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Abstract— Recent years have seen the introduction of more
affordable but less accurate 2D range sensors whose field of
view is 2π. Scan-matching with these has been insufficiently
researched, while being a challenge due to these sensors’
increased measurement uncertainty. This paper proposes a real-
time method for matching scans extracted from panoramic 2D
LIDAR sensors. The method leverages properties of the Fourier
transform which arise due to the periodicity of the range
signal. Matching is performed in a correspondenceless manner.
The proposed method outperforms established scan-matching
methods in terms of pose accuracy and robustness in tests
on public domain data, and over noise levels of commercially
available sensors. The source code is available for download.

Index Terms— Scan-matching, localisation, panoramic LI-
DAR

I. INTRODUCTION

Consider a robot capable of motion, equipped with a
Light Detection and Ranging sensor (LIDAR), capturing a
measurement S0 at time t0 from pose p0 in some reference
frame. The robot then moves to pose p1 at time t1 at which
time it captures measurement S1. Provided overlap between
the two scans, estimating the rigid-body transformation T
that projects the endpoints of S1 to those of S0 with the
least error is known as scan-matching. The solution to the
scan-matching problem is central to methods of Localisa-
tion [1], Navigation [2], and Simultaneous Localisation and
Mapping (SLAM) [3], [4], as T is the rigid-body transfor-
mation p1−p0: i.e. the solution to scan-matching provides
localisation information at time t1, relative to p0. For this
reason, along with the high measurement accuracy of LIDAR
sensors, scan-matching is also used as a means to improving,
providing, or substituting odometric measurements (where
available; fig. 1), as the latter are prone to unbounded and
unpredictable tire and wheel slippage [5], [6].

LIDAR sensors with a field of view of 360◦, i.e. panoramic
sensors, were for years constrained to high price ranges,
and most provided 3D measurements. Therefore research on
scan-matching with 2D LIDAR sensors mostly focused on
non-panoramic sensors, with scan matching methods being
used without distinction with regard to field of view. In recent
years, however, price-appealing panoramic 2D LIDAR sen-
sors have emerged, but at the cost of increased measurement
uncertainty. The introduction of these sensors warrants tar-
geted research into scan-matching with the use of panoramic
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Fig. 1: Scan-matching as “laser odometry”: the robot moves from
the lower left portion of the environment to the upper right,
capturing 2D range scans along its trajectory. The coloured routes
show the estimated path of the robot derived from each method.
The proposed method’s error is invariant to angular and locational
displacement

LIDAR sensors, due to (a) the afforded periodicity of the
range signal, and (b) the need of addressing the high levels of
measurement noise with regard to the transformation errors
of current scan-matching algorithms.

This paper introduces a real-time method specifically
targeting the matching of 2D panoramic range scans. Its
errors are largely invariant to angular and locational displace-
ment for a given level of measurement noise. The central
contributions of the paper are:
• To the best of the author’s knowledge, the first method

explicitly addressing the matching of panoramic 2D
range scans that operates without establishing corre-
spondences between input scans

• The extrication from the need of a prior transformation
estimate

• The introduction of a method that aims at reducing
the orientation error to lower than the sensor’s angle
increment compared to relevant prior work

• The parameter set needed by the proposed method is
intuitive, smaller than those of established methods, and
trades accuracy for execution time

• The thorough evaluation of the proposed method against
five established scan-matching algorithms in common
use, over five benchmark datasets and measurement
noise levels from common-use, commercially available
sensors

The rest of the paper is structured as follows. In section II
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necessary notions are defined, and the problem of matching
panoramic 2D range scans is formulated. A brief review of
methods matching 2D range scans is given in section III.
Section IV provides an analysis of the proposed method. The
experimental setup and are illustrated in section V. Section
VI gives characterisations of the proposed method compared
to state of the art methods. Section VII concludes this paper.

II. DEFINITIONS AND PROBLEM FORMULATION

Definition I. Definition of a range scan captured from a
conventional 2D LIDAR sensor. A conventional 2D LIDAR
sensor provides a finite number of ranges, i.e. distances to
objects within its range, on a horizontal cross-section of its
environment, at regular angular and temporal intervals, over
a defined angular range [7]. A range scan S, consisting of
Ns rays over an angular range λ, is an ordered map S :
Θ → R≥0, Θ = {θn ∈ [−λ2 ,+

λ
2 ) : θn = −λ2 + λ n

Ns
,

n = 0, 1, . . . , Ns−1}. Angles θn are expressed relative to
the sensor’s heading, in the sensor’s frame of reference. The
angular distance between two consecutive rays is the sensor’s
angle increment γ , λ/Ns.

Definition II. Definition of a map-scan. A map-scan is a vir-
tual scan that encapsulates the same pieces of information as
a scan derived from a physical sensor. Only their underlying
operating principle is different due to the fact the map-scan
refers to distances to the boundaries of a point-set, referred to
as the map, rather than within a real environment. A map-
scan is derived by means of locating intersections of rays
emanating from the estimate of the sensor’s pose estimate
and the boundaries of the map.

Problem I. Let a mobile robot, capable of motion in the x−y
plane, be equipped with a coplanarly mounted range scan
sensor emitting Ns rays. Let also the following be available
or standing:
• The angular range of the range sensor is 360◦

• A 2D range scan S0, captured at time t0
• A 2D range scan S1, captured at t1 > t0

Then the objective is estimating the 3D rigid-body trans-
formation T = (∆x,∆y,∆θ) which, when applied to the
endpoints of S1, aligns them to those of S0 with the least
error. Equivalently, roto-translation T corresponds to the
relative motion of the sensor from the pose where it captured
S0 to the pose from which it captured S1.

III. PRIOR WORK

Scan-matching with the use of a 2D LIDAR sensor began
with Iterative Dual Correspondences (IDC) [8], an algorithm
incorporating elements of the Iterative Closest Point (ICP)
algorithm [9]. The latter and its variants, e.g. [10]–[13], have
become the de facto scan-matching algorithms in 2D and 3D
settings, with research using ICP being still ongoing [14]–
[17]. In particular, PLICP [12] has been widely adopted
due to its increased accuracy among ICP variants, and
the availability of its source code. ICP and its variants,
however, exhibit varying performance [18], limited by the

noise level in the input scans, the choice of prior, and the
configuration of the parameters governing their response (a
detailed account may be found in [19]). The vast majority of
all matching methods adopt ICP’s approach of establishing
correspondences between the two input scans, using various
assumptions, mechanisms (e.g. the Normal Distributions
Transform [20], [21] which models points to distributions),
and types of sources (e.g. features instead of points [22]; a
detailed review of scan-matching methods may be found in
[23]). The major problem with establishing correspondences
is that the process becomes more inefficient and error-prone
as measurement noise or displacement between sensor poses
increases. By contrast, the method introduced in this paper
does not operate by establishing correspondences, and its
accuracy does not depend on the rotational or translational
displacement between sensor poses for a given level of
measurement noise.

FSM’s rotational component is most akin to those of [24]
and [25]. They use Phase-Only Matched Filtering (POMF)
[26] in both rotation and translation components; the former
in one dimension and the latter in two dimensions. In the
latter, the requirements for a real-time solution and adequate
accuracy cannot be fulfilled simultaneously due to the in-
ability to balance high grid resolution (and therefore high
accuracy) with regular sensor updates. The former alleviates
this limitation by operating in one dimension, but suffers
from the same causes, namely, discretisation errors. Whereas
the latter is dependent on the grid’s resolution, the former
is dependent on the sensor’s immutable angle increment. In
both methods, both the rotational and translational compo-
nents are affected, but no mitigation technique is employed
to decrease the errors of either their components. By contrast,
the method introduced in this paper addresses all the above
issues by (a) aiming to extricate the orientation error from
the sensor’s angle increment, (b) employing a continuous-
space translation method, and (c) fulfilling the real-timeness
constraint.

IV. APPROACH

Problem I is iteratively decomposed into two disjunctive
sub-problems. The first is estimating the relative orientation
of S1 with respect to S0 under the assumption that both
are captured from the same location (subsection IV-A). In
order to do so, S0 is first transformed into a point-set (the
map) by projection to the 2D plane. A number of map-scans
are then captured from the projection origin, at consecutive
angular intervals. The intervals’ sizes are smaller than the
sensor’s angle increment in order for the magnitude of the
angular approximation error to be lower than the angle
increment. The map-scans are then compared against S1
for similarity in the POMF matching sense. The output is
an orientation difference estimate between each map-scan
and S1. In order to increase discernibility between the least
erroneous orientation estimate and the other estimates, the
pose estimate is updated with each orientation estimate,
and given over to the translation correction system, whose
resulting location error is proportional to a pose’s orientation
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error, for one iteration. The similarity between map-scans
captured from these estimates within the map and S1 is
captured in a per-ray range error metric. The final orientation
estimate of S1 is that of the pose estimate whose map-scan
scores the lowest error according to this metric.

The second sub-problem is estimating the relative trans-
lational displacement of S1 with respect to S0 under the
assumption that both are captured from poses of the same
orientation (subsection IV-B). The solution is given via scan-
to-map-scan matching by transforming S0 to a point-set, and
matching map-scans, derived from the pose estimate of S1
within the point-set, to S1 itself. The matching between the
two is derived from first principles given the scans’ peri-
odicity and homorientedness; it is facilitated by iteratively
updating the position estimate by a vector which is a function
of the first term of the DFT of the difference between S1 and
map-scans derived from the point-set of S0 [27].

In order to solve the joint problem of estimation of position
and orientation, these two methods are then joined in tandem
in an iterative process (subsection IV-C). At each step the
angular intervals at which map-scans are captured in the
orientation correction process are progressively shortened.
This facilitates finer angular and positional approximation of
the sensor’s true pose.

A. Estimation of Relative Orientation

Let the assumptions of Problem I be standing. Assume
that the two scans were captured from the same location
but from different orientations. Denoting with F{S} the
Discrete Fourier Transform (DFT) of signal S, with F−1{S}
its inverse, with c∗ the conjugate of complex c, and with |c|
its magnitude, calculate QS0,S1 :

QS0,S1 ,
F{S0}∗ · F{S1}
|F{S0}| · |F{S1}|

(1)

on the basis that if space is sampled sufficiently densely, for
k, ξ ∈ Z: k, ξ ∈ [0, Ns − 1]:

S0[k] ' S1[(k − ξ) mod Ns]⇔
F{S0}(u) ' e−j2πξu/Ns · F{S1}(u)

and, therefore, since 2πξ/Ns = ξγ: QS0,S1(u) ' e−jξγu.
The inverse of QS0,S1 is a Kronecker δ-function qS0,S1 =

F−1{QS0,S1} centered at ξ = arg max
u

qS0,S1(u). If the

difference in orientation between the two scans is ∆θ, then
∆θ = ξγ + δθ, where mod (|δθ|, γ) = λ ∈ [0, γ2 ].
Therefore for a given number of emitted rays Ns there
remains an unresolved orientation error |δθ| ≤ γ/2. The
contribution of this error to the scan-matching error is two-
fold, as its existence is also propagated to the location
estimation method. A method for further reduction of the
orientation error is presented in the following.

Let S0 be projected onto the x−y plane around an arbitrary
but fixed pose s(xs, ys, θs), producing point-set MR. MR

will hereafter be referred to as the map. Then compute
2ν map-scans (def. II) Sk0 , k = 0, . . . , 2ν − 1, starting
from orientation θs, at γ/2ν angular increments. Then the

orientation estimation process is carried out once between S1
and map scan Sk0 taken from orientation θk0 = θs + k · γ/2ν ,
for a total of 2ν times. An alignment metric between the k-th
map scan Sk0 and scan S1 is computed according to

PDk =
2 max qSk0 ,S1

max qSk0 ,Sk0 + max qS1,S1
(2)

The Percent Discrimination metric PDk ∈ [0, 1], and is
proportional to the degree of alignment between map-scan
Sk0 and scan S1, across all 2ν map-scans Sk0 . The above
analysis is the equivalent of the 2D Fourier-Mellin Invariant
matching in one dimension [26].

Let now K denote the index of the k-th map scan SK0 scor-
ing the highest PDk: PDK = max{PDk}, k = 0, . . . , 2ν−1.
Let also Ξ denote the integer multiple of angle increments γ
by which SK0 should be rotated counter-clockwise in order
to achieve PDK : Ξ = arg max qSK0 ,S1 . Then the sensor’s
orientation difference becomes ∆θ = Ξγ +K · γ/2ν + δθ′.

If map-scans Sk0 were computed by raycasting the map
of the environment instead of MR then the residual and
unresolved orientation error |δθ′| ∈ [0, γ/21+ν ]. In this case,
however, MR is an approximation of the environment’s
map in the locality of p0. Depending on the magnitude
of the sensor’s angle increment and the arbitrariness of the
environment, this approximation may be viewed as induced
local perturbations in the map of the environment. This
holds true in the general case as well, where S0 and S1 are
captured from different locations. Therefore attaining |δθ′| ≤
γ/21+ν may not always be possible for all combinations of
environments and sensor angle increments.

B. Estimation of Relative Location

Let the assumptions of Problem I hold. Assume now that
S0 and S1 were captured from different positions in the same
environment but with the same orientation relative to a fixed
reference frame. Let S0 be projected onto the x − y plane
around pose s(0, 0, 0), producing point-set ML. Assuming
that S1 was captured in a neighbourhood of S0, then ML

is a perturbed local map of the environment with respect to
sensor measurement S1. Aside from measurement noise, this
perturbation manifests due to the finiteness of the sensor’s
angle increment and to the fact that different portions of the
environment are perceptible and therefore measurable from
different locations [5]. The nature of these perturbations on
map-scans captured within ML is additive and finite. Under
these assumptions the problem of (scan-)matching scan S1
to scan S0 may be transformed into a problem of scan–to–
map-scan matching, where the aim is registering scan S1 to
map ML: i.e. estimating the pose p1 from where S1 was
captured within ML. Theorem I [27] guarantees that the
error of the location estimate between the poses from which
the two scans were captured is bounded in a neighbourhood
of the origin, when p̂1 = s.

Theorem I. Let a panoramic 2D range scan S1 be captured
from a physical range sensor from unknown pose p1 =
(l1, θ1), l1 = (x1, y1). Let ML be the map, i.e. the projection
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of panoramic 2D range scan S0 from s(0, 0, 0). Let a pose
estimate p̂1 = (l̂1, θ̂1) reside in the neighbourhood of p1

in the map’s frame of reference. Additionally, let θ̂1 = θ1.
Assume that S0 and/or S1 are affected by additive, bounded
disturbances. Then, treating the estimate of the location of
the sensor as a state variable l̂1[k] = [x̂1[k], ŷ1[k]]> and
updating it according to the difference equation l̂1[k+ 1] =
l̂1[k] + u[k], where l̂1[0] = l̂1 = [x̂1, ŷ1]>, i.e. the supplied
initial location estimate, with u being

u[k] =
1

Ns

[
cos θ̂1 sin θ̂1
sin θ̂1 − cos θ̂1

][
X1,r

(
S1,S0|p̂1[k]

)
X1,i

(
S1,S0|p̂1[k]

)] (3)

where X1,r(·) and X1,i(·) are, respectively, the real and
imaginary parts of the complex quantity X1:

X1

(
S1,S0|p̂1[k]

)
=

Ns−1∑
n=0

(S1[n]− S0[n]|p̂1[k]) · e
−i 2πnNs (4)

where S1[n] and S0[n]|p̂1[k] are, respectively, the ranges of
the n-th ray of scan S1, and map-scan S0|p̂1[k] captured
via raycasting the map ML from p̂1[k] = (l̂1[k], θ̂1)—
then l̂1[k] is uniformly bounded for k ≥ k0 and uniformly
ultimately bounded in a neighbourhood of l1. Its size depends
on the suprema of the disturbance corrupting the range
measurements of the two scans.

Remark I. Without loss of generality, subsequent to the
application of Theorem I, the location error is proportional
to the orientation error.

Let p̂′1 denote the resulting pose estimate of p1 in ML.
Then T̂ = p̂′1 − s = p̂′1 is the estimate of the 3D rigid
transformation of the sensor as it moved from the pose where
it captured S0 to that where it captured S1.

C. Joint Estimation of Relative Orientation and Location

The previous two sections describe two methods of how
it is possible to (a) estimate the relative orientation between
two panoramic 2D range scans when both are captured from
the same position but from different orientations, and (b)
estimate their relative location when both are captured from
the same sensor orientation but from different locations. In
the general case, however, no equality stands. The following
analysis describes how these two methods are combined in
tandem in order to solve Problem I.

Let the assumptions of Problem I hold. Then denote by M
the point-set that is the result of the projection of range scan
S0 to the x−y plane around s(0, 0, 0). Then the objective is
estimating the pose p1 from where S1 was captured relative
to s by way of registering S1 to map M .

Given an input pose estimate p̂1(x̂1, ŷ1, θ̂1), range scan
S1, the map M , and a sampling degree ν, the One-step Pose
Estimation system (fig. 2) first calculates 2ν pose estimates
of p1: POC = {(x̂1, ŷ1, θ̂k1 )}, k = 0, . . . , 2ν−1, according
to the orientation estimation method described in section
IV-A. The initial pose estimate of p1 is p̂1 = s(0, 0, 0).
If scans S0 and S1 were captured from the same location,
then the Percent Discrimination metric (eq. 2) would suffice

One-step Pose Estimation

Orientation Estimation

ν S1 p̂1M

Rehearsal
Location Estimation

C = CAER(PRPC)

I = 1

Location Estimation

p̂′1

POC = OC(p̂1, ν)

I = f(ν)

PRPC = RPC(POC)

pC ∈ POC : CAER(RPC(pC)) = min{C}

Fig. 2: FSM iteratively invokes the One-step Pose Estimation
method. Given a pose estimate of where scan S1 was captured
within M , the method attempts to register S1 to M by estimating
first its relative orientation and then its location with respect to the
input pose estimate

in serving as an accurate determinant of the orientation
of p1. In practice, however, the ranking provided by the
Percent Discrimination metric is confounded by the inco-
incidence of the two locations. In order to mitigate this
effect, each pose estimate in POC is given over to the
Position Estimation system, where the position of each pose
estimate is displaced once (I = 1), according to the method
described in section IV-B. This operation produces the pose
set PRPC = {(x̂k1 , ŷk1 , θ̂k1 )}, |PRPC | = 2ν . The purpose of
this operation is for it to provide an advance view of the next
step of location estimation: the less rotationally misaligned
a pose estimate of p1 is, the less it will diverge in terms
of orientation and hence position with respect to p1 once
inputted to the position estimation system (remark I). This
divergence is captured by the Cumulative Absolute Error per
Ray (CAER) metric:

CAERk =

Ns−1∑
n=0

∣∣∣∣∣S1[n]− Sk0 [n]
∣∣∣
(x̂k1 ,ŷ

k
1 ,θ̂

k
1 )

∣∣∣∣∣ (5)

where Sk0 is the map-scan captured from (x̂k1 , ŷ
k
1 , θ̂

k
1 ), k =

0, . . . , 2ν−1, within M . The CAER metric (fig. 3) encodes
at the same time a degree of alignment of position and orien-
tation between its two input scans. By rehearsing the position
estimation of each pose estimate in POC and capturing the
CAER for each of its displaced pose estimates in PRPC , it is
possible to establish a pose error rank between pose estimates
in POC and simultaneously retain only one pose estimate for
the next iteration of the One-step Pose Estimation method.
The pose estimate pC ∈ POC which, when translated once,
records the minimum CAER among all similarly-treated pose
estimates in POC is inputted to the Position Estimation
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Fig. 3: A profile of the CAER metric (eq. (5)) from 106 pairs
of sample scans, depending on the distance (∆x2 + ∆y2)1/2 and
relative orientation ∆θ of the poses from where the two scans
were captured. Pose estimates closer to the true pose in terms of
orientation (a) exhibit lower CAER values than those further away
from it and (b) produce lower location errors once inputted to the
Location Estimation system

method proper. The number of translation iterations I it
undergoes is an increasing function in the degree of map
sampling ν. The Position Estimation system produces p̂′1,
which is then fed back to the Orientation Estimation system
in the form of a new pose estimate of p1: p̂1 ← p̂′1.
In practice, the pose set POC is supplemented with one
pose whose location component is equal to p̂1 and whose
orientation is equal to the orientation of pC that produces
the minimum CAER over time. This addition introduces a
form of memory to the system, which assists it in avoiding
divergence and which, therefore, benefits speed of execution.

Given pose p̂1, range scan S1, and the map M , the
pose estimation method proposed iteratively invokes the
One-step Pose Estimation process until a set of termination
conditions is met. Denoting the former by FSM (Fourier Scan
Matching), FSM starts off with an initial degree of sampling
the map ν = νmin. The input pose estimate p̂1 is processed
by the One-step Pose Estimation process, and its output
p̂′1 is examined with regard to Recovery and Convergence
conditions. If the resulting pose estimate falls outside of
the map M then a new pose estimate is generated from
the initially supplied pose estimate s, and the process is
reset. If no significant pose estimate correction is observed
‖p̂′1 − p̂1‖2 < εδp, then the degree of map sampling ν is
increased. Its increase serves as a means of reducing the
orientation and hence the position estimate error further.
Otherwise, the One-step Pose Estimation process is iterated
until a maximum degree of map sampling is reached ν =
νmax, at which point FSM terminates. Its output is p̂′1, which
is the pose estimate of p1 in the frame of reference of M .
The roto-translation T̂ = p̂′1 − s = p̂′1 is the estimate of
the sensor’s true motion T . Algorithm I describes FSM in
pseudocode.

V. RESULTS

A. Experimental Design

The experimental procedure was conducted using a col-
lection D = {Dk}, k = 1, . . . , 5 of five heterogeneous
benchmark datasets and sensor properties, courtesy of the

Algorithm I: FSM

Input: S0, S1, γ, [νmin, νmax, I , εδp]
Output: p̂1(x̂1, ŷ1, θ̂1)

1: p̂1 ← (0, 0, 0), ν ← νmin

2: M ← project to 2d(S0, p̂1)

3: while ν ≤ νmax do
4: PRPC ,C ← {∅}
5: for k ← 0, . . . , 2ν − 1 do
6: Sk0 ← scan map(M , p̂1 + [0, 0, kγ2−ν ])

7: ξk1 ← arg maxF−1{QSk0 ,S1} (eq. 1)
8: p̂k1 ← p̂1 + [0, 0, ξk1γ + kγ2−ν ] (sec. IV-A)
9: p̂k1 ← translate(p̂k1 ,M ,S1, 1) (sec. IV-C)

10: PRPC ← {PRPC , p̂k1}
11: Sk0 ← scan map(M , p̂k1)

12: C ← {C,CAER(S1,Sk0 )} (eq. 5)
13: end for
14: p̂′1 ← PRPC [arg minC]

15: p̂′1 ← translate(p̂′1,M ,S1, I); (sec. IV-B)
16: if ‖p̂′1 − p̂1‖ < εδp then
17: ν = ν + 1

18: end if
19: if p̂′1 not in M then
20: generate new p̂1; ν ← νmin; continue
21: end if
22: p̂1 ← p̂′1
23: end while
24: return p̂1

Department of Computer Science, University of Freiburg,
comprising a total of |D| = 45402 scan measurements [28].
For purposes of comparison against state-of-the-art scan-
matching methods the experimental procedure is extended
to PLICP [12], the Normal Distributions Transform (NDT)
scan-matching method [20], and FastGICP [13]. PLICP,
NDT, and FastGICP belong to the established state-of-the-
art methods of scan-matching [17], [29]–[33]. In addition,
the experimental procedure is extended to FastVGICP [33]
and NDT-PSO [21].

The experimental setup is the following. The rays of each
dataset instance Dd, d = 1, 2, . . . , |D| are first projected
to the x − y plane around rd. The dataset’s scans are not
panoramic, therefore the remaining space is filled with a
semicircular arc that joins the scan’s two extreme ends.
Alternative fashions for closing-off the environment have
been found equivalent with respect to the performance of
the tested methods. The resulting point-set is regarded as the
environment W d in which the range sensor operates. Then
the pose pd0 from which Sd0 is captured is generated randomly
within the polygon formed by W d. The pose pd1 from which
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the sensor captured S1 is then obtained by perturbing the
components of pd0 with quantities extracted from uniformly
distributed error distributions Uxy(−δxy, δxy), Uθ(−δθ, δθ);
δxy , δθ ∈ R≥0. Range scans Sd0 and Sd1 are then computed by
locating the intersection points between Ns rays emanating
from pd0 and pd1, respectively, and the polygon formed by
W d across an angular field of view λ = 2π. The inputs to
all algorithms are then set to Sd0 and Sd1 . Their output is p′d1 .
The roto-translation T̂ d = p′d1 is the estimate of the motion
T d = pd1 − pd0 of the range sensor.

For every pose estimate p′d1 outputted by each algorithm,
its offset from the actual pose pd1 is recorded in the form of
the orientation error and the 2-norm position error. In order
to test for the performance of the proposed method with
use of real sensors, five levels of noise acting on the range
measurements of the scans are tested. The range measure-
ments are perturbed by zero-mean normally-distributed noise
with standard deviation σR ∈ {0.01, 0.03, 0.05, 0.10, 0.20}
m. The values of tested standard deviations were calculated
from commercially available panoramic LIDAR scanners by
identifying the magnitude of their reported maximum range
errors and dividing it by a factor of three. The rationale
is that 99.73% of errors are located within 3σ around the
actual range between a ray and an obstacle, assuming errors
are distributed normally. The minimum standard deviation is
reported for VELODYNE sensors [34]; the rest are reported
for price-appealing but disturbance-laden RPLIDAR [35] and
YDLIDAR [36] sensors. The size of the input scans was set
to Ns = 360 rays. The minimum and maximum map over-
sampling rates of FSM were set to (2νmin , 2νmax) = (20, 23).
The number of iterations of the translational component
at each map sampling degree ν was set at I = 5ν. The
orientation convergence threshold was set to εδp = 10e-5.
Maximal displacements δxy and δθ were chosen as such by
prior art tests [12]. For each experiment all algorithms ran
for E = 10 times across all instances of D; therefore each
method underwent a total of 10× 45402× 6× 5 ∼ O(108)
experiments. The orientation and position error distributions
reported below are those across all E · |D| experiments of
the same configuration. All experiments and algorithms were
run in C++, on a single thread, on a machine with a CPU
frequency of 4.0 GHz. The implementations of PLICP, NDT,
FastGICP, FastVGICP, and NDT-PSO were taken from [37].

B. Performance

Figure 4 shows the distribution of rotation and translation
errors across all experiments for all tested algorithms. The
evidence shows that FSM’s position and orientation errors
are equal to or lower than the most accurate method for each
displacement and sensor noise configuration. As displace-
ments and sensor noise levels increase, its errors increase at
a lower rate than those of any tested method. The magnitude
of FSM’s errors is largely independent of the displacement of
the two input scans for a given level of sensor noise (fig. 1).
In terms of orientation, 72%-74% of FSM’s errors resulted
below γ/2νmax+1 = 0.0625 deg when σR = 0.01 m, and
33%-36% when σR = 0.20 m. The juxtaposition of the six

methods’ errors at high levels of sensor noise highlight the
robustness afforded to FSM by the Discrete Fourier transform
and its properties. In terms of execution time, PLICP ranged
between 4.8-17.5 ms, NDT 8.1-19.9 ms, FastGICP 3-9 ms,
FastVGICP 3.8-6.8 ms, NDT-PSO 190-200 ms, and FSM
between 17.7 and 23.7 ms. The measurement frequency of
modern LIDAR sensors ranges from 12-20 Hz; therefore
FSM runs in real time in modern processors.

VI. CHARACTERISATION

Figure 5 depicts a comparison of FSM’s alignment pro-
cess against that of an ICP variant, namely FastGICP, for
measurement noise of σR = 0.03 m. The top figure shows
the initial configuration between two scans captured from
poses differing by T = (0.35m, 0.1m,−60deg). While
FastGICP progressively reduces the orientation error, FSM
nearly eliminates it in one step. From there it provides finer
approximations of the true orientation by increasing its an-
gular sampling degree, which in turn allow it to eliminate the
positional errors further. The CAER metric succeeds in nav-
igating the error space better than FastGICP’s internal error
metric, especially at such high orientational and positional
displacements. This fact makes FSM suitable in conditions
of higher robot velocities (here up to 7.28 m/s and 720
deg/s). FSM converges with an error of (0.0098m, 0.08deg)
in half as many iterations as FastGICP, whose final error is
(0.61m, 9.94deg).

Figure 6 shows the behaviour of FSM and an ICP variant,
namely, PLICP, in tests where the sensor’s maximum range
is limited. Specifically, it shows their mean orientational and
positional errors in ten tests, for progressively smaller max-
imum sensor range, within the two environments depicted
in the top row with white colour. The sensor is affected
by noise of σR = 0.05 m. The sensor’s first position
is marked with a blue dot. The maximum displacement
between sensor poses is set to (δxy, δθ) = (0.05m, 10deg)
and (δxy, δθ) = (0.20m, 45deg). Although one would expect
that matching without the use of correspondences would fare
worse than matching with it, FSM exhibits more robust and
more accurate orientational errors than PLICP. In terms of
position, FSM’s errors are, on the average, equal to or lower
than those of PLICP.

VII. CONCLUSIONS AND FUTURE STEPS

This paper has presented a real-time scan-matching
method for panoramic 2D LIDAR sensors. The approach
rests on properties of the DFT, which afford it increased
robustness and accuracy compared to state-of-the-art scan-
matching approaches in the face of measurement noise
exhibited by real-life sensors. FSM does not rely on cor-
respondences or features, and may operate under missing
range information; it is suitable for unstructured and outdoor
environments, even with high-frequency components.

Future work will focus on extending FSM to 3D LIDAR
sensors, either by extension to the slices not parallel to
the ground, which may provide vertical motion information
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Fig. 4: Distributions of orientation and position errors across a range of maximal positional and orientational displacements, for
progressively larger sensor measurement noise levels sd. Each box represents the statistics of each method for E = 10 iterations
over

∑
|Dk| ≈ 45·103 random scan pairs for each configuration, where k = 1, . . . , 5 is the dataset index. Dots signify mean errors.

FSM’s errors are largely independent of the initial displacement of scans for a given level of sensor noise

according to the sine of each slice’s pitch angle, or by
generalising its two main submethods to the 3D/6DOF space.

The C++ code of the proposed method, along with the
implementation of the conducted experiments is available at
https://github.com/li9i/fsm.
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