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Abstract—In this paper we propose a novel real-time tracking
method of a moving UHF-RFID tag. The purpose is to track
the interests of RFID-tagged visitors inside a museum from
a set of fixed antenna-installations. Two antenna pairs collect
phase-measurements from the target tag. Phase differences are
calculated for each pair and then mapped to distance-differences
of the target-tag from the two antennas. The latter corresponds to
a hyperbola for each pair of antennas. The intersection of the two
hyperbolas denotes the position of the tag. The cross section of the
hyperbolas is derived by a trained neural network. The proposed
method neither requires knowledge of the tag’s initial position
nor the trace followed (e.g. conveyor belt). Its computational
complexity allows for real-time applicability. Experiments were
conducted inside multipath-rich laboratory environments. Two
types of experiments were conducted to validate the performance
of the algorithm. Firstly a tag was placed on a moving robot,
which estimated its own position at cm accuracy, thanks to
its lidar sensor, representing the ground truth. Secondly a
tag was placed on an ArUco Marker which was carried by
a human following various trajectories. The proposed method
achieved tracking with mean error under 0.5m throughout the
experimental campaigns.

Index Terms—RFID, tracking, hyperbolic positioning, phase,
neural network.

I. INTRODUCTION

FOURTH Industrial Revolution is starting to change our
everyday life in a lot of its aspects. On this ongo-

ing automation of traditional manufacturing, processing of
goods, and industrial practices, Radio Frequency Identification
(RFID) technology plays a significant role. An important part
of RFID in this revolution is the localization and tracking
of objects or humans. From tagging goods and empowering
logistics operations, to tagging humans and enhancing security
or providing statistics of visiting patterns, finding ways to track
a moving RFID tag is of great importance.

In this paper the objective is to track a visitor in the Archae-
logical Museum of Thessaloniki. Upon entrance, the visitors
are given a ticket with an attached RFID tag. Antennas and
readers are set at known locations in the museum collecting
phase and RSSI measurements associated with each RFID tag.
The phase data are exploited to track the moving tag, thus
quantifying the behavior of visitors and providing statistics of
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interest per exhibit helping the administration to improve the
experience of visitors.

RFID tag tracking has been investigated in prior art. In
[1], [2] and [3] ”Received Signal Strength Indicator” (RSSI)
data are exploited to track the tag. RSSI is not a reliable
indicator due to the fact that power is heavily influenced by
environmental factors, introducing multipath and shadowing,
thus reducing the accuracy of the positioning.

Other methods such as [4], [5] and [6] take advantage of
Angle Of Arrival (AOA) data, calculated from measurements
collected from multiple antennas. In [4] the trace of the tag
is known a priori, as the authors track the tag on a conveyor
belt while in [5] the authors surround the target tags with three
prototype antenna arrays to localize the tag. In [6], the authors
aim to identify the ”trace” of an ”RFID” pen in space, in order
to identify ”letters” or entire ”words”, by successively treating
measured phase differences between closely (poor resolution
- no grating lobes) and sparsely (high resolution with grating
lobes) spaced antennas.

Authors in [7], [8] and [9] exploit phase measurements to
track a moving tag. However the initial position of the tag must
be known beforehand. Tagoram [10] and [11] are methods that
exploit the Phase-Of-Arrival (POA) of the signal to localize a
moving tag. However, both methods consider a calculations’
grid; posing a trade-off between accuracy and execution-speed.
In [12], measurements from a prototype bistatic, synchronized
transceiver are necessary, where the Tx and Rx antennas are
misplaced in order to surround the tracked area.

In [13] - [16] device-free tracking methods are proposed.
The targets neither carry equipment nor tags and the authors
exploit the effect of multipath to perform localization and
tracking. In a different approach, a wireless sensor network
(WSN) grid is used in [17], [18] to track a non-tagged target.
All the device-free tracking methods have the major drawback
of not recognizing the ID of the tracked target and can hardly
track two or more targets.

”Hyperbolic positioning”, [19], [20] and [21], refers to
methods that exploit phase differences measured from known
positions, since the locus of each measurement corresponds
to a hyperbola. In such methods, the cross section of two
hyperbolas would result in an estimated position of the tag.
When multiple antennas are involved, the estimation is im-
proved. This principle is exploited in [19] and [21], where
movement of the antenna at known positions results in accurate
estimations of the position of a static tag. Furthermore, both
[20] and [21] provide methods or closed-form expressions
where the intersection of two hyperbolas is calculated exactly,
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under the constraint that the antennas and the tag belong to
the same plane. In the general case the pair of antennas could
be installed anywhere in the search volume, thus forming hy-
perbolas with rotated major axes along random 3D directions,
which cannot be solved by the expressions in [20], [21].

With respect to prior art, we aim to develop a tracking
method that avoids the calculations on a grid, [10], [11] and
[6], in order to be applicable in real-time for any problem,
regardless of the size of the search space. Phase is chosen
over RSSI, [1], [2] and [3], as a more reliable indicator. AOA
methods [5] also consider the phase difference measured at
two known positions, but are based on the assumption that the
target is far from the antennas, so that the Line-Of-Sight paths
from the tag to the antenna-elements are parallel. Hyperbolic
positioning identifies the exact location of the tag and can be
applied directly on the collected data, but may not be applied
in random 3D antenna-installations.

In this work, we propose a tracking method that is based
on hyperbolic positioning. At least two antenna-pairs are fixed
at known positions, collecting phase measurements from a
moving RFID tag. Phase differences are calculated for each
pair and then mapped to distance-differences of the two
antennas from the target tag. To overcome the limitation of
calculating cross-sections of 3D hyperbolas along another
plane, we introduce the idea of training a neural network for
any given geometry. A neural model is trained to approxi-
mate a function that maps all possible phase-differences from
antenna-pairs to a unique position of the target tag. After the
training phase, application of the method is rapid; i.e. when
the trained network is given any set of phase measurements,
it instantly outputs the position of the tag. Furthermore, in
contrast to prior-art, related to ”hyperbolic positioning”, where
multiple antennas localize a fixed tag, we evaluate whether
few antennas can track a moving tag. As a result, emphasis
is given on processing series of measured data, to filter out
the expected phase-noise related to the measurements and
applying Kalman filtering on the resulting data. The proposed
method is experimentally verified in two setups; the first
involves a robot, in order to accurately acquire the ground
truth of its trace and the second involves a person, whose
actual position is estimated by a visual tracking system. In
the 8 experiments, the mean error ranges from 24cm to 47cm
and the standard deviation between 17cm to 33cm.

The paper is organized as follows. The method is presented
in Section II. Simulation results are given in Section III.
Comparison with experimental data is presented in Section
IV and the conclusions in Section V.

II. PROPOSED LOCALIZATION METHOD

The proposed method tracks a moving RFID tag. Two
antenna pairs (4 antennas in total) are fixed at known locations.
The RFID reader interrogates the tag and reports the phase of
the backscattered signal. The principle of the proposed method
is summarized below:

1) Phase measurements from all antennas are collected. The
phase differences for each antenna pair are calculated
and unwrapped. As a result, two phase-difference curves
are created with respect to time.

2) The unwrapped phase measurements are filtered, to
discard the expected phase noise.

3) For a given time, the recorded phase-difference from
each antenna pair is mapped to distance-difference of the
two antennas from the target tag. The latter corresponds
to a hyperbola for each pair of antennas, where the
locations of the antennas represent the foci of each
hyperbola.

4) The cross section of the hyperbolas for any given time
represents the estimated location of the tag at the specific
time. We introduce a neural network (NN), which has
been trained beforehand for the specific geometry. The
NN takes the phase-differences from each antenna pair
as input and outputs the expected position of the tracked
tag rapidly.

A. Data Collection and Processing

The phase reported for each antenna i is wrapped and can
be expressed as [22]:

ϕi = (ϕi
prop + ϕi

o + ϕi
noise)mod(2π), (1)

ϕnoise ∼ N (0, σ2
phase) . (2)

where i is the index for each antenna (i.e. 1, 2, 3 and 4), ϕi
o

is the phase offset including phases of the cables and other
hardware and ϕi

noise is the measurement’s noise. Phase ϕi
prop

corresponds to the phase accumulated due to the round trip of
the electromagnetic wave, ||Atag −Ai

ant||2 , and is given by:

ϕi
prop =

4π

λ
||Atag −Ai

ant||2 =
4πdi
λ

, (3)

||Atag −Ai
ant||2 =

√
(xtag − xi)2 + (ytag − yi)2, (4)

where Atag = [xtag, ytag] denotes the location of the tag,
Ai

ant = [xi, yi] denotes the i-th antenna’s location, λ is the
wavelength of the electromagnetic field, and di ≡ ||Atag −
Ai

ant||2 the Euclidean distance between the i-th antenna and
the tag.

For each antenna pair the difference of the two phases is
calculated. Let ∆ϕ12,t and ∆ϕ34,t denote the phase difference
between antenna 1-2 and 3-4 accordingly, at time t:

∆ϕ12,t = ϕ1,t − ϕ2,t and ∆ϕ34,t = ϕ3,t − ϕ4,t (5)

Due to the wrapped nature of the phase measurements,
ambiguities regarding the accurate calculation of the phase
differences arise. In the following subsections we elaborate
on these ambiguities and present solutions to overcome them.

1) Phase difference range: The range of phase difference
of an antenna-pair, depends on the distance between the two
antennas. Considering unwrapped phase measurements and a
noise/multipath free scenario by substituting (3) in (5) for
antenna pair 1-2:

∆ϕ12 =
4π

λ
(d1 − d2) (6)

The maximum phase difference is observed when d1 − d2 is
maximized. As thoroughly described in [20] and shown in Fig.
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Fig. 1. Two antennas are located in (x1, y1) and (x2, y2) accordingly.
Maximum phase difference is observed on the line connecting the two points
where d = d1 − d2 ⇒ d = d12.

1 this happens when the tag’s position is on the line connecting
the center of the two antennas (i.e. when d1 − d2 = d12).

If d12 = λ/2 then the calculated phase difference ranges
between −2π to 2π. In this work the distance between the
antennas for each pair is considered less than λ/2.

2) Phase unwrapping : The majority of phase-based lo-
calization techniques use unwrapped phase data. Unwrapping
is a time consuming procedure and not always accurate.
If the measurements are not dense enough the unwrapping
could fail leading to high estimation errors. Since our method
exploits the phase difference, unwrapping of the raw data is
not necessary. As shown in Fig. 2 though, some 2π jumps
are noticed at the phase difference of the antenna pair due to
the wrapping of the phase in [0, 2π). The top plot shows the
wrapped phase measurements collected from two antennas of
the antenna-pair. The bottom plot shows the phase difference
calculated. After correcting the 2π jumps the phase difference
is shown in the bottom plot of Fig. 2 where the orange
and green points are the two possible sequences after the
correction.

3) Possible trajectories: After the 2π jumps’ correction,
an ambiguity remains since the time of arrival of each phase
measurement is not known. This leads to two possible se-
quences of phase differences. In case of Fig. 2 the two
sequences created can be seen with the orange and green color.
The same ambiguity exists also on the other antenna pair,
creating 4 possible combinations of sequences in total, hence
4 possible trajectories. At first all trajectories are calculated.
Three trajectories are discarded either because they include
points outside of the areas boundaries or because the include
successive distant steps. Such an example can be seen in Fig.
3 where the real trajectory is represented by the blue points
and the 4 calculated trajectories with orange, purple, red and
green. Purple, red and green trajectories are exceeding the area
boundaries (thick black lines) and at the same time present
abnormal steps with respect to the time between successive
measurements and are rejected. This process results to a single
trajectory; i.e. the estimated one.

Fig. 2. Phase differences unwrapping and possible sequences

Fig. 3. Rejection of the wrong trajectories

Since phase differences are bounded by the distance be-
tween the antennas of each pair a phase sequence could be
rejected even before trajectory calculation. If there are values
exceeding the phase difference limits the corresponding phase
difference sequence is rejected, thus reducing the possible
trajectories.

4) Phase noise: As (2) denotes, phase noise is Gaussian
normally distributed with zero mean and variance σ2

phase.
In the proposed tracking method the entire search-space is
mapped in measurements within [-2π, 2π], so a measurement
phase error would result in large space-deviations. The effect
of noise on the phase differences can be seen in Fig. 4
where phase data are derived from simulations. The blue
line represents the noisy data derived from simulation. To
avoid large errors a second degree Savitzky–Golay filter is
applied to smooth the data and mitigate the phase-deviations.
The orange line in Fig. 4 is the result of the filter being
applied on the noisy phase differences. An alternative approach
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Fig. 4. Filtering of the noisy phase data.

would be to exploit measured phase differences from largely
spaced antennas, similarly to the principle introduced in [6].
This would result in many closely spaced hyperbolas; all
representing the same phase difference (grating lobes). Under
such conditions, the phase-error, due to noise, would result
in a smaller shifting of the hyperbola and thus a smaller
displacement error. However, the ambiguity, resulting from the
cross section of multiple hyperbolas would greatly increase the
complexity of the localization algorithm.

In these simulations the only factor of data deterioration
taken into consideration is the Gaussian noise which is solved
by filtering. In the experiments and real scenarios more factors
of deterioration are present, such as multipath, insufficient
collection of measurements, etc. In the corresponding mea-
surements’ section, these factors are further analyzed and ways
to resolve them are presented.

B. Hyperbolas Intersection

Initially, let’s assume an ideal multipath-free and noise-free
environment, where ϕi is unwrapped and equal to ϕprop. Let
also (xi, yi) be the position of each antenna i. The phase
differences of the two antennas at each antenna pair are given
by:

∆ϕ12 =
4π

λ
(d1 − d2) and ∆ϕ34 =

4π

λ
(d3 − d4) (7)

⇒ ∆d12 =
λ

4π
∆ϕ12 and ∆d34 =

λ

4π
∆ϕ34 (8)

By substituting (4) in (8) we get:

||Atag −A1
ant||2 − ||Atag −A2

ant||2 =
λ

4π
∆ϕ12 (9)

||Atag −A3
ant||2 − ||Atag −A4

ant||2 =
λ

4π
∆ϕ34 (10)

As shown in Fig. 5 the loci of (9) and (10) are two hyper-
bolas intersecting in the actual position of the tag, assuming
noiseless line of sight measurements.

Phase differences ∆ϕ12 and ∆ϕ34 are calculated from the
phases of each antenna reported at the reader. To determine the

Fig. 5. Intersection of two hyperbolas’ branches in the general case.

position of the tag Atag the system of equations (9) and (10)
need to be solved. Trying to solve this system leads to sextic
polynomials which cannot be solved with standard practices
in the general case.

To overcome this problem and provide the algorithm with a
robust and fast solution that calculates the tag’s position with
respect to the two phase-differences from two antenna-pairs
a deep neural network is introduced. By providing the inputs
(phase differences) and outputs (tag’s positions), the neural
network will try to fine tune its layers and weights so that
the input best fits to the output. The trained neural network
approximates the solution of the system of equations (9) and
(10) and could be expressed as:

FNN (∆ϕ12,∆ϕ34) = Atag (11)

Notice here that in order for the NN to work, there must be
a unique 1-to-1 mapping between the phase differences and
the actual positions in the map. This assumption is always
valid, provided that the NN is trained with the unwrapped
theoretical phase differences that correspond to each position
in the search area. If the antennas are spaced at distances
smaller than λ/2, as in our case, then the measured data
directly correspond to the expected theoretical data, under the
constraints analyzed previously for the ”Possible Trajectories”.
However, if the antennas are placed at greater distances, then
an additional ambiguity is created, due to wrapping of the
phase measurements and additional possible trajectories must
be considered, which will be rejected if the target ”moves”
outside of the bounded physical area, as will be explained
next.

C. Neural Network, Design and Training

The neural network is designed as a deep feed forward
neural network (DFFNN). A DFFNN is basically a multilayer
perceptron (MLP) and its main goal is to approximate a
function. At the same time the hidden layers of a DFFNN
are used to increase the non-linearity of the approximated
function.
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Fig. 6. The architecture of the Neural Network

A representation of the MLP designed, is shown in Fig.
6. The MLP consists of two input nodes (∆ϕ12,∆ϕ34), 5
hidden layers, each with different number of nodes, i.e. 12,
24, 48, 64, 128 and 256, respectively and two output nodes
(xtag, ytag). A ReLu activation function was used for all layers
and RMSProp for the optimizer. Moreover, a custom loss
function that expresses the distance between the estimated
position and the real one was applied and is given by:

Loss = ||Atag real −Atag est|| (12)

The data set used for training, is generated via simulation
and changes with respect to different arrangements of the an-
tenna pairs and different size of spaces. Since we are interested
in fixed installations, the data set needs to be trained once for
each installation. For a given area, a dense grid of 1× 1mm2

is assigned and the theoretical values of the unwrapped phase
differences for each antenna pair are calculated.

A trade-off between training speed and model accuracy with
respect to the grid density is observed. Selecting a sparse
grid, would lead to faster training of the neural network (less
training data) but at the same time would inevitably result in
lower accuracy. On the other hand a thick grid would offer
higher model accuracy but would drastically increase the time
of training. The size of 1×1mm2 was selected as an acceptable
compromise between those two.

During the training process either a small or even a zero
percentage of the data is used as a validation data set, since
there is no need for generalization. Leading the model to
overfitting on the training data, achieves a better fitting on
the desired function (11) and at the same time is used as
an outliers’ finder. As shown in II-A3, noisy or wrong input
phase data will result to ”non-logical” estimated positions,
enhancing the tracking algorithm with the ability of distinction
between measurements which originate from the given area
and outliers.

D. Application in 3D Geometries and Large Inter-Antenna
Spacing

The aforementioned process can be directly extended to
random installations, involving 3D geometries. In general the
two antennas, involved in the creation of a 3D hyperbola, could
be positioned at different heights and at any distance among
them. The solution is desired along a given plane; the target-
tag’s expected height. Notice that, under such 3D installations,

the locus of the intersection of the 3D hyperbola, with the
plane of the tag is not a 2D hyperbola; e.g. when the pair of
antennas are located one on top of the other, the corresponding
locus becomes circular. Under such general conditions the
following steps must be taken:

• The user trains the NN on the specific height of the target
tag with the physical-unwrapped phase values that would
be collected on each antenna.

• During execution of the localization positioning algo-
rithm, the user provides the trained NN all possible pairs
of unwrapped phase differences that could exist for each
pair of antennas: ∆ϕij(k) = ∆ϕij + 2kπ; maximum k
depends on the inter-antenna distance of each pair.

• The NN outputs different possible positions for each input
pair of phase-differences. The NN will output points
outside of the trained area, when the pair of phase-
differences does not correspond to its trained geometry.

• The method then keeps track of all possible trajectories,
by fixing k for each initially considered phase difference
and unwrapping the corresponding ∆ϕij(k).

III. SIMULATIONS

In this section the proposed algorithm is validated in simu-
lated geometries. The training process is evaluated with respect
to the given area size and the arrangement of the antennas.
The training time and accuracy of the model are evaluated.
The mean error of the estimations is calculated for different
paths:

Error =

∑N
n=1 ||An

tag est −An
tag real||2

N
(13)

A. Neural Network Training, Time and Accuracy

For each antenna arrangement and given area a different
geometrical model is trained. The training time of the neural
network depends on the size of the area, the grid density
and the desired localization accuracy. The search area is
a 3x6 m2 room with the antennas positioned at the star
points, as shown in Fig. 7. The error for each grid point
is calculated as ||Ai

tag est − Ai
tag real||2 and a color mesh

plot is created for different number of training epochs. As
shown in Fig. 7 the neural network keeps converging to the
desired function as the epochs increase. The training process
is interrupted when a predefined threshold of mean error is
passed (µerror < 0.02m). The standard deviation (std) of the
error should be kept low (σ2

error < 0.01m).
Four different arrangements of antennas are shown: A) 3

antennas in a line forming 2 antenna pairs, B) 4 antennas in a
line, forming 2 antenna pairs, C) 2 antenna pairs perpendicular
to each other and D) 2 antenna pairs with non-perpendicular
orientation. For each arrangement a neural model was trained
for 5000 epochs and the results can be seen in Fig. 8. In
cases A-C, there are some areas, where the model appears
poorly trained. This effect takes place at positions, where the
hyperbolas cross at shallow angles (the lines of the hyperbolas
are nearly parallel). In arrangement A and B this property
affects larger regions due to the fact that both pairs are co-
linear. In arrangement C, the region of poor training lies near
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(a) After 100 epochs (b) After 1000 epochs

(c) After 5000 epochs (d) After 10000 epochs

Fig. 7. The star points represent the position of the antennas. The given area
is a 3x6m2 room and the localization error of each grid point is calculated
and mapped as depicted in the colormap. The accuracy of the model improves
at increasing epochs.

(a) Arrangement A (b) Arrangement B

(c) Arrangement C (d) Arrangement D

Fig. 8. Result of training of the neural model for 5000 epochs and 4 different
antenna arrangements respectively.

the line connecting the center of the two pairs. This effect is
eliminated in arrangement D, where the axes of the foci of the
two hyperbolas are such, that the hyperbolas do not cross at
shallow angles for any point in the search area. Consequently
this effect affects the training and the whole system’s accuracy.

B. Trajectory Tracking, Simulated Paths

A neural network was trained for a specific area and a given
antenna pair formation. Different paths were simulated and the
accuracy of the tracking algorithm was evaluated using (13).
A 3x6 m2 area is chosen and the 2 antenna pairs have the
orientation of arrangement D. A top view of the setup and the
simulated paths can be seen in Fig. 9. The 4 stars represent

Fig. 9. Top view of the simulation setup and the simulated trajectories.

TABLE I
SIMULATION RESULTS

Paths Mean Error(m) Standard Deviation(m)

Straight Path 0.05 0.03

Triangle Path 0.07 0.05

Random Path 0.06 0.05

the position of the 4 antennas and orange, blue and green lines
represent the 3 different simulated paths.

For each trajectory, phase data of each antenna are simulated
as denoted in (1). Phase differences are calculated and filtered
for each antenna pair and the 4 possible trajectories are
created. The algorithm rejects the wrong paths as shown in
II-A3 and the error between the estimated trajectory and the
ground truth is calculated for each path.

The results can be seen in Table I. In all paths, the
phase differences were filtered using a Savitzky–Golay filter
before feeding them to the trained model. Unfiltered phase
differences, lead to larger errors, reaching values up to 1
meter, depending on σ2

noise. In Fig. 10 an estimation of the
random trajectory both with filtered and unfiltered data is
presented. Filtered vs unfiltered phase differences were passed
through the trained model and the estimated positions are
plotted with green and blue lines accordingly. The orange
line represents the ground truth. Also in Fig. 10 a relation
between the distance of the target from the antenna pairs
and the accuracy of the results is shown. In the left side of
the plot (i.e. maximum distance between target and antennas)
mean error is higher versus a search region closer to the
two antenna pairs. This effect is observed for any antenna
arrangement as in greater distances from the antennas, a small
error in the measured phase-difference would result in a larger
error in the position of the intersection point of the two
hyperbolas, compared to the same phase-difference error in
smaller distances.
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Fig. 10. Location estimations of the neural model when unfiltered phase data
are used as an input versus estimations when input phase data are filtered.

IV. EXPERIMENTAL RESULTS

The proposed algorithm is experimentally evaluated in dif-
ferent setups. Initially, experiments take place using a tagged
robot capable of performing SLAM. The next set of experi-
ments are carried out by RFID-tagged people in a multipath
rich laboratory-environment. Finally, we discuss on factors
which may have a negative effect on the performance of the
tracking algorithm.

A. Experiments with a Tagged Robot

The experiments were conducted in a 6×8m2 lab of the
school of Electrical and Computer Engineering of the Aristotle
University of Thessaloniki. The tag was mounted on a robot
that estimates its pose at cm accuracy, thanks to a lidar-sensor,
combined with its odometry-sensors and Kalman filtering. The
robot’s pose is used as the ground truth of the position of the
tag. Then, the error between the estimated and the real position
can be calculated (13).

The setup of the experiments can be seen in Fig. 11. An
Alien ALN-9740 ”Squiggle” tag was used as the target tag
with a sensitivity of -19 dBm. The Impinj Speedway R420
reader and four Laird PER86506 antennas were used, to collect
phase data measurements . The two antennas per pair are
placed at a distance less than λ/2. One of the antenna pairs
is placed on a fixed position on the wall and the other on
a stand that can change positions, thus enabling experiments
with different antenna arrangements.

The map created by the robot and the trajectories traversed
are presented in Fig. 12. During the blue and green path
the robot kept a constant speed. The red and orange paths
of the robot represent an abstract movement to imitate a
human’s random trajectory . During these two paths the robot
decelerates, accelerates, stops and rotates arbitrarily.

Initially, the neural model is trained, given the arrangement
and area of interest. The neural model is trained until a thresh-
old of mean error µerror < 0.02m and standard deviation
σ2
error < 0.01m is reached.

Fig. 11. The setup of the experiments. The tag is placed on a SLAM-capable
robot. The two antenna pairs are placed at known locations and the two
antennas per pair are placed at a distance less than λ/2.

Fig. 12. The four trajectories traversed by the tag on the robot during
experiments. The green and blue path are two paths without stops and changes
on the speed of the robot while the orange and red path imitate a human
movement as the robot decelerates, turns arbitrarily and performs stops along
the route followed.

In Fig. 13 the tracking algorithm is presented step by step.
The trajectory #4 is selected since it is more representative
of a human’s behavior. At first the RFID reader reports phase
measurements from each antenna. The measurements are not
collected at the same time for each antenna; thus calculating
the phase differences per antenna pair is not a straightforward
process. To calculate the phase differences between the anten-
nas a ”common” time series is generated according to the time
instances of the raw phase measurements. The common time
instances are generated via linear interpolation at time slots
where a high read rate per tag is observed. If interpolation
process fails for a time window of even one of the antennas
then this time window is excluded from the tracking algorithm.
The result of this process is shown in Fig. 13a where the raw
data are presented with blue color and the interpolated with
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(a) Step 1, Creation of common measurements (b) Step 2, Phase difference sequences and
unwrapping

(c) Step 3, Possible phase differences sequences

(d) Step 4, Average of phase differences per 5
seconds

(e) Step 5, Rejection of wrong trajectories (f) Step 6, Estimated trajectory compared to ground
truth

Fig. 13. Steps of the tracking algorithm.

orange.
Then, the phase differences are calculated and the unwrap-

ping process takes place as presented in II-A3 and shown in
Fig. 13b. The phase data collected are wrapped. As a result,
the sign of the collected phase difference is ambiguous. Given
that the distance between the antennas on each pair is less than
λ/2 and that the order of arrival of each phase measurements
is unknown two possible phase difference sequences are gen-
erated for each antenna pair. The same ambiguity exists also
on the other antenna pair, creating 4 possible combinations
of sequences in total, hence 4 possible trajectories. In case of
Fig. 13c the two possible sequences for antenna pair 1-2 and
3-4 can be seen with the orange and blue color in the two
subplots respectively.

At this stage during simulations the data were filtered using
a Savitzky–Golay filter assuming that distortion on the phase
measurements only derives from Gaussian noise. By observing
the phase difference sequences we notice that the effect of
multipath is significantly high and affects the data for more
than just an instance. For that reason just filtering the sequence
would not solve the issue. To overcome this problem an
average of consecutive phase measurements in a time window
of 5 seconds is calculated (Fig. 13d).

The four phase difference sequences generate four possible
trajectories after passing through the trained model. The trajec-
tories that either exceed the area’s boundaries or present steps

TABLE II
ROBOT EXPERIMENT RESULTS

Paths Mean Error(m) Standard Deviation(m)

Trajectory 1 0.32 0.22

Trajectory 2 0.37 0.28

Trajectory 3 0.24 0.17

Trajectory 4 0.47 0.33

bigger than a human could possible perform during 5 seconds,
are rejected (red, brown and purple paths in Fig. 13e). After
the trajectory rejection process, the final estimated trajectory
is presented in Fig. 13f presenting a mean error of 0.47m. The
results of all four trajectories can be seen in Table II.

B. Experiments with Tagged Human

Experiments where the tag is placed on a human were
conducted, in order to investigate the effect of human body on
the phase measurements and also the accuracy of the method
in real life scenarios. The experiments took place in a School’s
lab, filled with desks and desktop computers, thus creating a
”multipath-rich” environment.

The setup of the experiments can be seen in Fig. 14. An
Alien ALN-9740 ”Squiggle” tag was used as the target tag
while the Impinj Speedway R420 reader collected the phase
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(a) Hardware Equipment (b) Human carrying tag

Fig. 14. The setup of the experiments with a tagged human.

measurements via four A5020 circularly polarized antennas
manufactured by Times-7. The two antenna-pairs were set with
non-perpendicular orientation (Arrangement D in Fig. 8) using
two tripods as shown in Fig. 14a. For each pair, the distance
between the two antennas was kept less than λ/2.

The trajectories followed by the human are shown in Fig. 15.
In trajectories 1-3 the person reaches a point and returns back
imitating a museum visitor approaching an exhibit and then
moving away to continue his visit. To examine the proposed
method in the presence of human and other tagged persons
trajectory #2 is almost identical to trajectory #3 but a second
tagged person is wandering at the search area as shown in
Fig. 14b. Trajectory #4 imitates an arbitrary movement of a
human.

ArUco markers are used, in order to acquire the ground truth
of the tag’s/human’s position, by means of a visual system.
ArUco is a library for detection of square fiducial markers
developed by R. Muñoz and S. Garrido [23]. Such a square
marker (i.e. ArUco marker) is carried by the person who
follows the trajectories. The tag is placed on top of the ArUco
marker (Fig. 14b) in such a manner that it does not alter the
shape of the marker, while ensuring that their position is the
same. A laptop equipped with a camera (see Fig. 14a) is set
next to the antenna pairs and detects the marker’s position with
high accuracy (i.e. mean error less than 1cm) in space, thus
acquiring the tag’s position during the experiments. The tag’s
location estimations of the proposed algorithm are compared
with the marker’s location provided by the visual detection
system.

The tracking algorithm is applied as described in IV-A for
all trajectories and the error between the estimated trajectory
and the ground truth is given by (13). Kalman filtering is
applied, to refine the precision of the estimations. The mean
and standard deviation for each case can be seen in Table III
and a plot of estimations versus ground truth is shown in Fig.
16.

The mean error remains under 0.5m for all trajectories
followed. The effect of another tagged person in the search
space is observed in Trajectory #3 with respect to Trajectory
#2, as a slight increase in the mean error and standard
deviation. Kalman filtering has a small effect on the mean
error and std of the experiments and that is due to the fact that
the collected phase measurements have already been filtered
and averaged over larger time-segments, thus do not present
large variations. However, visually, Kalman filtering results

Fig. 15. The four trajectories followed by the human. Top View.

(a) Trajectory 1 (b) Trajectory 2

(c) Trajectory 3 (d) Trajectory 4

Fig. 16. Location estimations before and after Kalman Filters compared to
ground truth for all trajectories.

in a much smoother trajectory that resembles a real human
movement, as shown in Fig. 16. Notice that the green-trace
(Kalman-filtered) no longer suffers by the variations shown in
the orange trace.

TABLE III
HUMAN EXPERIMENT RESULTS

Paths
Initial Estimations After Kalman

Mean Error(m) Std(m) Mean Error(m) Std(m)

Trajectory 1 0.25 0.19 0.25 0.17

Trajectory 2 0.40 0.25 0.40 0.21

Trajectory 3 0.45 0.3 0.43 0.27

Trajectory 4 0.31 0.24 0.30 0.22
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C. Factors that Affect the Tracking Algorithm

The algorithm developed in this work is able to track
moving tags using antennas at fixed positions. The main goal
is to track RFID-tagged visitors inside a museum.

A new challenge arises, since the visitors need to be tagged.
Dielectric-spacers between the tag and the human body may
be needed to avoid detuning of the tag’s antenna. In [24], the
authors propose techniques to attach tags even to conductive
materials with the use of slim insulating materials. Such insu-
lating materials could be used to manufacture RFID equipped
wristbands or cardholder neck straps that will not affect the
readability of the tag even in close proximity to the human
body. Nevertheless, there will always be areas where the tag
to reader link will be blocked from the visitor’s body. This
will lead to intermittent sequences of phase measurements.
Stationary motion and high velocity is also expected to affect
the collection of phase measurements. Stationary motion of
the visitors body will look like noise and will be filtered out
in pre or post processing. High velocities will lead to low
read rates per antenna per tag and might affect the tackling
of multipath. This problem is solved by dividing the measure-
ments to independent trust intervals. The difficulty lies on the
”connection” of these intervals, where Kalman filtering would
assist on smoothing the curves and minimizing the mean error.
Furthermore, at least two tags will be attached to each ticket,
thus ensuring diversity in the collected measurements; this is
expected to improve the detection period per visitor.

Phase measurements are also affected by the change of
the corresponding RSSI measurements. As described in [25]
variations of the incident power on the tag might lead sig-
nificant phase-shifts (measured as high as 100o). In our case
phase differences between adjacent antennas are exploited. If
the variations of the incident power at the tag are similar
then the effect on phase differences would be negligible.
On the other hand if the fading pattern for each antenna is
different, then the phase shift per antenna would alter the phase
differences accordingly. This problem is also treated thanks
to the time-averaging window; position-estimations are the
results of phase-difference averages over larger time-windows.

Fluctuations in signal strength and phase measurements
were observed both in the robot and the human experiments
due to multipath. The areas, where the experiments took place,
are multipath-rich indoor environments. Again, filtering and
averaging of the raw phase-difference data was proven to be
sufficient to tackle the fast-changing effect of multipath. Larger
positioning-errors were observed only when a systematic error
was introduced in the phase-difference measured data (e.g.
phase deviation for several seconds - larger than the averaging
window). This could be the effect of an electromagnetically-
strong scatterer (e.g. a metallic closet); under such conditions
the positioning error could be larger than 0.5m. Such an effect
cannot be detected by the proposed method.

V. CONCLUSION

Real-time tracking of moving targets is a key feature for
Industry 4.0 applications. In this paper we present a novel
method on tracking a UHF-RFID tagged target in real time.

The method exploits neural networks to track a moving UHF-
RFID tag via hyperbolic positioning. The proposed neural
model needs to be trained only once for each antenna-
geometry installation. It is trained until reaching low values
of mean error and std. A priori knowledge of initial position
of the target is not needed. The tracking method will be
used to track visitors inside a museum and quantify their
behavior, but can be applied for different cases. Two type
of experiments were conducted: i) by placing a tag on a
moving robot which imitates a visitor’s behavior by moving
arbitrarily and ii) by placing it on an ArUco Marker carried by
a human. Experimental results showed a mean error of under
0.5m throughout the campaign.

Future work will include different environments and larger
tag populations to test the robustness of the algorithm in
different multipath conditions.
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