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Abstract

This article, written in honor of Professor Nemat-Nasser, provides an update of the standard theories of dislocation

dynamics, plasticity and elasticity properly modified to include scale effects through the introduction of higher order

spatial gradients of constitutive variables in the governing equations of material description. Only a special class of

gradient models, namely those developed by the author and his co-workers, are considered. After a brief review of the

basic mathematical structure of the theory and certain gradient elasticity solutions for dislocation fields, the physical

origin and form of the gradient terms (for all classes of elastic, plastic, and dislocation dynamics behavior), along with

the nature of the associated phenomenological coefficients are discussed. Applications to the interpretation of defor-

mation patterning and size effects are given. Two new features are noted: the role of wavelet analysis and stochasticity in

interpreting deformation heterogeneity measurements and serrations of the stress–strain graph.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is with sincere appreciation and consider-

able degree of admiration to the multifaceted and

continuously evolving work of Professor Sia

Nemat-Nasser that this update on gradient theory
is dedicated to him for the influence he had upon

the mechanics community and various areas of

materials research that I have been working on.

Gradient theory, of the form and scope dealt with

here, was introduced by the author and his co-

workers in the beginning of 1980s to address

problems on dislocation patterning, width/spac-

ings of shear bands, and mesh-size independence

of finite element calculations in the material soft-

ening regime. Prior to that there has been a large
number of generalized continuum mechanics the-

ories of gradient type based on mathematical

extensions of the Cosserat continuum (multipolar,

micropolar, micromorphic, nonlocal media) avail-

able in the literature, but they involved a long list

of unspecified phenomenological constants and

were mainly concerned with wave propagation

studies. Thus, the central problem of material
instabilities, the emergence and development

of deformation patterns and associated plastic
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heterogeneities were not addressed. In fact, due to

the complexity of their mathematical structure,

only the linearized version of these theories were

used and material softening was excluded. As a

result, the aforementioned material instability and

inhomogeneity questions could not even be con-
sidered within the existing framework of the pre-

viously available gradient type theories. The

gradient approach discussed here is based on the

introduction of length scale effects in elasticity,

plasticity and dislocation dynamics by incorpo-

rating higher order gradients (often the Laplacian)

of strain and/or dislocation densities into the

constitutive or evolution equations (for a recent
review see Aifantis, 1999a,b, 2001) governing the

material description. The resulting models of gra-

dient dislocation dynamics or multi-element defect

kinetics, gradient plasticity, and gradient elasticity

have been proven very useful in describing dislo-

cation patterning phenomena and the self-organi-

zation of structural defects, the width and spacing

of shear bands, various types of size effects, as well
as the details of the deformation field near dislo-

cation/disclination lines and crack tips. These

features could not be captured by classical theory.

A brief critical review of gradient theory in view

of recent developments in related fields is given

below.

1.1. Gradient dislocation dynamics/multi-element

defect kinetics

Bammann and Aifantis (1982) developed an

initial model for plastic deformation including

evolution equations for the dislocation densities of

the reaction-diffusion type. This work was used

later as a basis for the development of the W–N

model (Walgraef and Aifantis, 1985) for mobile
and immobile dislocations. The W–A model pro-

vided an estimate for the wavelength of persistent

slip bands (PSBs) during cyclic deformation and

described qualitatively the competition between

veins and PSBs in fatigued metals. The diffusion-

like coefficients for defect kinetics were initially

calibrated from wavelength measurements of as-

sociated dislocation patterns for which standard
dislocation dynamics models could not provide

any information. This initial dislocation kinetics

model could be viewed as the original motivation

for current work on dislocation patterning by

using three-dimensional discrete dislocation dynam-

ics (DDD), as pioneered originally by Kubin and

co-workers (e.g. Kubin and Devincre, 1999, and

references cited therein) and further elaborated
upon later by Zbib et al. (1998c). In fact, DDD

simulations may be used to calibrate numerically

the form of the diffusion and reaction constants

entering into the W–A model. Such expressions

have been deduced recently on the basis of mech-

anism-based discrete microscopic models of defect

interaction, production, and annihilation (e.g. Ai-

fantis, 1999a,b; Zaiser and Aifantis, 1999). Sub-
sequently to the initial success of the W–A model,

Romanov and Aifantis (1993) have further elabo-

rated upon the reaction-diffusion type of approach

for dislocation species to incorporate other types

of defects such as disclinations and immobile

dislocation/disclination dipoles, thus producing a

generalized scheme of defect kinetics for mono-

tonic deformation. The resulting multi-element
defect kinetics model was used to interpret the

occurrence of slip and rotational bands during

strain hardening of bulk crystals, the clustering of

misfit dislocations in thin films, as well as periodic

crack profiles in subcritical fracture. Of particular

interest are the stability results on misfit dislo-

cation clustering reported by the author and

co-workers (Liosatos et al., 1998; Cholevas et al.,
1998), as well as the more elaborate ‘‘reaction ki-

netics’’ results obtained along the same lines in a

series of articles by Romanov in collaboration

with the Santa Barbara group (Romanov et al.,

1999; Romanov and Speck, 2000).

1.2. Gradient plasticity

Simultaneously with the gradient dynamics

models, a strain gradient plasticity theory first

suggested by the author (Aifantis, 1982, 1983,

1984b,c) and later elaborated upon by him (Ai-

fantis, 1987, 1992, 1995, 1996) was used and fur-

ther examined by Zbib and Aifantis (1988a,b) to

determine the thickness of shear bands, as well as

the spacing and velocity of Portevin-Le Chatelier
bands. The simplest form of the strain gradient

plasticity theory involves only one extra coefficient
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incorporating the effect of the Laplacian of the

equivalent shear strain into the constitutive ex-

pression for the flow stress. The extra gradient

coefficient may be calibrated through shear band

thickness measurements and size effect data inter-

pretations for which classical plasticity could not
provide any information. The form and magnitude

of this extra gradient coefficient depends on the

dominant mechanism of plastic flow at the scale

under consideration. For plastically deformed

polycrystals, self-consistent arguments can be used

to derive an expression involving the average grain

size, the elastic constants and the plastic hardening

modulus (Aifantis, 1995). DDD simulations can
also be used, in principle, to derive expressions for

the gradient coefficient depending on the relevant

microscopic configuration, and this task is cur-

rently under exploration. The aforementioned

initial strain gradient plasticity theory has moti-

vated extensive work on gradient-dependent strain

softening solids since it eliminated the mesh-size

dependence of finite element calculations (e.g.
Belytschko and Kulkarni, 1991; Sluys and de

Borst, 1994; Tomita, 1994), and allowed the de-

velopment of computer codes to capture the oc-

currence of complex deformation patterns in the

solution of related boundary value problems.

Other types of strain gradient plasticity models

based on the concept of geometrically necessary

dislocations (GND), such as those advanced re-
cently by Fleck et al. (1994) and Gao et al. (1999),

are also being currently used by many investiga-

tors to interpret strengthening and size-dependent

hardness measurements at the micron and nano

scales.

1.3. Gradient elasticity

Due to the success of the aforementioned scale-

dependent models for plasticity and defect kinet-

ics, the theory of nonlinear elasticity was revisited

by Triantafyllidis and Aifantis (1986) by allowing

the second deformation gradient to enter into the

strain energy function. The linearized version of

the resulting stress–strain relation amounts into

adding the Laplacian of the classical stress ex-
pression into the standard form of Hooke�s law.

The model was applied to eliminate the strain

singularity at dislocation lines and crack tips, thus

providing the structure or morphology of dislo-

cation cores and crack faces. In particular, the

strain singularity from crack tips can be eliminated

as shown, for example, by Altan and Aifantis

(1992, 1997); Ru and Aifantis (1993) and Unger
and Aifantis (1995, 2000). Smooth crack closure

and Barenblatt-Dugdale type cohesion zones are

naturally obtained within this theory, but also

oscillatory crack profiles can be predicted (Unger

and Aifantis, 2000), in agreement with some ex-

perimental observations. The strain singularity can

also be eliminated from dislocation and discli-

nation lines and estimates for the dislocation
core sizes can be obtained as shown in a series of

articles by Gutkin and Aifantis (1996, 1999a). A

modified gradient elasticity model incorporating

also stress gradients into the stress–strain law was

utilized by Gutkin and Aifantis (1999b, 2000)

more recently to eliminate both stress and strain

singularities from dislocation lines and derive a

new type of ‘‘image force’’ for a dislocation near
an interface.

1.4. Gradients and size effects

Gradient-dependent constitutive equations can

be used to consider the important issue of size

effect, i.e. the dependence of strength and other

mechanical properties on the size of the specimen.
This may be physically understood on the basis

that higher-order gradients in the constitutive

variables is a measure of the heterogeneous char-

acter of deformation field, the overall effect of

which may depend on the specimen size. In fact,

solution of boundary value problems based on

higher-order governing equations for the strain

field bring in the size of the specimen in a non-
trivial manner and, thus, related size effects may be

captured accordingly. The ability of gradient

elasticity and gradient plasticity to interpret such

effects in torsion and bending of standard-sized

specimens with uncommon microstructure or

small-sized specimens with common microstruc-

ture, is discussed by the author (Aifantis, 1999b)

within a simplified framework of a strength of
materials approach. Additional results on model-

ling size effects in three-dimensional composites
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and in micro/nano indentation are given in a re-

cent review article of the author written for a

handbook of materials behavior models (Aifantis,

2001). Due to the lack of macroscopic gradients

during tension of uniform bars, size effects in this

case cannot be interpreted by gradient theory
without modifying it to account for localized

strain heterogeneities. Such a modification may be

accomplished by allowing the average value of a

radially (for cylindrical smooth tensile specimens)

or transversely (for flat smooth tensile specimens)

evolving internal variable with diffusive transport

in the respective direction to enter into the stress–

strain relationship. Alternatively, size effects in
tension may be interpreted by casting the gradient-

dependent constitutive equation into a scale-

dependent constitutive equation through the use

of wavelet analysis. The gradient term is then re-

placed by a scale term which depends on the ratio

of the internal over the gage length and reflects the

degree of deformation heterogeneity present. The

scale term, or equivalently the constitutive heter-
ogeneity term, can be used to interpret size effects

in tension for smooth specimens. More details on

wavelets, strain heterogeneities, gradients and

scale-dependent constitutive equations are given

below.

1.5. Gradients and wavelets

The wavelet transform is an integral transform

developed in the 1980s in signal analysis to de-

compose complex and highly irregular signals into

amplitudes depending on position and scale. It is

now widely used in many fields of science and

engineering but, surprisingly, its use in deforma-

tion problems has been rather limited. Neverthe-

less, wavelets is probably the most efficient
mathematical tool to quantify deformation heter-

ogeneity and patterning at various scales of ob-

servation. In fact, the wavelet transform may be

thought of as a mathematical microscope, the

spatial resolution of which may vary according to

the ‘‘scale’’ chosen for the base functions (wave-

lets). The base functions are constructed from a

single function, the ‘‘mother wavelet’’; and the
corresponding wavelet coefficients which are

readily computed on the basis of it, provide local

information on the function they are used to rep-

resent, as well as information on the scale (level of

magnification). A large number of books have

recently been written on the mathematical foun-

dations of wavelets and related applications, but

the treatise by Daubechies (1992) still remains a
simple, elegant and self-contained mathematical

treatment. The first authors who searched for ap-

plications of wavelet analysis to material me-

chanics problems seem to be Frantziskonis and

Loret (1992). In particular, they used the shear

band solution derived from the author�s gradient

theory (Aifantis, 1984b, 1987, 1992) to calibrate

their analysis which was based on the wavelet
representation of the d-function to simulate the

strain distribution in a shear band. In fact,

Frantziskonis et al. (2001) have further elaborated

on the idea of combining gradient theory and

wavelet analysis to derive scale-dependent con-

stitutive equations which, in turn, were used to

interpret size effects in brittle materials. These re-

sults were favorably compared with Carpinteri�s
multifractal approach to size effects, as illustrated

in a recent article by Konstantinidis et al. (2001).

In fact, Konstantinidis (2000) used wavelets and

neural networks to analyze atomic force micro-

scope (AFM) data recently obtained by Engelke

and Neuhauser (1995) and Brinck et al. (1998) for

slip band clustering in single crystals and a specific

example will be discussed here. It seems that it may
be possible now to derive slip patterning profiles at

resolutions higher than those allowed experimen-

tally, by properly ‘‘training’’ a neural network on

the basis of the available wavelet analyzed exper-

imental data. In accordance with these develop-

ments, it will be shown in the present paper that a

wavelet representation of the Aifantis–Serrin type

shear band solution (Aifantis, 1984b) of gradient
theory can lead to the derivation of scale-depen-

dent constitutive equations which do not depend

explicitly on strain gradients; and, therefore, extra

gradient coefficients and higher order boundary

conditions commonly required in the formulation

of related boundary value problems are no longer

necessary. Instead, a scale factor of a universal

character also reflecting a dependence on the ratio
of the ‘‘internal’’ over the ‘‘gage’’ lengths enters

now into the constitutive equation which is thus
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becoming scale-dependent. The ability of such

scale-dependent constitutive equations to explain

size effects (including those observed in tension)

and successfully interpret related experimental

observations at the micron scale, will be briefly

discussed again in a subsequent section and further
elaborated upon in the future (see also Konstan-

tinidis, 2000).

2. Basic mathematical structure

2.1. Gradient elasticity

A rather general, yet simple enough, extension

of classical elasticity theory reads

ð1� c1r2Þr ¼ ð1� c2r2Þ½kðtr eÞ 1þ 2le�; ð2:1Þ
where (r; e) denote the stress and strain tensors,

(k; l) are the classical Lam�ee constants, and (c1; c2)
are the newly introduced gradient coefficients. This

gradient elasticity model includes the Laplacian of

the stress term c1r2r in addition to the Laplacian

of the strain term in the right hand side of Eq.

(2.1). In fact, the stress gradient term was added in

order to dispense with the well-known stress sin-

gularity in dislocation and crack problems. In the

absence of the stress gradient term (c1 	 0), the
corresponding strain gradient elasticity model was

shown (Altan and Aifantis, 1992, 1997; Ru and

Aifantis, 1993; Unger and Aifantis, 1995, 2000;

Gutkin and Aifantis, 1996, 1999a) to eliminate the

strain singularity, but not the stress singularity,

from these problems. Along the lines of the pro-

cedure outlined in Ru and Aifantis (1993), it can

be shown that it is possible to obtain the solutions
(u; r) of boundary value problems based on Eq.

(2.1) in terms of corresponding solutions of clas-

sical elasticity (u0; r0) through the inhomogeneous

Helmholtz equations

ð1� c2r2Þu ¼ u0; ð1� c1r2Þr ¼ r0; ð2:2Þ

provided that proper care is taken for the extra

(due to higher order terms) boundary conditions

or conditions at infinity. For the dislocation

problems considered here the extra boundary

conditions required for the determination of the
displacement u in Eq. (2.2)1 are discussed, for ex-

ample, in Ru and Aifantis (1993), Gutkin and

Aifantis (1996, 1999a). The stress field r in Eq.

(2.2)2 is determined in terms of an appropriate

stress function satisfying the standard equations

of equilibrium and the corresponding traction
boundary conditions (Ru and Aifantis, 1993). The

conditions at infinity are taken such that the strain

and stress field at infinity are the same for the

classical and the gradient solutions. It is not

within the scope of the present article to provide

further comments on the well-posedeness of gen-

eral boundary value problems based on Eq. (2.1),

the nature and physical meaning of associated
boundary conditions, as well as uniqueness pro-

perties and wave propagation studies. This task

will be undertaken in a future publication where

the relation of Eq. (2.1) to other gradient and non-

local theories will be discussed. It simply suffices to

state here that Eq. (2.1) may be obtained by an

appropriate series expansion of nonlocal integral

expressions for the average stress �rr and average
strain �ee in terms of their local counterparts (r; e).

In order to illustrate the potential of the gra-

dient elasticity theory embodied in Eq. (2.1), we

consider a mixed dislocation line coinciding with

the x3-axis of a Cartesian coordinate system (x1, x2,
x3) and a Burgers vector b ¼ b1e1 þ b3e3 designat-

ing the edge (b1) and screw (b3) components. The

displacement field u0 then reads

u0 ¼ b1e1 þ b3e3
2p

arctan
x2
x1

�
þ p

2
signðx2Þ


 1½ � signðx1Þ�
�
þ b1
4pð1� mÞ

x1x2
r2

e1

�

� ð1
�

� 2mÞ ln r þ x21
r2

�
e2

�
; ð2:3Þ

where m is the Poisson ratio and r is the radial

coordinate defined, as usual, by r2 ¼ x21 þ x22.
(Strictly speaking, the term ln r in the brackets

should be replaced by lnðr=CÞ where C is an ar-
bitrary constant, in order to make this term di-

mensionless. Without loss of generality, we take

the numerical value of the constant C equal to

unity since the strains and stresses depend on the

derivatives of the displacements and, thus, the

actual value of C is immaterial.) The elastic strain

field e0ij (in units of 1=½4pð1� mÞ�) reads
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e011 ¼ �b1x2½ð1� 2mÞr2 þ 2x21�=r4;

e022 ¼ �b1x2½ð1� 2mÞr2 � 2x21�=r4;

e012 ¼ b1x1ðx21 � x22Þ=r4;

e013 ¼ �b3ð1� mÞx2=r2;

e023 ¼ b3ð1� mÞx1=r2; ð2:4Þ

and the elastic stress field r0
ij (in units of

l=½2pð1� mÞ�) reads
r0
11 ¼ e011ðm 	 0Þ; r0

22 ¼ e022ðm 	 0Þ;
r0
33 ¼ mðr0

11 þ r0
22Þ;

r0
12 ¼ e012; r0

13 ¼ e013; r0
23 ¼ e023: ð2:5Þ

The corresponding elastic energy W 0 of the dislo-

cation per unit dislocation length is

W 0 ¼ l
4p

b23

�
þ b21
1� m

�
ln

R
r0

ð2:6Þ

where R denotes the size of the solid and r0 is a cut-
off radius for the dislocation elastic field near the

dislocation line. It is noted that the expressions

(2.4) and (2.5) are singular at the dislocation line

and that when r0 ! 0, W 0 becomes also singular.

Let us now derive the corresponding dislocation

fields within the theory of gradient elasticity de-

scribed by Eq. (2.1). As already indicated, the so-

lution can be obtained by solving separately Eqs.
(2.2)1 and (2.2)2 with the aid of appropriate extra

boundary conditions dictated by the Burger�s cir-

cuit and the smoothness at infinity. The solution is

obtained by using the Fourier transform method.

Omitting intermediate calculations, the total dis-

placement solution given by Eq. (2.2)1 reads

u ¼ u0 � b1
4pð1� mÞ


 f½2x1x2e1 þ ðx22 � x21Þe2�r2U2 þ e2U0g

þ b1e1 þ b3e3
2p

signðx2Þ
Z 1

0

s sinðsx1Þ
ð1=c2Þ þ s2


 e�jx2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=c2Þþs2

p
ds; ð2:7Þ

where u0 is given by Eq. (2.3), U0 ¼ ð1� 2mÞ

K0ðr=

ffiffiffiffi
c2

p Þ,U2 ¼ ½2c2=r2�K2ðr=
ffiffiffiffi
c2

p Þ�=r4,withKnðr=ffiffiffiffi
c2

p Þ denoting modified Bessel function of the sec-

ond kind and n ¼ 0; 1; . . . designating the order of

this function. For the strains eij, solution of an

equation exactly in form like Eq. (2.2)1, gives

eij ¼ e0ij þ egrij where e0ij are given by Eq. (2.4) and

egrij (in units of 1=½2pð1� mÞ�) are given by

egr11 ¼ b1x2½ðx22 � mr2ÞU1 þ ð3x21 � x22ÞU2�;
egr22 ¼ b1x2½ðx21 � mr2ÞU1 þ ð3x21 � x22ÞU2�;
egr12 ¼ �b1x1½x22U1 þ ðx21 � 3x22ÞU2�;
egr13 ¼ b3ð1� mÞx2r2U1=2;

egr23 ¼ �b3ð1� mÞx1r2U1=2; ð2:8Þ

where U1 ¼ K1ðr=
ffiffiffiffi
c2

p Þ=ð ffiffiffiffi
c2

p
r3Þ. For the stresses

rij, solution of Eq. (2.2)2 gives rij ¼ r0
ij þ rgr

ij where

r0
ij are given by Eq. (2.5) and rgr

ij (in units of

l=½2pð1� mÞ�) are given by

rgr
11 ¼ egr11ðm 	 0; c2 $ c1Þ;

rgr
22 ¼ egr22ðm 	 0; c2 $ c1Þ;

rgr
33 ¼ mðrgr

11 þ rgr
22Þ; rgr

12 ¼ egr12ðc2 $ c1Þ;

rgr
13 ¼ egr13ðc2 $ c1Þ; rgr

23 ¼ egr23ðc2 $ c1Þ: ð2:9Þ

The main feature of the solution given by Eqs.

(2.7)–(2.9) is the absence of any singularities in
the displacement, strain and stress fields. In fact,

when r ! 0, we have, K0ðr=
ffiffiffiffi
ck

p Þjr!0 ! �cE þ
lnð2 ffiffiffiffi

ck
p

=rÞ, K1ðr=
ffiffiffiffi
ck

p Þ! ffiffiffiffi
ck

p
=r;K2ðr=

ffiffiffiffi
ck

p Þ! 2ck=
r2 � 1=2, where cE ¼ 0:57721566 . . . is Euler�s con-
stant and k ¼ 1; 2. Thus, u2 is finite, eij ! 0,

rij ! 0. Using Eq. (2.9), the elastic energy (or self-

energy) of the dislocation within the gradient

elasticity theory given by Eq. (2.2), may be iden-

tified with the work Ws ¼ ð�1=2Þ
R
V r32b

ðclÞ
23 dV (for

a screw component) and We ¼ ð�1=2Þ
R
V r12b

ðclÞ
21 dV

(for an edge component) done by the gradient-

dependent dislocation stress field for producing the

corresponding classical (for simplicity) plastic dis-

tortion bðclÞ
2a ¼ ðba=2Þdðx2Þ½1� signðx1Þ�; a ¼ 1; 3.

The final result reads

W ¼ l
4pð1� mÞ

b21
2

�
þ ½b21 þ ð1� mÞb23�


 cE
�

þ ln
R

2
ffiffiffiffi
c1

p
��

; ð2:10Þ

which is non-singular at the dislocation line. It is

worth noting that the above expression contains

only one gradient coefficient (c1), since the clas-
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sical part of the plastic distortion bðclÞ was used in

the definition of the work or elastic energy. If

bðgrÞ is also included, e.g. bðgrÞ
23 ¼ ðb3=2Þdðx2Þ½1�

signðx1Þ�
 ð1� e�jx1j=
ffiffiffi
c2

p
Þ for the screw compo-

nent, then the expression Ws ¼ ð1=2Þ
R
V r32b

ðgrÞ
23 dV

for the screw component would contain both c1
and c2. The same would be true for the edge

component. It is noted, in this connection, that

such different expressions for W are a result of

the form of the work expression assumed. An

alternative method for computing W is to intro-

duce an appropriate strain energy function for

the gradient elasticity theory at hand.
It may be instructive to specialize the above

results for the case of a screw dislocation and the

simplest possible gradient elasticity model result-

ing from Eq. (2.1) with c1 	 0 and c2 	 �cc (Aifantis,

1992). The corresponding strain components read

e13 ¼
b
4p

"
� x2

r2
þ x2
r
ffiffiffi
�cc

p K1

rffiffiffi
�cc

p
 !#

;

e23 ¼
b
4p

x1
r2

"
� x1
r
ffiffiffi
�cc

p K1

rffiffiffi
�cc

p
 !#

; ð2:11Þ

where b denotes the Burgers vector and r denotes,
as before, the radial coordinate from the disloca-

tion line. The first term in the bracket represents

the singular classical elasticity solution and the

second term with the Bessel function K1 represents

the gradient elasticity contribution. It is noted that
K1ðr=

ffiffiffi
�cc

p
Þ !

ffiffiffi
�cc

p
=r as r ! 0 and, thus, the gradient

term cancels the elastic singularity as the disloca-

tion line is approached. It turns out that a dislo-

cation core may be defined at r � rc ¼ 1:25a, and
that the strain achieves extreme values at a loca-

tion �12% of this distance. The corresponding

elastic energy Ws is governed by the term ðlb2=
4pÞ ln½R=2

ffiffiffi
�cc

p
� which does not contain any cut-off

radius usually assumed for the dislocation self-

energy expression of the classical elasticity solu-

tion. Analogous expressions can be obtained for

edge components, as well as disclinations and

other dislocation arrangements. It is expected that

the implications of these results may be important

for the characterization of short-range interactions

and the precise determination of stresses, strains
and energies of defects controlling the behavior of

interfaces (misfit dislocations, threading disloca-

tions) and nanocrystals (linear disclinations in

triple-junctions and point disclinations in fourfold

nodes of triple-junction lines). These solutions can

also be used for deriving non-singular expressions
for cracks by representing them by appropriate

continuous distributions of dislocations, as well

for characterizing the spatial details of the crack

tip.

On returning to the more general case of Eq.

(2.1) and the problem of evaluation of stresses for

a screw dislocation (along the axis x3) sitting at

a flat interface (coinciding with the plane x1 ¼ 0)
separating two infinitely extended media with

elastic constants (k1; l1) and (k2; l2), it is noted

that this task is reduced to the solution of Eq.

(2.2)2 where, for simplicity, we assume that the

gradient coefficients cð1Þ1 ¼ cð2Þ1 	 c�. The corre-

sponding interfacial conditions read

½r13�x1¼0 ¼ 0; ½r23�x1¼0 ¼ 0;
ora3

ox1

� �
x1¼0

¼ 0

with a ¼ 1; 2: ð2:12Þ

The first condition is the same as in the classical

theory of elasticity, while the last three are extra

conditions associated with the gradient term; the

symbol [ ] denotes, as usual, the jump across the

interface (Ru and Aifantis, 1993). The corre-

sponding stresses rij (in units l1l2b=p½l1 þ l2�)
read

r13 ¼ � x2
r2

þ x2
r
ffiffiffiffi
c�

p K1

rffiffiffiffi
c�

p
� �

;

r23 ¼
x1
r2

� x1
r
ffiffiffiffi
c�

p K1

rffiffiffiffi
c�

p
� �

; ð2:13Þ

and the resemblance with the expressions given by

Eq. (2.11) is obvious. In fact, these expressions are
identical in form (they differ only by the factor

2l2=½l1 þ l2�) to those obtained for a screw dis-

location in an infinite homogeneous gradient

elastic medium governed by Eq. (2.1). If the dis-

location lies at a position x1 ¼ x� from the inter-

face within the medium with elastic constants

(k1; l1), the image force F im which acts upon the

dislocation unit length due to the interface (in
units l1b

2=2p) reads
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F imðx�Þ ¼ � l1 � l2

l1 þ l2

1

2x�

�
�
Z 1

0

e�x�ðk�þsÞ ds
�
;

k� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=c�Þ þ s2

p
; ð2:14Þ

where the first term in the brackets is the classical

singular solution and the second one is the extra

gradient term. The numerical evaluation of Eq.

(2.14) shows that the classical singularity is elimi-
nated from the gradient solution which attains a

maximum at a distance ffi
ffiffiffiffi
c�

p
from the interface

and tends to zero at the interface.

2.2. Gradient defect kinetics

Beyond elastic deformation, the production/

annihilation and motion of defects dictate the
evolution of deformation field. In general, various

families of defects may be identified depending on

the deformation mechanism at hand. A general

starting point then would be a set of equations of

the form

oqk

ot
þ divJk ¼ FkðfqigÞ;

Jk ¼ qkvk � Dkrqk; ð2:15Þ

which accounts for defect production/annihilation

in terms of the source terms Fk (where the symbol

fqig denotes dependence on all defect populations

qi) and motion in terms of the defect fluxes Jk. The

first term of Eq. (2.15)2 describes the deterministic

motion of defects of density qk with velocity vk
(e.g. dislocations moving under the influence of an

applied stress), while the ‘‘diffusion coefficient’’ Dk

accounts for random influences on the motion of

these defects. In different physical situations, dif-

ferent mechanisms leading to diffusion-like terms

may be envisaged. The density qk may refer to

positive or negative dislocations, mobile disloca-

tions or immobile dipoles, misfit or threading
dislocations, disclinations or disclination dipoles

and other type of possible defects depending on

the physical situation and the desired degree of

detail for the material description at hand. A sto-

chastic generalization of Eq. (2.15) is given by the

Langevin-type equation

oqk

ot
þ divJk ¼ FkðfqigÞ þ GkðfqigÞ _wwk ð2:16Þ

In this stochastic differential equation, the evolu-

tion of the dislocation densities is influenced by

additional stochastic terms Gk _wwk where _wwk are

random processes. These terms may, in principle,

account for any random influences on the defect
dynamics.

In the work of Hahner (1996a,b) the stochastic

character of microstructural evolution was related

to the large intrinsic fluctuations of the dislocation

velocity (or the local rate of slip) that arise due

to the collective nature of dislocation glide. These

fluctuations manifest themselves through the

formation of slip lines or slip bands. In fact, it
is the competition of the deterministic gradient

terms Dkr2qk and the stochastic terms Gk _ww that

determines the inhomogeneous evolution of

the ensemble of defects and associated deforma-

tion localization phenomena. Certain deformation

patterning phenomena (such as PSBs and L€uuders
bands, but not slip lines in stage I/II hardening of

FCC metals) can also be conveniently interpreted
within a strictly deterministic framework on the

basis of Eq. (2.15) as illustrated earlier by the

author and his co-workers (e.g. Aifantis, 1999a,b;

Bammann and Aifantis, 1982; Walgraef and

Aifantis, 1985; Romanov and Aifantis, 1993;

Liosatos et al., 1998; Cholevas et al., 1998;

Aifantis, 1987, 1992, 1995, 1996). A framework

based on Eq. (2.15) may also be used effectively
for describing the deformation of nanocrystals.

A multi-element gradient defect kinetics model

involving four populations of defects with densi-

ties q1 ¼ q (intragrain mobile dislocations), q2 ¼ u
(intragrain mobile dislocation dipoles), q3 ¼ w
(grain boundary sliding dislocations) and q4 ¼ #
(grain boundary junction disclinations) can be

employed for this purpose. Stability analysis of the
corresponding system of reaction-diffusion type

equations can then provide insight into the grain

size regime where solutions for q and u are not

stable. This may elucidate the mechanisms of

plastic deformation at the nanoscale; in particular,

the grain size regime where a plasticity transition

occurs from a grain rotation/sliding mechanism in

the absence of intragrain dislocation activity to a
massive intragrain dislocation motion which is the

traditional mechanism of plastic deformation for

conventional polycrystals.
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In concluding this section on gradient defect

kinetics, it is pointed out that it is possible (under

certain assumptions) to derive from Eq. (2.15) for

the evolution of defect density an equation for the

evolution of the local plastic strain. Then, within a

one-dimensional framework, this evolution equa-
tion for the plastic strain c (with a denoting a vi-

scoplastic-like coefficient and c being a gradient

coefficient) reads

a
oc
ot

¼ rext � �rrintðcÞ � drintðc; xÞ þ c
o2c
ox2

;

drintðc; xÞdrintðc0; x0Þ
� �

¼ drintð Þ2
D E

f
x� x0

n

� �
g

c � c0

ccorr

� �
; ð2:17Þ

where rext is the external stress, rint is the internal

stress with mean value �rrint and fluctuations drint

obeying Eq. (2.17)2. (The mean internal stress ac-

counts for both the conventional flow stress and

for long-range stresses that arise from large-scale
incompatibilities of slip. Thus, its general form

may be written as �rrintðcÞ ¼ rf ðcÞ �
R

cðr0ÞCðr�
r0Þd3r0, where the first term describes how the local

interactions between defects oppose plastic flow,

while the second term is a long-range stress which

can be expressed as the convolution of the plastic

strain with certain Green�s function.) The term

drintð Þ2
D E

defines the amplitude of stress varia-
tions, ccorr is the characteristic strain interval over

which such fluctuations persist, and n is the char-

acteristic range over which drintðc; xÞ changes in

space. (The functions f and g are normalized such

that f ð0Þ ¼ gð0Þ ¼ 1 and
R
f ðsÞds ¼

R
gðsÞds ¼ 1.)

For a tensile specimen of length L in the absence of

the gradient term, the local strain rate fluctuates in

general and in large systems the average fluctua-
tions decrease like L1=2. The effect of the gradient

term is to induce a stress redistribution by de-

creasing deformation resistance in the vicinity of

increased strain regions. The result is an avalanche

dynamics, as detailed in a forthcoming article by

Zaiser and Aifantis (in press). For strain softening

solids, a quasi-static version of Eq. (2.17), with its

first term set equal to zero, can be employed to
model the slip patterning during straining of a

single crystal and the associated serrations in the

corresponding stress–strain graph. In this case,

�rrintðcÞ is assumed to be of an N-shaped form, the

orientation factor relating the uniaxial stress to the
critical resolved stress is formally set equal to unity

(since it is a constant factor, entering simply in the

equation as a scalar multiplier), and the effect of

randomness is taken simply by multiplying �rrint

with the factor [1þ wðxÞ], where wðxÞ denotes a

random function of x. Then a cellular automaton

treatment based on the resulting equation, can

lead to the serrated stress–strain graphs depicted in
Fig. 1. These graphs are qualitatively similar to

those obtained by Zaiser and Aifantis (in press) for

the crushing of cellular solids subjected to com-

pression. The top graph corresponds to small

randomness and strong spatial couplings, while

the bottom graph corresponds to large random-

ness and weak spatial couplings. Further details

will be reported by Zaiser and Aifantis (in press)
and in a forthcoming publication. It will further be

substantiated there, through the use of cellular

automata (based on a discrete analogue of Eq.

(2.12)) and actual numerical simulations (based on

the numerical solution of Eq. (2.17)), that Eq.

(2.17) with a strain hardening/softening law can be

applied to both strain softening in single crystals

(e.g. L€uuders bands with randomness) and to strain
softening in cellular solids.
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Fig. 1. Serrated stress–strain graphs as a result of the compe-

tition between gradient and stochastic terms.
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2.3. Gradient plasticity

The above discussion on the deduction of gra-

dient type evolution equations for the plastic strain

on the basis of corresponding equations for defect
densities, may be used as a direct motivation for a

phenomenological theory of gradient plasticity as

detailed below.

Within a deformation version of such theory,

the following relation between effective stress s 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2r0

ijr
0
ij

q
and effective strain c 	

ffiffiffiffiffiffiffiffiffiffiffi
2e0ije

0
ij

p
(r0

ij

denotes the deviatoric part of the stress tensor rij;
e0ij denotes the deviatoric part of the strain tensor

eij with ekk ¼ 0 and, thus, e0ij ¼ eij)

s ¼ jðcÞ þ c1ðcÞjrcjm þ c2ðcÞr2c; ð2:18Þ

can be used as a starting point. The function jðcÞ
denotes the usual homogeneous part of the flow

stress, while c1ðcÞ and c2ðcÞ are the newly in-

troduced gradient coefficients which, in general,

depend on the equivalent strain c. Using the

equivalent plastic work relation r0
ijdeij ¼ sdc, the

following gradient dependent stress–strain relation
is derived

r0
ij ¼

2

c
jðcÞ
�

þ c1ðcÞjrcjm þ c2ðcÞr2c
�
eij: ð2:19Þ

On denoting by (t,u) the traction and displace-
ment vectors respectively, numerical solutions

can be obtained on the basis of the relationR
V rij;jdui dV ¼ 0 implying, with the aid of the di-

vergence theorem, the conditionZ
oV

t � du ¼
Z
V
f½jðcÞ þ c1jrcjm � c02jrcj2�dc

� c2ðrc � rdcÞgdV ¼ 0; ð2:20Þ

where here and subsequently a prime on a material

function depending on c denotes differentiation

with respect to c, e.g. c02 ¼ dc2=dc, and the extra

boundary conditions dc ¼ 0 or rc � n ¼ 0 with n

denoting the outward unit normal to the boundary

oV , were utilized. The above equation can be
solved, for example, with the aid of the finite ele-

ment method by discretizing only the displacement

u, in terms of which the rest of the quantities in Eq.

(2.20) can be expressed.

Along similar lines, a flow version of gradient

plasticity theory can be formulated. The appro-

priate yield condition now reads

F ¼ s � ½jðcÞ þ c1ðcÞjrcjm � c02ðcÞjrcj2� ¼ 0;

ð2:21Þ

where the equivalent strain c is now defined in

terms of the plastic strain tensor _eepij as c ¼
R
_ccdt,

_cc 	
ffiffiffiffiffiffiffiffiffiffiffi
2 _eepij _ee

p
ij

q
ð _eepkk ¼ 0Þ. The corresponding flow rule

reads

_eepij ¼ _cc
oF
orij

) _eepij ¼
_cc
2s

r0
ij: ð2:22Þ

The elastic strain increment _eeek‘ ¼ _eek‘ � _eepk‘ is de-

termined by Hooke�s law which may be written

in the form _rrij ¼ Ce
ijk‘ð _eek‘ � _eepk‘Þ; Ce

ijk‘ ¼ kdijdk‘ þ
lðdikdj‘ þ di‘djkÞ, with eij being the total strain

tensor and (k, l) denoting the Lam�ee constants of

an isotropic elastic material.
The ‘‘plastic multiplier’’ _cc in the flow rule given

by Eq. (2.22) satisfies the following loading–

unloading conditions

_cc ¼

_cc if F ¼ 0 & rij _ee
p
ij > 0 ðloadingÞ or

rij _ee
p
ij ¼ 0 ðneutral loadingÞ;

0 if F < 0 ðelasticityÞ or F ¼ 0 and

rij _ee
p
ij < 0 ðunlodgingÞ;

8>>>><
>>>>:

ð2:23Þ

and is determined by the consistency condition
_FF ¼ 0, which along with Hooke�s law leads to the

following differential equation for the determina-

tion of the plastic multiplier _cc

_cc þ m
c1
H
jrcjm�2ðrc � r _ccÞ þ c2

H
r2 _cc

¼ 1

H

r0
ij

2s
Ce

ijkl _eekl; ð2:24Þ

where H 	 hg þ ðr0
ijC

e
ijklr

0
kl=4s

2Þ ¼ hg þ 3l; hg ¼
j0ðcÞ þ c01ðcÞjrcjm þ c02ðcÞr2c. This, i.e. Eq. (2.24),
is a notable departure of the gradient plasticity

theory from the classical theory where _cc is deter-
mined from an algebraic equation. Numerical so-

lution of boundary value problems can now be
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established by utilizing the weak satisfaction of

stress equilibrium in rate form, i.e.Z
V
ð _rrij;jÞd _uui dV ¼ 0 )

Z
V
_rrijd _eeij dV

¼
Z
oV

_ttid _uui dS

¼
Z
V

Ce
ijkl _eekl

 
�

lr0
ij

s
_cc

!
d _eeij dV ;

ð2:25Þ

where the last equality of Eq. (2.25) is established

with the aid of Hooke�s law and the flow rule. The

weak satisfaction of the consistency condition

impliesZ
Vp

r0
ij

2s
Ce

ijkl _eekl

"
� H _cc

� mc1jrcjm�2ðrc � r _ccÞ � c1r2 _cc

#
d _ccdV ¼ 0:

ð2:26Þ

Integration by parts in the last term yieldsZ
Vp

ðc2r2 _ccÞd _ccdV ¼
Z
oVp

ðc2r2 _cc � nÞd _ccdS

�
Z
Vp

c2ðr _cc � r _ccÞdV

�
Z
Vp

c02ðrc � r _ccÞd _ccdV ; ð2:27Þ

which suggests the form of the extra boundary

conditions, i.e. r2 _cc � n ¼ 0 or d _cc ¼ 0 on oVp. Eqs.
(2.26) and (2.27) can then be solved simultaneously

by discretizing both c and u fields.

3. The phenomenological gradient coefficients and

the origin of gradient terms

The simplest possible form of gradient theory is

described by the following equations for the scalar

dislocation density q, the equivalent plastic shear

strain c and the elastic strain eij

oq=ot ¼ Dr2q þ f ðqÞ; ð3:1Þ

s ¼ jðcÞ � cr2c; ð3:2Þ

rij ¼ kekkdij þ 2leij � �ccr2ðkekkdij þ 2leijÞ: ð3:3Þ

The gradient coefficients D in Eq. (3.1), c in Eq.

(3.2) and �cc in Eq. (3.3) denote gradient phenome-

nological coefficients the value of which is to be

determined from appropriate experiments, as well

as appropriate microscopic arguments depending

on the prevailing deformation mechanisms and the

underlying microstructure. The strain rate and
temperature dependence have been suppressed in

Eqs. (3.1)–(3.3) for convenience. Such dependence

is particularly important in problems of creep and

recrystallization, as well as for dynamic shear

banding and strain-rate dependent materials.

As already mentioned, gradient-dependent ex-

pressions of the type of Eqs. (3.1)–(3.3) have been

successfully employed to predict dislocation pat-
terning phenomena, shear band widths and spac-

ings, as well as to eliminate strain singularities

from dislocation lines and elastic crack tips (e.g.

Aifantis (1999a,b)). The value of the gradient co-

efficients can be estimated from such dislocation

pattern wavelengths and shear band widths mea-

surements, as well as from possible experiments at

the atomic scale pertaining to the extent of dislo-
cation cores and the structure of crack tip opening

profiles. Direct estimates for the gradient coeffi-

cients can also be obtained from properly designed

experiments, as discussed below.

3.1. The phenomenological gradient coefficients

3.1.1. Gradient plasticity

Pure bending experiments of asymmetrically

deforming beams (due to an inhomogeneous en-

gineered microstructure––e.g. grain size distribu-

tion along the beam axis) can provide estimates of
the gradient coefficient c in Eq. (3.2). Preliminary

results have already been obtained and a brief

outline of this possibility has been reviewed by

the author (Aifantis, 1992; Aifantis, 1995). The

aforementioned experimental estimates for the

gradient coefficient of deformed polycrystals seem

to be in good agreement with theoretical estimates

obtained by using self-consistent arguments as
discussed also in (Aifantis, 1995). The self-consis-

tent estimate for the gradient coefficient c gives the

expression jcj ¼ ðb þ hÞðd2=10Þ, where b relates
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explicitly to the elastic constants of the material in

a fashion depending on the self-consistent model

used, while h is the plastic hardening modulus. The

parameter d stands for the grain size. The self-

consistent method or an improved averaging pro-

cedure may be employed to consider different than
polycrystalline situations; for example, a continu-

ous distribution of dislocations, a continuous dis-

tribution of flat cracks, a continuous distribution

of spherical voids, etc. In each case a different

expression for the gradient coefficient c would re-

sult depending on the geometric characteristics of

the underlying microstructure and the associated

internal lengths (e.g. void size and spacing).

3.1.2. Gradient dislocation dynamics

Similarly, for the diffusion-like coefficient D,
various dislocation mechanisms can be considered

to derive appropriate microscopic relations for it.

They all lead to an expression of the form

D ¼ �‘‘hvi, where �‘‘ denotes a mean free path and hvi
the average dislocation velocity. For instance, one
may consider the motion of one particular dislo-

cation which, in addition to the external stress, is

influenced by the long-range stress field of the

ensemble of all other dislocations. In a first ap-

proximation, this influence may be accounted for

in terms of random effective stress fluctuations

dseff which act on the dislocation and lead to

random fluctuations of the dislocation velocity.
This argument leads to the expression �‘‘ �
hds2effi‘corr=S2, where hds2effi stands for the ampli-

tude of the effective stress fluctuations, ‘corr de-

notes the corresponding correlation length and S
is the strain rate sensitivity. If a cross-slip mecha-

nism is assumed, then it turns out that �‘‘ ¼ ð�hh2=
‘sÞ½1 þ 2ðh0=�hhÞ2 þ 1=2ðh0=�hhÞ� expð�h0=�hhÞ, where

‘s denotes an average distance between cross-slip
events, h0 denotes the distance of dislocation im-

mobilization for dipole formation (h0 ¼ lb=2p
ð1� mÞðs � sfÞ; l is the shear modulus, b is the

Burgers vector, m is the Poisson�s ratio, s is the

resolved shear stress and sf is the friction stress),

and �hh ¼
R
hP ðhÞdh with PðhÞ denoting the proba-

bility for the cross-slip height to be h. For a

polycrystalline situation and an elementary vol-
ume containing a large number of grains and slip

systems with gliding dislocations, it turns out that

�‘‘ ¼ dhtan2 ui=4 where d denotes the grain size and

htan2 ui is a numerical factor resulting from the

averaging of all gliding and grain orientations. If

we distinguish between positive and negative mo-

bile dislocations, write standard dislocation dy-

namics evolution equations for both populations
(without including diffusion-like coefficients at the

outset, but accounting for their flux within the

elementary volume (Aifantis, 1984c, 1987, 1992)),

and then adiabatically eliminate the ‘‘fast vari-

able’’ of their difference for cases that this is

physically justified, we obtain a diffusion term in

the corresponding evolution equation for the sum

or total mobile dislocation density which is now of
the form of Eq. (3.1). The internal length �‘‘ turns

out to be of the form �‘‘ ¼ vtlife where v denotes the
mobile dislocation velocity and tlife is the mean

lifetime of mobile dislocations which, in general,

depends on the densities of all other defects. Fi-

nally, if a ‘‘dipole exchange’’ mechanism is con-

sidered as proposed by Differt and Essmann, a

relation of the form of Eq. (3.1) can be written for
an ‘‘immobile’’ population of dislocation dipoles.

Then, the appropriate expression for the disloca-

tion diffusivity reads D � y2d=8td ¼ qmvy
3
d=4 where

yd is the mean dipole height and t�1
d is the rate of

the dipole exchange interaction, while qm and v
denote as usual the density and velocity of the

mobile dislocations. An evolution equation of the

form of Eq. (3.1) for the density of immobile dis-
locations may also be deduced by considering the

coupling of immobile dislocations with point de-

fects. Adiabatic elimination of the point defect

density would lead then to a diffusion-like term

for immobile dislocations with a diffusivity

depending on the diffusion coefficient and the

production/annihilation reaction constants of

point defects. (In the simplest case, D in Eq. (3.1)
would be directly proportional to the diffusivity of

point defects.) Related considerations of such type

of dislocation mechanisms arguments can be

found in a recent article by Zaiser and Aifantis

(1999).

A more deductive derivation of gradient or

diffusion-like terms in the equations of dislocation

dynamics is possible by starting with the equation
of motion for each discrete dislocation in a single

slip configuration, i.e.
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ð1=MÞvi ¼ sext þ
Z

sðr� r0Þ½qþ
d ðr0Þ � q�

d ðr0Þ�d
2r0;

q�
d ¼

X
i6¼jð�Þ

dðr0 � rjÞ; ð3:4Þ

where M denotes a mobility-like coefficient, vi is
the velocity of the ith dislocation, q�

d is the discrete

density of positive or negative dislocations, the d
denote d-functions introduced to account for the

discreteness of the dislocation configuration as-
sumed, sext is the external resolved shear stress and

sðr� r0Þ is an elastic kernel determined by classical

elasticity depending on the type of dislocations

considered. Averaging of the above discrete

equations of dislocation dynamics over an en-

semble of statistically equivalent dislocation pop-

ulations [q�ðr0Þ 	 hq�
d ðr0Þi; vðrÞ 	 hvii] yields the

equation of motion

ð1=MÞvðrÞ ¼ sext þ
Z

sðr� r0Þfqþðr0Þ½1þ dþþðr� r0Þ�

� q�ðr0Þ½1þ d�ðr� r0Þ�gd2r0; ð3:5Þ

where the first term in the bracket { } under the

integral designates the probability to find a posi-

tive dislocation within d2r0 around r0 when there is

a positive dislocation at r; the second term desig-

nates the same for a negative dislocation at r0. The

symbols (dþþ; d�) designate correlation functions
(for a random dislocation arrangement dþþ ¼
d� ¼ 0) satisfying the following symmetry condi-

tions dþþðrÞ ¼ dþþð�rÞ½	 d��ð�rÞ�; d�ðrÞ ¼ �d�þ

ð�rÞ, as well as the scaling properties dþþ ¼
dþþðr ffiffiffi

q
p Þ; d�ðr ffiffiffi

q
p Þ implied from standard dislo-

cation dynamics arguments. (The starting point of

Eq. (3.4) has been adopted in unpublished work by

the author and Romanov, but the subsequent ar-
guments based on the use of correlation functions

and their properties were motivated by the work of

Groma as elaborated upon recently by Zaiser and

the details will be contained in a joint forthcoming

report by these three authors.) It further turns out

that the correlation functions (dþþ; d�) decay fas-

ter than algebraically at large and, thus, a Taylor

expansion approximation under the integral sign
in Eq. (3.5) is justifiable. In fact, by considering the

evolution equation or effective mass balance (Ai-

fantis, 1987) for the positive dislocation density

population qþ in one dimension (vþ denotes

velocity and Cþ production/annihilation) of the

form

oqþ

ot
þrxðqþvþÞ ¼ Cþ; ð3:6Þ

and a similar equation can be written for the

evolution of the negative dislocation population

q�. By adopting the aforementioned Taylor ex-

pansion approximation for the velocity vþ in Eqs.
(3.5) and (3.6) is written as

oqþ

ot
þrxðqþ�vvÞ ¼ Dþr2

xxq
þ þ Cþ; ð3:7Þ

and a similar equation can be written for q�. The

diffusion-like coefficient Dþ turns out to be of the

form Dþ ¼ blbMðqþ=qÞ with b denoting the value

of an explicitly calculated integral, l is the shear

modulus, b is the Burgers vector, and q is the total

dislocation density. The quantity �vv denotes what is
commonly known in standard dislocation dy-

namics considerations as the average dislocation
velocity which is now explicitly calculated on the

basis of Eq. (3.5) and given by the expression
�vv ¼ Mðsext þ sLR � sbackÞ, where sLR 	

R
sðr� r0Þ 


½qþðr0Þq�ðr0Þ�dr0 and sback ¼ ðq�=qÞalb
ffiffiffi
q

p
denote

the dislocation long-range stress and back stress

respectively, with a being the standard numerical

factor used in previously proposed expressions for

the back stress. A similar equation like Eq. (3.7)
holds for the negative dislocation density q� and

further details will be provided in a complete fu-

ture treatment of the subject.

3.1.3. Gradient elasticity

Atomistic and/or homogeneization techniques

can be employed to derive microscopic expressions

for the phenomenological coefficient �cc of the gra-

dient elasticity model described by Eq. (3.3). Such

expressions can be deduced, for example, from the

work of Triantafyllidis and Aifantis (1986) based

on atomistic considerations or the more recent
work of Fish and Belsky (1995), and Fish et al.

(2002) based on homogeneization techniques.

Along the same lines, expressions for the coeffi-

cient �ccmay be deduced from the nonlocal elasticity

kernel recently derived by Picu (2002) to revisit

the Peierls–Nabarro model and calculate the
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corresponding Peierls stress. In fact, the gradient

elasticity model given by Eq. (3.3) may also be

viewed (but not necessarily) as a Taylor approxi-

mation of a non-local elasticity model of the form

rij ¼
R
v aðjr� r0jÞrc

ijðr0Þd3r where r denotes the spa-

tial polar coordinate rc
ij and is the classical stress

given by Hooke�s law. A commonly used form for

the non-local elasticity kernel is aðjr� r0jÞ ¼ a0 

exp½�ðr� r0=mb2�wherea0 ¼ 1=p

ffiffiffi
p

p
m3 withmbde-

noting an internal length scale and b is the Burgers

vector. The newly proposed form by Picu (2002)

in one dimension reads aðxÞ ¼ a0f½1� ðx=nÞ2k1 

exp½�ðx=mÞ2k2 �g, where all constants are material

lattice parameters. The implications of this new
kernel to gradient elasticity models and related

applications will be discussed elsewhere (Picu,

2002). Finally, it is pointed out that expressions for

the gradient coefficient �cc can also be obtained by

comparing the dispersive wave propagation rela-

tion resulting from gradient elasticity with the

classical dispersion relation of lattice dynamics in

the Brillouin regime. This gives
ffiffiffi
�cc

p
ffi a=4, where a

designates the usual lattice parameter, and this es-

timate was used by Gutkin and Aifantis (1996,

1999a); Gutkin and Aifantis (1999b, 2000) in

evaluating non-singular strain fields for dislocation

and disclination arrangements and determining

their interactions. As in the case of the phenome-

nological coefficient of the gradient plasticity the-

ory based on Eq. (3.2), estimates for the coefficient
�cc of gradient elasticity can also be obtained from

fitting experimental data on size effects. This has

been shown by the author (Aifantis, 1999a,b) (see

also Tsagrakis, 2001, and references quoted there-

in) where size effects in torsion and bending of

elastically deformed media with microstructure

(polymeric foams, human bones) were modelled by

gradient elasticity within a strength of materials
approximation.

In concluding this discussion on the phenome-

nological gradient coefficients, it is pointed out

that there are still some questions not only about

their values but also on their signs depending on

the local geometry and the local or global soften-

ing (instability) material or component behav-

ior. Thermodynamics, local and global stability
considerations, as well as uniqueness and well-

posedeness requirements for the solution of related

boundary value problems can provide insight to

these questions. A generalized continuum ther-

modynamics framework allowing for an extra

term in the energy equation to account for the

internal work associated with the gradient terms

was outlined by the author (Aifantis, 1984a). Since
then, several papers have been written on the

subject (e.g. Maugin and Muschik, 1994; Valanis,

1996; Polizzotto and Borino, 1998; Shizawa and

Zbib, 1999; Menzel and Steinmann, 2000; Gurtin,

2000). The work of Gurtin (2000), in particular,

provides the thermodynamic foundations of Eq.

(3.2) and can be used as a guide to check the

thermodynamic consistency of various physically
motivated gradient plasticity models of this type.

3.2. The origin of gradient terms

Here we sketch some ideas pertaining to the

origin of the gradient terms. In fact, it has been

recently argued (Mughrabi et al., 2000) that in a

number of important physical situations where
scale effects are dominant, Ashby�s concept of

GND on which several (other type of) strain gra-

dient theories are based upon (consult, for exam-

ple the recent report of Fleck and Hutchinson

(2001) and references quoted therein), is not rele-

vant. Therefore, strain gradients may not be in-

cluded in these cases on the basis of GND. Other

physical mechanisms should then be involved. A
brief discussion on such different sources for the

gradient terms is outlined below.

3.2.1. Coupling with internal variables with diffusive

transport

Instead of Eq. (3.2), one may start with a

standard expression s ¼ jðc; aÞ where a is an in-

ternal variable whose evolution equation contains
both a rate and a flux term (Aifantis, 1987, 1992).

For example, a may be identified with a disloca-

tion population density evolving according to Eq.

(3.1) with the strain c entering as a parameter in the

source term. Then, in a one-dimensional setting,

we may assume _aa ¼ Daxx þ wðcÞ � /ðcÞa where

(w;/Þ are nonlinear functions of the plastic strain

c. By considering the Fourier transform of the
linearized part of this equation and ‘‘adiabati-

cally’’ eliminating the fast variable a (note that for
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the spatial scales considered, a attains steady states

much faster than c), it turns out that a in the flow

stress dependence s ¼ jðc; aÞ is replaced by a sec-

ond gradient term in c. (Strictly speaking, the de-

pendence of the internal variable a is replaced by a

functional of c which, under certain circumstances,
results into a second gradient term. In fact, for a

linear dependence of the form s ¼ jðcÞ � ka, the
resulting equation is of the form of Eq. (3.2) with

c ¼ kKD=M2; K 	 ½w0 � /0ðw=/Þ�c¼c0
, M 	 /ðc0Þ,

with c0 denoting a uniform state, while the ex-

pression for the homogeneous part of the flow

stress becomes jðcÞ � ka0ðcÞ. where a0 is the value

of the internal variable when there are no gradi-
ents). By further assuming standard metal physics

relations pertaining to the dislocation motion/

multiplication mechanisms it is possible to obtain

the following relation for the gradient coefficient c:
c ¼ bh2D=sv where b is a numerical factor with an

explicit dependence on the Burgers vector magni-

tude and the ratio of mobile to the total disloca-

tion density, whereas the remaining symbols have
their usual meaning (s is the shear stress, h is the

hardening modulus and D=v is an effective mean

free path discussed earlier in this section). Typical

values of the parameters involved for a slowly

deforming Cu polycrystal give a value for the

gradient coefficient jcj ffi 10�3 N which is of the

same order of magnitude as the one obtained from

self-consistent models and size effect calibrations
(Aifantis, 1995). Generally, a range between 1 and

10�3 N is obtained for c, depending on the defor-

mation state and the average value of the effective

mean free path swept by the moving dislocations,

as well as the scale or the size of the elementary

volume assumed for the problem at hand.

3.2.2. Statistical/randomness considerations

Another issue related to the phenomenological

gradient coefficients and the scale considered, is

concerned with statistical and randomness aspects

associated with the microsructure. These consid-

erations lead to gradient terms as sketched below.

This is work in progress but some preliminary re-

sults have just been published or are pending

publication (Avlonitis et al., 2001; Frantziskonis
and Aifantis, 2002). By assuming that the strain

ĉcðCÞ is a random field given by a function of a

random microstrain variable C, a Taylor expan-

sion around the mean hCi of the form ĉcðCÞ ¼
ĉcðhCiÞ þ ĉcCðc � hciÞ þ 1=2ĉcCCðC � hCÞiÞ2, and sub-

sequent averaging yields the expression hĉcðCÞi ¼
c ¼ 1=2½ðo2CðrÞ=or2Þjr¼0�

�1r2
rrhĉcðCÞi, where c ¼

ĉcðhCiÞ and CðrÞ denotes the spatial correlation
(autocorrelation function) for the microstrains.

For a Gaussian CðrÞ ¼ exp½�ðr=‘Þ2� autocorrela-
tion function, it can be shown that hĉcðCÞi ¼
c þ ð‘2=4Þr2

rrhĉcðCÞi where ‘ denotes correlation

length. Then, a constitutive equation of the form

s ¼ jðcÞ can lead, through an appropriate Taylor

expansion, to the gradient expression of Eq. (3.2)

with c now in Eq. (3.2) designating the average
strain ĉcðhCiÞ of the volume element. The sign of

the coefficient c and its relation to the internal

lengths involved, depend on the type of the cor-

relation functions and the corresponding micro-

structures, as well as on the deformation state

(hardening or softening). It also depends on the

constitutive coarsening or the scale employed to

express the constitutive equations. (For example,
the above averaging procedure introduced to the

constitutive equations s ¼ jðcÞ or s ¼ jðhĉcðCÞiÞ
would lead to the same gradient expressions but

with different signs for the gradient coefficient,

depending on the measure ĉcðhCiÞ or hĉcðCÞi used in

the constitutive equation.)

4. Benchmark problems

In this section simple forms of gradient theory

are employed to solve a number of critical prob-

lems with simple geometries for which, however,

classical theory cannot predict the observed phe-

nomena.

4.1. Interfaces

In relation to bi-material interfaces, gradient

theory allows for a continuum distribution of

strain across the interface. For two gradient linear

elastic materials obeying Eq. (3.3), or equivalently

Eq. (3.2) with jiðcÞ ¼ lic, bonded by an elastic

gradient interface and subjected to shear at infin-
ity, it easily turns out that the strain distribution is

given by the expression
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c ¼ s1

li
1

�
� 1

�
� li

lI

�
eð�1Þiy

ffiffiffiffiffiffiffi
li=ci

p �
;

i ¼ 1; 2; ð4:1Þ

where (l1, l2) and (c1, c2) are the shear moduli and
gradient coefficients of the two bonded phases,

while lI denotes an ‘‘elastic shear modulus’’ for the

interface (sI ¼ lIcI; sI and cI are the interfacial

stress and strain) with sI 	 s1 (s1 is the externally

applied equilibrated stress), and y is the relevant

spatial coordinate normal to the interface which is

extended over the plane y ¼ 0. For lI 	 l1l2 

ð
ffiffiffiffiffiffiffiffiffiffiffi
l1=c1

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
l2=c2

p
Þ=ðl1

ffiffiffiffiffiffiffiffiffiffiffi
l2=c2

p
þ l2

ffiffiffiffiffiffiffiffiffiffiffi
l1=c1

p
Þ we

obtain the author�s solution (Aifantis, 1995, 1996),

while for lI 	 l1l2ð
ffiffiffiffiffiffiffiffiffi
l1c1

p þ ffiffiffiffiffiffiffiffiffi
l2c2

p Þ=ðl1

ffiffiffiffiffiffiffiffiffi
l2c2

p þ
l2

ffiffiffiffiffiffiffiffiffi
l1c1

p Þ with ci ¼ li‘
2
i =2 we obtain the solution of

Fleck and Hutchinson (1993). The parameters ‘i
(i ¼ 1; 2) designate the corresponding internal

lengths used in the Fleck/Hutchinson theory. The

first solution was obtained for the boundary con-

ditions oc1=oy ¼ oc2=oy at the interface, while the

second solution was obtained for the boundary

conditions ‘21l1oc1=oy ¼ ‘22l2oc2=oy. (c1 and c2
denote the shear strains of each phase at the in-

terface where we always have c1 ¼ c2 ¼ cI.) How-

ever, the problem of interest is to consider the
nonlinear stress–strain behavior at the interface, as

this problem relates to surface tension and crack

nucleation. While the Fleck/Hutchinson theory is

difficult to apply in this case, there is already a

method available for considering this problem

within the author�s theory. In fact, for nonlinear

behavior sI ¼ jðcIÞ,it turns out that the strain

distribution is determined by utilizing a Maxwell�s
equal area rule construction as discussed for fluid

interfaces by Aifantis and Serrin (1983). The de-

tails of such construction will be shown elsewhere

in relation to the problem of determining the

thickness and strain distribution of coherent real

interfaces. For the present illustrative purposes, it

suffices to refer to the typical qualitative strain

profiles given in Fig. 2, with sm designating the

Fig. 2. Strain distribution across the interface for (a) cI < cm, (b) cI > cm, (c) scaled homogeneous universal stress–strain curve, (d)

scaled universal strain distribution across the interface.
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maximum value of stress in the corresponding

cohesive type law for the interface and cm being

the associated value of strain. It is noted that the

strain profile is a transition when the strain at the

interface is in the ascending branch (hardening) of
the cohesive law, while it localizes when the strain

at the interface is in the descending branch (soft-

ening). Results for real interfaces can be obtained

by utilizing atomistic calculations by Rose et al.

(1981, 1984) to motivate the expression for the

‘‘homogeneous’’ portion of the gradient-depen-

dent constitutive equation. The resulting expres-

sion in scaled variables (s� ¼ s=sme and c� ¼
ðdeq=kÞc) reads s� ¼ jðc�Þb2c�e�bc� , where b is a

normalization constant, deq is the equilibrium in-

terface separation distance and k is the range over

which strong forces act. In Fig. 2 the ‘‘universal’’

scaled stress-scaled strain (s�–c�) curve and the

corresponding universal scaled strain distribution

across the interface of a metallic film bonded to a

rigid substrate and sheared at infinity where it
exhibits a rigid-like plastic behavior, are depicted

in sketches (c) and (d) respectively.

4.2. Boundary layers

A related benchmark problem pointed out by

Fleck (2000, 2001) is the shearing of a thin layer of

material between two rigid plates. This problem
was solved by employing several gradient plasticity

models (including those proposed by Bassani,

Parks, Gao and their co-workers), as well as by

using the discrete dislocation dynamics (DDD)

formulation of Needleman/van der Giessen and

co-workers. (Due to space limitations, we do not

elaborate on details and do not list the appropriate

references which can be found, however, in a re-

cent report by Fleck and Hutchinson (2001).) It

is noted, however, that the DDD approach re-
quires substantial computational effort, but also

the Fleck/Hutchinson model needs numerical im-

plementation. On the contrary, the solution for the

local shear strain c based on Eq. (3.2) reads

cðx2Þ ¼
s1

l
þ s1 � sY

h
1

�
� coshðx2=‘Þ
coshðH=2‘Þ

�
; ð4:2Þ

where x2 ¼ y is the appropriate space coordinate

(�H=2 < x2 < H=2), H denotes the layer thick-

ness, s1 is the applied shear, l is the shear mod-
ulus, h is the hardening modulus, sY denotes the

yield stress and the internal length ‘ is related to

the gradient coefficient c of Eq. (3.2) by c ¼ h‘2.
Thus, Eq. (3.2) reads s ¼ sy þ hc � h‘2r2

yyc, i.e.

linear hardening is assumed. The global or mac-

roscopic shear strain C can be calculated from Eq.

(4.2) by direct integration and reads

C ¼ 1

H

Z H=2

�H=2

cðx2Þdx2

¼ s1

l
þ s1 � sY

h
1

�
� 2‘

H
tanh

H
2‘

� ��
ð4:3Þ

The corresponding local strain profiles and asso-

ciated size effects are depicted in Fig. 3, where

comparisons with the DDD simulations and the

Fig. 3. (a) Effect of layer thickness H on the stress–strain curve response, as predicted by Aifantis–Gurtin theory. (b) Size effect, as

predicted by discrete dislocation calculations indicating an elevation in flow strength with diminishing thickness H . (c) Shear strain

(local) profile in 1 micron thick layer at a global shear strain C ¼ 0:0218. It is shown that the author�s theory is closer to the DDD

simulations than the Fleck/Hutchinson theory. Some other recently proposed strain gradient models predict flat profiles and cannot

capture boundary layer effects.
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Fleck/Hutchinson predictions are provided (Fleck,

2000, 2001).

4.3. Size effects

The ability of the gradient theory to interpret

size effects has already been shown above on the

basis of the simple gradient plasticity model de-

scribed by Eq. (3.2). Size effect data for twisted

wires with dimensions at the lm regime, have been

reported by Fleck et al. (1994). In order to fit their

experimental data, the gradient-dependent flow

stress given by Eq. (2.18) with m ¼ 2 is employed.
It is further assumed that jðcÞ ¼ j0cn; c1 ¼ ð1=
2Þðdc2=dcÞ; c2 ¼ ccn�1; i.e. a power law expression

is assumed for the homogeneous part of the flow

stress and a similar relation is adopted for the

gradient coefficients. The effect of first gradients of

strain is accounted for, and the relation between c1
and c2 is required by the existence of an appro-

priate ‘‘plastic’’ potential. The corresponding ex-
pression for the twisting moment M reads

M
a3

¼ 2p
j0

nþ 3

�
þ c
2a2

�
cns ; ð4:4Þ

where cs ¼ ua denotes the surface strain with u
being the angle of twist per unit length and a being

the wire radius. The experimental results are fitted

very well by Eq. (4.4) for reasonable values of the

material parameters involved. Fig. 4a depicts the

comparison between theory and experiment with

j0 ¼ 226 MPa, n ¼ 0:2 and c ¼ 9:1
 10�3 N for al
cases but for 2a ¼ 20 lm for which c ¼ 5:6
 10�3

N. If an internal length is defined by the relation

‘c ¼
ffiffiffiffiffiffiffiffiffi
c=j0

p
, then the corresponding values of ‘c

for the above cases are 6.3 lm and 5 lm respec-

tively. It is noted, in this connection, that the Fleck

and Hutchinson theory (Fleck and Hutchinson,

1993) gives an estimate for the internal length

‘c ¼ 2:6–5:1 lm without fitting the whole experi-

mental regime.

The results depicted in Fig. 4a were obtained by
using Eq. (2.18) within a strength of materials

approximation where the geometry of the defor-

mation field is assumed at the outset. With such

type of approximation for the geometry of the

deformation field, size effects and strain gradient

hardening in micro indentation experiments can

also be interpreted. This is illustrated in Fig. 4b

and c: In Fig. 4b, the dependence of the hardness
(H ) on the indentation depth (h) is shown as pre-

dicted on the basis of Eq. (2.18), in comparison

with the Fleck/Hutchinson (asymmetric stress)

type theory and the experimental data of Nix and

Gao (1998). In Fig. 4c, the dependence on the

hardness (HV) at the center of a cylindrical spec-

imen subjected to torsion is shown as a function of

the angle of twist per unit length ðuÞ; the com-
parison between experiment (Sz�eekely et al., 2001)

and a simple analysis based on Eq. (2.18) is illus-

trated.

5. Plastic heterogeneity, length scales and wavelets

Fig. 5 confirms the heterogeneous character of
plastic flow at the micrometer level. Fig. 5a and b

are due to Engelke and Neuhauser (1995) and

Brinck et al. (1998), while Fig. 5c for the shear

strain was obtained (Konstantinidis, 2000) on the

basis of the data of Fig. 5b for the slip height h.

The relevant question here is how to quantify the

highly heterogeneous profile of Fig. 5c. This was

done (Konstantinidis, 2000) by employing a dis-

Fig. 4. Size effects (a) in torsion and (b) in indentation; strain gradient hardening is shown in (c). If size effects were absent or strain

gradients effects were neglected, all curves in (a) would fall on a single curve and the slope in (b) and (c) would vanish as predicted by

classical theory.
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crete wavelet transform with a mother wavelet of

the form WðxÞ ! Wj;k ¼ ð1=
ffiffiffiffi
2j

p
ÞW½ðx� 2jkÞ=2j�

with ð2�j, 2jkÞ denoting the discrete dilatation and

discrete translation respectively, while the index j
denotes the scale. Fig. 6 shows the type of the

mother wavelet used and the corresponding strain

profiles as the scale index j varies from 9 to 1. It is

noted that for j ¼ 9 (high resolution) the experi-
mental strain profile of Fig. 5c is reproduced, while

for j ¼ 1 a shear band-like solution (small resolu-

tion) is obtained. These results were used to train

a ‘‘neural network’’. On the basis of this, it was

Fig. 5. Localized clustered slip bands in Fe3Al appearing rapidly during deformation. (a) SFM micrograph of a typical section. (b)

Step profile of the slip band shown in (a). The clustering of the steep part is about 25 perfect superdislocation Burgers vectors per 103

slip planes. (c) Strain distribution.

Fig. 6. Discrete wavelet transform for the strain distribution (scales j ¼ 1 . . . 9).
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possible to obtain the distribution of strain at

smaller resolutions, not available experimentally,

and infer on the heterogeneity of plastic flow at

finer scales.

Another interesting result is obtained by at-

tempting to relate the shear band profile (Fig. 6 for
j ¼ 1) with the shear band solution of the gradient

theory (Aifantis, 1984b) through wavelet analysis.

This is possible by employing a wavelet represen-

tation of the d-function to represent the shear

band solution. The appropriate form of this rep-

resentation (Konstantinidis, 2000) is ds ¼ ðs0=
2s

ffiffiffi
p

p
Þ exp½�x2=4s2� where s denotes the gage

length and s0 a macroscopic dimension of the
specimen. It is then possible to replace the gradient

term in Eq. (3.2) with a scale-dependent term. The

final form of the resulting scale-dependent con-

stitutive equation reads

s ¼ jðcÞ � cc
2s2

1

�
þ 2 ln

2s
ffiffiffi
p

p
c

s0

� ��
: ð4:5Þ

More complex, but easy to obtain scale-dependent
constitutive equations, are possible if the more

general gradient expression given by Eq. (2.18) is

used. These forms were utilized to model success-

fully the experimental data on size effects in tor-

sion depicted in Fig. 4. They have also been used

to interpret size effects in tension of homoge-

neously deforming smooth specimens with sub-

millimeter and micrometer dimensions. These
results will be reported in a future article where

predictions of the gradient-dependent constitutive

equation given by Eq. (3.2) and the scale-depen-

dent given by Eq. (4.5) are compared with exper-

imental data on size effects in torsion, bending and

tension. Recent results based on Eq. (4.5) con-

cerning the predictions of size effects in brittle

materials and their comparison with the multi-
fractal scaling laws proposed by Carpinteri and co-

workers can be found in Konstantinidis et al.

(2001).
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