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Abstract—In this paper we propose a novel real-time tracking
method of a moving UHF-RFID tag. Two antenna pairs fixed
at predefined positions monitor the moving tag collecting phase
measurements. Phase differences are calculated for each pair
and then mapped to distance-differences of the two antennas
from the target tag. The latter corresponds to a hyperbola for
each pair of antenna. The intersection of the two hyperbolas
denotes the position of the tag. Since solving the system of
hyperbolas to find the intersection point is not feasible with
standard practices, a neural network is exploited to approximate
the solution. Compared to prior art, the proposed method does
not require knowledge of the tag’s initial position or the trace
followed (e.g. conveyor belt). Experiments were conducted by
placing a tag on a moving robot capable of performing SLAM
(Simultaneous Localization and Mapping) to know the ground
truth. The results showed a mean error under 0.5m throughout
the experimental campaign.

Index Terms—RFID, tracking, hyperbolic positioning, phase,
neural network

I. INTRODUCTION

The Fourth Industrial Revolution is starting to change
our everyday life in a lot of its aspects. On this ongoing
automation of traditional manufacturing, processing of goods,
and industrial practices, Radio Frequency Identification(RFID)
technology plays a significant role. An important part of RFID
in this revolution is the localization and tracking of objects or
humans. From tagging goods to empower logistics operations,
to tagging humans to enhance security or provide statistics of
visiting patterns, finding ways to track a moving RFID tag is
of great importance.

In this paper the target is to track a visitor in the Archaelog-
ical Museum of Thessaloniki. Upon entrance, the visitors are
given a ticket with an attached RFID tag. Antennas and readers
are set at known locations in the museum collecting phase
and RSSI measurements associated with each RFID tag. The
phase data are exploited to track the moving tag thus quantify
the behaviour of visitors and provide the staff of the museum
with traffic statistics helping them to improve the experience
of visitors.

A majority of approaches exist regarding RFID tag tracking
in prior art. In [1], [2] and [3] RSSI data are exploited to
track the tag. Received signal strength though is not a reliable
indicator due to the fact that it is distorted from environmental
factors such as multipath and shadowing, thus reducing the
accuracy of the positioning. Other methods such as [4] and [5]
take advantage of angle of arrival (AOA) data calculated from

measurements collected from multiple antennas. In [4] the
trace of the tag is known a priori, as the authors want to track
the tag on a conveyor belt while in [5] the authors surround
the target tags with three self-designed element antenna arrays
to localize the tag. Authors in [6], [7] and [8] exploit phase
measurements to track a moving tag. However the initial
position of the tag must be known beforehand. Tagoram [9]
is also a method that utilizes the phase of arrival (POA) of
the signal to localize a moving tag and it does not depend on
the initial position of the tag. However, Tagoram’s complexity
demands calculations that cannot be applied in real time.

In this work we develop a tracking technique that can track
a moving tag in real time. The goal is to track visitors inside
a museum and quantify their behaviour (i.e. duration of visit
per exhibit etc.). Taking into consideration the layout of the
museum and the arrangement of the exhibits the accuracy
should be better than 1m. The initial position of the visitor
is not known. The equipment used includes commercial of
the shelf readers, antennas and tags.

II. PROPOSED TRACKING METHOD

The proposed method is able to track a moving or a
stationary RFID tag. POA measurements are collected from
4 antennas (2 antenna pairs) which are located at predefined
fixed positions. The phase data are collected from a single
reader and the phase differences from the two antenna pairs are
mapped to distance-differences to locate the moving tag. The
proposed tracking technique can be analysed to the following
3 basic principles:

1) The RFID reader reports phase measurements from each
antenna. Since the measurements are not collected at
the same time, ”common” time phase measurements
are created via interpolation. Then phase differences for
both antenna pairs are calculated and unwrapped.

2) The two phase-differences of the antenna pairs are
translated to distance-difference curves. These curves
are in fact two hyperbolas’ branches which cross at the
position of the tag. The foci of the hyperbolas are the
positions of the two antennas of each pair.

3) Solving the system of hyperbolas’ equations is not
feasible with standard practices. To surpass this problem
a deep neural network is trained with theoretical data
creating a function which fits the solution of the system
of hyperbolas for each point at the area of interest.
The measurements collected by the reader pass through



the trained neural model and the position of the tag is
estimated rapidly.

Let φi be the phase measured from antenna i denoted as:

φi = (φiprop + φio + φinoise)mod(2π), (1)

φnoise ∼ N (0, σ2
phase) . (2)

where i is an index for each antenna (i.e. 1, 2, 3 and 4), φio
is the phase offset including phases of the cables and other
hardware and φinoise is the measurement’s noise. Phase φiprop
corresponds to the phase accumulated due to the round trip of
the electromagnetic wave and is given by[10]:

φiprop =
4π

λ
||Atag −Ai

ant||2 =
4πdi
λ

, (3)

where ||Atag−Ai
ant||2 denotes the euclidean distance between

the tag and the reader’s antenna:

||Atag −Ai
ant||2 =

√
(xtag − xi)2 + (ytag − yi)2, (4)

Phase measurements reported by the reader are collected
at different time instances for different antennas. To calculate
the phase differences between the antennas a common time
series is generated according to the time instances of the
raw phase measurements. The common time instances are
generated via linear interpolation at time slots where a high
read rate per tag is observed. For all common time instances
t, phase differences ∆φ12,t and ∆φ34,t are calculated as:

∆φ12,t = φ1,t − φ2,t and ∆φ34,t = φ3,t − φ4,t (5)

The two phase differences are then mapped to distance-
differences. Without loss of generality let’s assume a multipath
and noise free environment and that the phase measurements
are unwrapped. By substituting (1) and (3) to (5) the phase
differences for antenna pairs 1− 2 and 3− 4 are given by:

∆φ12 =
4π

λ
(d1 − d2) and ∆φ34 =

4π

λ
(d3 − d4) (6)

⇒ ∆d12 =
λ

4π
∆φ12 and ∆d34 =

λ

4π
∆φ34 (7)

Equations (6) and (7) show that the range of phase dif-
ference of an antenna-pair, depends on the distance between
the two antennas. The maximum phase difference is observed
when d1 − d2 is maximized. As shown in Fig. 1 this happens
when the tag’s position is on the line connecting the center of
the two antennas(i.e. when d1 − d2 = d12).

If d12 = λ/2 then the calculated phase difference ranges
between −2π to 2π. In this work the distance between the
antennas for each pair is considered less than λ/2.

By substituting (4) in (7) we get:

||Atag −A1
ant||2 − ||Atag −A2

ant||2 =
λ

4π
∆φ12 (8)

||Atag −A3
ant||2 − ||Atag −A4

ant||2 =
λ

4π
∆φ34 (9)

As shown in Fig. 2 the loci of (8) and (9) are two hyper-
bolas intersecting in the actual position of the tag, assuming
noiseless line of sight measurements.

Fig. 1. Two antennas are located in (x1, y1) and (x2, y2) accordingly.
Maximum phase difference is observed on the line connecting the two points
where d = d1 − d2 ⇒ d = d12.

Fig. 2. Point of intersection of two hyperbolas in the general case.

To estimate the position of the tag Atag need to be solved.
Trying to solve the system of equations (8) and (9) to estimate
the tag’s position leads to sextic polynomials. This type of
polynomials cannot be solved with standard practices in the
general case. To overcome this problem a deep neural network
has been trained to approximate the solution of this system.
The phase differences of the two antenna pairs are the input
of the neural model and the tag’s position the output.

By training the model with the unwrapped phase differences
of the actual geometry, we make sure that there exists a 1 -
1 mapping between a pair of signed phase differences and a
unique location in the area of interest. If the distance between
the antennas, in the actual setup, is such, that many hyperbolas
should be considered among each antenna-pair, due to phase
wrapping of the measurements, all we have to do is feed
the trained neural network with all possible unwrapped phase
differences and it will output all possible locations of the target
in the area of interest.
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Fig. 3. The architecture of the Neural Network

The trained model is basically a function expressed as:

FNN (∆φ12,∆φ34) = Atag (10)

The neural network is designed as a multilayer perceptron
(MLP) and its main goal is to approximate a function. A
representation of the MLP designed, is shown in Fig. 3. The
MLP consists of two input nodes (∆φ12,∆φ34), 5 hidden
layers (12, 24, 48, 64, 128 and 256 nodes respectively) and
two output nodes (xtag, ytag). A ReLu activation function was
used for all layers and RMSProp for the optimizer. To enhance
the training of the model a custom loss function was selected
and is given by:

Loss = ||Atag real −Atag est|| (11)

The neural network training process can be decomposed in
the following steps:

1) The area of interest is mapped and a coordinate system
is defined.

2) Arrangement of the antenna-pairs is decided, taking into
consideration coverage and minimization of intersection
points of the hyperbolas’ branches.

3) For the given area, a dense grid of 1x1cm2 is assigned.
The density of the grid varies with respect to the desired
accuracy of the tracking method.

4) The theoretical values of the unwrapped phase differ-
ences for each antenna pair are calculated. These phase
differences along with the corresponding grid points
form the training data set.

5) The neural model is trained until a predefined threshold
of mean error and standard deviation is passed (e.g.
µerror < 0.02m and σ2

error < 0.01m).

III. PERFORMANCE OF TRACKING ALGORITHM IN
EXPERIMENTAL SETUP

The experiments took place in a lab of the School of
Electrical and Computer Engineering of Aristotle University
of Thessaloniki. As shown in Fig. 4 the target-tag is attached
on a robot capable of performing SLAM. This allows us to
know the exact position of the tag in the search area. For
phase data measurements an Impinj Speedway R420 reader
was used and four Laird PER86506 antennas. To imitate a
movement of a human the speed of the robot does not remain

Fig. 4. The setup of the experiments. The tag is placed on a robot able to
perform SLAM. The two antenna pairs are placed at known locations and the
two antennas per pair are placed at a distance less than λ/2.

Fig. 5. The two paths followed by the tag on the robot during experiments.
The blue path is a straight path without stops and changes on the speed of
the robot while the orange path imitates a human movement as the robot
decelerates turns arbitrarily and performs stops along the route followed.

constant through out the experiments. The robot accelerates,
decelerates or even stops. The map of the experiments’ setup
and the tag’s trajectories are shown in Fig. 5.

Fig. 6 shows the steps of the tracking algorithm for the
random path, since it is more representative of a visitor’s
behaviour. Each subfigure represents a step of the algorithm.
For the selected space and antenna locations a neural network
is trained to calculate the position of a tag.

Phase data are collected from each antenna and common
time measurements are created via linear interpolation (Fig.
6a). Then, the phase differences are calculated and the un-
wrapping process take place ( 6b). The phase data collected are
wrapped. As result, the sign of the collected phase difference
is ambiguous. Given that the distance between the antennas



Fig. 6. Steps of the Tracking Algorithm.

on each pair is less than λ/2, two possible phase difference
sequences are generated for each antenna pair.

This leads to two possible sequences of phase differences
for both antenna pairs. The same ambiguity exists also on
the other antenna pair, creating 4 possible combinations of
sequences in total, hence 4 possible trajectories. In case of
Fig. 6c the two possible sequences for antenna pair 1-2 and
3-4 can be seen with the orange and blue color in the two
subplots respectively.

As shown in Fig. 6c the phase difference sequences are
distorted by noise and multipath. To overcome this distortion
an average of consecutive phase measurements in a time
window of 5 seconds is calculated (Fig. 6d).

The four phase difference sequences generate four possible
trajectories after passing through the trained model. The trajec-
tories that either exceed the area’s boundaries or present steps
bigger than a human could possible perform during 5 seconds,
are rejected(red, brown and purple paths in Fig. 6e). After the
trajectory rejection process, the final estimated trajectory is
presented in Fig. 6f.

To evaluate the performance of the tracking method the
mean error is calculated which is given by:

Error =

∑N
n=1 ||An

tag est −An
tag real||2

N
(12)

The resultant error for the straight and the random paths
of Fig. 5 were 0.24m and 0.47m respectively. Additional
experiments were conducted, deploying the same setup, but
forcing the robot to move along different trajectories. The
mean error was kept below 0.5m in all cases.

IV. CONCLUSION

Real-time tracking of moving targets is a key feature for
Industry 4.0 applications. In this paper we present a novel
method on tracking a UHF-RFID tagged target in real time.
The method exploits neural networks to perform hyperbolic
positioning of the tag in the search area given. The proposed
neural model needs to be trained only once for each antenna-
geometry installation. It is trained until reaching low values of
mean error and std. A priori knowledge of initial position of
the target is not needed. The tracking method will be used to
track visitors inside a museum and quantify their behaviour.
The authors believe that the proposed tracking method can
be used for a majority of indoor or outdoor RFID tracking
applications. The results of experiments show that the mean
error remains under 0.5m even in arbitrary movements of the
tag.

Future work includes more experiments in different environ-
ments and larger tag populations to test the robustness of the
algorithm in different multipath scenarios. Also experiments
where the tag is placed on a human will be held to investigate
the effect of human body on the phase measurements and
consequently to the accuracy of the method.
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