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A CLASS OF SPARSE INVERTIBLE MATRICES AND THEIR
USE FOR NONLINEAR PREDICTION OF NEARLY PERIODIC
TIME SERIES WITH FIXED PERIOD

N. D. Atreas and P. Polychronidou

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

� We introduce a class of sparse matrices Um(Ap1) of order m by m, where m is a composite
natural number, p1 is a divisor of m, and Ap1 is a set of nonzero real numbers of length p1.
The construction of Um(Ap1) is achieved by iteration, involving repetitive dilation operations
and block-matrix operations. We prove that the matrices Um(Ap1) are invertible and we compute
the inverse matrix (Um(Ap1))

−1 explicitly. We prove that each row of the inverse matrix
(Um(Ap1))

−1 has only two nonzero entries with alternative signs, located at specific positions,
related to the divisors of m. We use the structural properties of the matrix (Um(Ap1))

−1 in
order to build a nonlinear estimator for prediction of nearly periodic time series of length m
with fixed period.

Keywords Prediction; Sparse matrices; Time series.

AMS Subject Classification 65F50; 65F30; 15A09; 60G25.

1. INTRODUCTION

A time series is a sequence of observations taken sequentially in time.
Many sets of data appear as time series: hourly observations made on
the yield of a chemical process, a weekly series of the number of road
accidents, and so on. Examples of time series abound in such fields as
economics, engineering, geophysics, meteorology, social sciences, etc. An
intrinsic feature of a time series is that, typically, adjacent observations
are dependent. The nature of this dependence among observations is
of considerable practical interest. As an example of this nature, one
can consider the periodicity with which data appear. We suppose that
observations are available at discrete, equi-spaced intervals of time (more
about time series can be seen in [4, 12]).

Address correspondence to N. D. Atreas, Department of Informatics, Aristotle University of
Thessaloniki, Thessaloniki 54-124, Greece; E-mail: natreas@csd.auth.gr

66



D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

Li
nk

 C
on

so
rti

um
] A

t: 
07

:4
5 

28
 F

eb
ru

ar
y 

20
08

 

Sparse Invertible Matrices 67

Some of the main goals of time series analysis are predicting, modeling,
and characterization. In this direction, matrix analysis and linear algebra
techniques (see [2]) have contributed a lot, as data are usually stored
via a matrix. Sparse matrices have a “small” number of nonzero elements
(see [6, 11]), so they provide fast computations and computational saving
methods. They are mainly used for graph algorithms, neural networks,
numerical solution of partial differential equations, and they could also be
very useful in the process of extracting local information.

Basically, the aim of predicting is to predict the sort-term evolution of
a system, that is to “predict” future values of a process, given a record of
its past values. Obviously, for the process of predicting the future values,
we wish to make use of the given information. This problem is clearly
of interest in the context of most branches of sciences, like economics
(for example, to predict future values of the stock market prices), weather
analysis (for example, to forecast the weather), geophysics (for example, to
predict future values of the ozone of the atmosphere on different layers),
and so forth. For surveys and perspectives for time series prediction, see
[3, 4, 7, 8, 10, 12–15].

The aim of this work is

(a) To build a linear invertible transform on data of length m, with
the ability to extract local information at different scales. The particular
transform is based on the construction of a class of sparse invertible
matrices Um(Ap1) of order m by m (generalizing our work in [1]), such that:

• Um(Ap1) is built via an iteration process on matrices, starting from an
initial set Ap1 = �a1, � � � , ap1� of nonzero numbers (p1 is a divisor of m)
and using repetitive, properly selected dilation operations and block
matrix operations.

• Um(Ap1) is invertible and the inverse matrix (Um(Ap1))
−1 is also a sparse

matrix with entries 1/ai , 0,−1/ai , (i = 1, � � � , p1) and it is constructed
via a recursion equation on matrices. It presents interesting properties,
listed in Section 3.

(b) To use the transform corresponding with the matrix Um(Ap1) for
prediction of nearly periodic time series with fixed period. We say that a
sequence �tk , k = 1, � � � ,m� is nearly periodic with fixed period N , if:

(i) tk has the same repeating pattern of length N , but with different
scaling over different periods, or

(ii) the sequence tk has nearly repeating patterns with different scaling
factors over different periods (see [5]).
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68 N. D. Atreas and P. Polychronidou

Our basic idea for prediction is based on the fact that the extension
T̃ of a data T as defined in Definition 4.4, reflects on equality of most of
their corresponding transform elements (see Proposition 4.5).

In Section 2, Definitions 2.1, 2.3, 2.5, and 2.6, we present some
new dilation operations and block matrix operations on matrices. In
Definition 2.11, we introduce the iteration process to construct the matrix
Um(Ap1). In Proposition 2.13, we prove that these matrices are invertible.
In Theorem 2.15, we prove a recursion equation for computing the inverse
matrix (Um(Ap1))

−1.
In Section 3, Proposition 3.1, we demonstrate the structure of

(Um(Ap1))
−1 and we list its properties.

Finally, in Section 4, we build an algorithm, giving rise to a nonlinear
estimator for prediction of nearly periodic time series.

2. CONSTRUCTION AND PROPERTIES OF UM(AP1
)

Notation (see also [9]). Let Mn,m be the set of all matrices of order m by
m over the field of complex numbers. If n = m, then Mn,m is abbreviated
to Mn . We shall use the symbolism A = [Aij ] to denote a matrix A with
elements Aij . The notation

Ai = �Aij : j = 1, � � � ,m�

shall be used to denote the i -row of a matrix A ∈ Mn,m . We use the notation
AT to denote the transpose of a matrix A. A square matrix A ∈ Mn is
invertible, if there is a unique square matrix A−1 ∈ Mn called the inverse
matrix of A, such that AA−1 = In , where In is the identity matrix. A matrix
having a small number of nonzero elements is called sparse. P ∈ Mn is a
permutation matrix, if it is formed from the identity matrix In by reordering
its columns (or rows). The determinant of a permutation matrix P is
given by:

Det(P ) = sgn �,

where � = ��(i) : i = 1, � � � ,n� is the permutation of its columns and the
signature sgn � equals (−1)r , where r is the number of transpositions of
pairs of columns that must be composed to build up the permutation. In
practice, in order to estimate r , we compute the number of elements �(i) :
�(1) > �(i), i = 2, � � � ,n, then we compute the number of elements �(i) :
�(2) > �(i), i = 3, � � � ,n, and so forth, and finally we sum all previously
computed numbers.

The ceiling of a real number x shall be denoted by �x� = inf �n ∈ Z :
x ≤ n� (Z is the set of integers). If p, q are natural numbers, we denote
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Sparse Invertible Matrices 69

by Mod(p, q) the remainder of the division of p by q , and we shall use the
symbolism [q]p = �q + tp : t ∈ Z� to denote the residue class of q modulo p.

We define the following matrix dilation operations Dp and Hp on the
set Mn,m , where p = 2, 3, � � � .

Definition 2.1. Let Dp : Mn,m → Mn,pm , such that:

Dp(M ) =
{
Mi ,� j

p �, i = 1, � � � ,n, j = 1, � � � , pm
}
�

Notice that Dp can be written as a block matrix:

Dp(M ) =
Dp(M11) � � � Dp(M1m)

���
� � �

���
Dp(Mn1) � � � Dp(Mnm)

 , (2.1)

where Dp(Mij) ∈ M1,p : Dp(Mij) = �Mij ,Mij , � � � ,Mij�.

Example 2.2.

D2

((
a11 a12
a21 a22

))
=

(
a11 a11 a12 a12
a21 a21 a22 a22

)
,

D3

((
a11 a12
a21 a22

))
=

(
a11 a11 a11 a12 a12 a12
a21 a21 a21 a22 a22 a22

)
�

Definition 2.3. Let Hp : Mn,m → Mpn,m :

Hp(M ) =
{
M� i

p �,j , whenever i ∈ [0]p
0, whenever i � [0]p , i = 1, � � � , pn, j = 1, � � � ,m

}
�

Example 2.4.

H2

((
a11 a12
a21 a22

))
=


0 0
a11 a12
0 0
a21 a22

 ,H3

((
a11 a12
a21 a22

))
=


0 0
0 0
a11 a12
0 0
0 0
a21 a22

 �

Definition 2.5. Let S(�, � � � , �) : Mn1,m × · · · × Mnk ,m → Mn1+···+nk ,m be the
following block matrix operation:

S(M1, � � � ,Mk) =
M1

���
Mk

 �
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70 N. D. Atreas and P. Polychronidou

Definition 2.6. Let p,w be positive integers such that w is a divisor of p
and let Aw = �a1, � � � , aw� be a set of nonzero real numbers. We define the
following block matrix operator: Qp,Aw : Mn,m → Mpn,pm :

Qp,Aw (M ) = a1M ⊕ · · · ⊕ a1M︸ ︷︷ ︸ ⊕ · · · ⊕ awM ⊕ · · · ⊕ awM︸ ︷︷ ︸
p/w -times p/w -times

=
a1M O

� � �

O awM

 , (2.2)

where ⊕ is the direct sum of matrices and O is the zero matrix of order
n × m.

Example 2.7.

(1) Q4,�a1,a2�((1 0)) =


a1 · (1 0) O O O

O a1 · (1 0) O O

O O a2 · (1 0) O

O O O a2 · (1 0)



=


a1 0 0 0 0 0 0 0
0 0 a1 0 0 0 0 0
0 0 0 0 a2 0 0 0
0 0 0 0 0 0 a2 0

 ,

where O is the zero matrix of order 1 × 2.

(2) Q3,�a1,a2,a3�

((
1−1

)) =
a1

(
1−1

)
O O

O a2
(

1−1

)
O

O O a3
(

1−1

)
 =



a1 0 0
−a1 0 0
0 a2 0
0 −a2 0
0 0 a3
0 0 −a3

 ,

where O is the zero matrix of order 2 × 1.

Definition 2.8. Let p, q ,w be positive integers such that q > 1 and w is
a divisor of p. Let Aw = �a1, � � � , aw� be a set of nonzero real numbers. We
define the following matrix: R(p, q ,Aw) ∈ Mp(q−1),pq :

R(p, q ,Aw) =
{
S
(
a1 · eq1, � � � , aq−1 · eqq−1

)
, p = 1

S
(
Qp,Aw (e

q
1), � � � ,Qp,Aw (e

q
q−1)

)
, p > 1

,



D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

Li
nk

 C
on

so
rti

um
] A

t: 
07

:4
5 

28
 F

eb
ru

ar
y 

20
08

 

Sparse Invertible Matrices 71

where eqi is the i row of the identity matrix Iq and Qp,Aw is given in
Definition 2.6.

Example 2.9. Let w = 2, (i.e., A = �a1, a2�), then:

R(2, 2,A2) = Q2,�a1,a2�

(
e21
) =

(
a1e21 O

O a2e21

)
=

(
a1 0 0 0
0 0 a2 0

)
,

where e21 = �1, 0�, O = �0, 0�, and R(2, 3,A2) =

S
(
Q2,�a1,a2�(e

3
1),Q2,�a1,a2�(e

3
2)
) =


a1e31 O

O a2e31
a1e32 O

O a2e32



=


a1 0 0 0 0 0
0 0 0 a2 0 0
0 a1 0 0 0 0
0 0 0 0 a2 0

 ,

where e31 = �1, 0, 0�, e32 = �0, 1, 0� and O = �0, 0, 0�.

Remark 2.10.

(i) Let r , s be positive integers. It is easy to see that DrDs(M ) = Drs(M ).
The same is also true for the operator Hp .

(ii) Because the matrix Qp,Aw (e
q
q) has not been used in the construction

of the matrix R(p, q ,Aw), we have (R(p, q ,Aw))�,lq = 0, for any l =
1, � � � , p.

From now on, we consider a composite positive integer m = lp1, where
l ≥ 1. Moreover, we assume that m can be written as:

m = p1p2 � � � pN , (2.3)

where p2 ≥ p3 ≥ · · · ≥ pN are prime factors of m/p1. Notice that p1 is not
necessarily prime. We denote:

J (0) = 1, J (n) =
n∏

r=1

pr , n = 1, � � � ,N (2.4)

A(i) =
N∏
r=i

pr , i = 1, � � � ,N , A(N + 1) = 1� (2.5)
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72 N. D. Atreas and P. Polychronidou

Definition 2.11. We consider the factorization (2.3) of a positive integer
m and we define a sequence of block matrices Um(n,Ap1) ∈ MJ (n) (J (n) is
defined in (2.4)), where n = 0, � � � ,N , by using the following iteration:

Um(n,Ap1) =


(a1 � � � ap1), n = 0

S(Um(0,Ap1),R(1, p1,Ap1)), n = 1

S(Dpn (Um(n − 1,Ap1)),R(J (n − 1), pn ,Ap1)), n = 2, � � � ,N

,

where Ap1 = �a1, � � � , ap1� is a set of nonzero real numbers. In case where
n = N , we shall write Um(N ,Ap1) = Um(Ap1).

Example 2.12.

Up(1,Ap) =


a1 a2 � � � ap−1 ap
a1 0 0 � � � 0

0 a2
� � �

� � �
���

���
� � �

� � �
� � � 0

0 � � � 0 ap−1 0

 � (2.6)

Let m = 12, take p1 = 3, then m = p1p2p3, where p2 = 2, p3 = 2, so:

U12(0,A3) = (
a1 a2 a3

)
, U12(1,A3) =

a1 a2 a3
a1 0 0
0 a2 0

 ,

U12(2,A3) =


a1 a1 a2 a2 a3 a3
a1 a1 0 0 0 0
0 0 a2 a2 0 0
a1 0 0 0 0 0
0 0 a2 0 0 0
0 0 0 0 a3 0

 and

U12(3,A3) =



a1 a1 a1 a1 a2 a2 a2 a2 a3 a3 a3 a3
a1 a1 a1 a1 0 0 0 0 0 0 0 0
0 0 0 0 a2 a2 a2 a2 0 0 0 0
a1 a1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a2 a2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a3 a3 0 0
a1 0 0 0 0 0 0 0 0 0 0 0
0 0 a1 0 0 0 0 0 0 0 0 0
0 0 0 0 a2 0 0 0 0 0 0 0
0 0 0 0 0 0 a2 0 0 0 0 0
0 0 0 0 0 0 0 0 a3 0 0 0
0 0 0 0 0 0 0 0 0 0 a3 0



�
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Sparse Invertible Matrices 73

Now, let j = 1, � � � , pn − 1, (n = 1, � � � ,N ), we define the following column
matrices V pn

j = �vpn
kj : k = 1, � � � , pn�:

vpn
kj =


1, whenever k = j
−1, whenever k = pn
0, elsewhere

� (2.7)

Proposition 2.13. Let �pn : n = 1, � � � ,N � be a sequence of factors of a
composite positive integer m as in (2.3) with the corresponding sequence J (n)
defined in (2.4), then:

Det(Um(n,Ap1))

=
(−1)p1+1a1 · · · ap1 , n = 1

(−1)q(n)a
(pn−1)J (n−1)

p1
1 · · · a

(pn−1)J (n−1)
p1

p1 Det(Um(n − 1,Ap1)), n > 1
,

where qn = pn−1
4 J (n − 1)(J (n) − pn + 4).

Proof. Let n = 1, we use (2.6) to get: Det(Um(1,Ap1)) = (−1)1+p1 · ap1 ·
Det(M 1,p1), where M 1,p1 is a minor of the matrix Um(1,Ap1). Because
M 1,p1 is a diagonal matrix (see (2.6)), we get that Det(Um(1,Ap1)) =
(−1)1+p1a1 � � � ap1 .

Let n > 1 and let epni be the i row of the identity matrix Ipn . We
consider the set Ãp1 = �1/a1, � � � , 1/ap1� and we define the following block
matrix

C(n, Ãp1) ∈ MJ (n) : C (n, Ãp1

)
=

(
Q

J (n−1),

{
1,���,1︸︷︷︸

pn -times

}((epnpn )T ) QJ (n−1),Ãp1

(
V pn
1

)
� � � QJ (n−1),Ãp1

(
V pn
pn−1

))
,

where the block submatrices Q
J (n−1),

{
1,���,1︸︷︷︸

pn -times

}((epnpn )T ) and QJ (n−1),Ãp1
(V pn

j ),

j = 1, � � � , pn − 1 are in MJ (n),J (n−1) (the column matrices V pn
j are given

in (2.7)). The block matrix multiplication Um(n,Ap1)C(n, Ãp1) derives the
following block diagonal matrix (for a proof of (2.8), see Appendix I):

Um(n,Ap1)C(n, Ãp1)

=


Dpn (Um(n − 1,Ap1))

QJ (n−1),Ap1
(epn1 )

���

QJ (n−1),Ap1
(epnpn−1)
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74 N. D. Atreas and P. Polychronidou

·
(
Q

J (n−1),

{
1,���,1︸︷︷︸

pn -times

}((epnpn )T ) QJ (n−1),Ãp1
(V pn

1 ) � � � QJ (n−1),Ãp1

(
V pn
pn−1

))

=


Um(n − 1,Ap1) O

IJ (n−1)

� � �

O IJ (n−1)

 , (2.8)

where the zero matrix O in the right-hand side of (2.8) belongs in MJ (n−1).
As a result we get

Det(Um(n,Ap1))Det(C(n, Ãp1)) = Det(Um(n − 1,Ap1))�

The computation of Det
(
C
(
n, Ãp1

))
is equivalent to computing

Det(K (n, Ãp1)), where K (n, Ãp1)

=
(
Q

J (n−1),

{
1,���,1︸︷︷︸

pn -times

}((epnpn )T ) QJ (n−1),Ãp1

((
epn1

)T )
� � � QJ (n−1),Ãp1

((
epnpn−1

)T ))
is a block matrix in MJ (n) resulting from C(n, Ãp1), by replacing each block
submatrix QJ (n−1),Ãp1

(V pn
j ) with the linear combination:

QJ (n−1),Ãp1
(V pn

j ) + QJ (n−1),Ãp1

((
epnpn

)T ) = QJ (n−1),Ãp1

((
epnj

)T )
, j = 1, � � � , pn − 1�

K (n, Ãp1) is a generalized permutation matrix with the only nonzero
elements in each row either 1, or an element of the set Ãp1 , so:

Det(K (n, Ãp1)) = a
− (pn−1)J (n−1)

p1
1 · · · a− (pn−1)J (n−1)

p1
p1 · sgn �n ,

where (pn−1)J (n−1)
p1

is the number of ai ’s (i = 1, � � � , p1) appearing in
K (n, Ãp1) (see (2.2)) and �n is the permutation of its columns (in order to
obtain the identity matrix), thus:

Det(Um(n,Ap1)) = a
(pn−1)J (n−1)

p1
1 · · · a

(pn−1)J (n−1)
p1

p1 sgn �n · Det(Um(n − 1,Ap1))�

The permutation �n = ��n(1), � � � , �n(J (n))� of the columns of the matrix
K (n, Ãp1) can be written as:

�n = �0,n

pn−1⋃
i=1

�i ,n ,

where �0,n = �tpn : 1 ≤ t ≤ J (n − 1)� and �i ,n = �i + tpn : 0 ≤ t ≤ J
(n − 1) − 1�.
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Sparse Invertible Matrices 75

In Appendix II we prove that sgn �n = (−1)qn , where qn = pn−1
4

J (n − 1)(J (n) − pn + 4) and we complete the proof. �

Lemma 2.14. The inverse matrix of Um(1,Ap1) satisfies:

(Um(1,Ap1))
−1 =



0 1
a1

0 � � � � � � 0

0 0 1
a2

0 � � � 0

0 0 0
� � �

� � �
���

���
� � �

� � �
� � �

� � � 0
0 � � � 0 0 0 1

ap1−1
1
ap1

− 1
ap1

� � � − 1
ap1

− 1
ap1

− 1
ap1


p1×p1

�

Proof. Elementary calculation. �

Theorem 2.15. The inverse matrix of Um(n,Ap1) is given by the following
recursion equation:

(Um(n,Ap1))
−1

=
(
Hpn ((Um(n − 1,Ap1))

−1) QJ (n−1),Ãp1
(V pn

1 ) � � � QJ (n−1),Ãp1

(
V pn
pn−1

))
, n > 1�

Proof. We multiply both sides of (2.8) with the block diagonal matrix:
(Um(n − 1,Ap1))

−1 O
IJ (n−1)

� � �

O IJ (n−1)


whose block submatrices are in MJ (n−1) and we deduce that the
inverse matrix (Um(n,Ap1))

−1 results from the following block matrix
multiplication:

(Um(n,Ap1))
−1

=
(
Q

J (n−1),

{ 1,���,1︸︷︷︸
pn -times

}((epnpn )T ) QJ (n−1),Ãp1
(V pn

1 ) � � � QJ (n−1),Ãp1

(
V pn
pn−1

))

·


(Um(n − 1,Ap1))

−1 O
IJ (n−1)

� � �

O IJ (n−1)


=

(
Q

J (n−1),

{ 1,���,1︸︷︷︸
pn -times

}((epnpn )T ) · (Um(n − 1,Ap1))
−1 QJ (n−1),Ãp1

(V pn
1 ) � � � QJ (n−1),Ãp1

(
V pn
pn−1

))
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76 N. D. Atreas and P. Polychronidou

=
(
Hpn (IJ (n−1)) · (Um(n − 1,Ap1))

−1 QJ (n−1),Ãp1
(V pn

1 ) � � � QJ (n−1),Ãp1

(
V pn
pn−1

))
=

(
Hpn ((Um(n − 1,Ap1))

−1) QJ (n−1),Ãp1
(V pn

1 ) � � � QJ (n−1),Ãp1

(
V pn
pn−1

))
�

�

3. SOME PROPERTIES OF THE MATRIX
(
(Um(Ap1

))–1
)T

Let Vm be the Euclidean space consisting of all real-valued sequences
of length m, where m satisfies (2.3).

Proposition 3.1. Let el , l = 1, � � � ,m, be a row of ((Um(Ap1))
−1)T , such that

J (i) + 1 ≤ l ≤ J (i + 1), where i = 0, � � � ,N − 1. Take l = kJ (i) + r , where k =
1, � � � , pi+1 − 1, r = 1, � � � , J (i), then we have:

el ,n = ekJ (i)+r ,n =


1/a� np1m �, whenever n = (r − 1)A(i + 1) + kA(i + 2)

−1/a� np1m �, whenever n = rA(i + 1)

0, for all others n’s

,

where the sequences J (n) and A(i) have been defined in (2.4) and (2.5),
respectively.

Proof. Take l = kJ (i) + r , where k = 1, � � � , pi+1 − 1 and r = 1, � � � , J (i).
For i = 0, we have k = 1, � � � , p1 − 1 and r = 1, so by Theorem 2.15, we get
that:

el ,n = (
(Um(Ap1))

−1
)
n,l

= HA(2)

(
(Um(1,Ap1))

−1
)
n,k+1

=
{(

(Um(1,Ap1))
−1
)
z,k+1

, whenever n = zA(2)

0, whenever n �= zA(2)
, z = 1, � � � , p1

=




1/ak , whenever z = k

−1/ap1 , whenever z = p1

0, for all other z’s

, whenever n = zA(2)

0, whenever n �= zA(2)

,

z = 1, � � � , p1 (see Lemma 2.14)

=


1/ak , whenever n = kA(2)

−1/ap1 , whenever n = p1A(2)

0, for all other n’s

�
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Sparse Invertible Matrices 77

=


1/a� n

A(2) � = 1/a� np1m �, whenever n = kA(2)

−1/a� n
A(2) � = −1/a� np1m �, whenever n = A(1)

0, for all other n’s

�

For any i = 1, � � � ,N − 1, we use the recursive equation of Theorem 2.15
to deduce that:

el ,n = (
(Um(Ap1))

−1
)
n,l

= HA(i+2)

(
QJ (i),Ãp1

(V pi+1
k )

)
n,l−J (i)

=
{
(QJ (i),Ãp1

(V pi+1
k ))z,l−J (i), whenever n = zA(i + 2)

0, whenever n �= zA(i + 2)
,

z = 1, � � � , J (i + 1)�

Obviously, l − J (i) = (k − 1)J (i) + r , thus: ekJ (i)+r ,n

=




1/a⌈ rp1

J (i)

⌉(V pi+1
k )

Mod(z−1,pi+1)+1,
⌈

p1((k−1)J (i)+r )
J (i)

⌉, whenever r =
⌈

z
pi+1

⌉
0, whenever r �=

⌈
z

pi+1

⌉ ,

n = zA(i + 2)
0, n �= zA(i + 2)

,

for z = 1, � � � , J (i + 1)

=



1/a⌈ rp1
J (i)

⌉vpi+1

�,p1(k−1)+
⌈

rp1
J (i)

⌉, whenever z = (r − 1)pi+1 + �, � = 1, � � � , pi+1

0, whenever z �= (r − 1)pi+1 + �
,

n = zA(i + 2)
0, n �= zA(i + 2)

for z = 1, � � � , J (i + 1)

=






1/a⌈ rp1

J (i)

⌉, for � �= pi+1 and � = k

−1/a⌈ rp1
J (i)

⌉, for � = pi+1

0, otherwise

,

for z = (r − 1)pi+1 + �, � = 1, � � � , pi+1

0, for z �= (r − 1)pi+1 + �

,

n = zA(i + 2)
0 n �= zA(i + 2)

,
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78 N. D. Atreas and P. Polychronidou

for z = 1, � � � , J (i + 1)

=




1/a⌈ rp1

J (i)

⌉, whenever z = (r − 1)pi+1 + k

−1/a⌈ rp1
J (i)

⌉, whenever z = rpi+1

0, for other z’s

,

n = zA(i + 2)
0, n �= zA(i + 2)

, z = 1, � � � , J (i + 1)�

(3.1)

If z = (r − 1)pi+1 + k, z �= lpi+1, then we have:⌈
rp1
J (i)

⌉
=

⌈( z−k
pi+1

+ 1
)
p1

J (i)

⌉
=

⌈
zp1

J (i + 1)
+ p1

J (i)

(
1 − k

pi+1

)⌉
=

⌈
zp1

J (i + 1)

⌉
,

thus (3.1) becomes:

ekJ (i)+r ,n =




1/a⌈ zp1

J (i+1)

⌉, for z = (r − 1)pi+1 + k

−1/a⌈ zp1
J (i+1)

⌉, for z = rpi+1

0, for other z’s

, n = zA(i + 2)

0, n �= zA(i + 2)

,

z = 1, � � � , J (i + 1)�

Because n = zA(i + 2) for all nonzero terms, we substitute z inside the
brackets to get the result. �

Example 3.2. Let m = 12 and p1 = 3, then p2 = 2, p3 = 2, so:

(
(U12(A3))

−1)T

=



0 0 0 0 0 0 0 0 0 0 0 1/a3
0 0 0 1/a1 0 0 0 0 0 0 0 −1/a3
0 0 0 0 0 0 0 1/a2 0 0 0 −1/a3
0 1/a1 0 −1/a1 0 0 0 0 0 0 0 0
0 0 0 0 0 1/a2 0 −1/a2 0 0 0 0
0 0 0 0 0 0 0 0 0 1/a3 0 −1/a3

1/a1 −1/a1 0 0 0 0 0 0 0 0 0 0
0 0 1/a1 −1/a1 0 0 0 0 0 0 0 0
0 0 0 0 1/a2 −1/a2 0 0 0 0 0 0
0 0 0 0 0 0 1/a2 −1/a2 0 0 0 0
0 0 0 0 0 0 0 0 1/a3 −1/a3 0 0
0 0 0 0 0 0 0 0 0 0 1/a3 −1/a3



�
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Sparse Invertible Matrices 79

Remark 3.3. Proposition 3.1 clarifies the structure of the matrix
((Um(Ap1))

−1)T in the following sense:

(a) Each row ei of the matrix ((Um(Ap1))
−1)T (except for the first row) has

only two nonzero entries with alternative signs. The first row is always
of the form (0 � � � 0 1/ap1).

(b) ((Um(Ap1))
−1)T = V0

⋃N−1
i=1

⋃pi+1−1
k=1 Vi ,k , where Vi ,k = �ekJ (i)+r : r =

1, � � � , J (i)�, V0 = �e1�.
(c) For any i ≥ 1, there holds Vi ,k = ⋃p1−1

�=0 Qi ,k,�, where:

Qi ,k,� = �ekJ (i)+�(p2���pi )+� : � = 1, � � � , (p2 � � � pi)��

Moreover, every row of Qi ,k,� has always its two nonzero entries in the
form ±1/a�.

Corollary 3.4. Let t be a real valued sequence of length m. Take l = kJ (i) + r ,
where k = 1, � � � , pi+1 − 1, r = 1, � � � , J (i) (i = 0, � � � ,N − 1) and let el be the l
row of the matrix ((Um(Ap1))

−1)T , then:

〈t , el 〉 = 〈t , ekJ (i)+r 〉 = t�
a� �p1m �

− t�
a� �p1m �

�

where � = (r − 1)A(i + 1) + kA(i + 2), � = rA(i + 1).

Proof. Straightforward application of Proposition 3.1. �

4. A PREDICTION METHOD FOR NEARLY
PERIODIC TIME SERIES

In this section, we consider either periodic data, or nearly repeating
patterns that may be scaled differently, which we call nearly periodic
data. We present a new method for prediction of such data, by using the
structural properties of the matrix ((Um(Ap1))

−1)T . Clearly, the invertibility
of the matrix Um(Ap1) gives rise to a discrete transform, introduced below:

Lemma 4.1. Let ui , ei , (i = 1, � � � ,m), be rows of the matrices Um(Ap1),
((Um(Ap1))

−1)T respectively, then any element t ∈ Vm can be written as:

tn =
m∑
i=1

yiui ,n ,

where yi = 〈t , ei〉, (〈�, �〉 is the usual inner product of Vm).

Proof. Obvious. �
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80 N. D. Atreas and P. Polychronidou

Definition 4.2. Let yi = 〈t , ei〉 be defined in Lemma 4.1, we define the
following sets:

Wi ,k = �ykJ (i)+r : r = 1, � � � , J (i)�,

where i = 0, � � � ,N − 1, k = 1, � � � , pi+1 − 1, r = 1, � � � , J (i) and J (i) has
been defined in (2.4).

Example 4.3. Let m = 72, take p1 = 4, then p2 = 3, p3 = 3, p4 = 2, so
we have N = 4. The corresponding sets Wi ,k of Definition 4.2 are the
following:

For i = 0 we have k = 1, 2, 3 and J (0) = 1, so

W0,1 = �y2�, W0,2 = �y3�, W0,3 = �y4��

For i = 1 we have k = 1, 2 and J (1) = 4, so:

W1,1 = �yn : n = 5, � � � , 8�, W1,2 = �yn : n = 9, � � � , 12��

For i = 2 we have k = 1, 2 and J (2) = 12, so:

W2,1 = �yn : n = 13, � � � , 24�, W2,2 = �yn : n = 25, � � � , 36��

For i = 3 we have k = 1 and J (3) = 36, so:

W3,1 = �yn : n = 37, � � � , 72��

Now, we consider a positive integer m as defined in (2.3). Obviously, m can
be written as:

m = p1c , c = p2 � � � pN � (4.1)

We consider another integer m1 such that:

m1 = m + c = (p1 + 1)c � (4.2)

Definition 4.4. Let m,m1 be defined in (4.1) and (4.2) and let
Um(Ap1),Um1(Ap1+1) be the corresponding matrices with initial sets
�a1, � � � , ap1�, �a1, � � � , ap1 , ap1+1� respectively. Let T = �t1, � � � , tm�, we call c-
extension of T, the data T̃ = �t̃1, � � � , t̃m1� satisfying:

t̃i =


ti , whenever i = 1, � � � ,m
t̃i , whenever i = m + 1, � � � ,m + c − 1
ap1+1

ap1
tm , whenever i = m + c = m1

�
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Sparse Invertible Matrices 81

Proposition 4.5. Let T̃ = �t̃1, � � � , t̃m1� be the c-extension of a data T =
�t1, � � � , tm�. We define yi = 〈t , ei〉 and ỹj = 〈t̃ , ẽj 〉, where ei ∈ M1,m, ẽj ∈ M1,m1 are
rows of the matrices ((Um(Ap1))

−1)T , ((Um1(Ap1+1))
−1)T respectively. Let W̃i ,k =

�ỹkJ̃ (i)+r̃ : r̃ = 1, � � � , J̃ (i)�, where J̃ (i) = (p1 + 1)p2 · · · pi , then:
(i) For i = 0 we have: ỹ1 = y1, ỹ2 = y2, � � � , ỹp1 = yp1 , ỹp1+1 = 0.
(ii) For i = 1, � � � ,N − 1 we have:

W̃i ,k =
{
ykJ (i)+r̃ , whenever r̃ = 1, � � � , J (i)

ỹkJ̃ (i)+r̃ , whenever r̃ = J (i) + 1, � � � , J̃ (i)
�

Proof. (i) Because ẽ1 = (0, � � � , 0, 1
ap1+1

) we have ỹ1 = 〈t̃ , ẽ1〉 = t̃m1
ap1+1

=
tm
ap1

= y1 (see Definition 4.4). Now, for � = 2, � � � , p1 + 1, we use
Definition 4.4 and Corollary 3.4 for i = 0, k = 1, � � � , p1, r = 1 to get:

ỹ� = 〈t̃ , ẽ�〉 = 〈t̃ , ẽk+1〉 = t̃kA(2)
ak

− t̃m1

ap1+1
= tkA(2)

ak
− tm

ap1

=
{ 〈t , ek+1〉, whenever k = 1, � � � , p1 − 1
0, whenever k = p1

�

=
{ 〈t , e�〉, whenever � = 2, � � � , p1
0, whenever � = p1 + 1

�

=
{
y�, whenever � = 2, � � � , p1
0, whenever � = p1 + 1

�

(ii) Now, let i = 1, � � � ,N − 1, as m1 = (p1 + 1)p2 � � � pN , by
Corollary 3.4 we get:

ỹkJ̃ (i)+r̃ = 〈t̃ , ẽkJ̃ (i)+r̃ 〉 = t̃�
a⌈ �(p1+1)

m1

⌉ − t̃�
a⌈ �(p1+1)

m1

⌉
= t̃�

a⌈ �
p2 ���pN

⌉ − t̃�
a⌈ �

p2 ���pN

⌉ = t̃�
a⌈ �p1

m

⌉ − t̃�
a⌈ �p1

m

⌉ ,
where � = (r̃ − 1)A(i + 1) + kA(i + 2), � = r̃ A(i + 1), k = 1, � � � , pi+1 − 1,
r̃ = 1, � � � , J̃ (i). Because t̃n = tn for n = 1, � � � ,m it is clear that the equality
above becomes:

ỹkJ̃ (i)+r̃ = t̃�
a⌈ �p1

m

⌉ − t̃�
a⌈ �p1

m

⌉ = t�
a⌈ �p1

m

⌉ − t�
a⌈ �p1

m

⌉ = 〈t , ekJ (i)+r̃ 〉 = ykJ (i)+r̃ ,

whenever r̃ = 1, � � � , J (i). �
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82 N. D. Atreas and P. Polychronidou

Now we are able to present our prediction method:

1. We consider a nearly periodic data T = �tn : n = 1, � � � ,m� of
positive real numbers with fixed period P and frequency 	, such that:

m = 	P �

We write P = p2 � � � pN , where p2 ≥ · · · ≥ pN are primes some of them being
possibly equal, so m satisfies (4.1) with p1 = 	. Notice that we require that
	 must be greater than or equal to 5 for computational reasons.

2. We compute the matrix Um(Ap1) by using an initial set Ap1 =
�a1, � � � , ap1� whose elements are defined in the following equality:

ai =
iP∑

k=(i−1)P+1

tk �

3. We compute the Um(Ap1)-transform elements:

yi = 〈t , ei〉, i = 1, � � � ,m

as defined in Lemma 4.1.

4. Let m1 = m + P , where P has been defined in step 1. It is
clear that m1 satisfies (4.2). We use Proposition 4.5 to define the
Um1(Ap1+1)-transform Ỹ = �ỹ1, � � � , ỹm1� of a P -periodic extension data T̃ =
�t1, � � � , tm , t̃m+1, � � � , t̃m1−1, tmap1+1/ap1� of T . Because:

Ỹ = y1
N−1⋃
i=1

pi+1−1⋃
k=1

W̃i ,k ,

where the sets W̃i ,k have been defined in Definition 4.2, Proposition 4.5
states that:

(i) For i = 0: ỹ1 = y1, ỹ2 = y2, � � � , ỹp1 = yp1 , ỹp1+1 = 0.
(ii) For any i = 1, � � � ,N − 1:

W̃i ,k =
{
ykJ (i)+r̃ , whenever r̃ = 1, � � � , J (i)

ỹkJ̃ (i)+r̃ , whenever r̃ = J (i) + 1, � � � , J̃ (i)
,

where J̃ (i) = (p1 + 1)p2 � � � pi . Obviously, we need to fulfill the
unknown elements ỹkJ̃ (i)+r̃ , r̃ = J (i) + 1, � � � , J̃ (i). Because T is nearly
periodic, we can assume that the sets:

Yi ,k,m = �ykJ (i)+l (̃J (i)−J (i))+m : l = 0, � � � , p1 − 1�,
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Sparse Invertible Matrices 83

where k = 1, � � � , pi+1 − 1,m = 1, � � � , (̃J (i) − J (i)) (see Remark 3.3(c))
correspond with a stationary processes, because:

ykJ (i)+l (̃J (i)−J (i))+m = tPqk,l ,m
al

− tPqp1,l ,m
al

,

where qk,l ,m , qp1,l ,m are integers that can be explicitly calculated in
Corollary 3.4, so the unknown elements ỹkJ̃ (i)+r̃ can be efficiently
approximated by the mean:

ỹkJ̃ (i)+r̃ = 1
p1

p1−1∑
l=0

ykJ (i)+l (̃J (i)−J (i))+(r̃−J (i)), r̃ = J (i) + 1, � � � , J̃ (i)�

5. We assume that the set Ap1 = �a1, � � � , ap1�, as defined in step 2, can
be considered either as a stationary process or as a nonstationary process
exhibiting some sort of homogeneity (i.e., there exists a positive integer
k0 ≤ p1/4 such that ai − ai+k0 becomes stationary for any i = 1, � � � , p1). In
any case, we use a properly selected autoregressive model to predict a new
element ap1+1.

Example: In many cases, such a model could be of the form

ai − � = 
1(ai−1 − �) + · · · + 
p1−2(ai−p1+2 − �) + �i ,

where � is the mean of ai , �i is a white noise process, and the coefficients

1, � � � ,
p1−2 are calculated via an equation 
k = �−1 · k , where � is the
autocorrelation matrix and k are the autocorrelations (see [4]). An
estimator for ap1+1 could be:

ap1+1 = � + 
1(ap1 − �) + · · · + 
p1−2(a2 − �)�

6. We compute the matrix Um1(Ap1+1), where the first p1 elements of
the set Ap1+1 = �a1, � � � , ap1 , ap1+1� have been calculated in step 2 and the
element ap1+1 is computed in step 5.

7. We compute the P -extension data of T :

t̃n =
m1∑
i=1

ỹi ũi ,n

=
{
ap1+1ỹ1, whenever Mod(n − m, pN ) = 0

ap1+1

(
ỹ1 + ỹ̃

J (N−1)Mod(n−m,pN )+
⌈

n−m
pN

⌉), whenever Mod(n − m, pN ) �= 0 ,

where n = m + 1, � � � ,m + P and this is a nonlinear estimator for
predicting T one period ahead.
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84 N. D. Atreas and P. Polychronidou

Example 4.6. We consider the function f (x) = e x(cos(2�10x) +
0�5cos(2�15x)), x ∈ [0, 1] and we take T = �f (k/500) : k = 0, � � � , 499�.
We observe that T is nearly periodic with fixed period equal to 100.
We apply the above prediction method for m = 500, p1 = 5 and we get
Figure 1.

FIGURE 1 Plot of the function f (x) (see clear-sighted line) together with the prediction of f (x)
period ahead (indistinguishable line).

5. APPENDICES

Appendix I

Let epni be rows of the identity matrix Ipn and V pn
j , j = 1, � � � , pn − 1 are

column matrices defined in (2.7), then:
Dpn (Um(n − 1,Ap1))

QJ (n−1),Ap1

(
epn1

)
���

QJ (n−1),Ap1

(
epnpn−1

)


·
(
Q

J (n−1),

{
1,���,1︸︷︷︸

pn -times

}((epnpn )T ) QJ (n−1),Ãp1
(V pn

1 ) � � � QJ (n−1),Ãp1

(
V pn
pn−1

))

=


Um(n − 1,Ap1) O

IJ (n−1)

� � �

O IJ (n−1)

 �
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Sparse Invertible Matrices 85

Proof. It suffices to prove that:

(i) Dpn (Um(n − 1,Ap1))Q
J (n−1),

{
1,���,1︸︷︷︸

pn -times

}((epnpn )T ) = U m(n − 1,Ap1).

(ii) Dpn (Um(n − 1,Ap1))QJ (n−1),Ãp1
(V pn

j ) = O, j = 1, � � � , pn − 1, where O is
the zero matrix in MJ (n−1).

(iii) QJ (n−1),Ap1
(epnj )Q

J (n−1),

{
1,���,1︸︷︷︸

pn -times

}((epnpn )T ) = O, j = 1, � � � , pn − 1, where O

is the zero matrix in MJ (n−1).
(iv) QJ (n−1),Ap1

(epnj )QJ (n−1),Ãp1
(V pn

l ) = �j ,l IJ (n−1), j , l = 1, � � � , pn − 1 and �j ,l is
the Kroneckers’s delta.

Indeed we have:

(i) We use relations (2.1) and (2.2) to perform the following block
matrix multiplication:

Dpn (Um(n − 1,Ap1))Q
J (n−1),

{
1,���,1︸︷︷︸

pn -times

}((epnpn )T )
=

[
Dpn

(
(Um(n − 1,Ap1))i ,j

)(
epnpn

)T ]J (n−1)

i ,j=1
= Um(n − 1,Ap1)�

(ii) We observe that all column matrices V pn
j have zero mean, so the block

matrix multiplication leads to:

Dpn (Um(n − 1,Ap1))QJ (n−1,Ãp1 )
(V pn

j )

=
[
Dpn

(
(Um(n − 1,Ap1))k,l

) · 1
aj

·
pn∑
r=1

vpn
rj

]J (n−1)

k,l=1

= 0�

(iii) Obvious consequence of the fact that epnj (epnpn )
T = 0, j = 1, � � � , pn − 1.

(iv) QJ (n−1),Ap1
(epnj )QJ (n−1),Ãp1

(V pn
l ) =

( a1·epnj · 1
a1

·V pn
l O

���
O ap1e

pn
j · 1

ap1
·V pn

l

)
, j , l =

1, � � � , pn − 1. Because epnj V pn
l = ∑pn

k=1 �k,j v
pn
k,l = vpn

j ,l = �j ,l we get the
result. �

Appendix II

Let �n be the permutation defined in Proposition 2.13, then:

sgn �n = pn − 1
2

J (n − 1)
(
1 + J (n − 1) + pn − 1

2
(J (n − 1) − 1)

)
�
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86 N. D. Atreas and P. Polychronidou

TABLE 1 Inversion vector elements corresponding to the permutation �n(i) of the i -row of the
matrix Um(n,Ap1 ) of Proposition 2.13

Inversion vector elements
i �n(i) IV�n (i)

1, � � � , J (n − 1) ipn i(pn − 1)
J (n − 1) + 1, � � � , 2J (n − 1) 1 + Mod(i − 1, J (n − 1))pn Mod(i − 1, J (n − 1))(pn − 2)
� � � � � � � � �

(pn − 2)J (n − 1) pn − 2 + Mod(i − 1, J (n − 1))pn Mod(i − 1, J (n − 1))
+1, � � � , (pn − 1)J (n − 1)

(pn − 1)J (n − 1) + 1, � � � , J (n) pn − 1 + Mod(i − 1, J (n − 1))pn 0 for all i’s

Proof. sgn �n = (−1)qn , where qn equals the number of all inversions in
the permutation �n . A pair of elements (�n(i), �n(j)) is called an inversion,
if i < j and �n(i) > �n(j). The number of elements less than i to the right
of i in �n gives the ith element of the inversion vector IV�n corresponding
with �n and qn equals the sum of all inversion vector elements.

The last column of Table 1 gives the elements of the inversion vector:
Now we have: sgn �n = (−1)qn , where

qn =
J (n)∑
i=1

IV�n (i)

=
J (n−1)∑
i=1

i(pn − 1) +
2J (n−1)∑

i=J (n−1)+1

Mod(i − 1, J (n − 1))(pn − 2) + � � �

= (pn − 1)
J (n−1)∑
i=1

i + (pn − 2)
J (n−1)−1∑

i=1

i + · · · +
J (n−1)−1∑

i=1

i

= (pn − 1)
J (n − 1)(1 + J (n − 1))

2

+ J (n − 1)(J (n − 1) − 1)
2

(pn − 2)(pn − 1)
2

and elementary calculations yield the result. �
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