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Abstract. The local behavior of regular wavelet sampling expansions is quantified. The
term “regular” refers to the decay properties of scaling functions ϕ of a given multiresolu-
tion analysis. The regularity of the sampling function corresponding to ϕ is proved. This
regularity is used to determine small intervals of sampling points so that the sampled values
of a signal f at this finite set of points gives rise to a sampling expansion approximating
f to within a predetermined margin of error.

1. Introduction

1.1. Background. In 1990, two of the authors began discussing local sampling for Gabor
expansions in the spirit of local sampling results by Helms and Thomas [HT62] and Jager-
man [Jag66] from the 1960s. These discussions and results were formulated in terms of the
Classical Sampling Theorem, see Theorem 1.1.

Since then there has been a plethora of activity in the sampling and wavelet communities.
For example, there are biennial Sampling Theory and Applications conferences, as well as
edited volumes on sampling, e.g., [BF01], [Mar01], [BZ03]. Also in recent years classical
ideas from interpolation theory, e.g., [Sch46], [Wal94], have coalesced with the concept of
multiresolution analysis from wavelet theory in a natural structurally appealling way, e.g.,
see Theorem 2.6 which is formulated in terms of the mixed norm space C1,∞(Zd,Td) defined
in Definition 2.2. As such, our original idea from 1990 has focused on integrating these two
directions.

The main result of this paper, Theorem 4.2, is a local sampling theorem in the setting of
a subspace of C1,∞(Z,T), in which natural regularity conditions are exploited.

Before describing the local sampling problem, we shall state the Classical Sampling The-

orem (Theorem 1.1). In order to do this we formally define the Fourier transform f̂ of a
complex valued function f defined on the real line R to be

∀γ ∈ R̂, f̂(γ) =

∫
f(t)e−2πitγdt,

where integration is over R and R̂ designates R considered as a frequency domain. We shall
be dealing with the usual Lp(R) spaces as defined, for example, in [Ben97], [Kat68]; and
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PWΩ in Theorem 1.1 is the Paley-Wiener space

PWΩ = {f ∈ L2(R) : supp f̂ ⊆ [−Ω,Ω]},

where supp f̂ denotes the support of f̂ . τy is the translation operator defined as (τyf)(x) =
f(x− y).

Theorem 1.1. Let T,Ω > 0 satisfy the condition that 0 < 2TΩ ≤ 1, and let s ∈ PW1/(2T )

satisfy the condition that ŝ ≡ S = 1 on [−Ω,Ω] and S ∈ L∞(R̂). Then

(1.1) ∀f ∈ PWΩ, f = T
∞∑

n=−∞

f(nT )τnT s,

where the convergence in (1.1) is in L2(R) norm and uniformly in R.

See [Ben97] (Theorem 3.10.10) and [BF01] (Chapter 1) for a proof and history, respec-
tively.

1.2. Problem and outline. We shall examine the local behavior of the sampling series
(1.1). In other words we shall try to solve the following problem : given m ∈ N, an interval
I, and an ε > 0, find the least possible length of the interval [Nb2

−m, Nc2
−m] containing I,

such that

(1.2) sup
x∈I

∣∣∣∣∣∣
f(x)−

Nc∑

n=Nb

f(n/2m)s(2mx− n)

∣∣∣∣∣∣
< ε,

where Nb, Nc ∈ Z.

Our setting is restricted to sampling functions s derived in a natural way from a given
multiresolution analysis and scaling function ϕ, see Section 2. In Theorem 4.2 of Section
4 we give an estimate of the error formulated in (1.2) for sufficiently regular sampling
functions s. Refinements of this error for a special case is the content of Corollary 4.3.
Theorem 4.4 provides the error estimate (1.2) using the method of Theorem 4.2, but only
assuming regularity of a scaling function ϕ of a given multiresolution analysis. The relation
between the regularity of ϕ and s is established in Theorem 3.6 of Section 3. Finally, in
Section 5, we present a local sampling theorem based on the Gabor transform.

In a sense the error estimated in Section 4 is a truncation error. This error has been
extensively studied, especially by Jagerman in [Jag66], for the case of bandlimited functions
f when Nc = −Nb = N . In [AK00] two of us extended Jagerman’s result to the setting of
translation invariant sampling spaces. It is natural to examine further the local error for
non-symmetric intervals as in (1.2).

For perspective, we note the close relation of this material with the uncertainty principle,
see [BHW95] and [BF94]. In fact, some forms of the uncertainty principle can be viewed in
terms of an interplay between localization on a time space and localization on a correspond-
ing frequency space. In a work such as this, dealing with MRAs, frequency localization can
be considered as a projection on a wavelet space, cf., the Bell Labs inequality for wavelet
spaces [KP99]. Moreover, on certain sampling spaces we can easily examine local effects
of the uncertainty principle, e.g., the Gibbs phenomenon on wavelet and sampling spaces
[AK99], [Kar98]. In this context and as far as we know, it seems that there is an absence
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of systematic work dealing with the effects of the uncertainty principle on sampling spaces;
we hope to address this issue on another occasion.

1.3. Notation. We shall use the standard notation from harmonic analysis as found in
[Kat68]. We also incorporate the following notation.

Z is the additive group of intgers and T
d = R

d/Zd is the d-dimensional torus. A(Td) is
the Banach algebra of absolutely convergent Fourier series

Ψ(γ) =
∑

m∈Zd

ame
−2πi〈m,γ〉

with norm ‖Ψ‖A(Td) =
∑

m∈Zd |am|. If Ψ ∈ A(Td) then the Fourier coefficients am are of
the form

Ψ∨[m] =

∫

Td

Ψ(γ)e2πi〈m,γ〉dγ.

C(Td) is the space of continuous functions on T d, i.e., the 1-periodic functions on R
d.

Clearly, A(Td) ⊆ C(Td). ONB denotes orthonormal basis. Finally, am = 0(Am), |m| → ∞,
where Am > 0, is the classical convention to indicate that

∃C > 0 such that ∀m ∈ Z, |am| ≤ CAm.

2. The sampling function of an MRA

The following concept is fundamental in wavelet theory, e.g., see [Dau92], [Mal98], [Mey90].

Definition 2.1. a. A dyadic multiresolution analysis (MRA) of L2(Rd) is a sequence
{Vm : m ∈ Z} of closed linear subspaces of L2(Rd) with the following properties:

i. (Inclusion) ∀m ∈ Z, Vm ⊆ Vm+1,
ii. (Separation)

⋂
m Vm = {0},

iii. (Density)
⋃
m Vm = L2(Rd),

iv. (Scaling) f(x) ∈ Vm ⇐⇒ f(2−mx) ∈ V0,
v. (Orthonormality) ∃ϕ ∈ V0, a scaling function, such that

{τnϕ : n ∈ Z
d} is an ONB forV0.

b. We shall use the standard notation ϕm,n(x) = 2md/2ϕ(2mx− n) for m ∈ Z, n ∈ Z
d.

In this section we shall give conditions on the scaling function ϕ of an MRA so that a
sampling theorem similar to Theorem 1.1 holds. The main result is Theorem 2.6, and the
sampling formula there asserts that any f ∈ Vm can be written as

(2.1) f =
∑

n∈Zd

f(n/2m)s(2m.− n),

where the convergence is in the L2(Rd) sense and where s is the unique sampling function
of V0, i.e., it satisfies s(n) = δ0,n, n ∈ Z

d, see also [Wal94], [Zay93]. Theorem 2.6 is best
formulated in the setting of the following function space.
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Definition 2.2. a. Let C1,∞(Zd,Td) be the subspace of bounded continuous functions
f ∈ Cb(Rd) with the property that

‖f‖C1,∞(Zd,Td) = sup
x∈Td

∑

n∈Zd

|f(x+ n)| <∞.

If f ∈ C1,∞(Zd,Td), then f ∈ L1(Rd) and f is uniformly continuous on R
d.

b. Spaces of the type C1,∞(Zd,Td) are mixed norm spaces and they have a long history in
analysis. The norm for f ∈ C1,∞(Zd,Td) is first global (over Z

d), then local (over T
d); and

it is defined in the tradition of the Benedek-Panzone spaces [BP61]. Even earlier, Wiener,
e.g., [Wie33], defined what we call Wiener amalgam spaces as a natural setting in which
to prove Tauberian theorems, see [FS85] for a survey and [BBE89] for applications. The
mixed norm for Wiener amalgam spaces is first local, then global.

More recently than [BP61] but in order to deal with refinement equations and the con-
struction of pre-wavelets, Micchelli [Mic91] introduced the analogue of C1,∞(Zd,Td) for
measurable functions, cf., [JM91]. Also a generalization of C1,∞(Zd,Td) was introduced in
[BZ97] to prove a class of Poisson summation formulas (PSFs), one of which is stated below
in Theorem 2.5. Finally, Fischer [Fis95] used precisely C1,∞(Zd,Td) in her study of MRA
and approximation theory.

Example 2.3. a. The space Cc(R
d) of compactly supported functions in R

d is contained
in C1,∞(Zd,Td).

b. Let f be continuous on R
d and assume there is ε > 0 such that f(x) = 0(|x|−(d+ε)), |x| →

∞. Then f ∈ C1,∞(Zd,Td).

c. Lp,q(Zd,Td) is the space of measurable functions f on R
d with the property that

‖f‖Lp,q(Zd,Td) =



∫

Td


∑

n∈Zd

|f(x+ n)|p


q/p

dx




1/q

,

where p, q ∈ [1,∞] and with the usual modification in the case p or q is ∞. Similarly we
can define Cp,q(Zd,Td).

d. Clearly L1,∞(Zd,Td) ⊆ L1,q(Zd,Td) ⊆ L1,1(Zd,Td) = L1(Rd). Also, C1,∞(Zd,Td) ⊆
C2,∞(Zd,Td) ⊆ L2(Rd).

The following theorem is a consequence of definitions and the inequality,

(2.2)

∣∣∣∣∣∣

∑

n∈Zd

〈f, τnϕ〉τnϕ(x)

∣∣∣∣∣∣
≤
(
‖ϕ‖L∞(Rd)‖ϕ‖C1,∞(Zd,Td)

) 1

2 ‖f‖L2(Rd),

which itself is a consequence of Hölder’s inequality in the case {τnϕ} is an ONB for its
closed linear span.

Theorem 2.4. Let {Vm} be an MRA of L2(Rd) with scaling function ϕ ∈ C1,∞(Zd,Td). (In
particular, ϕ is a uniformly continuous element of L1(Rd)

⋂
C2,∞(Zd,Td) ⊆ L1(Rd)

⋂
L2(Rd).)

a. ∀m ∈ Z, Vm ⊆ Cb(R
d)
⋂
L2(Rd).
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b. ∀m ∈ Z and ∀f ∈ Vm,

f =
∑

n∈Zd

〈f, ϕm,n〉ϕm,n

in L2(Rd) and uniformly on R
d, cf., the conclusion of Theorem 1.1.

c. Each Vm is a reproducing kernel Hilbert space. In fact, for each x ∈ R
d, the point-

evaluation functional, Vm → C, defined by f 7→ f(x), not only satisfies the norm inequality
|f(x)| ≤ C‖f‖L2(Rd) but C is independent of x, e.g., (2.2).

d. For each m, the reproducing kernel Km associated with part c is

Km(x, y) =
∑

n∈Zd

ϕm,n(x)φm,n(y),

and, hence,

∀f ∈ Vm, f(y) = 〈f(x),Km(x, y)〉.

The validity of a uniform sampling expansion is often equivalent to a corresponding
Poisson summation formula (PSF), e.g., [Ben97]. The appropriate PSF for C1,∞(Z,T) is
found in [BZ97] (Theorem 5).

Theorem 2.5. Let {kλ : λ = 1, 2, ...} ⊆ A(T) be an approximate identity on T. For any
f ∈ C1,∞(Z,T), ∑

n∈Z

f(x+ n) = lim
λ→∞

∑

n∈Z

k∨λ [n]f̂(n)e
2πinx,

with convergence being uniform convergence on compact sets.

The following result is well known, not too difficult to prove, and central to our interest.
The construction we know goes back to Schoenberg [Sch73] from 1946. Walter [Wal94]
used the methods in the context of wavelets and sampling, cf., [Fis95]. Before stating the
theorem, note that

(2.3) ϕ ∈ C1,∞(Zd,Td) implies Φ(γ) =
∑

m∈Zd

ϕ(m)e−2πi〈m,γ〉 ∈ A(Td).

We shall make use of Wiener’s lemma on the inversion of absolutely convergent Fourier
series, see [Ben97] (page 201): if Ψ ∈ A(Td) is non-vanishing on T

d, then 1/Ψ ∈ A(Td). For
the case of Φ defined in (2.3) by ϕ ∈ C1,∞(Zd,Td) we write

(2.4)
1

Φ(γ)
≡
∑

k∈Zd

cke
−2πi〈k,γ〉.

Theorem 2.6. Let {Vm} be an MRA of L2(Rd) with scaling function ϕ ∈ C1,∞(Zd,Td),
and assume the corresponding Fourier series Φ ∈ A(Td) is non-vanishing on T

d.

a. There is a unique function s ∈ V0 with the property that

∀m ∈ Z and ∀f ∈ Vm ⊆ Cb(R
d) ∩ L2(Rd), f =

1

2dm/2

∑

n∈Zd

f
( n

2m

)
sm,n
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in L2(Rd) and absolutely and, therefore, uniformly on R
d. The function s is the sampling

function of {Vm}.
b. Further, s ∈ C1,∞(Zd,Td),

s(x) =
∑

k∈Zd

ckϕ(x− k) and ŝ(γ) =
ϕ̂(γ)

Φ(γ)
,

and

(2.5) ∀k ∈ Z
d, s(k) =

{
1, if k = 0,
0, if k 6= 0.

c. {τns : n ∈ Z
d} is an exact frame (Riesz basis) for V0. In fact, from part b, we have

inf
γ∈Td

1

|Φ(γ)|2 ≤
∑

n∈Zd

|ŝ(γ + n)|2 ≤ sup
γ∈Td

1

|Φ(γ)|2 .

Example 2.7. Let ϕ ∈ C1,∞(Zd,Td) and let {τnϕ} be an ONB for its closed linear span
V0.

a. If f ∈ V0 and the sampled values {f(n)} of f are known, then it is easy to compute
{〈f, τnϕ〉} by the following method which is also used in Theorem 2.6. We know that

f(n) =
∑

k

〈f, τkϕ〉ϕ(n− k),

and, hence,
∑

n∈Zd

f(n)e−2πi〈n,γ〉 = Φ(γ)
∑

k∈Zd

〈f, τkϕ〉e−2πi〈k,γ〉.

If Φ ∈ A(Td) never vanishes, then we divide by Φ and obtain

〈f, τkϕ〉 =
∑

n∈Zd

f(n)ck−n.

Thus, as noted in [Dau92] (page 156), knowledge of sampled values f(n) accompanied
by MRA algorithms lead to the computation of {〈f, ψm,n〉}, where ψ is an MRA wavelet
associated with ϕ.

b. In determining finer properties of the sampling function s of {Vm}, it becomes relevant
to estimate the coefficients {ck} in (2.4), assuming Φ ∈ A(Td) is non-vanishing. In general,
this is difficult to do without further conditions, see Theorem 3.5. On the other hand, in
an elementary calculation, Wiener showed that if 2|ϕ(0)| > ‖Φ‖A(T), then 1/Φ ∈ A(T), e.g.,
[Ben97] (Section 3.4). With this assumption, one can make some quantitative observations
concerning the ck.

c. This material, and subsequent results for Lipschitz spaces contained in C1,∞(Z,T),
require functions ϕ ∈ C1,∞(Z,T) for which |Φ| > 0 on T and {τnϕ} is an ONB, or even
a Riesz basis, of its closed span. Such examples do exist, e.g., Meyer’s wavelets [Mey90],
[Dau92], [AK00]; but more systematic constructions are required, cf., [BSW93], [HWW96].
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3. Estimating the regularity of the sampling function

Recall from Theorem 2.6 that, with natural hypotheses, if a scaling function ϕ is in
C1,∞(Zd,Td), then its corresponding sampling function s ∈ C1,∞(Zd,Td). Further, we
know that if f is a continuous function on R

d satisfying the regularity condition f(x) =

0(|x|−(d+ε)), |x| → ∞, then f ∈ C1,∞(Zd,Td). In this section we shall prove (Theorem 3.4)
that, with natural hypotheses, if a scaling function ϕ ∈ C1,∞(Zd,Td) satisfies the regular-

ity condition ϕ(x) = 0(|x|−(η+a)), |x| → ∞, for an integer η ≥ 2 and α ∈ [0, 1), then its
sampling function satisfies the same condition.

Definition 3.1. Let α ≥ 0. A function F : T → C satisfies a Lipschitz condition of order
α if

∃C > 0 such that ∀γ, λ ∈ T, |F (γ)− F (λ)| ≤ C|γ − λ|α.
In this case we write F ∈ Lipα.

We shall need the following well known properties of Lipα, whose proofs are found in
[Lor44], [Kat68] (page 25), and [Bar64], (pages 17, 38, and 71).

Proposition 3.2. a. If F ∈ L1(T) and 0 < α < 1, then

(3.1) F∨[m] = 0(|m|−(1+α)), |m| → ∞, implies F ∈ Lipα.

b. If F ∈ C(T) and the modulus of continuity ω(F, δ) is defined as
ω(F, δ) = sup

γ,0≤λ≤δ
|F (γ + λ)− F (γ)|,

then

(3.2) F ∈ Lip β if and only if ω(F, δ) = 0(δβ), δ → 0,

and

(3.3) ∀m ∈ Z\{0}, |F∨[m]| ≤ 1

2
ω

(
F,

1

2|m|

)
.

Lemma 3.3. Let {um : m ∈ Z}, {vm : m ∈ Z}, {wm : m ∈ Z} ⊆ C and let µ, ν > 0 satisfy
the following conditions: {wm} ∈ lp(Z), p ∈ (1,∞],

(3.4) |um| = 0(|m|−µ) and |vm| = 0(|m|−ν |wm|), |m| → ∞,

(3.5) ν ≥ µ,

and

(3.6) µ >
p− 1

p
=

1

p′
, p ∈ (1,∞), resp., µ > 1, p =∞.

Then

(3.7)
∑

j∈Z

ujvm−j = 0(|m|−µ), |m| → ∞.
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Proof. By (3.4) assume there are Cµ, Cν > 0 such that

|um| ≤ Cµ|m|−µ and |vm| ≤ Cν |m|−ν |wm|.

Pick m 6= 0 and let λm be the non-negative integer for which λm ≤ |m|/2 < λm + 1. Then

(3.8)

∣∣∣∣∣∣

∑

j∈Z

ujvm−j

∣∣∣∣∣∣
≤ Cν

∑

|j|≤λm

|uj ||wm−j |
1

|m− j|ν + Cµ
∑

|j|>λm

1

|j|µ |vm−j |,

where |ωj | ≤ C for all j ∈ Z. If |j| ≤ λm, then |m− j| ≥ |m| − |j| ≥ |m| − λm ≥ |m|/2; and
if |j| > λm then |j|−µ ≤ (λm + 1)−µ ≤ (|m|/2)−µ. Thus the right side of (3.8) is bounded
by

Cν

(
2

|m|

)ν ∑

|j|≤λm

|uj ||wm−j |+ CCµ

(
2

|m|

)µ ∑

|j|>λm

|vm−j |

(3.9) ≤
(

2

|m|

)µ [
Cν‖{uj}‖lp′ (Z)‖{wj}‖lp(Z) + CCµ‖{vj}‖l1(Z)

]
.

Note that {vj} ∈ l1(Z) by (3.5) and since {wj} ∈ lp(Z); and {uj} ∈ lp
′

(Z) by (3.6). (3.7)
follows by combining (3.8) and (3.9).

Lemma 3.4. Let η ≥ 2 be an integer and let α ∈ [0, 1). Define Φ(γ) =
∑

m∈Z
ϕ(m)e−2πimγ ,

where {ϕ(m) : m ∈ Z} ⊆ C satisfies the condition

(3.10) ϕ(m) = 0(|m|−(η+α)), |m| → ∞.

Assume |Φ| > 0 on T. Then Φ, 1/Φj ∈ A(T) for all j ≥ 0; and, if

1/Φ2(γ) =
∑

m∈Z

d(m)e−2πimγ ,

then

dm = 0(|m|−(η+α)+1), |m| → ∞.

Proof. i. Let 0 < α < 1. By Wiener’s lemma on the inversion on non-vanishing absolutely
convergent Fourier series, we have 1/Φ ∈ A(T); and since A(T) is a Banach algebra under
pointwise multiplication, we have 1/Φj ∈ A(T) for all j ≥ 0. Also, for fixed 0 ≤ k ≤ η − 1

(3.11) Φ(k)(γ) =
∑

m∈Zd

b(k)m e−2πimγ ∈ A(T),

where b
(k)
m = (−2πim)kϕ(m), since

(3.12) ∀m 6= 0, |b(k)m | ≤ K|m|−(η+α)+k ≤ K|m|−1−α.

In fact, (3.11) is a consequence of (3.12) and the fact that the derived series converges
uniformly, cf., [Ben97] (page 181).
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ii. With 0 < α < 1, Lorentz’ result (Proposition 3.2a) coupled with (3.12) allow us to

conclude that Φ(k) ∈ Lipα for 0 ≤ k ≤ η − 1. Also note that products of Lipα functions
on T are Lipα, and that

∀j ≥ 1, (Φ−j)(1) = −jΦ−(j+1)Φ(1) ∈ A(T).
Further, the product of F ∈ Lipα and Φ−j is also in Lipα on T. This is a consequence of
the fact that α ≤ 1 and that (Φ−j)(1) ∈ L∞(T), which allows us to find a uniform constant
K in the following calculation:

|(FΦ−j)(γ)− (FΦ−j)(λ)| ≤ C|γ − λ|α‖Φ−j‖L∞(T) +K|γ − λ|‖F‖L∞(T) ≤ C1|γ − λ|α.

iii. We now write dm, m 6= 0, as

dm =

∫ 1

0
Φ(γ)−2e2πimγdγ =

2

2πim

∫ 1

0
Φ(γ)−3Φ(1)(γ)e2πimγdγ,

=
−2

(2πim)2

∫ 1

0

[
−3Φ(γ)−4Φ(1)(γ)2 +Φ(γ)−3Φ(2)(γ)

]
e2πimγdγ

(3.13) =
−2(−1)η−1
(2πim)η−1

∫ 1

0
Ψ(γ)e2πimγdγ,

where Ψ ∈ Lipα by the discussion in part ii. Since Ψ ∈ Lipα, we invoke Proposition 3.2,
viz., (3.2) and (3.3), in conjunction with (3.13) to assert that

|dm| ≤ C|m|−(η−1)ω(Ψ, (2|m|)−α) = 0(|m|−(η−1)−α), |m| → ∞.
This is the desired result for η ≥ 2 and 0 < α < 1.

iv. Now let α = 0. In this case we have

dm =
C

(2πim)η−2

∫ 1

0
Ψ1(γ)e

2πimγdγ,

where Ψ1 ∈ A(T) by the discussion in part ii. We observe that Φ(η−1) is in L2(T), noting

that |b(η−1)m | = 0(|m|−1) as |m| → ∞. Thus, it is easy to see that the derivative of Ψ1 exists
and is in L2(T), and that

dm =
C

(2πim)η−1

∫ 1

0
Ψ
(1)
1 (γ)e2πimγdγ.

Thus, |dm| = 0(|m|−(η−1)) as |m| → ∞.

Theorem 3.5. Let η ≥ 2 be an integer and let α ∈ [0, 1). Define Φ(γ) =
∑

m∈Zd ϕ(m)e−2πimγ ,

where {ϕ(m) : m ∈ Z
d} ⊆ C satisfies condition (3.10). Assume |Φ| > 0 on T and set

∀m ∈ Z, cm =

∫ 1

0

1

Φ(γ)
e2πimγdγ

as in (2.4). Then

(3.14) cm = 0(|m|−(η+α)), |m| → ∞.
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Proof. i. First we consider the case 0 < α < 1. Clearly Φ ∈ A(T) by (3.10), and hence
1/Φ ∈ A(T) since |Φ| > 0 on T. Using the notation from Lemma 3.4 we have

Φ(1)(γ) =
∑

m∈Z

b(1)m e−2πimγ ∈ A(T),

where

|b(1)m | = | − 2πimϕ(m)| ≤ K|m|−(η+α)+1, m 6= 0.

For m 6= 0 we compute

cm =
1

2πim

∫ 1

0
Φ(γ)−2Φ(1)(γ)e2πimγdγ.

vThus, by Parseval’s theorem, e.g., [Ben97] (Theorem 3.4.12), we have

(3.15) cm =
1

2πim

∑

j∈Z

b
(1)
j dm−j ,

where {dm} is defined in Lemma 3.4, and where

(3.16) |b(1)j | = 0(|j|−(η+α)+1) and |dj | = 0(|j|−(η+α)+1), |j| → ∞,

by Lemma 3.4 and the aforementioned bound on {b(1)j }. We now apply Lemma 3.3 directly

to the data in (3.16): µ = η + α− 1, ν = η + α− 1, p =∞, wj = 1, uj = b
(1)
j , and vj = dj

for each j. Then µ = ν ≥ 1 + a > 1 and so (by Lemma 3.3)
∑

j∈Z

b
(1)
j dm−j = 0(|m|−(η+α)+1), |m| → ∞.

Combining this estimate with (3.15) we obtain the desired result.

ii. Now let η ≥ 2 and α = 0. The case η > 2 is an immediate consequence of part i by
setting α = 0, so only the case η = 2 and α = 0 remains to be checked. For this case we
follow the proof in part i and obtain (3.15), i.e.,

cm =
1

2πim

∑

j∈Z

b
(1)
j dm−j ,

where b
(1)
j = 0(|j|−1), |j| → ∞, and

|dj | =
∣∣∣∣
∫ 1

0
Φ(γ)−2e−2πijγdγ

∣∣∣∣ =
1

π|j|

∣∣∣∣
∫ 1

0
Φ(γ)−3Φ(1)(γ)e−2πijγdγ

∣∣∣∣ =
1

|j|π |δj |, j 6= 0.

Clearly, the δj designate the Fourier coefficients of the function Φ(1)Φ−3, which, in turn, is
an element of L2(T). This latter assertion is a consequence of the facts that Φ−3 ∈ C(T)

and that the Fourier coefficients b
(1)
j of Φ(1) are dominated by |j|−1, j 6= 0. We can now

apply Lemma 3.3 by setting µ = 1, ν = 1, p = 2, wj = δj , uj = b
(1)
j , and vj = dj for each j;

and we obtain ∑

j∈Z

b
(1)
j dm−j = 0(|m|−1), |m| → ∞.

Combining this with (3.15) we obtain |cm| = 0(|m|−2), |m| → ∞.
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Theorem 3.6. Let η ≥ 2 be an integer and let α ∈ [0, 1). Further, let {Vm} be an MRA of
L2(R) with scaling function ϕ ∈ C1,∞(Z,T) satisfying the condition

(3.17) ϕ(x) = 0(|x|−(η+α)), |x| → ∞.
Assume the corresponding Fourier series Φ ∈ A(T), with Fourier coefficients {ϕ(m)}, is
non-vanishing on T. Then the sampling function s of {Vm} satisfies the condition
(3.18) s(x) = 0(|x|−(η+α)), |x| → ∞.

Proof. From Theorem 2.6 we know that s(x) =
∑

m∈Z
cmϕ(x−m), and because of (3.17)

and Theorem 3.5, we know that cm = 0(|m|−(η+α)), |m| → ∞. For any x ∈ R\{0}, let
mx ∈ N ∪ {0} satisfy 0 ≤ mx ≤ |x|/2 < mx + 1. Then

(3.19) s(x) =
∑

|m|≤mx

cmϕ(x−m) +
∑

|m|>mx

cmϕ(x−m) = s1(x) + s2(x),

where s1, resp., s2, is the first, resp., second, sum in (3.19).

If |m| ≤ mx, then

|x−m| ≥ ||x| − |m|| = |x| − |m| ≥ |x| −mx ≥ |x|/2,
and so

(3.20) |s1(x)| ≤ Cϕ

( |x|
2

)−(η+α) ∑

|m|≤mx

|cm|,

where Cϕ is a bound from (3.17) independent of x. Further, because of Theorem 3.5 we
also have the estimate

(3.21) |s2(x)| ≤ Cc(mx + 1)−(η+α)
∑

m∈Z

|ϕ(x−m)| < Cc

( |x|
2

)−(η+α)
sup
t∈R

∑

m∈Z

|ϕ(t−m)|,

where Cc is a bound from (3.14) (Theorem 3.5) independent of x. The sup term in (3.21)
is the C1,∞(Z,T) norm of ϕ.

Combining (3.20) and (3.21), we obtain (3.18) with a bound

Cs = 2η+α
(
Cϕ‖1/Φ‖A(T) + Cc‖ϕ‖C1,∞(Z,T)

)
.

4. A local error for wavelet expansions

In this section we shall estimate the local error for wavelet expansions.

Definition 4.1. Let N1, N2 ∈ Z for N1 < N2, let h = 2−m for m ∈ Z, and let d = 1. The
local error of the sampling formula (2.1), i.e.,

f =
1

2m/2

∑

n∈Z

f
( n

2m

)
sm,n,

is

(4.1) EN1,N2
f(x) ≡ f(x)−

N2∑

n=N1

f(nh)s(h−1x− n) ,
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where x ∈ [N1h,N2h].

We consider an arbitrary interval I ⊆ R, and let a = inf{x ∈ I}, b = sup{x ∈ I}, and
(4.2) Ma = sup{n ∈ Z : nh ≤ a} and Mb = inf{n ∈ Z : nh ≥ b}.
We define

(4.3) Pa =Ma −Na and Pb = Nb −Mb,

where Na < Ma and Nb > Mb are integers. Notationally, the left side of (1.2) can be written
as

sup
x∈I

|ENa,Nb
f(x)| = sup

x∈I

∣∣∣∣∣f(x)−
Nb∑

n=Na

f(n/2m)s(2mx− n)
∣∣∣∣∣ .

The following result does not depend on the results of Section 3, nor does it depend
essentially on the MRA setup except to determine a sampling function; but it does depend
significantly on [HT62], [Jag66].

Theorem 4.2. Let {Vm} be an MRA of L2(R) with scaling function ϕ ∈ C1,∞(Z,T).
Assume the corresponding Fourier series Φ ∈ A(T) is non-vanishing on T, and let s ∈ V0 ⊆
Cb(R) ∩ L2(R) be the corresponding uniquely determined sampling function, see Theorem
2.6. Let I ⊆ R be a bounded interval with associated constants a, b,Ma,Mb as in (4.2),
where h = 2−m, and let Pa, Pb be as in (4.3) for Na < Ma and Nb > Mb. Assume

(4.4) s(x) = 0(|x|−β), |x| → ∞
for some fixed β ≥ 1, and set

AN (h−1x) =

(
∑

n>N

|n− h−1x|−2β
) 1

2

.

For each m ∈ Z and f ∈ Vm define

KN = KN (f) =

(
h
∑

n>N

|f(nh)|2
) 1

2

and LN = LN (f) =

(
h
∑

n<N

|f(nh)|2
) 1

2

.

a. There is a constant C, arising from (4.4) and independent of f ∈ Vm, such that
∀x ∈ [Nah,Nbh], |ENa,Nb

f(x)| ≤ Ch−
1

2

[
KNb

(f)ANb
(h−1x) + LNa

(f)A−Na
(−h−1x)

]
,

noting I ⊆ [Mah,Mbh] ⊆ [Nah,Nbh].

b. Let C be the constant of part a. Then

sup
x∈I

|ENa,Nb
f(x)| ≤ C

hβ−1√
2β − 1

[
KNb

(f)

(Pbh+ rb)β−1/2
+

LNa
(f)

(Pah+ ra)β−1/2

]
,

where ra = a−Mah ≤ h and rb =Mbh− b ≤ h are non-negative.

Proof. a. If x = Nah or x = Nbh then the local error (4.1) is 0. For x ∈ (Nah,Nbh) we
have

|ENa,Nb
f(x)| ≤ C


∑

n>Nb

|f(nh)|(n− h−1x)−β +
∑

n<Na

|f(nh)|(h−1x− n)−β


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by (4.1), where C is the constant arising from (4.4). Thus, part a is a consequence of the
Cauchy-Schwarz inequality, since, for example, if x ≤ Nbh and n > Nb then n− xh−1 > 0.

b. We first note that if x ∈ I then

ANb
(h−1x) ≤

(∫ ∞

Nb

1

(y − h−1x)2β dy
) 1

2

=
hβ−1/2√
2β − 1

1

(Nbh− x)β−1/2
,

with a similar estimate for A−Na
(−h−1x). Combining this with part a, we have

(4.5) |ENa,Nb
f(x)| ≤ Chβ−1√

2β − 1

[
KNb

(f)

(Nbh− x)β−1/2
+

LNa
(f)

(x−Nah)β−1/2

]

if x ∈ I. Now, note that if x ∈ I then

Nbh− x = Nbh−Mbh+Mbh− x ≥ Pbh+Mbh− b = Pbh+ rb

and
x−Nah ≥ ra + Pah.

The function gN,h,β(x) = (Nh− x)−β+1/2 is strictly increasing for x < Nh, and gN,h,β(−x)
is strictly decreasing for x > −Nh. Thus, for a ≤ x ≤ b, we have

gNb,h,β(x) ≤ gNb,h,β(b) = gPb,h,β(−rb)
and

gNa,h,β(x) ≤ gNa,h,β(−a) = gPa,h,β(−ra).
Substituting these inequalities into (4.5) yields part b.

Corollary 4.3. Assume the setup, hypotheses, and notation of Theorem 4.2. Let P = Pa =
Pb ≥ 1, and, for each m, let Km be the reproducing kernel of Vm, e.g., Theorem 2.4. Then

sup
x∈I

|ENa,Nb
f(x)| ≤ 2C√

2β − 1

1

P β−1/2

(
∑

n∈Z

|f(nh)|2
) 1

2

≤ 2C√
2β − 1

1

P β−1/2

(
∑

n∈Z

Km(nh, nh)

) 1

2

‖f‖L2(R).

Proof. The first inequality is elementary from Theorem 4.2b using the same value of C as
in Theorem 4.2. The second inequality is a consequence of the definition of the reproducing
kernel: ∑

n∈Z

|f(nh)|2 =
∑

n∈Z

|〈f(x),Km(x, nh)〉|2

≤ ‖f‖2L2(R)

∑

n∈Z

〈Km(x, nh),Km(x, nh)〉

= ‖f‖2L2(R)

∑

n∈Z

Km(nh, nh).

We now invoke Theorem 3.6 in order to obtain the conclusion of Theorem 4.2, but,
because of the MRA setting, to obtain this conclusion by only making a decay hypothesis
on the scaling function ϕ (and not on its associated sampling function s). The proof of
Theorem 4.4 is immediate from Theorems 3.6 and 4.2.
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Theorem 4.4. Assume the setup, hypotheses, and notation of Theorem 4.2 exclusive of
the assumption (4.4) on the decay of the sampling function. Let η ≥ 2 and α ∈ [0, 1), and
assume

ϕ(x) = 0(|x|−(η+α)), |x| → ∞.
There is C > 0 such that

∀f ∈ Vm, sup
x∈I

|ENa,Nb
f(x)| ≤ C

h(η+α)−1√
2(η + α)− 1

[
KNb

(f)

(Pbh+ rb)(η+α)−1/2
+

LNa
(f)

(Pah+ ra)(η+α)−1/2

]
.

5. A sampling theorem based on the Gabor transform

In this section we give a sampling theorem for bandlimited functions, using the Gabor
transform for L2(R). For more details see [BF94], as well as [Ben89] for the L∞(R) case.
For other fully developed aspects of the Gabor theory see [FS98], [Grö00].

Definition 5.1. a. Let g ∈ L2(R)
⋂
L∞(R). The Gabor transform Gg of f ∈ L2(R) is

defined to be

(Ggf)x(ω) = 〈f(t), g(t− x)e−2πitω〉 =
∫ ∞

−∞
f(t)g(t− x)e2πitωdt.

b. If Ggf is the Gabor transform of f ∈ L2(R), then the inverse Gabor transform of f is
given by

(5.1) ((Ggf)x(ω))
−1(t) =

1

‖g‖2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
(Ggf)x(ω)g(t− x)e−2πitωdxdω,

and f(t) = ((Ggf)x(ω))
−1(t) a.e. on R.

Theorem 5.2. Let f ∈ PWΩ and g ∈ PWΓ. If P (y) ≡
∫∞
−∞ g(y + x)g(x)dx is the positive

definite autocorrelation of g, then

(5.2) f(t) =
1

2Λ‖g‖22

∑

n∈Z

f
( n
2Λ

)
P
(
t− n

2Λ

) sin[2π(t− n/(2Λ))]
π(t− n/(2Λ)) , a.e.,

where Λ = Γ + Ω.

Proof. For a fixed x ∈ R the Gabor transform (Ggf)x(ω) may be considered as the Fourier

transform of f(t)g(t− x). Using Parseval’s formula, we have

(Ggf)x(ω) = e2πixω
∫

|γ|≤Ω
f̂(γ)ĝ(ω − γ)e−2πixγdγe2πixω.

Obviously, f(t)g(t− x) ∈ PWΛ, where Λ = Γ + Ω. Thus, the Fourier transform (Ggf)x(ω)
may be developed in a Fourier series, as follows:

(Ggf)x(ω) =
1

2Λ

∑

n∈Z

(∫

|γ|≤Λ
(Ggfx)(γ)e

−iπnγ/Λdγ

)
eiπnω/Λ =

1

2Λ

∑

n∈Z

f(
n

2Λ
)g(

n

2Λ
− x)eπinω/Λ,
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where ω ∈ [−Λ,Λ). The second equality follows from the definition of Ggf for fixed x and

the Fourier inversion theorem. Each series converges a.e. on R̂. After applying Fubini’s
theorem, we substitute the second series into (5.1) to obtain

(5.3) f(t) =
1

‖g‖2
L2(R)

∫ ∞

−∞
g(t− x)

∫ Λ

−Λ
(Ggf)x(ω)e

−2πitωdωdx

=
1

2Λ‖g‖2
L2(R)

∫ ∞

−∞

∑

n∈Z

f(
n

2Λ
)g(

n

2Λ
− x)g(t− x)

∫

|ω|≤Λ
e−2π(t−n/(2Λ))ωdωdx, a.e.

Interchanging summation and integration in the last term of (5.3), noting that term by
term integration of Fourier series of integrable functions is allowed whether they converge
or not, we see that (5.3) becomes

f(t) =
1

2Λ‖g‖2
L2(R)

∑

n∈Z

f(
n

2Λ
)P (t− n

2Λ
)
sin[2π(t− n/(2Λ))]
π(t− n/(2Λ)) , a.e.,

and this is the desired result.

Corollary 5.3. Let K(t, x) = g(t− x) be the (sinc) reproducing kernel of the space PWΓ,
where (x, t) ∈ R

2. If Λ = Γ + Ω, then

∀f ∈ PWΩ, f(t) =
1

2Λ‖g‖2
L2(R)

∑

n∈Z

f(
n

2Λ
)g(t− n

2Λ
)
sin[2πΛ(t− n/(2Λ))]

π(t− n/(2Λ)) , a.e.

Proof. If h ∈ PWΓ, then

h(x) = 〈h(·),K(·, x)〉 = 〈h(·), g(· − x)〉 =
∫ ∞

−∞
h(y)g(y − x)dy.

Thus, if P is defined as in Theorem 5.2, then P (t−n/(2Λ)) = g(t−n/(2Λ)), and the result
follows from (5.2).

Corollary 5.4. Assume the setting and notation of Theorems 4.2 and 5.2. Let

s(t) =
P (t)sin(2πtΛ)

2πtΛ‖g‖2
L2(R)

t
,

where P (y) =
∫∞
−∞ g(y + x)g(x)dx, and suppose P (y) = 0(|y|−β), |y| → ∞. If h = (2Λ)−1,

then

∀f ∈ PWΩ, sup
x∈I

|ENa,Nb
f(x)| ≤ C

hβ − 1√
2β − 1

[
KNb

(f)

(Pbh+ rb)β−1/2
+

LNa
(f)

(Pah+ ra)β−1/2

]
.

Proof. PWΩ can be viewed as a V0. The decay hypothesis on P implies (4.4); and the
definition of s yields the sampling formula f =

∑
f(n/(2Λ))τn/2Λs by Theorem 5.2. This

formula, coupled with the proof of Theorem 4.2, gives the result.
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