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Scope

- Recent research has demonstrated that a rolbatsbmeexists
betweerbrain activity and themovement profile produced.

Brain activity has been shown to correlate strongigh movement
velocity independent of movement direction and mafdeoordination.

- Using a recently developddeld theoretical model of large-scale brain
activity itself based on neuroanatomical and nehoyslogical
constraints we show here how these experimentdiniys relate to the
field theory and how it is possible to reconstruct the moverpeotile

via spatial and temporal integration of the bragmal.



Outline/Introduction

Data: behavioral data : finger movement profile
MEG Brain activity

Experimental Observations:
@ relation of brain activity with the finger motion

Spatiotemporal Dynamics::
@ Haken’s approach to the analysis of complex syste
phenomenological study of the multidimensidimae series
via biorthogonal decompotition

Modeling the integration of Neural activity
@ Jirsa’s and Haken'$ield theoretical approach

Results:
reconstruction of the finger motion profile fromrethrain signai/l

predict the motor signal from the measured MEG #ta

Per spectives.

Computational Procedures that readily and accyra¢ekals
relationships between movement and brain actiaty amplify the
iInquiry into how CNS controls movements and migheinployed for
clinical and technical applications, e.g. to cohpmmsthetic and robotic
devices




THE EXPERIMENTAL OBSERVATIONS

Behavior experiment (Kelso et al. Nature,1998)

movement of the right index finger coordinatedwatvisual metronome atHZ
four task conditionsflexion vs Extension

and in/ anti - phase with the metronome besgtschronization vs syncopation

100 movement cycles for each task.

recorded data
- finger displacement as pressure changes in asiion
- brain activity using a 68-channel full-head magnetter (CTF), at SF of 250 HZ
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FIG. 1. Relation between stimulus and movement signallfdask conditions.

Left: in the on conditions the maximum amplitude calesi with the metronome flashes
Middle: Relative phase between the stimulus and the maximof the movement amplitude.
Circles plotted in blue deviate more than 60° frime required (average) phase and were

discarded.

Right Histograms of the relative phaselie variance is smaller in the on-conditions
indicating higher stability for the synchronized morement compared to syncopation



Behavioral andBrain data were averaged on
a cycle-by-cycle basis with respect to maximumdindisplacement for each tasks.

The temporal evolution of brain activity during tieger movement is represented
with a sequence of topographic maps:
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the a green bar indicating the brain pattern’stiooawithin the cycle of movement

. Near movement onset a strong dipolar field ar®eer the left hemisphere.
After maximum displacement is reached a dipokdfwith reversed polarity and
smaller amplitude is visible.

. These dipolar structures appear to be independéiné airection of movement
(flexion vs extension).

. They also appear to reach their maximum magnittitieegtime points of the
peak movement velocity, i.e., where the slope efrtftovement profile is greatest.



Highlighting the correlation of finger movement vebcity
with the averaged brain signals
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Overlap between brain signals (green) and movereatity (red) in single channels.

The correlation (or anti-correlation) is extreméigh in channels inside the highlighted area.
On the bottom right the relation between the movemeofile (blue) and movement

velocity (red) is shown.



BRIDGE BETWEEN THEORY AND EXPERIMENT:
ANALYSIS OF SPATIOTEMPORAL BRAIN SIGNALS

a spatiotemporal pattern Y(x,t) can be decompased i

spatial modes u"(x) and correspondintime-dependent amplitudes f(t)

Y(x,t) =% 1) u(x) , e.g.via PCA

or in discrete form Y(t) = X fOt) w" , where k the #sensor

Due to the strong correlation between finger movemelocity and brain
signal a decomposition in two spatial modes ofgpbatiotemporal pattern
Y(x,t) is sought such a¥t) coincide with the finger displacement signal

and the movement velocity signal, i.e.

Yi() = r() w®+ r) vl
The two spatial modes, W& v,? are determined bynear regression;

(2)+

since they are not orthogonal the adjoint vectgf$'& v,?*are calculated

andbiorthogonal expansion is performed:
Yi(t) = 90 v+ ) v

with =Y .v"  and Po=Y(t) . v®

. The quality of the reconstruction of the origisphtiotemporal pattern,
measured by theéot = var( Y(t) - Y(t)) / var( Y(t) )
IS very high in all the tasks
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Biorthogonal decomposition of Y(x,t) into spatiabdes fitting finger movement and velocity

Reconstruction of the brain signal from the twotisqtmodes\/k(l)& Vk(z) for the F-on task.

. Most of the spatiotemporal dynamics is reproduced



Connecting Field Theory and experiment

On macroscopic level (cm & 100 msec), the meassigatal/field takes the form:

Y(X’t):adeXf(X—X) {pY{X,t—Q} + p[X,t—@J } . f(x=X)= Z—tyexcx

Y(x,t): average amplitude of dendtritic currentdamation x in the cortical sheet G.
it is the weighted sum of activity received from all atleeations X in G
and the inpup at X (e.g. sensory inputs).

u: the velocity that the activity is spread with.
f(x-X) is the distribution function of the connemti strength between x and X
p : the fiber density and a : synaptic weight

in a reformed version, as a partial differential@ipn in one dimension, it has
been used to explain a behavioral situation whée fubject switchs from
syncopated coordination mode to synchronizationnwvtiee rate of stimulus is
systematically increased (from 1Hz to 3Hz).
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Here, the main objective is to relate thield theory formulation with the
experimental observations by deriving an equatiaie form

Y(x,0) = r@) V) + re) v
and relate all parameters to measured data

-the concept offunctional unitsis used to combine theternal brain dynamics,
with thesensory inputs and themotor outputs

Functional input unit :
the time course of the activity of neural populatibat receives afferent excitation

p(x,t)= B"(x) [f(t-t) N"(r(t)) dr

Bi”(x): the spatial localization in the cortical sheet G
f(t-t): defines the temporal convolution of the nonlinteansformed movement r(t)

Functional output unit :
the output signal is the weighted sum of activigiothe corresponding brain area

r(t)= () [olt-1) N*(Y(x.1)) dr

B°(x): the spatial localization in the cortical sheet G
g(t-1): temporal transfer function of the nonlinear tfansied cortical activity

- spatial localization™°"(x) and
- transfer function§(t-t), g(t-t)  will be related to the recorded data

with the approximations:p"(x) = B°"'(x)= B(x) due to large spatial scale
andN"™ , N°" beinglinear functions

the relation between the motor signal r(t) anddisen activity Y(x,t) becomes:

t t T

jf(t—r)r(r)dr: jf(t—r)dr : j g(z-1') dt' j B(X) Y(x,t')dx

to to to



with Taylor expansion of tf it yields
t t T

jf(t—r)[Cor(t)+c1r(t)+...]dr: jf(t—r)dr : j gr—1') e’ j B(X)Y(x,r')da)

to to to

from the experimental data two spatial modes maddla
by the movement signal and the corresponding \Uglgeain approximate the MEG signal :

rt) vI9(x) + ') v®(x) =~ Y(x,t) = (multiplying by p(x) & integrating
r(t) j B(x) v®(x) dx + f(t) j B(x) v@(x) dx =~ j B(x)Y(x,t)dx(Z)

¢ Comparing (1) & (2), >0 for =2
and temporal convolutions in r.h.s. equal the itigoperator

¢ Identifying the spatial functiof(x) , representinghe input-output unit,
as the dominating pattern, i.e. the m@'é?é(x)

r(t) j vA(x) v (x) dx + i(t) j v (x)v®(x) dx =~ j v (x) Y(x,t)dx
G G G (3)
in the discrete version and assuming normalizatfchev'® mode (3) reads

r)) V@O +r) = h) =v@.y @) 4)

¢ the motor signal r(t) takes the form of a driverei@lamped harmonic oscillator;
the solution of (4) for large t is given:

t
r(t) = ct j h(r) e VD g
to

expressing the movement time series in terms of thain activity (via h(t) )
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reconstruction of the movement profile from the emging neural activity

for all task conditions.
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The reconstructed movement profile fits the expentally observed movement
particularly well in the active phase of the movemeepresented by its positive
flank. Discrepancies mainly occur after peak disphaent and are probably due to
the sensory feedback which is not accounted ftimerpresent formulation.

Conclusions

a “ The brain does indeed generate signals that dejgethe actual
movement trajectory (independent of thedirection).

Discussion / Commentary by J.Sanes
© inquiry of additional movement features, e.g. digt

® multiple-joint movements
© incorporation of the known primary motor corteganization

O single-trial resolution
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Artificial neural
network

Bob Crimi %

Fig. 1. Cortical neurons controlling voluntary arm movement could provide
signals used to control a prosthetic arm. Large pyramidal neurons in motor
cortex (red triangles) send axons to spinal cord, ending on interneurons and
motoneurons. Motoneurons project to and contract arm muscles.
Microelectrodes could record neural activity, which is transformed by an artifi-
cial neural network into signals required to operate a prosthetic arm.

Fetz. Nature Neuroscience. 1999: 2(7)
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