered by the
null. If you know nothing about the nature of heteroskedasticity in your data, then this is a
good place to start. The test is very similar to the BP test. In this test, the heteroskedasticity
related variables (z;s, i = 2,3,...,5) include each non-redundant regressor, its square, and all cross
products between regressors. See POE) for details. In the food expenditure model there is only
one continuous regressor and an intercept. So, the constant squared and the cross product between
the constant and income are redundant. This leaves only one unique variable to add to the model,
income squared.
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In gretl generate the squared value of income and regress the squared residuals from the model
on income and its square. Compute NR? from this regression and compare it to a level critical
value from the x2(S — 1) distribution. As is the case in all the LM tests considered in this book,
N is the number of observations in the second or auxiliary regression.

As with the BP test there is a built-in function that computes White’s test. It generates all
of the squares and unique cross-products to add to the model. The script to do both manual and
built-in tests is found below:

ols food_exp const income

series sq_ehat = $uhat*$uhat
series sq_income = income”2

ols sq_ehat const income sq_income
scalar NR2 = $trsq

pvalue X 2 NR2

ols food_exp const income --quiet
modtest --white --quiet

© 0w 9 O s W N

The results from the two match perfectly and only that from the built-in procedure is produced
below:

White’s test for heteroskedasticity
Test statistic: TR™2 = 7.555079,
with p-value = P(Chi-square(2) > 7.555079) = 0.022879

The homoskedasticity null hypothesis is rejected at the 5% level.

8.3.2 Goldfeld Quandt Test for Heteroskedasticity

Using examples from Hill et al. (2011) a model of grouped heteroskedasticity is estimated and
a Goldfeld-Quandt test is performed to determine whether the two sample subsets have the same
error variance. The error variance associated with the first subset is 02 and that for the other

subset is o3.

The null and alternative hypotheses are

Hy : 0} =03
L2 2
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Estimating both subsets separately and obtaining the estimated error variances allow us to
construct the following ratio:
o1/ot

F=- ~ Fyf, af

(8.3)

where df; = N; — K, from the first subset and df, = Ny — K is from the second subset. Under the

null hypothesis that the two variances are equal

)

o

F = —5 ~ Fup, a, (8.4)
)

This is just the ratio of the estimated variances from the two subset regressions.

Wage Example

Below, I have written a gretl program to reproduce the wage example from Hill et al. (2011)
that appears in chapter 8. The example is relatively straightforward and I’ll not explain the script
in much detail. It is annotated to help you decipher what each section of the program does.

The example consists of estimating wages as a function of education and experience. In addition,
an indicator variable is included that is equal to one if a person lives in a metropolitan area. This
is an “intercept” dummy which means that folks living in the metro areas are expected to respond
similarly to changes in education and experience (same slopes), but that they earn a premium
relative to those in rural areas (different intercept).

Each subset (metro and rural) is estimated separately using least squares and the standard error
of the regression is saved for each ($sigma). Generally, you should put the group with the larger
variance in the numerator. This allows a one-sided test and also allows you to use the standard
p-value calculations as done below.

open "@gretldir\data\poe\cps2.gdt"
ols wage const educ exper metro
# Use only metro observations
smpl metro=1 --restrict

ols wage const educ exper
scalar stdm = $sigma

scalar df_m = $df

#Restore the full sample

smpl full

# Use only rural observations
smpl metro=0 --restrict

ols wage const educ exper
scalar stdr = $sigma

scalar df _r = $df

# GQ statistic

gq = stdm~2/stdr"2
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17 scalar pv = pvalue(F, df_m, df_r, gq)
18 printf "\nThe F(%d, %d) statistic = %.3f. The right\
19 side p-value is %.4g.\n",df _m,df_r,gq,pv

which produces

The F(805, 189) statistic = 2.088. The right side p-value is 1.567e-009.

Food Expenditure Example

In this example the data are sorted by income (low to high) and the subsets are created using
observation numbers. This is accomplished using the GUI. Click Data>Sort data from the main
menu bar to reveal the dialog box shown on the right side of Figure 8.6. The large income group
is expected to have larger variance so its estimate will be placed in the numerator of the GQ ratio.
The script is:

open "@gretldir\data\poe\food.gdt"
dataset sortby income

list x = const income

# large variance observations

smpl 21 40 --restrict

ols food_exp x

scalar stdlL = $sigma

scalar df_L = $df

#Restore the full sample

smpl full

# small variance observations

smpl 1 20 --restrict

ols food_exp x

scalar stdS = $sigma

scalar df_S = $4f

# GQ statistic

gq = stdL"2/stdS"2

scalar pv = pvalue(F, df_m, df_r, gq)
printf "\nThe F(%d, %d) statistic = %.3f. The right\
side p-value is %.4g.\n",df _m,df_r,gq,pv
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This yields:

The F(18, 18) statistic = 3.615. The right side p-value is 0.004596.
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Notice that in line 3 we have used the dataset sortby command in line 2 to sort the data without
using the GUL! This allows us to use the smpl 21 40 command to limit the sample to observations
21-40 for the first subset. The other minor improvement is to use the 1ist command in line 3 to
specify the list of independent variables. This is useful since the same regression is estimated twice
using different subsamples. The homoskedasticity null hypothesis is rejected at the 5% level since
the p-value is smaller than 0.05.

8.4 Heteroskedastic-Consistent Standard Errors

The least squares estimator can be used to estimate the linear model even when the errors are
heteroskedastic with good results. As mentioned in the first part of this chapter, the problem with
using least squares in a heteroskedastic model is that the usual estimator of precision (estimated
variance-covariance matrix) is not consistent. The simplest way to tackle this problem is to use
least squares to estimate the intercept and slopes and use an estimator of least squares covariance
that is consistent whether errors are heteroskedastic or not. This is the so-called heteroskcedasticity
robust estimator of covariance that gretl uses.

In this example, the food expenditure data is used to estimate the model using least squares
with both the usual and the robust sets of standard errors. Start by estimating the food expen-
diture model using least squares and add the estimates to the model table the estimates (Usual).
Reestimate the model using the —-robust option and store the results (modeltab add).

ols food_exp const income --quiet
modeltab add

ols food_exp const income —--robust --quiet
modeltab add

modeltab show

[ S

The model table, which I edited a bit, is

OLS estimates
Dependent variable: food_exp

(Usual) (HC3 Robust)

const 72.96* 72.96™*
(38.83) (19.91)
income  11.50** 11.50**
(2.508) (2.078)
n 20 20

'Replace sortby income with dsortby income to sort the sample by income in descending order.
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R? 0.5389 0.5389
4 —109.1 —109.1

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Notice that the coefficient estimates are the same, but that the estimated standard errors are
different. Interestingly enough, the robust standard error for the slope is actually smaller than the
usual one!

A number of commands behave differently when used after a model that employs the ——robust
option. For instance, the omit and restrict commands will use a Wald test instead of the usual one
based on the difference in sum of squared errors.

The confidence intervals can be computed manually using saved results from the regression or
from the model window of a model estimated through the GUI. Estimate the model using ols from
the GUI. Select Analysis > Confidence Intervals for coefficients in the model window
to generate confidence intervals based on the HCCME.

When you estimate the model, check the ‘Robust standard errors’ option (see Figure 8.2) and
choose the ‘Configure’ button to select one of the options for bias correction using the pull-down
menu for cross-sectional data as shown earlier in Figure 8.3.

These robust standard errors are obtained from what is often referred to as the heteroskedasticity-
consistent covariance matrix estimator (HCCME) that was proposed by Huber and rediscovered
by White. In econometrics, the HCCME standard errors may be referred to as White’s standard
errors or Huber/White standard errors. This probably accounts for the tab’s name in the dialog
box.

Since least squares is inefficient in heteroskedastic models, you’d think that there might be
another unbiased estimator that is more precise. And, there is. The generalized least squares
(GLS) estimator is, at least in principle, easy to obtain. Essentially, with the GLS estimator of the
heteroskedastic model, the different error variances are used to reweigh the data so that they are
all have the same (homoskedastic) variance. If the data are equally variable, then least squares is
efficient!

8.5 Weighted Least Squares

If you know something about the structure of the heteroskedasticity, you may be able to get more
precise estimates using a generalization of least squares. In heteroskedastic models, observations
that are observed with high variance don’t contain as much information about the location of
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the regression line as those observations having low variance. The basic idea of generalized least
squares in this context is to reweigh the data so that all the observations contain the same level
of information (i.e., same variance) about the location of the regression line. So, observations
that contain more noise are given small weights and those containing more signal a higher weight.
Reweighing the data in this way is known in some statistical disciplines as weighted least squares.
This descriptive term is the one used by gretl as well.

Suppose that the errors vary proportionally with x; according to
var(e;) = o’x; (8.5)

The errors are heteroskedastic since each error will have a different variance, the value of which
depends on the level of x;. Weighted least squares reweighs the observations in the model so that
each transformed observation has the same variance as all the others. Simple algebra reveals that

1 2
D) = 8.6
= var(e;) = o (8.6)
So, multiply equation (8.1) by 1/,/x; to complete the transformation. The transformed model is
homoskedastic and least squares and the least squares standard errors are statistically valid and
efficient.

Gretl makes this easy since it contains a function to reweigh all the observations according to
a weight you specify. The command is wls, which naturally stands for weighted least squares! The
only thing you need to be careful of is how gretl handles the weights. Gretl takes the square root
of the value you provide. That is, to reweigh the variables using 1/,/z; you need to use its square
1/z; as the weight. Gretl takes the square root of w for you. To me, this is a bit confusing, so
you may want to verify what gretl is doing by manually transforming y, x, and the constant and
running the regression. The script file shown below does this.

In the example, you first have to create the weight, then call the function wls. The script
appears below.

open "@gretldir\data\poe\food.gdt"

#GLS using built in function

series w = 1/income

wls w food_exp const income

scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
printf "\nThe 95%), confidence interval is (%.3f, %.3f).\n",1b,ub

#GLS using OLS on transformed data
series wi = 1/sqrt(income)

series ys = wi*food_exp

series xs = wi*x

series cs = wi

ols ys cs xs
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The first argument after wls is the name of the weight variable. Then, specify the regression to
which it is applied. Gretl multiplies each variable (including the constant) by the square root of
the given weight and estimates the regression using least squares.

In the next block of the program, w; = 1/,/x; is created and used to transform the dependent
variable, x and the constant. Least squares regression using this manually weighted data yields
the same results as you get with gretl’s wls command. In either case, you interpret the output of
weighted least squares in the usual way.

The weighted least squares estimation yields:

Model 6: WLS, using observations 1-40
Dependent variable: food_exp
Variable used as weight: w

Coefficient Std. Error t-ratio p-value

const 78.6841 23.7887 3.3076  0.0021
income 10.4510 1.38589 7.5410 0.0000

Statistics based on the weighted data:

Sum squared resid 13359.45 S.E. of regression 18.75006

R? 0.599438 Adjusted R? 0.588897
F(1,38) 56.86672 P-value(F) 4.61e-09
Log-likelihood —172.9795 Akaike criterion  349.9591

Schwarz criterion 353.3368 Hannan—Quinn 351.1804

Statistics based on the original data:

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304611.7 S.E. of regression 89.53266

and the 95% confidence interval for the slope 35 is (7.645, 13.257).

8.5.1 Grouped Data

In our discussion of the Goldfeld-Quandt test we decided that wages in rural and metropolitan
areas showed different amounts of variation. When the heteroskedasticity occurs between groups,
it is relatively straightforward to estimate the GLS corrections—this is referred to as Feasible GLS
(FGLS).
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The example consists of estimating wages as a function of education and experience and is
based on the ¢ps2.gdt used in the Goldfeld-Quandt test example. The strategy for combining these
partitions and estimating the parameters using generalized least squares is fairly simple. Each
subsample will be used to estimate the model and the standard error of the regression, ¢ (using the
accessor $sigma) will be saved. Then each subsample is weighted by the reciprocal of its estimated
variance (which is the squared value of the 1/62.

There are a couple of ways to estimate each subsample. The first was used in the Goldfeld-
Quandt test example where the metro subsample was chosen using smpl metro=1 --restrict and
the rural one chosen with smpl metro=0 --restrict. Grouped GLS using this method can be
found below:

open "@gretldir\data\poe\cps2.gdt"
list x = const educ exper

ols wage x metro

smpl metro ——-dummy

ols wage x

scalar stdm = $sigma

smpl full

series rural = l-metro

smpl rural --dummy
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ols wage x

scalar stdr = $sigma
#Restore the full sample
smpl full

series wm = metro*stdm

N e e
=W N =

15 series wr = ruralxstdr
16 series w = 1/(wm + wr)~2
17 wls w wage x metro

The smpl command is used in a new way here. In line 3 smpl metro --dummy restricts the sample
based on the indicator variable metro. The sample will be restricted to only those observations for
which metro=1. The wage equation is estimated in line 4 for the metro dwellers and the standard
error of the regression is saved in line 6.

The next lines restore the full sample and create a new indicator variable for rural dwellers.
Its value is just 1-metro. We generate this in order to use the smpl rural --dummy syntax. We
could have skipped generating the rural and simply used smpl metro=0 --restrict. In line 10
the model is estimated for rural dwellers and the standard error of the regression is saved.

The full sample must be restored and two sets of weights are going to be created and combined.
In line 14 the statement series wm = metro*stdm multiplies the metro S.E. of the regression times
the indicator variable. Its values will either be stdm for metro dwellers and 0O for rural dwellers.
We do the same for rural dwellers in 15. Adding these two series together creates a single variable
that contains only two distinct values, 63 for metro dwellers and g for rural ones. Squaring this
and taking the reciprocal provides the necessary weights for the weighted least squares regression.
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WLS, using observations 1-1000
Dependent variable: wage

Coefficient Std. Error  t-ratio  p-value

const —9.39836  1.01967 —9.2170 0.0000
educ 1.19572  0.0685080  17.4537 0.0000
exper 0.132209 0.0145485 9.0874 0.0000
metro 1.53880  0.346286 4.4437 0.0000

Statistics based on the weighted data:

Sum squared resid 998.4248 S.E. of regression 1.001217

R? 0.271528  Adjusted R? 0.269334
F(3,996) 123.7486  P-value(F) 3.99¢-68
Log-likelihood —1418.150 Akaike criterion  2844.301

Schwarz criterion 2863.932 Hannan—Quinn 2851.762

Statistics based on the original data:

Mean dependent var 10.21302 S.D. dependent var 6.246641
Sum squared resid 28585.82  S.E. of regression 5.357296

8.6 A Hetroskedasticity Function

A commonly used model for the error variance is the multipicative heteroskedasticity
model. It appears below in equation 8.7.

02 = exp (o + azz;) (8.7)
The variable z; is an independent explanatory variable that determines how the error variance
changes with each observation. You can add additional zs if you believe that the variance is related
to them (e.g., 02 = exp (a1 + a22i2 + @3z;3)). It’s best to keep the number of zs relatively small.
The idea is to estimate the parameters of (8.7) using least squares and then use predictions as
weights to transform the data.

In terms of the food expenditure model, let z; = In(income;). Then, taking the natural loga-
rithms of both sides of (8.7) and adding a random error term, v;, yields

In (07) = a1 + agz; +v; (8.8)

To estimate the as, first estimate the linear regression (8.2) (or more generally, 8.1) using least
squares and save the residuals. Square the residuals, then take the natural log; this forms an
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estimate of In (02) to use as the dependent variable in a regression. Now, add a constant and the
zs to the right-hand side of the model and estimate the as using least squares.

The regression model to estimate is

In (&2) = a1 + agz; + v; (8.9)
where é2 are the least squares residuals from the estimation of equation (8.1). The predictions
from this regression can then be transformed using the exponential function to provide weights for

weighted least squares.

For the food expenditure example, the gretl code appears below.

logs income

list x = const income

list z = const 1l_income

ols food_exp x

series lnsighat = 1n($uhat~2)

ols lnsighat z

matrix alpha = $coeff

matrix alphal[l]=alpha[1]+1.2704
series wt = 1/exp(lincomb(z, alpha))
wls wt food_exp x

© 0 N9 3 s W NN

=
o

The first three lines get the data set up for use; we take the natural log of income and create the
two lists needed for the regression and the heteroskedasticity function. Line 4 estimates the linear
regression using least squares. Next, a new variable is generated (1nsighat) that is the natural
log of the squared residuals from the preceding regression. Estimate the skedasticity function using
least squares and put the estimates from this regression into a matrix called, gam. We do this
because the least squares estimator of the intercept is actually biased and we need to add 1.2704
to it to remove the bias. This isn’t strictly necessary to get the correct parameter estimates and
standard errors in the weighted regression. The weights are easily obtained using the lincomb
function, which as we’ve seen elsewhere multiplies za = ay + ag * In(income);. Remember, gretl
automatically takes the square roots of wt for you in the wls function.

The output is:

WLS, using observations 1-40
Dependent variable: food_exp
Variable used as weight: w

coefficient std. error t-ratio p-value
const 76.0538 9.71349 7.830 1.91e-09  *%x
income 10.6335 0.971514 10.95 2.62e-013 **x
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Statistics based on the weighted data:

Sum squared resid 25.52057 S.E. of regression  0.819508

R-squared 0.759187  Adjusted R-squared 0.752850
F(1, 38) 119.7991 P-value (F) 2.62e-13
Log-likelihood -47.76965 Akaike criterion 99.53930
Schwarz criterion 102.9171 Hannan-Quinn 100.7606

Statistics based on the original data:

Mean dependent var  283.5735 S.D. dependent var 112.6752
Sum squared resid 304869.6 S.E. of regression  89.57055

The model was estimated by least squares with the HCCME standard errors in section 8.1. The
parameter estimates from FGLS are not much different than those. However, the standard errors
are much smaller now. The HC3 standard error for the slope was 1.88 and is now only 0.97. The
constant is being estimated more precisely as well. So, there are some potential benefits from using
a more precise estimator of the parameters.

8.6.1 Maximum Likelihood Estimation

The two-step estimation of the multiplicative heteroskedasticity model can be improved upon
slightly by estimating the model via maximum likelihood. Maximum likelihood estimation of the
model requires a set of starting values for the parameters that are easily obtained via the two-step
estimator. The log-likelihood is:

n

n 1 ¢ 1 u?
lnL:—51n27r—§ E lna?—§ E — (8.10)
i=1 =1 "t

2

where o7 = exp{aq + a2 * In(income;)} and u; are the residuals from the regression.

# Assemble lists for x and z
list z = const 1l_income

list x = const income

series y = food_exp

# Starting values

ols y x

series lnsighat = 1ln($uhat~2)
ols lnsighat z

10 matrix alpha = $coeff

11
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12 # MLE
13 mle loglik = -0.5 * 1n(2%pi) - 0.5*%zg - 0.5xe"2*exp(-zg)
14 series zg = lincomb(z, alpha)
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15 series e = y - lincomb(x, beta)
16 params beta alpha
17 end mle

The first part of the script is basically the same as the one in the preceding section. The only
change is that I placed the food_exp into a new series called y. I did this to make the mle part of
the program more general. It should work with any x, z, and y you choose.

The mle function operates on an observation by observation basis, hence there was no need to
use n and the summations from equation (8.10). The first series in line 14 is for the skedasticity
function and the second, in line 15, gets the residuals. These are the only inputs we need for loglik
defined in line 13 (provided you have defined the series x and z and provided starting values for the
parameter vectors alpha and beta). As written, the routine will use numerical derivatives to try
to find the maximum of the log likelihood function. It is possible to specify analytical ones, which
sometimes useful. Here, the numerical ones work just fine as seen below.

The results are:

Using numerical derivatives
Tolerance = 1.81899e-012

Function evaluations: 68
Evaluations of gradient: 39

Model 11: ML, using observations 1-40
loglik = -0.5 * 1n(2%pi) - 0.5*zg - 0.5xe"2xexp(-zg)
Standard errors based on Outer Products matrix

estimate std. error b4 p-value
betal1] 76.0728 8.39834 9.058 1.33e-019 *x*x
betal[2] 10.6345 0.975438 10.90 1.12e-027 *xx*
alpha[1] 0.468398 1.805625 0.2595  0.7953
alpha[2] 2.76976 0.611046 4.533 5.82e-06 *xx*
Log-likelihood -225.7152  Akaike criterion 459.4304
Schwarz criterion 466.1859 Hannan-Quinn 461.8730

You can see that these are very similar to the ones from weighted least squares.

One of the advantages of using this approach is that it yields a t-ratio for the hypothesis:
Hy: 0? = o?
H:0?= exp{ai + az In(income;) }

The alternative is specific as to the form of the heteroskedasticity (multiplicative) as well as the
cause (In(income). Because the model is estimated by maximum likelihood, the asymptotic distri-
bution of the ¢-ratio is N(0,1). Gretl produces a p-value from this distribution in the output, which
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in this case is less than 0.05 and hence you can reject the null in favor of this specific alternative
at that level of significance.

8.7 Heteroskedasticity in the Linear Probabilty Model

In chapter 7 we introduced the linear probability model. It was shown that the indicator
variable, y; is heteroskedastic. That is,

var(y;) = mi(1 —m;) (8.11)

where 7; is the probability that the dependent variable is equal to 1 (the choice is made). The
estimated variance is -
var(y;) = (1 — ;) (8.12)

This can be used to perform feasible GLS. The cola marketing data coke.gdt is the basis for this
example. The independent variable, coke, takes the value of 1 if the individual purchases Coca-Cola
and is 0 if not. The decision to purchase Coca-Cola depends on the ratio of the price relative to
Pepsi, and whether displays for Coca-Cola or Pepsi were present. The variables disp_coke=1 if a
Coca-Cola display was present, otherwise 0; disp_pepsi=1 if a Pepsi display was present, otherwise
it is zero.

First, the data are loaded and the summary statistics are provided.
open "@gretldir\data\poe\coke.gdt"

summary —--simple

list x = const pratio disp_coke disp_pepsi

=W NN =

The --simple option is used for the summary command. Then a list is created that contains
the names of the independent variables to be used in the estimated models. The basic summary
statistics are:

Summary statistics, using the observations 1 - 1140

Mean Minimum Maximum Std. Dev.
coke 0.44737 0.00000 1.0000 0.49744
pr_pepsi 1.2027 0.68000 1.7900 0.30073
pr_coke 1.1901 0.68000 1.7900 0.29992
disp_pepsi 0.36404 0.00000 1.0000 0.48137
disp_coke 0.37895 0.00000 1.0000 0.48534
pratio 1.0272 0.49721 2.3247 0.28661

Everything looks good. There are no negative prices, and the indicator variables are all contained
between 0 and 1. The magnitudes of the means are reasonable.
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Next, least squares is used to estimate the model twice: once with usual standard errors and
again with the HCCME standard errors produced by the —--robust option. Each is added to a
model table using modeltab add.

# OLS

ols coke x
modeltab add

# OLS w/robust

ols coke x —--robust
modeltab add

U e W N =

Feasible GLS will be estimated in two ways. In the first regression, we will omit any observation
that has a negative estimated variance. Remember that one of the problems with linear probability
is that predictions are not constrained to lie between 0 and 1. If §; < 0 or ¢; > 1, then variance
estimates will be negative. In the first line below a new series is created to check this condition.
If the variance, varp, is greater than zero, pos will be equal to 1 and if not, then it is zero. The
second line creates a weight for wls that is formed by multiplying the indicator variable pos times
the reciprocal of the variance. In this way, any nonnegative weights become zeros.

Remove observations with negative variance

series p = $yhat

series varp = p*(1-p)
series pos = (varp > 0)
series w = pos * 1/varp
# omit regression

wls w coke x

modeltab add

N o g W N =

The first line uses the accessor for the predicted values from a linear regression, $yhat, and therefore
it must follow least squares estimation of the linear probability model; in this model, they are
interpreted as probabilities. Once again, a trick is being used to eliminate observations from the
model. Basically, any observation that has a zero weight in w is dropped from the computation.
There are equivalent ways to do this in gretl as shown below

Two other ways to drop observations
smpl varp>0 --restrict

setmiss O w

The restricting the sample is probably the most straightforward method. The second uses the
setmiss command that changes the missing value code to 0 for elements of w; any observation
where w=0 is now considered missing and won’t be used to estimate the model.

Finally, another feasible GLS estimation is done. This time, p; is truncated at 0.01 if g; < 0.01
and to 0.99 if g; > 0.99. The code to do this is
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—  WLS with truncated variances for observations out of bounds
series b = (p<.01) || (p>.99)

series pt = bx0.01 + p*x(1-Db)
series varp_t = pt*(1-pt)
series w_t = 1/varp_t

wls w_t coke x

modeltab add

modeltab show

B > B | B N N

The first line creates another indicator variable that takes the value of 1 if the predicted probability
falls outside of the boundary. The || is a logical operator that takes the union of the two condi-
tions (=“OR”). The second line creates the truncated value of the probability using the indicator
variable.

(8.13)

~]5(0.01) +p(1 —b) =0.01 whenb=1
T 16(0.01) +p(1—b)=p  whenb=0

There is another, less transparent, way to generate the truncated probabilities: use the ternary
conditional assignment operator. This operates like an if statement and can be used to save a line
of script. This syntax would create the series as

The conditional assignment operator
series pt = ( (p<.01) || (p>.99) ) 7 0.01 : p

Basically the bound condition in parentheses (p < .01)||(p > .99) is checked: that is what the
question mark represents. If it is true, pt is set to the first value that appears in front of the
colon. If false, it is set to the value specified to the right of the colon. It operates very much like a
traditional if statement in a spreadsheet program. This method is more efficient computationally
as well, which could save some time if used in a loop to perform simulations.

Once the truncated probabilities are created, then the usual weighted least squares estimation
can proceed. The model table appears below:

Dependent variable: coke

(1) (2) (3) (4)

OLS OLS WLS WLS
const 0.8902** 0.8902** 0.8795** 0.6505**
(0.06548) (0.06563) (0.05897) (0.05685)
pratio —0.4009**  —0.4009**  —0.3859**  —0.1652**
(0.06135) (0.06073) (0.05233) (0.04437)
disp_coke 0.07717** 0.07717** 0.07599** 0.09399**
(0.03439) (0.03402) (0.03506) (0.03987)
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disp_pepsi  —0.1657**  —0.1657**  —0.1587**  —0.1314**

(0.03560) (0.03447) (0.03578) (0.03540)
n 1140 1140 1124 1140
R? 0.1177 0.1177 0.2073 0.0865
12 —748.1 —748.1 —1617 —1858

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Columns (1) and (2) are the OLS estimates with usual and robust standard errors, respectively.
Column (3) uses WLS with the negative variance observations omitted from the sample. Column
(4) is WLS with the negative predictions truncated. These results are quite a bit different from
the others. This no doubt occurs because of the large weight being placed on the 16 observations
whose weights were constructed by truncation. The var(e;) = 0.01(1 — 0.01) = 0.0099. The square
root of the reciprocal is approximately 10, a large weight to be placed on these 16 observations
via WLS. Since these extreme observations carry a large weight relative to the others, they exert a
considerable influence on the estimated regression.

8.8 Script

open "@gretldir\data\poe\food.gdt"

set echo off

ols food_exp const income

gnuplot food_exp income --linear-fit

# see section 1.4 of this manual for commands to view these plots.

# ols with HCCME standard errors

ols food_exp const income --robust

# confidence intervals (Robust)

scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
printf "\nThe 95%) confidence interval is (%.3f, %.3f).\n",1lb,ub

© ~ (=] ot - W [} -

I S = S ST
=W N = O

# residual plot

ols food_exp const income --robust

series res = $uhat

setinfo res -d "Least Squares Residuals" -n "Residual"
gnuplot res income --output=c:\Temp\olsres

I S S S Y
© 0w 9 O w

# lauch gnuplot (Windows only)
launch wgnuplot

NN
= o
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22 # To view graph, type: load ’C:\Temp\olsres’ at prompt
23

24 # residual magnitude plot with loess fit
25 series abs_e = abs(res)

26 setinfo abs_e -d "Absolute value of the LS\
27 Residuals" -n "Absolute Value of Residual"
28 gnuplot abs_e income --loess-fit --output=c:\temp\loessfit.plt
29

30 # LM test for heteroskdasticity

31 ols food_exp const income

32 series sq_ehat = $uhat*$ubhat

33 ols sq_ehat const income

34 scalar NR2 = $trsq

35 pvalue X 1 NR2

36

37 # built-in LM test

38 ols food_exp const income

39 modtest income --breusch-pagan

40

41 # White test

42 ols food_exp const income

43 series sq_ehat = $uhat*$ubhat

44 series sq_income = income”2

45 ols sq_ehat const income sq_income

46 scalar NR2 = $trsq

47 pvalue X 2 NR2

48

49 # built-in White test

50 ols food_exp const income --quiet

51 modtest --white --quiet

52

53 # grouped data--Goldfeld-Quandt

54 open "Ogretldir\data\poe\cps2.gdt"

55 0ls wage const educ exper metro

56 # Use only metro observations

57 smpl metro=1 --restrict

58 0ls wage const educ exper

59 scalar stdm = $sigma

60 scalar df _m = $df

61 #Restore the full sample

62 smpl full

63 # Use only rural observations

64 smpl metro=0 --restrict

65 0ls wage const educ exper

66 scalar stdr = $sigma

67 scalar df_r = $df

68 # GQ statistic

69 gq = stdm”~2/stdr"2

70 scalar pv = pvalue(F, df_m, df_r, gq)

71 printf "\nThe F(%d, %d) statistic = %.3f. The right side\
72 p-value is %.4g.\n",df_m,df_r,gq,pv
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# Goldfeld-Quandt for food expenditure

open "@gretldir\data\poe\food.gdt"

dataset sortby income

list x = const income

ols food_exp x

# large variance observations

smpl 21 40

ols food_exp x

scalar stdL = $sigma

scalar df _L = $df

#Restore the full sample

smpl full

# small variance observations

smpl 1 20

ols food_exp x

scalar stdS = $sigma

scalar df_S = $df

# GQ statistic

gq = stdlL"2/stdS"2

scalar pv = pvalue(F, df_L, df_S, gq)

printf "\nThe F(%d, %d) statistic = %.3f. The right\
side p-value is %.4g.\n",df_L,df_S,gq,pv

# compare ols with and without HCCME
list x = const income

ols food_exp x ——quiet

modeltab add

ols food_exp x --robust --quiet
modeltab add

modeltab show

# hypothesis test
ols food_exp x —--robust
omit income
ols food_exp x —--quiet
restrict

b[2]=0
end restrict

ols food_exp x —--robust --quiet
restrict

b[2]=0
end restrict

open "@gretldir\data\poe\food.gdt"
#GLS using built in function
series w = 1/income

wls w food_exp const income
scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
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124 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
125 printf "\nThe 9577 confidence interval is (%.3f, %.3f).\n",1b,ub

126

127 #GLS using OLS on transformed data

128 series wi = 1/sqrt(income)

120 series ys = wixfood_exp

130 series xs = wi*income

131 series c¢s = wi
132 ols ys cs Xxs

134 #Wage Example

135 open "@gretldir\data\poe\cps2.gdt"
136 0ls wage const educ exper metro
137 # Use only metro observations

138 smpl metro ——dummy

139 ols wage const educ exper

140 scalar stdm = $sigma

141 smpl full

142 #Create a dummy variable for rural
143 series rural = l-metro

144 #Restrict sample to rural observations
145 smpl rural --dummy

146 0ls wage const educ exper

147 scalar stdr = $sigma

148 #Restore the full sample

149 smpl full

150 #Generate standard deviations for each metro and rural obs
151 series wm = metro*stdm

152 series wr = rural*stdr

153 series w = 1/(wm + wr)~2

154 #Weighted least squares

155 Wls w wage const educ exper metro

157 # heteroskedastic model

158 open "Ogretldir\data\poe\food.gdt"
159 logs income

160 list x = const income

161 list z = const 1l_income

162 ols food_exp x

163 series lnsighat = 1n($uhat~2)

164 ols lnsighat z

165 matrix gam = $coeff

166 matrix gam[1]=gam[1]+1.2704

167 series wt = 1/exp(lincomb(z, gam))
168 wls wt food_exp x

170 # MLE of the multiplicative heteroskedasticity model
171 open "@gretldir\data\poe\food.gdt"

172 logs income

173 list z = const 1l_income

174 list x = const income
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series y = food_exp

# Starting values

ols y x

series lnsighat = 1ln($uhat”~2)
ols lnsighat z

matrix alpha = $coeff

# MLE

mle loglik = -0.5 * 1n(2*pi) - 0.5xzg - 0.5%e"2*exp(-zg)

series zg = lincomb(z, alpha)
series e = y - lincomb(x, beta)
params beta alpha

end mle

# linear probability model
open "@gretldir\data\poe\coke.gdt"
summary —--simple

list x = const pratio disp_coke disp_pepsi

# OLS

ols coke x

modeltab add

# OLS w/robust

ols coke x --robust
modeltab add

series p = $yhat

series varp = p*(1-p)
series pos = (varp > 0)
series w = pos * 1/varp

# omit regression
wls w coke x
modeltab add

# smpl varp>0 --restrict

# setmiss O w

series b = (p<.01) || (p>.99)
series pt = bx0.01 + p*x(1-Db)
series varp_t = pt*(1-pt)
series w_t = 1/varp_t

# trunc regression

wls w_t coke x

modeltab add

modeltab show
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Figure 8.4: Plot of food expenditures against income with least squares fit.
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Figure 8.5: Plot of the absolute value of the food expenditures model residuals against income with
loess fit.
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Figure 8.6: Select Data>Sort data from the main menu bar to reveal the dialog box shown on the
right side of of this figure. Choose the desired sort key and indicate whether you want to sort in
ascending or descending order.
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Chapter

Regression with Time-Series Data: Stationary
Variables

As in chapter 9 of Principles of Econometrics, 4th edition, three ways in which dynamics can
enter a regression relationship are considered—through lagged values of the explanatory variable,
lagged values of the dependent variable, and lagged values of the error term.

In time-series regressions the data need to be stationary in order for the usual econometric
procedures to have the proper statistical properties. Basically this requires that the means, vari-
ances and covariances of the time-series data cannot depend on the time period in which they are
observed. For instance, the mean and variance of GDP in the third quarter of 1973 cannot be
different from those of the 4th quarter of 2006. Methods to deal with this problem have provided a
rich field of research for econometricians in recent years and several of these techniques are explored
later in chapter 12.

One of the first diagnostic tools used is a simple time-series plot of the data. A time-series
plot will reveal potential problems with the data and suggest ways to proceed statistically. As seen
in earlier chapters, time-series plots are simple to generate in gretl and a few new tricks will be
explored below.

Finally, since this chapter deals with time-series observations the usual number of observations,

N, is replaced by the more commonly used 7'. In later chapters, where both time-series and cross
sectional data are used, both NV and T are used.
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9.1 Data Structures: Time Series

In order to take advantage of gretl’s many built-in functions for analyzing time-series data,
one has to declare the data in the set to be a time-series. Since time-series are ordered in time
their position relative to the other observations must be maintained. It is, after all, their temporal
relationships that make analysis of this kind of data different from cross-sectional analysis.

If the data you have do not already have a proper date to identify the time period in which the
observation was collected, then adding one is a good idea. This makes identification of historical
periods easier and enhances the information content of graphs considerably. Most of the data sets
distributed with your book have been declared to be time-series and contain the relevant dates in
the set of variables. However, it is a good idea to know how to add this information yourself and
we show how to do so here. Basically you need to identify to gretl that the data are time-series,
you need to specify their frequency of observation, and then identify the starting date. As long as
there are no ‘holes’ in the data, this should get you the relevant set of dates matched to the periods
they are observed.

Before getting to the specific examples from the text, something should be said about how gretl
handles dates and times.

Gretl is able to recognize dates as such in imported data if the date strings conform to the
following rules. For annual data, you must use 4-digit years. For quarterly data: a 4-digit year,
followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit quarter.
Examples: 1997.1, 2002:3, 1947Q1. For monthly data: a 4-digit year, followed by a period or a
colon, followed by a two-digit month. Examples: 1997.01, 2002:10.

Gretl allows you to declare time-series annually, monthly, weekly, daily (5, 6, or 7 per week),
hourly, decennially, and has a special command for other irregular dates. Its date handling features
are reasonably good, but it is not nearly as sophisticated as those found in other software like
Stata. On the other hand, for what it does it is much easier to use. It works beautifully with most
datasets.

There are two methods of getting your dataset structured as a time-series. The first uses
the GUI. Click Data>Dataset structure from the pull-down menu to initiate the data structure
wizard. The wizard serves up a series of dialog boxes that help you to define when the observations
occur. The first dialog defines the structure: the choices are cross-sectional, time-series, and panel.
Choosing time-series brings up a dialog to set the frequency. Choices include: annual, quarterly,
monthly, weekly, daily (5, 6, or 7 per week), hourly, decennial, a special command for other irregular
dates. Choosing one of these brings up the next dialog that sets the start point. For instance,
quarterly data might start at 3rd quarter of 1972. You would enter, 1972:3 in the box. Then the
confirmation dialog opens. It reveals how gretl interpreted your choices. You check to see whether
the data start and stop when expected. If so, then your data structure is almost certainly correct.
If the end date is something other than you expect, then go back and try again. You may have some
gaps in the data series that need to be filled in order for the dates and the number of observations
to match up. Sometimes things need manual editing due to holidays and such. Be patient and get
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Figure 9.1: Choose Data>Dataset structure from the main window. This starts the Dataset
wizard, a series of dialogs that allow you to specify the periodicity and dates associated with your
data.
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Figure 9.2: Check the confirmation box to be sure the expected time periods are given.

this right, otherwise you may end up having to redo you analysis. Figure 9.1 shows the first three
dialog boxes for defining time-series structure. The last box (Figure 9.2) confirms that the series
starts in 1960:1 and ends in 2009:4.

The setobs command is used to accomplish the same thing from the console or in a script. The
syntax is summarized
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setobs

Variants: setobs periodicily startobs
setobs wnivar timevar
setobs --labels=filename
Options: --cross-section (interpret as cross section)
--time-=zeries= (interpret as time series)
—--stacked-cross-section (interpret as panel data)
—-stacked-time-series (interpret as panel data)
—-panel-vars (use index variables, see belowr)
Examples: setobs 4 1990:1 --time-series
setobs 12 1378:03
setobs 1 1 --cross-section
setobs 20 1:1 --stacked-time-series
setobs unit year --panel-vars

Basically you define the periodicity and when the series starts. Then the options are used to
indicate what the actual structure is (e.g., time-series). Some examples are found in Table 9.1.

9.2 Time-Series Plots

Gnuplot handles all the plotting in gretl. Gretl includes some functions that help to com-
municate with gnuplot, which makes things much easier to do. On the other hand, if you have
something really fancy to plot, you may have to use gnuplot directly to get the desired result.
All-in-all, gretl’s graphical interface that works with gnuplot is quite easy to use and powerful.

Gretl’s time-series plot is really just an XY scatter plot against time with the --1ines option
used to connect the data point. It’s relatively primitive. Clicking on a graph brings up a list of
things you can do, including edit the graph. Clicking the edit button brings up the plot control
dialog box (Figure 4.16) where substantial customization can be done.

Gretl also has a facility to plot multiple series in separate graphs that appear on the same page.
This is accomplished using the scatters command or View>Multiple graphs>Time-series from
the main menu bar. There is no built-in facility for further editing these graphs, but you can save
them in several formats. Examples of this are found below.

Syntax ‘ Results
setobs 4 1990:1 --time-series Quarterly data that start in 1990:1
setobs 1 1952 --time-series Annual data starting in 1952

setobs 12 1990:03 --time-series Monthly data starting in March, 1990
setobs 5 1950/01/06 --time-series | Daily data (5 day weeks) starting Jan. 6, 1950

Table 9.1: Data structure using setobs: Some examples for time-series
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In this example time-series graphs are plotted for the U.S. unemployment rate and GDP growth
from 1985 to 2009. The data are found in the okun.gdt data file.

open "@gretldir\data\poe\okun.gdt"

setinfo g -d "percentage change in U.S. Gross Domestic Product, seasonally \
adjusted" -n "Real GDP growth"

setinfo u -d "U.S. Civilian Unemployment Rate (Seasonally adjusted)" -n \
"Unemployment Rate"

gnuplot g --with-lines --time-series --output=c:\temp\okun_g.plt

gnuplot u --with-lines --time-series --output=c:\temp\okun_u.plt

B B T L B S R N

The two plots are shown in Figure 9.3. The graphs can be combined using the GUI by choosing
View>Multiple graphs>Time-series. The result appears in Figure 9.4. The gretl command to
generate multiple series in multiple graphs is

scatters g u

9.3 Finite Distributed Lags

Finite distributed lag models contain independent variables and their lags as regressors.

yr = a+ Poxy + Prxe—1 + Poti—o + ... ByTi—q + € (9.1)

fort=q+1,...,T. The particular example considered here is an examination of Okun’s Law. In
this model the change in the unemployment rate from one period to the next depends on the rate
of growth of output in the economy.

ug —ug—1 = —y(g9t — gn) (9.2)

where u; is the unemployment rate, g; is GDP growth, and gy is the normal rate of GDP growth.
The regression model is
Aup = o+ Pogr + e (9.3)

where A is the difference operator, « = yGy, and Sy = —7y. An error term has been added to the
model. The difference operator, Au = u; — u;_1 for all = 2,3,...,T. Notice that when you take
the difference of a series, you will lose an observation.

Recognizing that changes in output are likely to have a distributed-lag effect on unemployment—
not all of the effect will take place instantaneously—lags are added to the model to produce:

Aug = o+ Pogi + B1gi—1 + Bagi—2 + -+ + ByGi—q + €1 (9.4)
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Real GDP growth
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Figure 9.3: Time-Series graphs of Okun data
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The differences of the unemployment rate are taken and the series plotted in Figure 9.5 below. and
this will produce a single graph that looks like those in Figure 9.4 of POFE4. To estimate a finite
distributed lag model in gretl is quite simple using the lag operators. Letting ¢ = 3 and

1 diff u
2 ols d_u const g(0 to -3)

This syntax is particularly pleasing. First, the diff varname function is used to add the first
difference of any series that follow; the new series is called d_varname. Next, the contemporaneous
and lagged values of g can be succinctly written g(0 to -3). That tells gretl to use the variable
named g and to include g, g,_{, g;,_5, and g, 5. When the lagged values of g are used in the
regression, they are actually being created and added to the dataset. The names are g_number.
The number after the underline tells you the lag position. For instance, g_2 is g lagged two time
periods. The new variables are given ID numbers and added to the variable list in the main gretl
window as shown in Figure 9.6.

The regression output that uses the new variables is:
OLS, using observations 1986:1-2009:3 (7' = 95)
Dependent variable: d_u

Coefficient ~ Std. Error  t-ratio  p-value
const 0.580975 0.0538893  10.7809 0.0000

g —0.202053 0.0330131 —6.1204 0.0000
g1 —0.164535 0.0358175 —4.5937 0.0000
g2 —0.0715560  0.0353043 —2.0268 0.0456
g-3 0.00330302 0.0362603 0.0911 0.9276

Mean dependent var 0.027368 S.D. dependent var 0.289329

Sum squared resid 2.735164 S.E. of regression 0.174329
R? 0.652406 Adjusted R? 0.636957
F(4,90) 42.23065 P-value(F') 6.77e-20
Log-likelihood 33.71590 Akaike criterion —57.43179
Schwarz criterion —44.66241 Hannan—Quinn —52.27200
0 0.358631 Durbin—Watson 1.274079

Notice that the t-ratio on g_3 is not significantly different from zero at 10%. We drop it and
reestimate the model with only 2 lagged values of g. For comparison, the sample is held constant.

1 smpl 1986:1 2009:3
2 ols d_u const g(0 to -2)
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Figure 9.6: Notice that the lagged variables used in the model are added to the list of available
series. They also receive ID numbers.

The AIC reported by gretl has fallen to -59.42303, indicating a marginal improvement in the
model.

If you are using the GUI rather than a gretl script to estimate the model, you have the
opportunity to create the lagged variables through a dialog box. The specify model dialog and the
lag order dialog are shown in Figure 9.7 below.

9.4 Serial Correlation

The multiple linear regression model of equation (5.1) assumes that the observations are not
correlated with one another. While this is certainly believable if one has drawn a random sample,
it’s less likely if one has drawn observations sequentially in time. Time series observations, which
are drawn at regular intervals, usually embody a structure where time is an important component.
If you are unable to completely model this structure in the regression function itself, then the
remainder spills over into the unobserved component of the statistical model (its error) and this
causes the errors be correlated with one another.

One way to think about it is that the errors will be serially correlated when omitted effects
last more than one time period. This means that when the effects of an economic ‘shock’ last more
than a single time period, the unmodeled components (errors) will be correlated with one another.
A natural consequence of this is that the more frequently a process is sampled (other things being
equal), the more likely it is to be autocorrelated. From a practical standpoint, monthly observations
are more likely to be autocorrelated than quarterly observations, and quarterly more likely than
yearly ones. Once again, ignoring this correlation makes least squares inefficient at best and the
usual measures of precision (standard errors) inconsistent.

204



p
“ gretl: specify model = B

You can add leads and lags to

oLs variables in the data list, including to

the dependent variable. Define a range
or pick specific lags.

const Dependent variable

H

dLI i a
u = B3 1ag order Iﬁ
Set as default
d_u O Variable lags or specific lags
Independent variables default |0 “to [0 =
g
g(-1) [] Lags of dependent variable
g-2) % du |1 S to|1
53
' e ) [
[T] Robust standard errors | Configure I )

{ Use the dialog to produce the lags in

the independent variable list.

| Hep || cesr || gance |[ o

L A

Figure 9.7: The OLS specify model dialog box has a button that brings up a dialog to specify lag
order. Once entered the new lagged variables show up in the list of independent variables.

9.4.1 Serial Correlation in a Time-Series

To gain some visual evidence of autocorrelation you can plot the series against its lagged values.
If there is serial correlation, you should see some sort of positive or negative relationship between
the series. Below (Figure 9.8) is the plot of Real GDP growth against its lagged value. A least
squares fit is plotted to show the general orientation of the linear relationship. The series itself
certainly appears to be serially correlated.

Other evidence can be obtained by looking at the correlogram. A correlogram is simply a
plot of a series’ sample autocorrelations. The kth order sample autocorrelation for a series y is the
correlation between observations that are k periods apart. The formula is

_ Z?:k—i—l(% — )Yk — ¥)
S (v — 9)°

In gretl the correlogram plots a number of these against lags. The syntax to plot 12 autocorrelations
of the series g is

Tk

(9.5)

corrgm g 12

which yields the plot in Figure 9.9. The correlogram is the plot at the top and the partial auto-
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Figure 9.8: This plot shows the relationship between GDP growth vs. lagged growth.

correlations are printed in the bottom panel. Approximate 95% confidence intervals are plotted to
indicate which are statistically significant at 5%.

Approximate 95% confidence bands are computed using the fact that v/Tr, ~ N(0,1). These
can be computed manually using the fact that the corrgm function actually generates a matrix
return. The script to generate the intervals is

matrix ac = corrgm(g, 12)

matrix 1b ac[,1]-1.96/sqrt ($nobs)

matrix ub = ac[,1]+1.96/sqrt ($nobs)

matrix all = 1b~ac[,1] ub

colnames(all, "Lower AC Upper ")

printf "\nAutocorrelations and 95%J confidence intervals\n %9.4f\n", all

N o g W N =

The intervals so generated are:

Autocorrelations and 95% confidence intervals
Lower AC Upper
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ACF for Real GDF growth
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Figure 9.9: The 12 period correlogram for U.S. GDP growth.

0.296 0.494 0.692
0.213 0.411 0.609
-0.044 0.154 0.352
0.002 0.200 0.398
-0.108 0.090 0.288
-0.174 0.024 0.222
-0.228 -0.030 0.168
-0.280 -0.082 0.116
-0.154 0.044 0.242
-0.219 -0.021 0.177
-0.285 -0.087 0.111
-0.402 -0.204 -0.006

The matrix ac holds the autocorrelations in the first column and the partial autocorrelations in
the second. The matrices 1b, ub, and all use indexing to use all rows of the first column of ac,
i.e., ac[,1]. This was be dressed up a bit by adding colnames function to add the column names
to the matrix.
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You can see that zero is not included in the 1st, 2nd, 4th, and last interval. Those are signifi-
cantly different from zero at 5% level.

The correlogram can be useful for detecting the order of autocorrelation. A long series of
declining autocorrelations with a single significant pacf is often an indication of a short order
autocorrelation process. See POE/ for more guidance.

9.4.2 Serial Correlation in Residuals

The correlogram can also be used to check whether the assumption that model errors have zero
covariance—an important assumption in the proof of the Gauss-Markov theorem. The example that
illustrates this is based on the Phillips curve that relates inflation and unemployment. The data
used are from Australia and reside in the phillips_aus.gdt dataset.

The model to be estimated is

inf, = B1 + BoAuy + ey (9.6)

The data are quarterly and begin in 1987:1. A time-series plot of both series is shown below in
Figure 9.10. The graphs show some evidence of serial correlation in both series.

Inflation Rate D.Unemployment Rate

3 I I I I I D.B I r||| I I I I .
2.5 | - ok |l -
“. | ||
2t 4l - 0.4 | '. [ I
sl l hk . 0.2 | “ I.'|| i|||—
I | 1 I AR NN
1 | i 0 I '] ! ﬂ pAN |
b1 ’L A ¥ | . LI LA
0.5 | 'JI W i”l || | |Ih\“'| I | 0.2 F'.f . "II IHu|| i
/T |. U | -
0F 'u,l' \| I -0.4 - f -
0.5 L ! IJl ! ! 0.5 L ! ! ! !
1988 1993 1998 2003 2008 1988 1993 1998 2003 2008

Figure 9.10: This plot shows the relationship between inflation and the change in unemployment
in Australia, 1987:1 - 2009:3.

The model is estimated by least squares and the residuals are plotted against time. These
appear in Figure 9.11. A correlogram of the residuals that appears below seems to confirm this.
To generate the regression and graphs is simple. The script to do so is:
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ols inf const d_u

series ehat = $uhat
gnuplot ehat --time-series
corrgm ehat

=W N =

Unfortuantely, gretl will not accept the accessor, $uhat, as an input into either gnuplot or corrgm.
That means you have to create a series, ehat, first. Once this is created, both functions work as
expected.

The GUI is even easier in this instance once the model is estimated. The model window offers
a way to produce both sets of graphs. Simply choose Graphs>Residual plot>Against time to
produce the first. The second is Graphs>Residual correlogram. The latter opens a dialog box
allowing you to specify how many autocorrelations to compute. In this example, I set it to 12.

9.5 Another Test for Autocorrelation

Another way to determine whether or not your residuals are autocorrelated is to use an LM
(Lagrange multiplier) test. For autocorrelation, this test is based on an auxiliary regression where
lagged least squares residuals are added to the original regression equation. If the coefficient on the
lagged residual is significant then you conclude that the model is autocorrelated. So, for a regression
model y; = B1 + Boxt + e; the first step is to estimate the parameters using least squares and save
the residuals, é;. An auxiliary regression model is formed using é; as the dependent variable and
original regressors and the lagged value é;_; as an independent variables. The resulting auxiliary
regression is

et = P14+ Poxy + péi—1 + vy (9.7)

Now, test the hypothesis p = 0 against the alternative that p # 0 and you are done. The test
statistic is NR? from this regression which will have a X2 if Hp : is true. The script to accomplish
this is:

1 ols ehat const d_u ehat(-1)
2 scalar TR2 = $trsq
3 pvalue X 1 TR2

Estimating the statistic in this way causes the first observation to be dropped (since éy is not
observed. The result for the phillips_aus data reveal

Chi-square(1): area to the right of 27.6088 = 1.48501e-007
(to the left: 1)

The no autocorrelation null hypothesis is clearly rejected at any reasonable level of significance.
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Gretl also includes a model test function that does the same thing. To use it, estimate the
model of interest and then use modtest 1 --autocorr as shown here:

1 ols inf const d_u --quiet
2 modtest 1 --autocorr

The print out from the modtest is fairly extensive as shown here:

Breusch-Godfrey test for first-order autocorrelation
OLS, using observations 1987:2-2009:3 (T = 90)
Dependent variable: uhat

coefficient std. error t-ratio p-value
const -0.00216310 0.0551288 -0.03924 0.9688
d_u -0.151494 0.193671 -0.7822 0.4362
uhat_1 0.558784 0.0900967 6.202 1.82e-08 *xx*

Unadjusted R-squared = 0.306582

Test statistic: LMF = 38.465381,
with p-value = P(F(1,87) > 38.4654) = 1.82e-008

Alternative statistic: TR™2 = 27.592347,

with p-value = P(Chi-square(l) > 27.5923) = 1.5e-007
Ljung-Box Q’ = 28.0056,
with p-value = P(Chi-square(1l) > 28.0056) = 1.21e-007

Before explaining what is reported here, an important difference between the manual method and
modtest needs to be pointed out. When modtest is used to perform this test, it sets g = 0, which
is its expected value. By doing so, it is able to use the complete set of 90 observations in the data.
The manual method used only 89. Hence, you’ll get slightly different results depending on the size
of your sample and the number of lags tested.

The results themselves are relevant to those found in POEJ. The first thing to notice is the
t-ratio on uhat_1 is equal to 6.202, significantly different from zero at 5%. Next, the statistic named
LMF actually performs an F-test of the no autocorrelation hypothesis based upon the regression.
With only one autocorrelation parameter this is equivalent to the square of the t-ratio. The next
test is the LM test, i.e., TR? from the auxiliary regression. Gretl also computes a Ljung-Box Q
statistic whose null hypothesis is no autocorrelation. It is also insignificant at the 5% level. These
results match those in POE) exactly.

If you prefer to use the dialogs, then estimate the model using least squares in the usual
way (Model>Ordinary least squares). This generates a model window containing the regression
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results. From this select Tests>Autocorrelation to reveal a dialog box that allows you to choose
the number of lagged values of é; to include as regressors in the auxiliary regression. Choose the
number of lagged values of é; you want to include (in our case 4) and click OK. This will give you
the same result as the script. The result appears in Figure 9.12. Note, the first statistic reported
is simply the joint test that all the lagged values of é you included in auxiliary are jointly zeros.
The second one is the TR? version of the test done in the script. This example shows the relative
strength of the LM test. One can use it to test for any order of autocorrelation. Other tests, like
that of Durbin and Watson discussed later, are more difficult to do in higher orders. The LM test
is also robust to having lag(s) of the dependent variable as a regressor.

9.6 Estimation with Serially Correlated Errors

In this section, several methods of estimating models with serially correlated errors will be
explored. We will use least squares with robust standard errors to estimate regression models with
serial correlation in the errors. We also consider the nonlinear least squares estimator of the model
and a more general strategy for estimating models with serially correlation. In the appendix to
this chapter, you will find some traditional estimators of this model as well.

9.6.1 Least Squares and HAC Standard Errors

As is the case with heteroskedastic errors, there is a statistically valid way to use least squares
when your data are autocorrelated. In this case you can use an estimator of standard errors that is
robust to both heteroskedasticity and autocorrelation. This estimator is sometimes called HAC,
which stands for heteroskedasticity autocorrelated consistent. This and some issues that
surround its use are discussed in the next few sections.

9.6.2 Bandwidth and Kernel

HAC is not quite as automatic as the heteroskedasticity consistent (HCCME) estimator in
chapter 8. To be robust with respect to autocorrelation you have to specify how far away in time
the autocorrelation is likely to be significant. Essentially, the autocorrelated errors over the chosen
time window are averaged in the computation of the HAC standard errors; you have to specify
how many periods over which to average and how much weight to assign each residual in that
average. The language of time-series analysis can often be opaque. This is the case here. The
weighted average is called a kernel and the number of errors to average in this respect is called
bandwidth. Just think of the kernel as another name for weighted average and bandwidth as the
term for number of terms to average.

Now, what this has to do with gretl is fairly simple. You get to pick a method of averaging
(Bartlett kernel or Parzen kernel) and a bandwidth (nw1, nw2 or some integer). Gretl defaults to
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the Bartlett kernel and the bandwidth nwl = 0.75 x N¥/3. As you can see, the bandwidth nw1 is
computed based on the sample size, N. The nw2 bandwidth is nw2 = 4 x (N/100)%/°. This one
appears to be the default in other programs like EViews.

Implicity there is a trade-off to consider. Larger bandwidths reduce bias (good) as well as
precision (bad). Smaller bandwidths exclude more relevant autocorrelations (and hence have more
bias), but use more observations to compute the overall covariance and hence increase precision
(smaller variance). The general principle is to choose a bandwidth that is large enough to contain
the largest autocorrelations. The choice will ultimately depend on the frequency of observation and
the length of time it takes for your system to adjust to shocks.

The bandwidth or kernel can be changed using the set command from the console or in a script.
The set command is used to change various defaults in gretl and the relevant switches for our use
are hac_lag and hac_kernel. The use of these is demonstrated below. The following script changes
the kernel to bartlett and the bandwidth to nw2. Then the differences of the unemployment rate
are generated. The Phillips curve is estimated by OLS using the ordinary covariance estimator and
then by the HAC estimator. The results are collected in a model table.

open "@gretldir\data\poe\phillips_aus.gdt"
set hac_kernel bartlett

set hac_lag nw2

diff u

ols inf const d_u

modeltab add

ols inf const d_u --robust

modeltab add

modeltab show

© 0w N O A W N

The results from the model table are

OLS estimates
Dependent variable: inf

(OLS)  (OLS w/HAC)

const  0.7776** 0.7776**
(0.06582) (0.1018)

d.u —0.5279** —0.5279*
(0.2294) (0.3092)

n 90 90

R? 0.0568 0.0568

0 —83.96 —83.96
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Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level
HAC: bandwidth 3 — Bartlett kernel

You can see that the HAC standard errors are quite a bit larger than the usual (and inconsistent)
ones. Once gretl recognizes that your data are time-series, then the —-robust option will auto-
matically apply the HAC estimator of standard errors with the default values of the kernel and
bandwidth (or the ones you have set with the set command).

Notice that the standard errors computed using HAC are a little different from those in Hill
et al. (2011). No worries, though. They are statistically valid and suggest that EViews and gretl
are doing the computations a bit differently.

9.6.3 Nonlinear Least Squares

Perhaps the best way to estimate a linear model that is autocorrelated is using nonlinear least
squares. As it turns out, the nonlinear least squares estimator only requires that the errors be
stable (not necessarily stationary). The other methods commonly used make stronger demands on
the data, namely that the errors be covariance stationary. Furthermore, the nonlinear least squares
estimator gives you an unconditional estimate of the autocorrelation parameter, p, and yields a
simple t-test of the hypothesis of no serial correlation. Monte Carlo studies show that it performs
well in small samples as well. So with all this going for it, why not use it?

The biggest reason is that nonlinear least squares requires more computational power than
linear estimation, though this is not much of a constraint these days. Also, in gretl it requires an
extra step on your part. You have to type in an equation for gretl to estimate. This is the way
one works in EViews and other software by default, so the burden here is relatively low.

Nonlinear least squares (and other nonlinear estimators) use numerical methods rather than
analytical ones to find the minimum of your sum of squared errors objective function. The routines
that do this are iterative. You give the program a good first guess as to the value of the parameters
and it evaluates the sum of squares function at this guess. The program looks at the slope of
your sum of squares function at the guess, points you in a direction that leads closer to smaller
values of the objective function, and computes a step in the parameter space that takes you some
distance toward the minimum (further down the hill). If an improvement in the sum of squared
errors function is found, the new parameter values are used as the basis for another step. Iterations
continue until no further significant reduction in the sum of squared errors function can be found.

In the context of the area response equation the AR(1) model is

infy = B1(1 — p) + B2(Auy — pAuy—1) + pinf_; + vy (9.8)

The errors, v, are random and the goal is to find 1, B2, and p that minimize " v?. Ordinary least
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squares is a good place to start in this case. The OLS estimates are consistent so we’ll start our
numerical routine there, setting p equal to zero. The gretl script to do this follows:

open "@gretldir\data\poe\phillips_aus.gdt"
diff u
ols inf const d_u --quiet

$coeff (const)
$coeff(d_u)

scalar betal
scalar beta2

scalar rho = 0

© 0 9 s W N

nls inf = betal*(1-rho) + rho*inf(-1) + beta2*(d_u-rho*d_u(-1))
params rho betal beta2
end nls

e
=)

Magically, this yields the same result from your text!

The nls command is initiated with nls followed by the equation representing the systematic
portion of your model. The command is closed by the statement end nls. If possible, it is always a
good idea to supply analytical derivatives for nonlinear maximization. In this case I did not, opting
to let gretl take numerical derivatives. When using numerical derivatives, the params statement is
required in order for gretl to figure out what to take the derivatives with respect to. In the script,
I used gretl’s built in functions to take differences and lags. Hence, inf (-1) is the variable inf
lagged by one period (-1). In this way you can create lags or leads of various lengths in your gretl
programs without explicitly having to create new variables via the generate or series command.
The results of nonlinear least squares appear below in Figure 9.13.

9.6.4 A More General Model

Equation 9.8 can be expanded and rewritten in the following way:

infy = B1(1 — p) + BaAuy — Bap Aug_1 + pinf,_1 + vy (9.9)
infy = 6 + doAuy + S1Aup—1 + 0 infy_y + vy (9.10)

Both equations contain the same variables, but Equation (9.8) contains only 3 parameters while
(9.10) has 4. This means that (9.8) is nested within (9.10) and a formal hypothesis test can be
performed to determine whether the implied restriction holds. The restriction is §; = —616p." To
test this hypothesis using gretl you can use a variant of the statistic (6.2) discussed in section 6.1.
You'll need the restricted and unrestricted sum of squared errors from the models. The statistic is

(SSE, — SSE,) .

S = SR N =Ry X

if Hy: 61 = —614p is true (9.11)

16 =pB1(1—p),60 = B2,61 = —pP2, 6L = p
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Since J = 1 this statistic has an approximate x? distribution and it is equivalent to an F test.
Note, you will get a slightly different answer than the one listed in your text. However, rest assured
that the statistic is asymptotically valid.

For the example, we've generated the output:

Chi-square(1): area to the right of 0.112231 = 0.737618
(to the left: 0.262382)

F(1, 85): area to the right of 0.112231 = 0.738443
(to the left: 0.261557)

Because the sample is relatively large the p-values from the F(1,85) and the x? are very close to
one another. Neither is significant at the 5% level.

The estimated model is:

OLS, using observations 1987:3-2009:3 (T' = 89)
Dependent variable: inf

Coefficient Std. Error  t-ratio  p-value

const 0.333633  0.0899028 3.7110  0.0004
d_u —0.688185 0.249870 —2.7542  0.0072
du-1 0.319953 0.257504 1.2425 0.2175
inf 1 0.559268  0.0907962 6.1596 0.0000

Mean dependent var 0.783146 S.D. dependent var 0.635902

Sum squared resid 23.16809 S.E. of regression 0.522078
R? 0.348932 Adjusted R? 0.325953
F(3,85) 15.18488 P-value(F) 5.37e-08
Log-likelihood —66.39473  Akaike criterion 140.7895
Schwarz criterion 150.7440 Hannan—Quinn 144.8019
p —0.149981 Durbin’s h —2.685227

Notice how gretl refers to the parameters—by their variable names. This is possible because the
model is linear and there is no ambiguity. Also, Awu;_ is referred to as d_u_1. It can get a little
confusing, but d_u is the difference and the lag has the usual _1 suffix.

The lagged unemployment rate has a t-ratio of 1.243. It is not significant and it may be worth
considering removing it from the model using the omit d_u(-1) statement.

You can also compare nonlinear combinations of parameters from the equations (9.8) and (9.10).
To do so you can use gretl to compute the relevant scalars and print them to the screen as shown

below in the script:
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nls inf = betal*(1-rho) + rhoxinf(-1) + beta2*(d_u-rhoxd_u(-1))
params rho betal beta2

end nls

scalar delta = $coeff(betal)*(1-$coeff (rho))

scalar deltal = -$coeff (rho)*$coeff (beta2)

printf "\nThe estimated delta is %.3f and the \

estimated deltal is %.3f.\n",delta,deltal

B > B | B N N

In lines 4 and 5 0 and ¢§; are approximated from the NLS estimated AR(1) regression. the result is

The estimated delta is 0.337 and the estimated deltal is 0.387.

You can see that these values are actually fairly close to the ones estimated in the unrestricted
model, which were 0.334 and 0.320, respectively. Also, 3o is similar to §; and p is similar to 6. It
is no wonder that the hypothesis restrictions are not rejected statistically.

9.7 Autoregressive Distributed Lag Models
A model that combines finite distributed lags and is autoregressive is considered. This is the
so-called autoregressive distributed lag model (ARDL). The ARDL(p,q) model has the general form
Yt = 0 + elyt—l + -+ prt_p + (505675 + (Slflft_l +---+ 5q37t—q + v (912)

As regressors, it has p lags of the dependent variable, y;, and ¢ lags of the independent variable, x;.

9.7.1 Phillips Curve

The ARDL(1,1) and ARDL(1,0) models of inflation can be estimated using least squares. The
two models of the Phillips curve

OLS estimates
Dependent variable: inf

(1) (2)
const 0.3336** 0.3548**

(0.08990) (0.08760)
inf_1 0.5593** 0.5282**

(0.09080) (0.08508)
d.u —0.6882**  —0.4909**
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Choosing between these models can be done in several ways.
insignificant, then the evidence suggests that omitting it may not adversely impact the properties
of the least squares estimator of the restricted model. it is not significant in this case and you may

(0.2499) (0.1921)
du_l 0.3200

(0.2575)
n 89 90
R? 0.3260 0.3314
¢ —66.39 —67.45

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

consider dropping it from the model.

Another possibility is to use one of the model selection rules discussed in chapter 6. Recall that
we wrote a function called modelsel that computes the AIC and SC model selection rules. Here,
the program is modified slightly by omitting the display of the adjusted R?. Refer to chapter 6 for

more details on the program structure in gretl.

To choose between the ARDL(1,1) and ARDL(1,0) using the AIC or SC create and run the

following function called modelsel.

scalar
scalar
scalar
scalar
scalar
matrix
printf
10 printf
11 return

© 0 9 O A W N

function matrix modelsel (series y, list xvars)
ols y xvars --quiet

sse = $ess

N = $nobs

K = nelem(xvars)

aic = 1n(sse/N)+2*K/N

bic = 1n(sse/N)+K*1n(N)/N

A =4{K, N, aic, bic}

"\nRegressors: %s\n",varname(xvars)

"K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic
A

12 end function

Then, we can form variable lists and use the function to compare two models:

1 list x = const inf(-1) d_u(0 to -1)

2 matrix a =

modelsel (inf,x)
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3 list x = const inf(-1) d_u(0)
4 matrix b = modelsel(inf,x)

This yields
Regressors: const,inf_1,d_u,d_u_1
K=4, N=91, AIC = -1.2802 SC = -1.1698.

Regressors: const,inf_1,d_u
K =3, N=91, AIC = -1.2841 SC

-1.2013.

The smaller model (K = 3) has a smaller AIC' and SC and it is preferred.

We could also search over a wider range of models using loops. Searching over p =1,2,...6 and
g = 0,1 is done in the next section of code. Admittedly, this is a little clumsy in that formulating
a set of nested loops for this setup is not straightforward in gretl due to the fact that it cannot
recognize variables like inf (0 to 0). This causes one to have to hard code certain parts and use
a series of if statements to control the construction of the variable lists.? The code to search over
this set is:

open "@gretldir\data\poe\phillips_aus.gdt"
diff u
smpl 1988:3 2009:3
matrix A = {}
scalar q = 0
loop p = 1..6 --quiet
if p=1
list x = const inf(-1) d_u
else

© 00 N O U ks W N

list x
endif
matrix a = p“q“modelsel(inf,x)
13 matrix A = A | a
14 modelsel (inf,x)

15 endloop
16 scalar q = 1
17 loop p = 1..6 -—quiet

const inf(-1 to -p) d_u

= e
N o~ O

18 ifp=1

19 list x = const inf(-1) d_u(0 to -1)

20 else

21 list x = const inf(-1 to -p) d_u(0 to -1)
22 endif

23 matrix a = p“q“modelsel(inf,x)

24 matrix A = A | a

2I'm still working on a more elegant solution. Stay tuned for future editions to see if I succeed.
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25 endloop
26 colnames(A,"p q K N AIC SC ")
27 print A

The data are loaded and the differences of unemployment are generated using the diff command.
Then, the sample is limited to 1988:3 - 2009:3 in order to get the same results as found in Table 9.4
of POE). An empty matrix A is created. This matrix will be used to collect results of the modelsel
command. To do this, the row vectors created by modelsel will be vertically concatenated. That
means as a new row will be appended below existing rows. If the matrix starts out empty the first
row appended becomes the first row!

As I mentioned above, some of the variables are hard coded into the loop. In this example the
distributed lag parameter, ¢, only takes two values, 0 and 1. In the first loop ¢ is hard coded to
be equal to zero. So, the loop is executed with the variable Au; permanently in the variable list
named x.

The loop itself loops over the parameter p, which starts at 1 increments to 6. When p=1, the
syntax inf (-1 to -1) fails so we must tell gretl to construct the variable list x with inf(-1)
when p=1. Otherwise we can construct the variable list using inf (-1 to -p).

In line 12 a row vector is created that includes p, q, and the results from modelsel. This uses
horizontal concatenation via the symbol, ~. In the next line vertical concatenation is used to stack
the new vector of results underneath the existing ones. The loop ends and column names are added
to the matrix and printed.

The next loop is nearly identical. The only difference is that g=1 is hard coded into the script.
Notice that g=1 is fixed as a scalar in line and that d_u(0 to -1) replaces d_u in the previous loop.
So, the code looks complicated, but it can effectively be replicated by a cut and paste with minor
editing. In this particular script, p and q are actually numbers that work in this loop construct.
Hence, there is no need to use the string prefix, $ (although if used in lines 10 and 12 this will work
as well).

That is a lot of code, but the output is nice:

P q K N AIC SC
1.0000 0.0000 3.0000 85.000 -1.2466 -1.1604
2.0000 0.0000 4.0000 85.000 -1.2905 -1.1755
3.0000 0.0000 5.0000 85.000 -1.3352 -1.1915
4.0000 0.0000 6.0000 85.000 -1.4020 -1.2296
5.0000 0.0000 7.0000 85.000 -1.3964 -1.1952
6.0000 0.0000 8.0000 85.000 -1.3779 -1.1480
1.0000 1.0000 4.0000 85.000 -1.2425 -1.1275
2.0000 1.0000 5.0000 85.000 -1.2860 -1.1423
3.0000 1.0000 6.0000 85.000 -1.3233 -1.1509
4.0000 1.0000 7.0000 85.000 -1.3795 -1.1784
5.0000 1.0000 8.0000 85.000 -1.3729 -1.1430
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6.0000

1.0000

9.0000

85.000

-1.3544

-1.0958

From this you can see that the ARDL(4,0) minimizes both AIC and SC. Estimating this model

yields,

OLS, using observations 1988:1-2009:3 (7" = 87)
Dependent variable: inf

const

d_u

inf_1
inf_2
inf_3
inf 4

Sum squared resid

R2
F(5,81)

Log-likelihood
Schwarz criterion

~

p

Coefficient  Std. Error  t-ratio  p-value
0.100100 0.0982599 1.0187 0.3114
—0.790172 0.188533 —4.1912 0.0001
0.235440 0.101556 2.3183 0.0230
0.121328 0.103757 1.1693 0.2457
0.167690 0.104960 1.5977 0.1140
0.281916 0.101380 2.7808 0.0067
18.23336  S.E. of regression 0.474450
0.458422  Adjusted R? 0.424992
13.71262  P-value(F) 1.07e-09
—55.47215  Akaike criterion 122.9443
137.7397 Hannan—Quinn 128.9020
—0.032772 Durbin’s h —0.903935

Finally, you can check the residuals for autocorrelation using the LM test. Here we want to
check the model for autocorrelation for up to 5 lags. The easiest way is to put modtest into a loop.
The underlying regression is an ARDL(1,0). This one wins the model selection derby because the
coefficient on Awu;—; was not significant in and ARDL(1,1).

1

2 diff u

3 ols inf inf(-1) d_u const

4 loop i=1..4

5 modtest $i --autocorr --quiet
6 endloop

open "Ogretldir\data\poe\phillips_aus.gdt"

This is an example of an index loop. The index is called i and it loops in increments of 1 from 1
to 4. The modtest command takes the string argument $i at each iteration. The --quiet option
is used to reduce the copious amount of output this loop will produce. The p-values for the LM
test, which I’ve chosen not to include, match the ones Table 9.3 of POE/.
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9.7.2 Okun’s Law

Okun’s Law provides another opportunity to search for an adequate specification of the time-
series model. Load the okun.gdt data. These quarterly data begin at 1985:2. Set the data structure
to time-series if needed. In this example, the model search is over p =0,1,2 and ¢ = 1,2, 3. There
are 12 possible models to consider and loops will again be used to search for the preferred one.

To make the loop simpler, the modelsel function has been modified slightly. It now accepts a
single variable list as its input. This allows us to place the dependent variable, x, and its first lag
into the model as x(0 to -1). Gretl reads this as x x(-1). Thus, these two regressions would
yield the same result

ols x const x(-1)
ols x(0 to -1) const

Placing the constant at the end of the list only moves its position in the output, it does not change
the substance of the results.

The new and improved modelsel2 appears below:

modelsel2 function useful for ARDL models
function matrix modelsel2 (list xvars)

ols xvars -—quiet

scalar sse = $ess
scalar N = $nobs
scalar K = nelem(xvars)-1
scalar aic In(sse/N)+2*K/N
scalar bic = 1n(sse/N)+K*x1n(N)/N
matrix A = { K, N, aic, bic}
# printf "\nDependent variable and Regressors: %s\n",varname(xvars)
10 # printf "K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic
11 return A
12 end function

© 0 N9 3 ks W N

Notice that the input on line one is now just a single variable list. Line 5 is modified by subtracting
one from the number of elements in the variable list, since the list now includes the dependent
variable. Also, the printf statements are commented out to reduce the amount of output sent to
the screen. You can remove the # from lines 9 and 10 if you want to see what’s in the model and
the results at each iteration. Since we are dealing with an ARDL(p, ¢), p and ¢ tell us exactly
which regressors are in the model so these are really not needed in the current context.

The new and improved loop to compute the model selection rules is:

Loop for the Okun Example
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diff u

matrix A = {}
loop p = 0..2

if p=0

© 0w N O s W N

else

[
o

endif

= e
N

matrix
endloop
endloop

Y
SN 0 ooe W

print A

-
oo

-—quiet
loop q = 1..3 --quiet

list

matrix a =

A

smpl 1986:1 2009:3

list vars

vars

function modelsel2 clear

d_u g(0 to -q) const

open "@gretldir\data\poe\okun.gdt"

d_u(0 to -p) g(0 to -q) const

colnames(A,"p q K N AIC SC ")

p~q modelsel2(vars)
Al a

This loop improves upon the last in at least one way. It now contains a nest that should function
properly for any p>1 and gq>0. The first three lines load the data, create the difference of unem-
ployment, and set the sample to match the one used in POE/. This script contains two loops, one
for p and one for q that are nested. When loops are nested this way, the p loop starts at zero and
then the q loop iterates from 1 to 3. Once the q loop is finished, the p loop increments by 1 and

the q loop starts over again.

The conditional if statement is necessary because when p=0 the statement d_ u(0 to -p) in
line 10 cannot be computed. The last line clears the modelsel2 function from memory. If you need
to modify the function, perform your changes, and re-run it to load it into memory. Once loaded
into memory, there is no need to run it again.

The results from this script are

p
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

NNMNNRPR, R, P, OOO

The ARDL(1,1) minimizes both AIC and SC. The estimates for this

WNEFE, WNEFE, WN -

q

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

N O 0o o 0w

K

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

95.
95.
95.
95.
95.
95.
95.
95.
95.

N
000
000
000
000
000
000
000
000
000

AIC

.4362
.4634
.4424
.5880
.5675
.5612
.5693
.5483
.5491

SC
-3.3556
-3.3559
-3.3080
-3.4805
-3.4331
-3.3999
-3.4349
-3.3870
-3.3609

model are:

OLS, using observations 1985:4-2009:3 (7" = 96)
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Dependent variable: d_u
HAC standard errors, bandwidth 3 (Bartlett kernel)

Coefficient  Std. Error  t-ratio  p-value

const 0.378010  0.0671726 5.6275 0.0000
g —0.184084  0.0268375 —6.8592 0.0000
g-1 —0.0991552 0.0388520 —2.5521 0.0124
dou-1 0.350116  0.0861251 4.0652 0.0001

Mean dependent var 0.025000 S.D. dependent var 0.288736

Sum squared resid 2.422724 S.E. of regression 0.162277
R? 0.694101 Adjusted R? 0.684126
F(3,92) 70.24213 P-value(F) 1.04e-23
Log-likelihood 40.39577 Akaike criterion —72.79155
Schwarz criterion —62.53415 Hannan—Quinn —68.64534
p —0.024372 Durbin’s h —0.437108

9.7.3 Autoregressive Models

An autoregressive model is just a special case of an ARDL(p,q) where ¢ = 0. The model only
includes lags of the dependent variable.

Y =0+ 01yr—1+ O2yp—2- - + Opyr—p + v1 (9.13)

The example is based on the okun.gdt data. An initial AR(2) model is estimated using GDP
growth. The possibility of residual autocorrelation is explored using LM tests and by looking at
the correlogram.

1 open "@gretldir\data\poe\okun.gdt"
2 ols g(0 to -2) const

3 series res = $uhat

4 corrgm res

5 loop i =1..4

6 modtest $i --autocorr --quiet
7 endloop

The correlogram appears in Figure 9.14 below. Only the autocorrelation at the 12th lag is signifi-
cant, probably by chance. None of the LM statistics computed by the modtest loop have p-values
smaller than 10%, therefore this model may be properly specified. To see how this compares with
others via the model selection rules, we use another loop and the modesel2 function.

223



1 open "Ogretldir\data\poe\okun.gdt"

2 smpl 1986:3 2009:3

3 matrix A = {}

4 scalar g=0

5 loop p = 1..5 --quiet

6 list vars = g(0 to -p) const
7 matrix a = p“q modelsel2(vars)
8 matrix A = A | a

9 endloop

10 colnames(A,"p q K N AIC SC ")

11 print A

The sample was shortened again and the nested loop is removed. Otherwise, this is the same as
used to model select in the ARDL(p,q) example. The results

P q K N AIC SC

1.0000 0.0000 2.0000 93.000 -1.0935 -1.0391
2.0000 0.0000 3.0000 93.000 -1.1306 -1.0489
3.0000 0.0000 4.0000 93.000 -1.1242 -1.0153
4.0000 0.0000 5.0000 93.000 -1.1332 -0.99700
5.0000 0.0000 6.0000 93.000 -1.1117 -0.94827

match those in POE4. The AR(2) model is supported by the SC' while the AIC' chooses one with
4 lags. As mentioned previously, the SC criterion imposes a slightly larger penalty for adding
regressors and may sometimes leas to smaller models.

9.8 Forecasting

In this section we consider forecasting using 3 different models, an AR model, an ARDL model,
and an exponential smoothing model. The examples focus on short-term forecasting, typically up
to 3 periods into the future.

9.8.1 Forecasting with an AR model

Suppose that it is the 3rd quarter in 2009 and have estimated the AR(2) model of GDP growth
using data up to and including 2009:3. In this section the use of an AR(2) model to forecast the
next three periods is discussed and forecast confidence intervals are generated.

The AR(2) model in terms of its unknown coefficients

gt =0+ 0191+ 02g:—2 + v4 (9.14)
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Denoting the last sample observation as gr, the task is to forecast gry1, gr+2, and gri3. The value
of the next observation beyond the available sample is

9r+1 =0 + 6197 + O297—1 + v (9.15)

Growth rates for the 2 most recent quarters are Gr = Gogog.s3 = 0.8, and gr_1 = g2009:.2 = —0.2,
which with the estimated values of the parameters is used to make a forecast of gri1 = g2009:4-

dr41 =0 + 0197 + bagr 1
=0.46573 + 0.37700 x 0.8 + 0.24624 x (—0.2)
=0.7181

Once the model is estimated it is easy to compute this forecast.

1 open "@gretldir\data\poe\okun.gdt"
2 ols g(0 to -2) const --robust --quiet

Using this model to forecast in gretl is very simple. The main decision you have to make at
this point is how many periods into the future you want to forecast. In gretl you have to extend
the sample to include future periods under study.

9.8.2 Using the Dialogs

Return to the main gretl window and choose Model>0rdinary least squares. This will bring
up the ‘specify model” dialog box. Choose g as the dependent variable as shown.

Since your data are defined as time-series (recall, you did this through Data>Dataset structure)
an extra button, labeled ‘lags...’, appears at the bottom of the dialog. Click the ‘lags...” button in
the specify model dialog box and the ‘lag order’ dialog box shown on the right-hand side in Figure
9.7 opens.

Click OK and the 3 lagged values of GDP growth are added to the model. Now, click OK in
the specify model dialog and the model is estimated.

Now, we’ll use the dialogs to extend the sample and generate the forecasts. From the model
window choose Analysis>Forecasts. This opens the ‘Add observations’ dialog box shown in
Figure 9.15. To add three observations change the number in the box to 3. Click OK to open the
forecast dialog box shown below in Figure 9.16.

By choosing to add 3 observations to the sample, the forecast range is automatically set to
2009:4 to 2010.2. Notice that we’ve chosen 'automatic forecast (dynamic out of sample).” Click
OK and the forecast results appear.

A script is actually much simpler. Here is the example in a script.
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open "@gretldir\data\poe\okun.gdt"

ols g(0 to -2) const

dataset addobs 3

fcast 2009:4 2010:2 --plot=c:\temp\ar2plot.plt

=W NN =

In line 3 the dataset addobs tells gretl to add 3 observations to the dataset. Then, the fcast
command with the desired dates to forecast are given. The results are:

For 95% confidence intervals, t(93, 0.025) = 1.986

Obs g prediction std. error 95% interval
2009:4 0.718079 0.552688 -0.379448 - 1.81561
2010:1 0.933435 0.590660 -0.239499 - 2.10637
2010:2 0.994452 0.628452 -0.253530 -  2.24243

Miraculously, these match those in POE4! Gretl can optionally use gnuplot to plot the time-series
and the forecasts (with intervals). The plot is shown in Figure 9.17.3 The last three observations
are forecasts (in blue) and include the 95% confidence intervals shown in green. Actual GDP
growth appears in red. From an economics standpoint, the forecast is depressing, mainly because
the intervals are very wide. The 95% interval includes a possible recession.

9.8.3 Exponential Smoothing

Another popular model used for predicting the future value of a variable based on its history
is exponential smoothing. Like forecasting with an AR model, forecasting using exponential
smoothing does not use information from any other variable.

The basic idea is that the forecast for next period is a weighted average of the forecast for the
current period and the actual realized value in the current period.

Ur+1 = ayr + (1 - Oé)QT (9.16)
The exponential smoothing method is a versatile forecasting tool, but one needs a value for the
smoothing parameter o and a value for g7 to generate the forecast gr_1 . The value of « can reflect

one’s judgment about the relative weight of current information; alternatively, it can be estimated
from historical information by obtaining within-sample forecasts

U = oy + (1 —a)f—1 (9.17)

3This graph was generated from the GUIL The plot command as shown in the script actually yields only the plots
of the forecasted values and their intervals.
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and choosing that value of @ that minimizes the sum of squares of the one-step forecast errors

ve=yr — U =y — (ayr—1 + (1 — @) Ge—1) (9.18)

Smaller values of « result in more smoothing of the forecast. Gretl does not contain a routine
that performs exponential smoothing, though it can perform other types.

Below, the okun.gdt data are used to obtain the exponentially smoothed forecast values of GDP
growth. First the data are opened. Then the series to be smoothed is placed in a matrix called y.
The number of observations is counted and an another matrix called sm1 is created; it isna T x 1
vector of zeros. We will populate this vector with the smoothed values of y. In line 5 the smoothing
parameter is set to 0.38.

There are several ways to populate the first forecast value. A popular way is the take the
average of the first (7" + 1)/2 elements of the series. The scalar stv is the mean of the first 50
observations. The full sample is then restored.

The loop is quite simple. It loops in increments of 1 from 1 to T. The --quiet option is
used to suppress screen output. For the first observation, the vector sm1[1] receives the initial
forecast, stv. For all subsequent smoothed values the exponential smoothing is carried out. Once
the loop ends the matrix is converted back into a series so that it can be graphed using regular
gretl functions.

open "@gretldir\data\poe\okun.gdt"
matrix y = { g }
scalar T = $nobs
matrix sml = zeros(T,1)
scalar a = .38
smpl 1 round((T+1)/2)
scalar stv = mean(y)
smpl full
loop i=1..T --quiet
ifi=1
matrix sml[il=stv
else
matrix sml[il=ax*y[i]+(1-a)*sml[i-1]
endif
endloop
series exsm = sml
gnuplot g exsm --time-series

© o N o U A W N =
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The time-series plot of GDP growth and the smoothed series is found in Figure 9.18. Increasing
the smoothing parameter to 0.8 reduces the smoothing considerably. The script appears at the end
of the chapter, and merely changes the value of a in line 5 to 0.8. The figure appears below in the
bottom panel of Figure 9.18.
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Gretl actually includes a function that can smooth a series in a single line of code. The movavg
function. To exponentially smooth the series g

1 scalar tmid = round(($nobs+1)/2)
2 scalar a = .38
3 series exsm = movavg(g, a, tmid)

The function takes three argumants. The first is the series for which you want to find the moving
average. The second is smoothing parameter, a. The final argument is teh number of initial
observations to average to produce gyg. This will duplicate what we did in the script. It is worth
mentioning that the movavg function will take a regular moving average if the middle argument is
set to a positive integer, with the integer being the number of terms to average.

9.9 Multiplier Analysis

Multiplier analysis refers to the effect, and the timing of the effect, of a change in one variable
on the outcome of another variable. The simplest form of multiplier analysis is based on a finite
distributed lag model

Yyt = a+ Boxy + 11 + Bowp_o + - 4 Byxi—g + €4 (9.19)

The estimated coefficients from this model can be used to produce impact, delay and interim
multipliers. The impact multiplier is the impact of a one unit change in z; on the mean of y;.
Since x and y are in the same time period the effect is contemporaneous and therefore equal to the
initial impact of the change. The s-period delay multiplier is

OE (yt)
0wy

— B, (9.20)

is the effect of a change in x s-periods in the past on the average value of the dependent variable in
the current period. If x; is increased by 1 unit and then maintained at its new level in subsequent
periods (¢t + 1), (¢t +2),..., then one can compute the interim multiplier. An interim multiplier
simply adds the immediate effect (impact multiplier), By, to subsequent delay multipliers to measure
the cumulative effect. So in period ¢ + 1 the interim effect is 8y + B1. In period ¢ + 2, it will be
Bo + B1 + B2, and so on. The total multiplier is the final effect on y of the sustained increase
after ¢ or more periods have elapsed; it is given by > 7 ;.

The ARDL model adds lagged values of the dependent variable to the AR model,
Yy =0+ 01y 1+ -+ Opy—p + 001 + 0141 + -+ 0gTp—g + V4 (9.21)

and this makes the multiplier analysis a little harder. Basically, this needs to be transformed into
an infinite distributed lag model using the properties of the lag operator, L. That is, L'z; = x;_;.
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This puts the model into the familiar AR form and the usual definitions of the multipliers can be
applied. This is discussed in detail in POE/ and will not be replicated in any detail here.

For the ARDL(1,1) model used to describe Okun’s law we have
Aup = § + 01 Aup—1 + Sogt + 619t—1 + vt
Written with the lag operator, L
(1—61L) Aug =6+ (00 + 61L) gt + vy
Aug = (1= L) "6+ (1—0.L)"" (60 + 01 L) g + (1 — 01L) vy
Aug = a+ foge + Prge—1 + Bagi—2 + B3gr—3 + - + e

=a+ (Bo+ PiL+BoL? + BsLP+ ) g + e

This is just an infinite distributed lag model. The coefficients for the multipliers involve the 3
coefficients, which must be solved for in terms of the estimated parameters of the ARDL. The
solutions given in POE) are

Bo =do (9.22)
B =b1 + Bob1 (9.23)
,Bj :,Bj_lgl for j Z 2 (9.24)

The gretl code to accomplish this is simple to construct. In terms of the model of Okun’s Law,

open "@gretldir\data\poe\okun.gdt"

diff u

ols d_u(0 to -1) g(0 to -1) const
scalar b0 = $coeff (g)

scalar bl = $coeff(d_u_1)*b0+$coeff(g_1)
bl*$coeff(d_u_1)

b2*$coeff (d_u_1)

G W N e
nn

6 scalar b2
7 scalar b3

This can be automated by using a loop to construct the multipliers. Once this is done, it is simple
to graph the result up to an arbitrary number of periods.

The script is:

scalar bl

1 scalar h = 8

2 matrix mult = zeros(h,2)
3 loop i=1..h

4 mult[i,1] = i-1

5 scalar b0 = $coeff (g)
6

$coeff(d_u_1)*bO+$coeff (g_1)
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7 if i=1

8 mult [i,2]=b0

9 elif i=2

10 mult[i,2]=bil

11 else

12 mult[i,2]=mult[i-1,2]*$coeff(d_u_1)
13 endif

14 endloop
15 printf "\nThe impact and delay multipliers are \n %10.5f\n", mult
16 gnuplot 2 1 --matrix=mult --output=display --with-lines --suppress-fitted

Although it took a few lines of code, the results (Figure 9.19 below) look great and the code can
easily be reused for other models. It assumes that you have already estimated the ARDL(1,1) for
Okun data as done in the previous script. The first thing to do is to decide how many multipliers
to compute. I chose 8 and initialized a matrix of zeros that is 8 x 2. We will put lags in the first
column and the corresponding multiplier in the second.

The loop begins in line 3 and i will start at 1 and end at 8, with increments of 1. The first two
multipliers are computed manually. Then a series of if statements follows. Since there are three
forms of the multiplier in equations (9.22) — (9.24), there are 3 if statements. When the index is
equal 1, the impact multiplier is placed in m. When the index is equal to 2, the period one delay is
placed in m. The last condition fills in m for any ¢ > 2.

Next, we want to be able to plot the multipliers against lag. This is done from a matrix using
the —-matrix option to gnuplot. Also, using the output=display option sends the plot to the
screen which allows for subsequent editing via gretl’s gnuplot interface.

The other option is to convert the matrix to data series and use the regular gretl GUI to
make the plots. This requires opening an empty dataset and setting the observations to equal 8.
This is done using the nulldata command. The --preserve option is required because without
it the matrix containing the multipliers would be cleared from memory. This option preserves the
contents of all existing matrices and scalars. The lags are read out of the first column and the
multipliers from the second.

nulldata 8 --preserve

series m = mult[,2]

series lag = mult[,1]

setinfo m -d "Multipliers" -n "Multiplier"

gnuplot m index --with-lines --output=display --suppress-fitted

G W N =

The edited outcome appears in Figure 9.19 below. The figure shows that an increase in GDP
growth leads to an initial reduction in the unemployment rate of about 0.18; the effect diminishes
over time and lasts about six or seven quarters.
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9.10 Appendix

9.10.1 Durbin-Watson Test

The Durbin-Watson statistic is produced with every time-series regression estimated by least
squares. To access the p-value associated with the test, which is computed using the Imhoff
procedure, use the accessor $dwpval. An example based on the Phillips curve is:

open "@gretldir\data\poe\phillips_aus.gdt"

diff u

setinfo inf -d "Australian Inflation Rate" -n "Inflation Rate"

setinfo d_u -d "Change in Australian Civilian Unemployment Rate\
(Seasonally adjusted)" -n "D.Unemployment Rate"

ols inf d_u const

scalar dw_p = $dwpval

print dw

0 N O ks W N

The result, including the last line of the regression output that shows the estimated value of p and
the DW statistic, is:

rho 0.549882 Durbin-Watson 0.887289
dw_p = 2.1981736e-009
The DW statistic is 0.887 and its p-value is well below the 5% threshold, indicating significant

autocorrelation. The GUI gives a slightly prettier result. It has to be called from the model
window as Tests>Durbin-Watson p-value.

“ gretl: Durbin-Watson =RNEN X

Durbin-Watson statistic = 0.887289
p-value = 2.18817e-009

Many interpret a significant DW statistic as evidence of general model misspecification.

9.10.2 FGLS and Other Estimators

The feasible GLS estimator of the AR(p) model can be estimated using gretl in a number of
ways. For first order autocorrelated models the arl command can be used. There are a num-
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ber of estimators available by option including the Cochrane-Orcutt (iterated), the Prais-Winsten
(iterated), and the Hildreth-Lu search procedure. Examples are:

1 list x = d_u const

2 arl inf x # Cochrane-Orcutt (default)
3 arl inf x --pwe # Prais-Winsten

4

arl inf x --hilu --no-corc # Hildreth-Lu

The results are collected in a model table below.

AR(1) Errors
Dependent variable: inf

(CO) (PW) (HL)
const 0.7609** 0.7862** 0.7608**
(0.1238) (0.1218) (0.1245)
d.u —0.6944**  —0.7024**  —0.6953**
(0.2429) (0.2430) (0.2430)
p 0.55739 0.55825 .56
n 89 90 89
R? 0.3407 0.3418 0.3406

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level
CO = Cochrane Orcutt, PW=Prais-Winsten, HL=Hildreth-Lu

You can see that there are minor differences produced by these options. If the ——no-corc option
is not used with ——hilu then the Hildreth-Lu estimator is modified slightly to perform additional
iterations as the end. Notice that the Prais-Winsten is the only procedure to use all 90 observations.

For higher order models there are two commands worth taking note of. The ar command
estimates a linear regression with arbitrary autocorrelation structure. It uses a generalization of

the Cochrane-Orcutt iterative procedure to obtain estimates.

The other estimator is arima, the syntax for which appears below:
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arima

Arguments: pdgl; PP Q] ; depvar| indepvars ]

Options: ——wverbose (print details of iterations)
——wov (print covariance matrix)
—-he=sian (see below)
--opg (see below)
--nec (do not include a constant)
——conditional (use conditional maximum likelihood)
——x-12-arima (use X-12-ARIMA for estimation)
--1bfgs (use L-BFGS-B maximizer)
——y-diff-only (ARIMAX special, see below)
--save-ehat (see below)

Examples: arima 1 0 2 ; v
arima 2 0 2 ; v 0 x1 %2 --verbose
arima 0 1 1 ; 011 ; v ——-nc

The default estimation method for arima in gretl is to estimate the parameters of the model
using the “native” gretl ARMA functionality, with estimation by exact maximum likelihood using
the Kalman filter. You can estimate the parameters via conditional maximum likelihood as well.

Estimating the simple AR(1) regression using these estimators is done:

1 ar 1 ; inf x
2 arima 1 0 0 ; inf x

For the ar command, list the lag numbers for the desired residuals. In the case of AR(1) this is
just 1. This is followed by a semicolon and then the regression to estimate. The arima syntax is
similar, except you specify p, d, and g, where p is the order of the desired autocorrelation, d is the
number of differences to take of the time-series, and q is the order of any moving average terms
you might have in the residuals.

The outcome for the simple ARIMA(1,0,0) ia

ARMAX, using observations 1987:2-2009:3 (T = 90)
Estimated using Kalman filter (exact ML)
Dependent variable: inf

Standard errors based on Hessian

coefficient std. error z p-value
const 0.786212 0.120601 6.519  7.07e-011 %
phi_1 0.558827 0.0877359 6.369 1.90e-010 *x*x
d_u -0.702558 0.242234 -2.900 0.0037 KKk
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Mean dependent var 0.791111 S.D. dependent var 0.636819
Mean of innovations -0.003996 S.D. of innovations 0.510937

Log-likelihood -67.45590  Akaike criterion 142.9118
Schwarz criterion 152.9110 Hannan-Quinn 146.9441
Real Imaginary Modulus Frequency

AR
Root 1 1.7895 0.0000 1.7895 0.0000

These are very similar to the ones above. The coefficient labeled phi_1 is the estimate of the
autocorrelation parameter. The root of this equation is 1/phi_1. The roots (or modulus) must be
greater than 1 in absolute value in order for the model to be stationary.

9.11 Script

-

open "@gretldir\data\poe\okun.gdt"

set echo off

# change variable attributes

setinfo g -d "percentage change in U.S. Gross Domestic Product, seasonally \
adjusted" -n "Real GDP growth"

setinfo u -d "U.S. Civilian Unemployment Rate (Seasonally adjusted)" -n \
"Unemployment Rate"

© 0 N 3 O W N

# plot series and save output to files
gnuplot g --with-lines --time-series --output="@workdir\okun_g.plt"
gnuplot u --with-lines --time-series --output="@workdir\okun_u.plt"

== e
N o= O

-
w

# graphing multiple time-series
scatters g u --with-lines

= =
[SLE

diff u

setinfo d_u -d "Change in U.S. Civilian Unemployment \
Rate (Seasonally adjusted)" -n \

"D.Unemployment Rate"

scatters g d_u --with-lines --output=display

NN N e e
B = S © W N o

# distributed lag models

ols d_u const g(0 to -3)

smpl 1986:1 2009:3

25 ols d_u const g(0 to -2)

26

27 gnuplot g g_1

28

20 # correlogram and confidence interval
30 corrgm g 12

NN
- W
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matrix ac = corrgm(g, 12)

matrix 1b acl[,1]1-1.96/sqrt ($nobs)
matrix ub = ac[,1]+1.96/sqrt($nobs)
matrix all = 1b~ac[,1] ub
colnames(all, "Lower AC Upper ")

printf "\nAutocorrelations and 95%J, confidence intervals\n %9.4f\n", all

# Phillips curve

open "@gretldir\data\poe\phillips_aus.gdt"

diff u

setinfo inf -d "Australian Inflation Rate" -n "Inflation Rate"
setinfo d_u -d "Change in Australian Civilian \

Unemployment Rate (Seasonally adjusted)" -n \

"D.Unemployment Rate"

scatters inf d_u --with-lines

ols inf const d_u

series ehat = $uhat
gnuplot ehat --time-series
corrgm ehat

# LM tests

ols ehat const d_u ehat(-1)
scalar NR2 = $trsq

pvalue X 1 NR2

ols ehat const d_u ehat(-1 to -4)
scalar NR2 = $trsq
pvalue X 4 NR2

ols inf const d_u
modtest 1 —--autocorr
modtest 4 --autocorr --quiet

# HAC standard errors

open "@gretldir\data\poe\phillips_aus.gdt"
set hac_kernel bartlett
set hac_lag nw2

diff u

ols inf const d_u
modeltab add

ols inf const d_u --robust
modeltab add

modeltab show

modeltab free

# nonlinear least squares estimation of regression w/AR(1) errors
open "@gretldir\data\poe\phillips_aus.gdt"

diff u

ols inf const d_u --quiet
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s2 scalar betal = $coeff (const)

83 scalar beta2 = $coeff(d_u)

84 scalar rho = 0

85

86 nls inf = betal*(1-rho) + rhoxinf(-1) + beta2x(d_u-rhox*d_u(-1))
87 params rho betal beta2

g8 end nls

89 scalar delta = $coeff(betal)*(1-$coeff (rho))
90 scalar deltal = -$coeff (rho)*$coeff (beta2)
91 printf "\nThe estimated delta is %.3f and the estimated deltall
92 is %.3f.\n",delta,deltal

93 scalar sser=$ess

94

95 # estimation of more general model

96 ols inf const inf(-1) d_u(0 to -1)

97 scalar sseu=$ess

98 scalar fstat = (sser-sseu)/(sseu/$df)

99 pvalue X 1 fstat

100 pvalue F 1 $df fstat

101 omit d_u(-1)

102

103 ols inf const inf(-1) d_u(0 to -1)

104 modeltab add

105 ols inf const inf(-1) d_u(0)

106 modeltab add

107 modeltab show

108 modeltab free

109
110 # model selection function
111 function matrix modelsel (series y, list xvars)

112 ols y xvars --quiet

113 scalar sse = $ess

114 scalar N = $nobs

115 scalar K = nelem(xvars)

116 scalar aic = 1ln(sse/N)+2*K/N

117 scalar bic = 1n(sse/N)+K*1n(N)/N

118 matrix A = { K, N, aic, bic}

119 printf "\nRegressors: %s\n",varname(xvars)

120 printf "K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic
121 return A

122 end function

123

124 # using the modelsel function

125 list x = const inf(-1) d_u(0 to -1)

126 matrix a = modelsel(inf,x)

127 list x0 = const

128 matrix b = modelsel(inf,x)

120 list x = const d_u inf(-1)

130

131 # putting the model selection results into a matrix
132 open "Ogretldir\data\poe\phillips_aus.gdt"
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133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

diff u
smpl 1988:3 2009:3
matrix A = {}

0

scalar q =
loop p = 1..6 --quiet
if p=1
list x = const inf(-1) d_u
else
list x = const inf(-1 to -p) d_u
endif
matrix a = p“q modelsel(inf,x)
matrix A = A | a
modelsel (inf,x)
endloop
scalar q = 1
loop p = 1..6 --quiet
if p=1
list x = const inf(-1) d_u(0 to -1)
else
list x = const inf(-1 to -p) d_u(0 to -1)
endif
matrix a = p“q“modelsel(inf,x)
matrix A = A | a
endloop
colnames(A,"p q K N AIC SC ")
print A
smpl full

ols inf const inf(-1 to -4) d_u --robust

# improved modelsel2 function for ARDL
function matrix modelsel2 (list xvars)
ols xvars --quiet
scalar sse = $ess
scalar N = $nobs
scalar K = nelem(xvars)-1
scalar aic = 1ln(sse/N)+2*K/N
scalar bic = I1n(sse/N)+K*1n(N)/N
matrix A = { K, N, aic, bic}
# printf "\nDependent variable and Regressors: %s\n",varname(xvars)
# printf "K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic
return A

end function

# using modelsel2
open "@gretldir\data\poe\okun.gdt"
diff u
smpl 1986:1 2009:3
matrix A = {}
loop p = 0..2 --quiet
loop g = 1..3 --quiet
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184 if p=0

185 list vars = d_u g(0 to -q) const

186 else

187 list vars = d_u(0 to -p) g(0 to -q) const
188 endif

189 matrix a = p“q modelsel2(vars)

190 matrix A = A | a

191 endloop

192 endloop

193 colnames(A,"p q K N AIC SC ")

194 print A

195 function modelsel clear

196

197 smpl full

198 ols d_u(0 to -1) g(0 to -1) const
199 loop i=1..4

200 modtest $i --autocorr --quiet
201 endloop

202

203 open "Ogretldir\data\poe\okun.gdt"
204 smpl 1986:3 2009:3

205 matrix A = {}

206 scalar gq=0

207 loop p = 1..5 --quiet

208 list vars = g(0 to -p) const
209 matrix a = p~q modelsel2(vars)
210 matrix A = A | a

211 endloop

212 colnames(A,"p q K N AIC SC ")

213 print A

214 function modelsel clear

215

216 # loop to test for autocorrelation in ARDL
217 open "Ogretldir\data\poe\phillips_aus.gdt"
218 diff u

219 ols inf(0 to -1) d_u const

220 loop i=1..5

221 modtest $i --autocorr --quiet

222 endloop

223

224 # loop to test for autocorrelation at several lags
225 open "Qgretldir\data\poe\okun.gdt"

226 ols g(0 to -2) const

227 series res = $uhat

228 COrIgmM res

220 loop 1 =1..4

230 modtest $i --autocorr --quiet

231 endloop

232

233 # model selection for Okun data

234 open "Ogretldir\data\poe\okun.gdt"
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236
237
238
239
240
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243
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245
246
247
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249
250
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254
255
256
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258

260
261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

smpl 1986:3 2009:3

matrix A = {}

scalar gq=0

loop p = 1..5 --quiet
list vars = g(0 to -p) const
matrix a = p“q modelsel2(vars)
matrix A = A | a

endloop
colnames(A,"p q K N AIC SC ")
print A

# estimation of preferred model and a forecast
open "@gretldir\data\poe\okun.gdt"

ols g(0 to -2) const

dataset addobs 3

fcast 2009:4 2010:2 --plot="@workdir\ar2plotl.plt"

# multiplier analysis

open "@gretldir\data\poe\okun.gdt"
matrix y = { g }

scalar T = $nobs

matrix sml = zeros(T,1)

scalar a = .38

smpl 1 round((T+1)/2)

scalar stv = mean(y)

smpl full
loop i=1..T --quiet
ifi=1
matrix smil[il=stv
else
matrix sml[i]=a*y[i]+(1-a)*sm1[i-1]
endif
endloop

series exsm = sml
gnuplot g exsm --time-series

scalar a = .8
loop i=1..T --quiet
ifi=1
matrix smi[i]=stv
else
matrix sml[il=ax*y[i]+(1-a)*sml[i-1]
endif
endloop

series exsm8 = sml
gnuplot g exsm8 --time-series

open "@gretldir\data\poe\okun.gdt"
diff u

ols d_u(0 to -1) g(0 to -1) const
scalar b0 = $coeff(g)
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286 scalar bl =$coeff (d_u_1)*b0+$coeff(g_1)
287 scalar b2 = bilx$coeff(d_u_1)

288 scalar b3 = b2*$coeff(d_u_1)

289

200 # Matrix & Series Plot

201 open "@gretldir\data\poe\okun.gdt"
292 diff u

203 ols d_u(0 to -1) g(0 to -1) const
204 scalar h = 8

205 matrix mult = zeros(h,2)

206 loop i=1..h

207 mult[i,1] = i-1

208 scalar b0 = $coeff(g)

299 scalar bl = $coeff(d_u_1)*b0+$coeff(g_1)
300 if i=1

301 mult[i,2]=b0

302 elif i=2

303 mult[i,2]=bl

304 else

305 mult[i,2]=mult[i-1,2]*$coeff(d_u_1)
306 endif

307 endloop

308

309 gnuplot 2 1 --matrix=mult --output=display --with-lines --suppress-fitted
310

311 printf "\nThe impact and delay multipliers are \n %10.5f\n", mult
312

313 nulldata 8 --preserve

314 series m = multl[,2]

s15 series lag = mult[,1]

316 setinfo m -d "Multipliers" -n "Multiplier"

317 gnuplot m index --with-lines --output=display --suppress-fitted
318

319 # appendix

320 open "Ogretldir\data\poe\phillips_aus.gdt"

321 diff u

322 setinfo inf -d "Australian Inflation Rate" -n "Inflation Rate"
323 setinfo d_u -d "Change in Australian Civilian \

324 Unemployment Rate (Seasonally adjusted)" -n \

325 "D.Unemployment Rate"

326

327 # Durbin-Watson with p-value

328 list x = d_u const

320 ols inf x

330 scalar dw_p = $dwpval

331 print dw_p

332

333 # various ways to estimate AR(1) regression

334 arl inf x

335 modeltab add

336 arl inf x --pwe
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337
338
339
340
341
342
343
344

modeltab add

arl inf x --hilu --no-corc

modeltab add

modeltab show
modeltab free

ar 1 ; inf x
arima 1 0 O

’

inf x
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Regression residuals (= observed - fitted inf)
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Figure 9.11: This plot shows that the residuals from the simple Phillips curve model are serially
correlated. Australia, 1987:1 - 2009:3.
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Breusch-Godfrey test for autocorrelation up to order 4
OLS5, using observations 1887:2-2009:3 (T = 90)
Dependent wvariable: uhat

coefficient std. error t-ratio p—-value

const -0.0130019 0.0519579 -0.2502 0.8030
d u -0.473812 0.201371 -2.353 0.0210 **
uhat_1 0.325470 0.106438 3.058 0.0030 A®=*
uhat_2 0.155441 0.111806 1.390 0.168
uhat 3 0.169382 0.112812 1.502 0.1370
uhat 4 0.201361 0.109935 1.832 0.0706 *
Unadjusted R-zquared = 0.407466

Test statistic: LMF = 14.44097&,

with p-value = P(F(4,84) > 14.441l) = 5.15e-009%

Alternative statistic: TR™2 = 36.671837,

with p-value = P(Chi-zsquare(4) > 36.6719) = 2.1=-007

Ljung-Box Q' = 82.4327,

with p—value = P(Chi-sguare(4) > 82.4327) = 5.31e-017

Figure 9.12: Using Test>Autocorrelation from the model pull-down menu will generate the
following output. The alternative hypothesis is AR(4).

Using numerical derivatiwves
Tolerance = 1,8189%e-012
Convergence achieved after 21 iterations

Model 2: NL5, using observations 1987:3-2009:3 (T = 89)
inf = betal#® (l-rho) + rho*inf(-1) + betaZ*(d u-rho*d u(-1})

estimate std. error t-ratio p-value
rho 0.557392 0.0901546 6.18 2.05e-08 #*%%
betal 0.780872 0.124531 6.110 2.82e-08 ***
beta2 -0.694388 0.247894 -2.801 0.0063 EEE

Mean dependent wvar 0.783146 5.0. dependent wvar 0.635902

Sum sguared resid 23.198&88 5.E. of regression 0.519377
R-squared 0.348072 Adijusted R-sguared 0.332911
Log-likelihood -866.45345 Akaike criterion 138.9069
Schwarz criterion 146.3728 Hannan-{uinn 141.91&2

Figure 9.13: Nonlinear least squares results for the AR(1) regression model.
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Residual ACF
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Figure 9.14: Residual correlogram for Okun AR(2)

rH Add observations @1

There are no chservations available for forecasting
out of sample. You can add some observations now
if you wish.

Mumber of cbservations to add: E =

Concel || ok |

Figure 9.15: Using Data>Add observations from the main gretl pull-down menu will extend the
sample period. This is necessary to generate forecasts.

244



r“ gretl: forecast ﬁw

Start End

Forecast range: = m
e o (200102 2

@ automatic forecast (dynamic out of sample)
() dynamic forecast
() static forecast

) rolling k-step ahead forecasts: k= |1

Murnber of pre-forecast observations to graph |48 =

Show fitted values for pre-forecast range

Plot confidence interval using | error bars E

1-a= (085

Show interval for | actual ¥ IZ'

o )

Figure 9.16: Forecast dialog box

% Change in GDP

U.5. GDP Growth =——
forecast ———
95 percent mt‘erval =

-1.5 L
1993 2000 2002 2004 2006 2008 2010

Figure 9.17: Gretl calls gnuplot to generate a graph of the time-series and the forecast.
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Multipliers from an ARDL(1,1)
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Figure 9.19: Impact and delay multipliers for an ARDL(1,1) of the change in unemployment caused
by 1% increase in U.S. GDP growth.
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o 1 0)

Random Regressors and Moment Based
Estimation

In this chapter you will learn to use instrumental variables to obtain consistent estimates of a
model’s parameters when its independent variables are correlated with the model’s errors.

10.1 Basic Model

Consider the linear regression model
yi=p1+ foxi+e i1=1,2,...,N (10.1)

Equation (10.1) suffers from a significant violation of the usual model assumptions when its explana-
tory variable is contemporaneously correlated with the random error, i.e., Cov(e;, x;) = E(e;x;) # 0.
When a regressor is correlated with the model’s errors, the regressor is often referred to as being
endogenous.! If a model includes an endogenous regressor, least squares is known to be both
biased and inconsistent.

An instrument is a variable, z, that is correlated with « but not with the error, e. In addition,
the instrument does not directly affect y and thus does not belong in the actual model as a separate
regressor. It is common to have more than one instrument for x. All that is required is that these
instruments, z1, 22, ..., zs, be correlated with x, but not with e. Consistent estimation of (10.1) is
possible if one uses the instrumental variables or two-stage least squares estimator, rather
than the usual OLS estimator.

!There is a certain sloppiness associated with the use of endogenous in this way, but it has become standard
practice in econometrics.
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10.2 IV Estimation

Gretl handles this estimation problem with ease using what is commonly referred to as two-
stage least squares. In econometrics, the terms two-stage least squares (TSLS) and instrumental
variables (IV) estimation are often used interchangeably. The ‘two-stage’ terminology is a legacy
of the time when the easiest way to estimate the model was to actually use two separate least
squares regressions. With better software, the computation is done in a single step to ensure the
other model statistics are computed correctly. Since the software you use invariably expects you to
specify ‘instruments,’ it is probably better to think about this estimator in those terms from the
beginning. Keep in mind though that gretl uses the old-style term two-stage least squares (tsls)
even as it asks you to specify instruments in it dialog boxes and scripts.

10.2.1 Least Squares Estimation of a Wage Equation

The example is model of wages estimated using mroz.gdt using the 428 women in the sample
that are in the labor force. The model is

In(wage) = B1 + Boeduc + Bsexper + Byexper” + e (10.2)

In all likelihood a woman’s wages will depend on her ability as well as education and experience.
Ability is omitted from the model, which poses no particular problem as long as it is not correlated
with either education or experience. The problem in this example, however, is that ability is likely
to be correlated with education. The opportunity cost of additional education for those of high
ability is low and they tend to get more of it. Hence, there is an endogeneity problem in this
model. The model is estimated using least squares to produce:

OLS, using observations 1-428
Dependent variable: 1_wage

Coefficient Std. Error t-ratio  p-value

const —0.522041 0.198632 —2.6282 0.0089
educ 0.107490 0.0141465 7.5983  0.0000
exper 0.0415665 0.0131752 3.1549 0.0017

sq-exper —0.000811193 0.000393242 —2.0628 0.0397

Mean dependent var 1.190173 S.D. dependent var 0.723198

Sum squared resid 188.3051 S.E. of regression 0.666420
R? 0.156820 Adjusted R? 0.150854
F(3,424) 26.28615 P-value(F) 1.30e-15
Log-likelihood —431.5990 Akaike criterion 871.1979
Schwarz criterion 887.4344 Hannan—Quinn 877.6105
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The estimated return to another year of schooling is 10.75%. That seems fairly high and if education
and the omitted ability are correlated, then it is being estimated inconsistently by least squares.

10.2.2 Two-Stage Least Squares

To perform Two-Stage Least Squares (TSLS) or Instrumental Variables (IV) estimation you
need instruments that are correlated with your independent variables, but not correlated with the
errors of your model. In the wage model, we will need some variables that are correlated with
education, but not with the model’s errors. We propose that mother’s education (mothereduc) is
suitable. The mother’s education is unlikely to enter the daughter’s wage equation directly, but it
is reasonable to believe that daughters of more highly educated mothers tend to get more education
themselves. These propositions can and will be be tested later. In the meantime, estimating the
wage equation using the instrumental variable estimator is carried out in the following example.
First, load the mroz.gdt data into gretl. Then, to open the basic gretl dialog box that computes
the IV estimator choose Model>Instrumental Variables>Two-Stage Least Squares from the
pull-down menu as shown below in Figure 10.1. This opens the dialog box shown in Figure 10.2.

File Tools Data View Add Sample Variable Model Help

mroz.gdt * Ordinary Least Squares... |

ID# 4 Variable name {4 Descriptive label Instrumental variables 4 60—5&19& Least SquareD
6 siblings Wife's number of siblings Other linear models ’ LIML...
T Ifp dummy variable = 1 if wornal Nonlinear models » GMM...
8  hours Wife's hours of work in 1975 Tirae cali=c |

Undated: Full range1 - 753

EROE~BE L 4 85

Figure 10.1: Two-stage least squares estimator from the pull-down menus

In this example we choose 1_wage as the dependent variable, put all of the desired instruments into
the Instruments box, and put all of the independent variables, including the one(s) measured with
error, into the Independent Variables box. If some of the right-hand side variables for the model are
exogenous, they should be referenced in both lists. That’s why the const, exper, and sq_exper
variables appear in both places. Press the OK button and the results are found in Table 10.1.
Notice that gretl ignores the sound advice offered by the authors of your textbook and computes
an R?. Keep in mind, though, gretl computes this as the squared correlation between observed
and fitted values of the dependent variable, and you should resist the temptation to interpret R?
as the proportion of variation in 1_wage accounted for by the model.

If you prefer to use a script, the syntax is very simple.
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TSLS, using observations 1-428
Dependent variable: 1_wage
Instrumented: educ
Instruments: const mothereduc exper sq_exper

Coefficient Std. Error z p-value
const 0.198186 0.472877 0.4191 0.6751
educ 0.0492630 0.0374360 1.3159 0.1882
exper 0.0448558 0.0135768 3.3039 0.0010

sq-exper —0.000922076 0.000406381 —2.2690 0.0233
Mean dependent var 1.190173 S.D. dependent var 0.723198

Sum squared resid 195.8291 S.E. of regression 0.679604
R? 0.135417 Adjusted R? 0.129300
F(3,424) 7.347957 P-value(F) 0.000082
Log-likelihood —3127.203 Akaike criterion 6262.407
Schwarz criterion 6278.643 Hannan—Quinn 6268.819

Table 10.1: Results from two-stage least squares estimation of the wage equation.

tzls

Arguments: depvar indepvars ; instruments

Options: ——wcv (print covariance matrix)
——robust (robust standard errors)
——1iml (use Limited Information Maximum Likelihood)
——gmm (use the Generalized Method of Moments)

Example: tsls yv1 0 v2 v3 x1 =2 ; 0 x1 =2 =3 x4 x5 =6

The basic syntax is this: tsls y x ; z, where y is the dependent variable, x are the regressors,
and z the instruments. Thus, the gretl command tsls calls for the IV estimator to be used and
it is followed by the linear model you wish to estimate.

The script for the example above is

1 list x = const educ exper sq_exper
2 list z = const exper sq_exper mothereduc
3 tsls l_wage x ; z

In the script, the regressors for the wage equation are collected into a list called x. The instruments,
which should include all exogenous variables in the model including the constant, are placed in
the list called z. Notice that z includes all of the exogenous variables in x. Here the dependent
variable, y, is replaced with its actual value from the example, (1_wage).
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It is certainly possible to compute two-stage least squares in two steps, but in practice it is not
a good idea to do so. The estimates of the slopes and intercept will be the same as you get using
the regular tsls IV estimator. The standard errors will not be computed correctly though. To
demonstrate, we will do the estimation in two steps and compare results. The gretl code to do
two step estimation is

1 smpl wage>0 --restrict
2 ols educ z
3 series educ_hat = $yhat

Notice that the sample had to be restricted to those wages greater than zero using the ——restrict
option. If you fail to do this, the first stage regression will be estimated with all 753 observations
instead of the 428 used in tsls. TSLS is implicitly limiting the first stage estimation to the non-
missing values of 1_wage. You can see that the coefficient estimates are the same as those in Table
10.1, but the standard errors are not.

10.2.3 Partial Correlations

Valid instruments are supposed to be correlated with the endogenous regressor. However, an
important determinant of the statistical properties of the IV estimator is the degree of correlation
between the instrument and the endogenous regressor. Furthermore, it is the independent corre-
lation between the instrument and the endogenous regressor that is important. The higher, the
better.

One way to get at this in a multiple regression model is to partial out the correlation in variables
measured with error that is due to the exogenous regressors. Whatever common variation that
remains will measure the independent correlation between the variable measured with error and
the instrument. This sounds complicated, but it is not. It is simple to do in gretl.

ols educ const exper sq_exper
series el = $uhat

ols mothereduc const exper sq_exper
series e2 = $uhat

ols el e2

6 corr el e2

s W N =

w

The first statement regresses const, exper, and sq_exper on educ and saves the residuals, e1. The
residuals contain all variation in educ not accounted for by the regressors. In effect, the variation
in const, exper, and sq_exper has been partialled out of the variable measured with error, educ.
The second regression does the same for the instrument, mothereduc. The residuals, e2, have the
correlation with const, exper, and sq_exper partialled out. Regressing e2 onto el yields, 0.26769.
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This turns out to be exactly the coefficient on mothereduc in the first-stage regression. This is
no coincidence since regression coefficients are the effect of one variable on another, holding the
remaining regressors constant.?

First Stage Regression: OLS, using observations 1-428
Dependent variable: educ

coefficient std. error t-ratio p-value
const 9.77510 0.423889 23.06 7.57e-077 *x*x
exper 0.0488615 0.0416693 1.173 0.2416
sq_exper -0.00128106  0.00124491  -1.029 0.3040
mothereduc 0.267691 0.0311298 8.599 1.57e-016 s*x*x

The correlation between the two sets of residuals yields what is called a partial correlation. This is
a correlation where the common effects of const, exper, and sq_exper have been removed. The
partial correlation between el and e2 is 0.3854. Partial correlations play a key role in testing for
weak instruments.

10.3 Specification Tests

There are three specification tests you will find useful with instrumental variables estimation.
By default, Gretl computes each of these whenever you estimate a model using two-stage least
squares. Below I'll walk you through doing it manually and we’ll compare the manual results to
the automatically generated ones.

10.3.1 Hausman Test

The first test is to determine whether the independent variable(s) in your model is (are) in
fact uncorrelated with the model’s errors. If so, then least squares is more efficient than the IV
estimator. If not, least squares is inconsistent and you should use the less efficient, but consistent,
instrumental variable estimator. The null and alternative hypotheses are H, : Cov(z;,e;) = 0
against H, : Cov(x;,e;) # 0. The first step is to use least squares to estimate the first stage of
TSLS

i =51+ 0121 + 02250 + 15 (10.3)

and to save the residuals, ;. Then, add the residuals to the original model
yi = P+ Powi + 00 + €5 (10.4)

Estimate this equation using least squares and use the t-ratio on the coefficient § to test the
hypothesis. If it is significantly different from zero then the regressor, x; is not exogenous or

2This demonstrates an important outcome of the Frisch-Waugh-Lovell Theorem.
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predetermined with respect to e; and you should use the IV estimator (TSLS) to estimate 1 and
Bo. If it is not significant, then use the more efficient estimator, OLS.

The gretl script for the Hausman test applied to the wage equation is:

open "c:\Program Files\gretl\data\poe\mroz.gdt"

logs wage

list x = const educ exper sq_exper

list z2 = const exper sq_exper mothereduc fathereduc
ols educ z2 --quiet

series ehat2 = $uhat

ols 1l_wage x ehat2

Notice that the equation is overidentified. There are two additional instruments, mothereduc
and fathereduc, that are being used for a lone endogenous regressor, educ. Overidentification
basically means that you have more instruments than necessary to estimate the model. Lines 5
and 6 of the script are used to get the residuals from least squares estimation of the first stage
regression, and the last line adds these to the wage model, which is estimated by least squares.
The t-ratio on ehat2 =1.671, which is not significant at the 5% level. We would conclude that the
instruments are exogenous.

You may have noticed that whenever you use two-stage least squares in gretl that the program
automatically produces the test statistic for the Hausman test. There are several different ways of
computing this statistic so don’t be surprised if it differs from the one you compute manually using
the above script.

10.3.2 Testing for Weak Instruments

To test for weak instruments, regress each independent variable suspected of being contempora-
neously correlated with the error (zj) onto all of the instruments (internal and external). Suppose
xx is the endogenous regressor. The first stage regression is:

Tk =71 +7222+ -+ k171 + bz + -+ 0z H vk (10.5)

In this notation, the z1, ..., z;, are the external instruments. The others, zs9, ..., zKg_1 are
exogenous and are used as instruments for themselves (i.e., internal to the model). If the F-
statistic associated with the hypothesis that the coefficients on the external instruments, 61, ...,
01, are jointly zero is less than 10, then you conclude that the instruments are weak. If it is greater
than 10, you conclude that the instruments are strong enough. The following script uses least
squares to perform three such tests. The first regression assumes there is only one instrument, z1;
the second that the single instrument is 22; the third assumes both are instruments.

open "@gretldir\data\poe\mroz.gdt"
smpl wage>0 --restrict
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logs wage

square exper

list x = const educ exper sq_exper

list z2 = const exper sq_exper mothereduc fathereduc
ols educ z2

omit mothereduc fathereduc

When omit follows an OLS regression, gretl estimates a restricted model where the variables
listed after it are omitted from the model above. It then performs a joint hypothesis test that the
coefficients of the omitted variables are zero against the alternative that one or more are not zero.
The --quiet option reduces the amount of output you have to wade through by suppressing the
printout from the regressions; only the test results are printed. The output from gretl appears in
Figure 10.3 below: The F value = 55.4, which is well beyond 10. We reject the hypothesis that
the (external) instruments mothereduc and fathereduc are weak in favor of the alternative that
they are strong.

Gretl proves its worth here. Whenever you estimate a model using two stage least squares,
gretl will compute the test statistic for detecting weak instruments.

10.3.3 Sargan Test

The final test is the Sargan test of the overidentifying restrictions implied by an overidentified
model. Recall that to be overidentified just means that you have more instruments than you have
endogenous regressors. In our example we have a single endogenous regressor (educ) and two
instruments, (mothereduc and fatehreduc). The first step is to estimate the model using TSLS
using all the instruments. Save the residuals and then regress these on the instruments alone. TR?
from this regression is approximately x? with degrees of freedom equal to the number of surplus
instruments. Gretl does this easily since it saves TR? as a part of the usual regression output,
where T is the sample size (which we are calling N in cross-sectional examples). The script for the
Sargan test follows:

open "@gretldir\data\poe\mroz.gdt"
smpl wage>0 --restrict

logs wage

square exper

list x = const educ exper sq_exper
list z2 = const exper sq_exper mothereduc fathereduc
tsls 1l_wage x; z2

series ehat2 = $uhat

ols ehat2 z2

scalar test = $trsq

pvalue X 2 test

© 00 9 O s W N =

=
=]
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The first 6 lines open the data, restricts the sample, generates logs and squares, and creates the lists
of regressors and instruments. In line 7 the model is estimated using TSLS with the variables in
list x as regressors and those in z2 as instruments. In line 8 the residuals are saved as ehat2. Then
in line 9 a regression is estimated by ordinary least squares using the residuals and instruments as
regressors. TR? is collected and the p-value computed in the last line.

The result is:

Generated scalar test = 0.378071

Chi-square(2): area to the right of 0.378071 = 0.827757
(to the left: 0.172243)

The p-value is large and the null hypothesis that the overidentifying restrictions are valid cannot
be rejected. The instruments are determined to be ok. Rejection of the null hypothesis can mean
that the instruments are either correlated with the errors or that they are omitted variables in the
model. In either case, the model as estimated is misspecified.

Finally, gretl produces these tests whenever you estimate a model using tsls. If the model is
exactly identified, then the Sargan test results are omitted. Here is what the output looks like in
the wage example:

Hausman test —
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: x2(1) = 2.8256
with p-value = 0.0927721

Sargan over-identification test —
Null hypothesis: all instruments are valid
Test statistic: LM = 0.378071
with p-value = P(x%(1) > 0.378071) = 0.538637

Weak instrument test —
First-stage F'(2,423) = 55.4003

Critical values for desired TSLS maximal size, when running
tests at a nominal 5% significance level:

size 10% 15% 20% 25Y%
value 19.93 11.59 8.75 7.25

Maximal size is probably less than 10%

You can see that the Hausman test statistic differs from the one we computed manually using the
script. However, the p-value associated with this version and ours above are virtually the same.
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The results from the instrument strength test and from the Sargan test for overdentification are
the same. In conclusion, there is no need to compute any of these tests manually, unless you want
to.

Finally, you will also see that some additional information is being printed at the bottom of
the test for weak instruments. The rule-of-thumb we have suggested is that if the F' > 10 then
instruments are relatively strong. This begs the question, why not use the usual 5% critical value
from the F-distribution to conduct the test? The answer is that instrumental variables estimators
(though consistent) are biased in small samples. The weaker the instruments, the greater the bias.
In fact, the bias is inversely related to the value of the F-statistic. An F' = 10 is roughly equivalent
to 1/F = 10% bias in many cases. The other problem caused by weak instruments is that they
affect the asymptotic distribution of the usual ¢- and F-statistics. This table is generated to give
you a more specific idea of what the actual size of the weak instruments test is. For instance, if
you are willing to reject weak instruments 10% of the time, then use a critical value of 19.93. The
rule-of-thumb value of 10 would lead to actual rejection of weak instruments somewhere between
15% and 20% of the time. Since our F = 55.4 > 19.93 we conclude that our test has a size less than
10%. If so, you would expect the resulting TSLS estimator based on these very strong instruments
to exhibit relatively small bias.

10.3.4 Multiple Endogenous Regressors and the Cragg-Donald F-test

3Cragg and Donald (1993) have proposed a test statistic that can be used to test for weak
identification (i.e., weak instruments). In order to compute it manually, you have to obtain a set
of canonical correlations. These are not computed in gretl so we will use another free software, R,
to do part of the computations. On the other hand, gretl prints the value of the Cragg-Donald
statistic by default so you won’t have to go to all of this trouble. Still, to illustrate a very powerful
feature of gretl we will use R to compute part of this statistic.

One solution to identifying weak instruments in models with more than one endogenous regressor
is based on the use of canonical correlations. Canonical correlations are a generalization of the usual
concept of a correlation between two variables and attempt to describe the association between two
sets of variables.

Let N denote the sample size, B the number of righthand side endogenous variables, G the
number of exogenous variables included in the equation (including the intercept), L the number of
external instruments—i.e., ones not included in the regression. If we have two variables in the first
set of variables and two variables in the second set then there are two canonical correlations,
and 7o.

A test for weak identification—which means that the instruments are correlated with endogenous
regressors, but not very highly—is based on the Cragg-Donald F-test statistic

Cragg-Donald — F = [(N — G — B)/L] x [r%/(1 — 1%)] (10.6)

3The computations in this section use R. You should refer to appendix D for some hints about using R.
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The Cragg-Donald statistic reduces to the usual weak instruments F-test when the number of
endogenous variables is B = 1. Critical values for this test statistic have been tabulated by Stock
and Yogo (2005), so that we can test the null hypothesis that the instruments are weak, against
the alternative that they are not, for two particular consequences of weak instruments.

The problem with weak instruments is summarized by Hill et al. (2011, p. 435):

Relative Bias: In the presence of weak instruments the amount of bias in the IV estimator can
become large. Stock and Yogo consider the bias when estimating the coefficients of the
endogenous variables. They examine the maximum IV estimator bias relative to the bias of
the least squares estimator. Stock and Yogo give the illustration of estimating the return to
education. If a researcher believes that the least squares estimator suffers a maximum bias
of 10%, and if the relative bias is 0.1, then the maximum bias of the IV estimator is 1%.

Rejection Rate (Test Size): When estimating a model with endogenous regressors, testing hy-
potheses about the coefficients of the endogenous variables is frequently of interest. If we
choose the @ = 0.05 level of significance we expect that a true null hypothesis is rejected 5%
of the time in repeated samples. If instruments are weak, then the actual rejection rate of the
null hypothesis, also known as the test size, may be larger. Stock and Yogo’s second criterion
is the maximum rejection rate of a true null hypothesis if we choose oo = 0.05. For example,
we may be willing to accept a maximum rejection rate of 10% for a test at the 5% level, but
we may not be willing to accept a rejection rate of 20% for a 5% level test.

The script to compute the statistic manually is given below:

open "@gretldir\data\poe\mroz.gdt"

smpl wage>0 --restrict

logs wage

square exper

series nwifeinc = (faminc-wagexhours)/1000

list x = mtr educ kidsl6 nwifeinc const

list z = kidsl6 nwifeinc mothereduc fathereduc const
tsls hours x ; z

scalar df = $df

- W N =

© oo ~ o«

This first section loads includes much that we’ve seen before. The data are loaded, the sample
restricted to the wage earners, the log of wage is taken, the square is experience is added to the
data. Then a new variable is computed to measure family income from all other members of the
household. The next part estimates a model of hours as a function of mtr, educ, kids16, nwifeinc,
and a constant. Two of the regressors are endogenous: mtr and educ. The external instruments
are mothereduc and fathereduc; these join the internal ones (const, kidsl6, nwifeinc) in the
instrument list. The degrees of freedom from this regression is saved to compute (N — G — B)/L.

The next set of lines partial’s out the influence of the internal instruments on each of the
endogenous regressors and on the external instruments.
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10 list w = const kidsl6 nwifeinc
11 ols mtr w --quiet

12 series el = $uhat

13 ols educ w --quiet

14 series e2 = $uhat

15 0ls mothereduc w --quiet

16 series e3 = $uhat

17 ols fathereduc w --quiet

18 series e4 = $uhat

Now this is where it gets interesting. From here we are going to call a separate piece of software
called R to do the computation of the canonical correlations. Lines 19-25 hold what gretl refers
to as a foreign block.

19 foreign language=R --send-data -—quiet

20 setl <- gretldatal,29:30]
21 set2 <- gretldatal,31:32]
22 ccl <- cancor(setl,set2)
23 cc <- as.matrix(ccl$cor)
24 gretl.export(cc)

25 end foreign

26

27 vars = mread("@dotdir/cc.mat")

28 print vars

29 scalar mincc = minc(vars)

30 scalar cd = df*(mincc”2)/(2*x(1-mincc”2))

31 printf "\nThe Cragg-Donald Statistic is %10.4f.\n",cd

A foreign block takes the form

Foreign Block syntax
foreign language=R [--send-data] [--quiet]

. R commands ...
end foreign

and achieves the same effect as submitting the enclosed R commands via the GUI in the noninter-
active mode (see the chapter Gretl and R of the Gretl Users Guide). In other words, it allows
you to use R commands from within gretl . Of course, you have to have installed R separately,
but this greatly expands what can be done using gretl. The --send-data option arranges for
auto-loading of the data from the current gretl session. The --quiet option prevents the output
from R from being echoed in the gretl output. The block is closed with an end foreign command.

Inside our foreign block we create two sets of variables. The first set includes the residuals, el
and e2 computed above. There are obtained from a matrix called gretldata. This is the name
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that gretl gives to data matrices that are passed into R. You have to pull the desired variables
out of gretldata. In this case I used a rather inartful but effective means of doing so. These two
variables are located in the 29th and 30th columns of gretldata. These also happen to be their
ID numbers in gretl. Line 20 puts these two variables into set1.

The second set of residuals is put into set2. Then, R’s cancor function is used to find the
canonical correlations between the two sets of residuals. The entire set of results is stored in R as
cc. This object contains many results, but we only need the actual canonical correlations between
the two sets. The canonical correlations are stored within cc as cor. They are retrieved as cc$cor
and put into a matrix with R’s as.matrix command. These are exported to gretl as cc.mat. R
adds the .mat suffix. cc.mat is placed in your working directory.

The next step is to read the cc.mat into gretl. Then in line we take the smallest canonical
correlation and use it in line to compute the Cragg-Donald statistic. The result printed to the
screen is:

? printf "\nThe Cragg-Donald Statistic is %6.4f.\n",cd
The Cragg-Donald Statistic is 0.1006.

It matches the automatic one produced by tsls, which is shown below, perfectly! It also shows
that these instruments are very weak.

Weak instrument test -
Cragg-Donald minimum eigenvalue = 0.100568
Critical values for desired TSLS maximal size, when running
tests at a nominal 5% significance level:

size 10% 15% 20% 25%
value 7.03 4.58 3.95 3.63

Maximal size may exceed 25%
Of course, you can do this exercise without using R as well. Gretl’s matrix language is very

powerful and you can easily get the canonical correlations from two sets of regressors. The following
funcrion? does just that.

1 function matrix cc(list Y, list X)
2 matrix mY = cdemean({Y})

3 matrix mX = cdemean ({X})

4

5 matrix YX = mY’mX

6 matrix XX = mX’mX

7 matrix YY = mY’mY

“Function supplied by gretl guru Riccardo Lucchetti.
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8

9 matrix ret = eigsolve(qform(YX, invpd(XX)), YY)
10 return sqrt(ret)

11 end function

The function is called cc and takes two arguments, just as the one in R. Feed the function two lists,
each containing the variable names to be included in each set for which the canonical correlations
are needed. Then, the variables in each set are demeaned using the very handy cdemean function.
This function centers the columns of the matrix argument around the column means. Then the
various cross-products are taken (YX, XX, YY) and the eigenvalues for |@Q — AYY| = 0, where
Q= (YX)(XX) Y (YX)T, are returned.

Then, to get the value of the Cragg-Donald F, assemble the two sets of residuals and use the
cc function to get the canonical correlations.

list E1 = el e2
list E2 e3 e4

1 = cc(E1, E2)

scalar mincc = minc(1)

scalar cd = df*(mincc~2)/(2*x(1-mincc”~2))

printf "\nThe Cragg-Donald Statistic is %10.4f.\n",cd

N o oA W

10.4 Simulation

In appendix 10F of POEJ, the authors conduct a Monte Carlo experiment comparing the
performance of OLS and TSLS. The basic simulation is based on the model

y=x+e (10.7)
x=mz+72e+ W23+ 0 (10.8)

The z; are exogenous instruments that are each N(0,1). The errors, e and v, are

() =166 7 o

The parameter 7 controls the strength of the instruments and is set to either 0.1 or 0.5. The
parameter p controls the endogeneity of x. When p = 0, x is exogenous. When p = 0.8 it is
seriously endogenous. Sample size is set to 100 and 10,000 simulated samples are drawn.

The gretl script to perform the simulation appears below:
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scalar N = 100

nulldata N

scalar rho = 0.8 # set r = (0.0 or 0.8)
scalar p = 0.5 # set p = (0.1 or 0.5)
matrix S = {1, rho; rho, 1}

matrix C = cholesky(S)

series z1 = normal(N,1)

series z2 = normal(N,1)

series z3 = normal(N,1)

series xs = p*zl + p*z2 + p*z3
list z = z1 z2 z3

© 0w N O s W N

ey
B W N o= O

loop 10000 --progressive --quiet
matrix errors = mnormal(N,2)*C’
series v = errorsl[,1]
series e = errors[,2]
X = X8 + v
y=x+e
ols x const z -—quiet
scalar f = $Fstat
ols y 0 x —--quiet
scalar b_ols = $coeff(x)
tsls y 0 x; 0 z —-—quiet
scalar b_tsls = $coeff(x)
store coef.gdt b_ols b_tsls f
print b_ols b_tsls £

endloop

NONN N NNNN N R e
0 N O s W N = O VW 0w

The top part of the script initializes all of the parameters for the simulation. The sample size
is set to 100, an empty dataset is created, the values of p and 7w are set, then the covariance
matrix is created and the Cholesky decomposition is taken. The Cholesky decomposition is a trick
used to create correlation among the residuals. There are more transparent ways to do this (e.g.,
e = rho*v + normal(0,1)), but this is a useful trick to use, especially when you want to correlate
more than two series. The systematic part of x is created and called xs and a list to contain the
instruments is created as well.

The loop uses the ——progressive option and is set to do 10,000 iterations. The matrix called
errors uses the Cholesky decomposition of the variance covariance to create the correlated errors.
The first column we assign to v and the second to e. The endogenous regressor x is created by
adding v to the systematic portion of the model, and then the dependent variable in the regression
is created. The first regression in line 20 is the reduced form. The overall F' statistic from this
regression can serve as the test for weak instruments since there are no other exogenous variables
in the model. The omit form of the F-test won’t work in a progressive loop so I avoided it here.
The slope estimates for least squares and two-stage least squares are collected, stored to coef.gdt,
and printed.

For this particular parameterization, I obtained the following result:
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Statistics for 10000 repetitions

Variable mean std. dev.
b_ols 1.42382 0.0532148
b_tsls 1.00887 0.106816
f 30.6130 7.88943

With strong instruments, TSLS is basically unbiased. Least squares is seriously biased. Notice
that the average value of the weak instrument test is 30.6, indicating the strong instruments. Try
changing p and rho to replicate the findings in Table 10F.1 of POFE4.

10.5 Script

set echo off

open "@gretldir\data\poe\mroz.gdt"
logs wage

square exper

.

list x = const educ exper sq_exper

list z const exper sq_exper mothereduc

# least squares and IV estimation of wage eq
ols 1_wage x

tsls 1l_wage x ; z

© 0 N 3 O W N

- =
—= o

12 # tsls-—manually

13 smpl wage>0 --restrict

14 ols educ z

15 series educ_hat = $yhat

16 ols 1_wage const educ_hat exper sq_exper
17

18 # partial correlations--the FWL result

19 0ls educ const exper sq_exper

20 series el = $uhat

21 ols mothereduc const exper sq_exper

22 series e2 = $uhat

23 ols el e2

24 corr el e2

25

26 list z = const exper sq_exper mothereduc
27 list zl = const exper sq_exper fathereduc
28 list z2 = const exper sq_exper mothereduc fathereduc
29

30 # Hausman test with different sets of instruments
31 ols educ z --quiet

32 series ehat = $uhat

33 ols l_wage x ehat

34

35 ols educ zl --quiet
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36
37
38
39
40
41
42
43
44

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

series ehatl
ols 1_wage x ehatl

ols educ z2 --quiet
series ehat2 = $uhat
ols 1_wage x ehat2

# weak instruments

open "@gretldir\data\poe\mroz.gdt"

smpl wage>0 --restrict

logs wage

square exper

const educ exper sq_exper

list z2 = const exper sq_exper mothereduc fathereduc
ols educ z2

omit mothereduc fathereduc

# Sargan test of overidentification
tsls 1l_wage x; z2

series uhat2 = $uhat

ols uhat2 z2
scalar test
pvalue X 2 test

tsls l_wage x ; z2

open "@gretldir\data\poe\mroz.gdt"
smpl wage>0 --restrict

logs wage

square exper

list x = const educ exper sq_exper

list z2 = const exper sq_exper mothereduc fathereduc
tsls 1l_wage x; z2

series ehat2 = $uhat

ols ehat2 z2

scalar test = $trsq

pvalue X 2 test

# Cragg-Donald F

open "@gretldir\data\poe\mroz.gdt"

smpl wage>0 --restrict

logs wage

square exper

series nwifeinc = (faminc-wage*hours)/1000
list x = mtr educ kidsl6 nwifeinc const
list z = kids1l6 nwifeinc mothereduc fathereduc const
tsls hours x ; z

scalar df = $df

list w = const kidsl6 nwifeinc

ols mtr w --quiet

series el = $uhat
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87 ols educ w -—quiet

88 series e2 = $uhat

89 o0ls mothereduc w --quiet

90 series e3 = $uhat

91 ols fathereduc w --quiet

92 series e4 = $uhat

93

94 # canonical correlations in R

95 foreign language=R --send-data --quiet

96 setl <- gretldatal,29:30]
97 set2 <- gretldatal,31:32]
98 ccl <- cancor(setl,set2)
99 cc <- as.matrix(ccl$cor)
100 gretl.export(cc)

101 end foreign

102

103 vars = mread("@dotdir/cc.mat")

104 print vars

105 scalar mincc = minc(vars)

106 scalar cd = df*(mincc~2)/(2*(1-mincc~2))

107 printf "\nThe Cragg-Donald Statistic is %6.4f.\n",cd
108

109 # canonical correlations in gretl

110 function matrix cc(list Y, list X)

111 matrix mY = cdemean({Y})
112 matrix mX = cdemean ({X})
113

114 matrix YX = mY’mX

115 matrix XX = mX’mX

116 matrix YY = mY’mY

117
118 matrix ret = eigsolve(qform(YX, invpd(XX)), YY)

119 return sqrt(ret)

120 end function

121

122 list E1 = el e2

123 list E2 e3 e4

124

125 1 = cc(E1, E2)

126 scalar mincc = minc(1l)

127 scalar cd = df*(mincc~2)/(2*x(1-mincc~2))

128 printf "\nThe Cragg-Donald Statistic is %10.4f.\n",cd
129

130 # simulation for ols and tsls

131 scalar N = 100

132 nulldata N

133 scalar rho = 0.8 # set r = (0.0 or 0.8)

134 scalar p = 0.5 # set p = (0.1 or 0.5)

135 matrix S = {1, rho; rho, 1}

136 matrix C = cholesky(S)

137
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138

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

158

series zl =
series z2 =
series z3 =
series xs =
list z = z1

loop 10000 --progressive --quiet
rrors = mnormal (N,2)*C’

matrix e

normal (N, 1)
normal (N, 1)

normal (N,1)

p*zl + p*z2 + p*z3
z2 z3

series v = errorsl[,1]

series e
X = xs +
y=x+
ols x co
scalar f
ols y O
scalar b
tsls y O
scalar b

store coef.gdt b_ols b_tsls f

print b_
endloop

= errors[,2]

v

e
nst z --quiet

= $Fstat

X ——quiet

_ols = $coeff(x)
x; 0 z --quiet
_tsls = $coeff(x)

ols b_tsls £
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F' ™
“ gretl: specify model Elﬂlg
Two-stage least squares
Econs{mmmmmmmmmmm" mf 0 Dependent variable
federaltax
hsiblings Set as default
hfathereduc E Independent variables
hmothereduc
siblings const
Ifp educ
hours | & Bxper
kidsl6 =0-SxpeEr
kidsG18
Instruments
age
educ const
wage mothereduc
wagelh Sxper
hhours i s0_exper
[] Rebust standard errors Configure
[ Help ] l Clear l ’ Cancel l [ oK ]
L A

Figure 10.2: Two-stage least squares dialog box

Model 2: OL53, using observations 1-428
Dependent wariable: educ

coefficient =td. error t-ratio p-value

const 12.36594 0.322313 38.38 3.53e-140 ==*=*

EXpEer 0.0564919 0.0450935 1.253 0.2110

Sq_eXper -0.00150433 0.00134523 -1.41& 0.1576
Mean dependent war 12.65888 5.D. dependent wvar 2.285376
Sum =squared resid 2218.216 5.E. of regression 2.285101
BE-=zquared 0.004823 Adjusted B-=sguared 0.000241
Fi(2, 425) 1.051372 B-walue (F) 0.350365
Log-likelihood —-955.5039 Lkaike criterion 1925.008
Schwarz criterion 1937.185 Hannan—Quinn 1929.817

Comparison of Model 1 and Model 2:

Hull hypothesis: the regression parameters are zero for the wariables
mothereduc, fathereduc

Test statistic: F(2, 423) =@.4003, with p-value = 4.26851e-022 )
Cf the 3 model selection statistics, U have i1mproved.

Figure 10.3: Results from using the omit statement after least squares

267



e 1 1

Simultaneous Equations Models

In Chapter 11 of POE/ the authors present a model of supply and demand. The econometric
model contains two equations and two dependent variables. The distinguishing factor for models
of this type is that the values of two (or more) of the variables are jointly determined. This means
that a change in one of the variables causes the other to change and vice versa. The estimation of a
simultaneous equations model is demonstrated using the truffle example which is explained below.

11.1 Truffle Example

Consider a supply and demand model for truffles:

q; =1 + aop; +a3psi+a4dz’¢+ef (11.1)
¢ =P1 + Pap; + Bapf; + €} (11.2)

The first equation (11.1) is demand and ¢ us the quantity of truffles traded in a particular French
market, p is the market price of truffles, ps is the market price of a substitute good, and di is per
capita disposable income of the local residents. The supply equation (11.2) contains the variable
pf, which is the price of a factor of production. Each observation is indexed by ¢, ¢ = 1,2,..., V.
As explained in the text, prices and quantities in a market are jointly determined; hence, in this
econometric model p and ¢ are both endogenous to the system.
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11.2 The Reduced Form Equations

The reduced form equations express each endogenous variable as a linear function of every
exogenous variable in the entire system. So, for our example

¢ =11 + mo1ps; + m31dy; + T4 pf; + vin (11.3)
D; =m12 + To2ps; + m32dl; + Ta2pf; + Vio (11.4)

Since each of the independent variables is exogenous with respect to ¢ and p, the reduced form
equations (11.3) and (11.4) can be estimated using least squares. In gretl the script is

1 open "Ogretldir\data\poe\truffles.gdt"
2 list z = const ps di pf

3 ols q z

4 ols p z

The gretl results appear in Table 11.1 Each of the variables are individually different from zero

q = 7.89510 + 0.656402 ps + 2.16716 di — 0.506982 pf
(2.434) (4.605) (3.094) (—4.181)

T =30 R?®=06625 F(3,26)=19.973 & =2.6801

(t-statistics in parentheses)

P = —32.5124 + 1.70815 ps + 7.60249 di + 1.35391 pf
(—4.072) (4.868) (4.409) (4.536)

T =30 R>=0.8758 F(3,26)=69.189 & = 6.5975

(t-statistics in parentheses)

Table 11.1: The least squares estimates of the reduced form equations.

at 5%. The overall F-statistics are 19.97 and 69.19, both significant at 5% as well.

11.3 The Structural Equations

The structural equations are estimated using two-stage least squares. The basic gretl commands
for this estimator are discussed in Chapter 10. The instruments consist of all exogenous variables,
i.e., the same variables you use to estimate the reduced form equations (11.3) and (11.4).
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The gretl commands to open the truffle data and estimate the structural equations using two-
stage least squares are:

open "@gretldir\data\poe\truffles.gdt"
list z = const ps di pf

tsls q const p ps di; z

tsls q const p pf; z

=W N =

The second line of the script estimates puts all of the exogenous variables into a list called z.
These variables are the ones used to compute the first-stage regression, i.e., the list of instruments.
Line 3 estimates the coeflicients of the demand equation by TSLS. The gretl command tsls calls
for the two-stage least squares estimator and it is followed by the structural equation you wish
to estimate. List the dependent variable (q) first, followed by the regressors (const p ps di). A
semicolon separates the model to be estimated from the list of instruments, now contained in the
list, z. The fourth line uses the same format to estimate the parameters of the supply equation.
Refer to section 10.2, and Figures 10.1 and 10.2 specifically, about using the GUI to estimate the
model.

The results from two-stage least squares estimation of the demand equation appear below in
Table 11.2 The coefficient on price in the demand equation is —0.374 and it is significantly negative
at 5% level. It is good to know that demand curves have a negative slope! The Hausman test for
the exogeneity of price is equal to 132 with a near 0 p-value. Price is clearly not exogenous. The
test for weak instruments exceeds 10. Additional information from the results yields

Critical values for desired TSLS maximal size, when running
tests at a nominal 5% significance level:

size 10% 15% 20% 25Y%
value 16.38 8.96 6.66 5.53

Maximal size is probably less than 10%

Clearly, the set of instruments is fairly strong. There is no Sargan test because the model is not
overidentified. With one endogenous variable there is only 1 external instrument provided by pf
from the supply equation.

The results for the supply equation are in Table 11.3 In this case, the coefficient on price
is positive (as expected). The model is suitably overidentified according to the Sargan test (p-
value=0.216 > 0.05), and the instruments are suitably strong (First-stage F-statistic (2, 26) =
41.4873). The outcome of the Hausman test looks suspicious. The statistic is close to zero. A
manual check can easily be done using the script:
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TSLS of Demand, using observations 1-30
Dependent variable: g
Instrumented: p
Instruments: const ps di pf

Coefficient  Std. Error z p-value

const —4.27947  5.54388 —0.7719  0.4402

ps 1.29603  0.355193 3.6488 0.0003

di 5.01398  2.28356 2.1957 0.0281

p —0.374459  0.164752 —2.2729 0.0230
Mean dependent var 18.45833 S.D. dependent var 4.613088
Sum squared resid 631.9171 S.E. of regression 4.929960
R? 0.226805 Adjusted R? 0.137590
F(3,26) 5.902645 P-value(F) 0.003266
Log-likelihood —193.8065 Akaike criterion 395.6130
Schwarz criterion 401.2178 Hannan—Quinn 397.4061

Hausman test —
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: x?(1) = 132.484
with p-value = 1.17244e-030

Weak instrument test —
First-stage F'(1,26) = 20.5717

Table 11.2: Two-stage least square estimates of the demand of truffles.

1 ols p x

2 series v = $uhat

3 ols q const p pf v
4 omit v

The first step is to regress all instruments on the endogenous regressor, p. Get the residuals and
add them to the structural equation for supply. Reestimate by least squares and check the t-ratio
on the added residual. If it is significant, then p is endogenous. In this example, we confirm the
gretl calculation. This suggests that the supply equation can safely be estimated by least squares.
Doing so using:

ols q const p pf

reveals that the results are almost identical to those from TSLS. This is an implication of having a
Hausman statistic that is so small. See the appendix in Chapter 10 of POFE/ for a nice explanation
for this.
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TSLS of supply, using observations 1-30
Dependent variable: g
Instrumented: p
Instruments: const ps di pf

Coefficient Std. Error z p-value
const  20.0328 1.22311 16.3785  0.0000
pf —1.00091  0.0825279 —12.1281 0.0000
p 0.337982  0.0249196 13.5629  0.0000

Mean dependent var 18.45833 S.D. dependent var 4.613088
Sum squared resid 60.55457 S.E. of regression 1.497585
R? 0.901878 Adjusted R? 0.894610
F(2,27) 95.25929  P-value(F) 5.85e-13

Hausman test —
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: x2(1) = 2.62751e-007
with p-value = 0.999591

Sargan over-identification test —
Null hypothesis: all instruments are valid
Test statistic: LM = 1.53325
with p-value = P(x2(1) > 1.53325) = 0.215625

Weak instrument test —
First-stage F'(2,26) = 41.4873

Table 11.3: Two-stage least square estimates of the demand of truffles.

11.4 Fulton Fish Example

The following script estimates the reduced form equations using least squares and the demand
equation using two-stage least squares for Graddy’s Fulton Fish example.

In the example, In(quan) and In(price) are endogenously determined. There are several potential
instruments that are available. The variable stormy may be useful in identifying the demand
equation. In order for the demand equation to be identified, there must be at least one variable
available that effectively influences the supply of fish without affecting its demand. Presumably,
stormy weather affects the fishermen’s catch without affecting people’s appetite for fish! Logically,
stormy may be a good instrument.

The model of demand includes a set of indicator variables for day of the week. Friday is omitted
to avoid the dummy variable trap. These day of week variables are not expected to affect supply;
fishermen catch the same amount on average on any working day. Day of the week may affect
demand though, since people in some cultures buy more fish on some days than others.
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The demand equation is:
In(quan) = a1 + az In(price) + agmon + astue + aswed + agthu + eq (11.5)

Supply is affected by the weather in the previous three days, which is captured in the indicator
variable stormy.

In(quan) = p1 + B2 In(price) + Psstormy + e (11.6)

In both demand and supply equations, In(price) is the right-hand side endogenous variable. Iden-
tification of the demand equation requires stormy to be significantly correlated with Iprice. This
can be determined by looking at the t-ratio in the Iprice reduced form equation.

For supply to be identified, at least one of the day of the week dummy variables (mon tue wed
thu) that are excluded from the supply equation, has to be significantly correlated with Iprice in
the reduced form. If not, the supply equation cannot be estimated; it is not identified.

Proceeding with the analysis, open the data and estimate the reduced form equations for lquan
and Iprice. Go ahead and conduct the joint test of the day of the week variables using the -—quiet
option.

open "@gretldir\data\poe\fultonfish.gdt"
#Estimate the reduced form equations
list days = mon tue wed thu

list z = const stormy days

ols lquan z

omit days --quiet

ols lprice z

omit days --quiet

W N =

oo ~ [ 31

Notice how the 1ist command is used. A separate list is created to contain the indicator variables.
This allows us to add them as a set to the list of instruments in line 4 and to test their joint
significance in the reduced form equation for price in lines 6 and 8. The reduced form results for
lquan appear below:

Model 1: OLS estimates using the 111 observations 1-111
Dependent variable: lquan

Variable Coefficient Std. Error t-statistic p-value

const 8.810 0.147 59.922 0.000
stormy —0.388 0.144 —2.698 0.008
mon 0.101 0.207 0.489 0.626
tue —0.485 0.201 —2.410 0.018
wed —0.553 0.206 —2.688 0.008
thu 0.054 0.201 0.267 0.790
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Standard error of residuals (&) 0.681790

Unadjusted R? 0.193372
F(5,105) 5.03429
p-value for F\() 0.000356107

and the results for Iprice

Model 2: OLS estimates using the 111 observations 1-111
Dependent variable: Iprice

Variable Coefficient Std. Error t-statistic p-value

const —0.272 0.076  —3.557  0.001
stormy 0.346 0.075 4639 0.000
mon —0.113 0.107  —1.052  0.295
tue —0.041 0.105  —0.394  0.695
wed —0.012 0.107  —0.111  0.912
thu 0.050 0.104 0475  0.636

Unadjusted R? 0.178889

F(5,105) 457511

p-value for F() 0.000815589

In the reduced form equation for price, stormy is highly significant with a ¢-ratio of 4.639. This
implies that the demand equation is identified and can be estimated with the data. A joint test
of the significance of the daily indicator variables reveals that they are not jointly significant; the
F-statistic has a p-value of only 0.65. Since the daily indicators are being used as instruments to
estimate supply, the supply structural equation is not identified by the data and can’t be estimated
without better variables.

The two-stage least squares estimates of the demand equation are obtained using:

#TSLS estimates of demand
tsls lquan const lprice days ; z

to produce the result:

Model 3: TSLS estimates using the 111 observations 1-111
Dependent variable: lquan
Instruments: stormy
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Variable Coefficient Std. Error t-statistic p-value

const 8.506 0.166 51.189 0.000
mon —0.025 0.215 —0.118 0.906
tue —0.531 0.208 —2.552 0.011
wed —0.566 0.213 —2.662 0.008
thu 0.109 0.209 0.523 0.601
Iprice —1.119 0.429 —2.612 0.009
Mean of dependent variable 8.52343

S.D. of dependent variable 0.741672
Sum of squared residuals 52.0903
Standard error of residuals (&) 0.704342
F(5,105) 5.13561
p-value for F\() 0.000296831

Hausman test —
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: X% = 2.4261
with p-value = 0.119329

First-stage F'(1,105) = 21.5174

The coefficient on [price is negative and significant. It also appears that demand is significantly
lower on Tuesday and Wednesday compared to Fridays. The Hausman test for the exogeneity
of Iprice is not rejected at 5%. This suggests that least squares might be a suitable means of
estimating the parameters in this case. Also, the instruments appear to be sufficiently strong, i.e.,
the F' = 21.51 > 10.

11.5 Alternatives to TSLS

There are several alternatives to the standard IV/TSLS estimator. Among them is the limited
information maximum likelihood (LIML) estimator, which was first derived by Anderson and Rubin
(1949). There is renewed interest in LIML because evidence indicates that it performs better than
TSLS when instruments are weak. Several modifications of LIML have been suggested by Fuller
(1977) and others. These estimators are unified in a common framework, along with TSLS, using
the idea of a k-class of estimators. LIML suffers less from test size aberrations than the TSLS
estimator, and the Fuller modification suffers less from bias. Each of these alternatives will be
considered below.

In a system of M simultaneous equations let the endogenous variables be y1,yo,...,yn. Let
there be K exogenous variables x1,zo,...,zg. The first structural equation within this system is
Y1 = azy2 + S1z1 + Saxa + €1 (11.7)
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The endogenous variable yo has reduced form yo = w1021 + Mooxa + - - - + T2T K + V2 = F (y2) + v2,
which is consistently estimated by least squares. The predictions from the reduced form are

E (y2) = T1ga1 + Foa@a + - -+ + Tg2TK (11.8)

—

and the residuals are 92 = ya — E (y2).

The two-stage least squares estimator is an IV estimator using E/(;g) as an instrument. A
k-class estimator is an IV estimator using instrumental variable yo — kv2. The LIML estimator
uses k = [ where [ is the minimum ratio of the sum of squared residuals from two regressions. The
explanation is given on pages 468-469 of POEJ. A modification suggested by Fuller (1977) that

uses the k-class value a

k=1/¢— N_K
where K is the total number of instrumental variables (included and excluded exogenous variables)
and N is the sample size. The value of a is a constant-usually 1 or 4. When a model is just identified,
the LIML and TSLS estimates will be identical. It is only in overidentified models that the two
will diverge. There is some evidence that LIML is indeed superior to TSLS when instruments are
weak and models substantially overidentified.

(11.9)

With the Mroz data we estimate the hours supply equation
hours = 1 + Bamir + Bzeduc + Bakidsl6 + Bsnwifeinc + e (11.10)

A script can be used to estimate the model via LIML. The following one is used to replicate the
results in Table 11B.3 of POE/.

open "@gretldir\data\poe\mroz.gdt"

square exper

series nwifeinc = (faminc-wagexhours)/1000
smpl hours>0 --restrict

list x = mtr educ kidsl6 nwifeinc const
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list z1 = educ kidsl6 nwifeinc const exper

list z2 = educ kidsl6 nwifeinc const exper sq_exper largecity
list z3 = kidsl6 nwifeinc const mothereduc fathereduc

list z4 = kidsl6 nwifeinc const mothereduc fathereduc exper

=
o

tsls hours x; zl --1liml
tsls hours x; z2 --liml
tsls hours x; z3 --liml
tsls hours x; z4 --liml

e e
s W N =

LIML estimation uses