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ABSTRACT. A largely numerical study was made of families of three-
dimensional, periodic, 'halo' orbits near the collinear libration
points in the restricted three-body problem. Families extend from

each of the libration points to the nearest primary. They appear to
exist for all values of the mass ratio uy, from 0 to 1. More importantly,
most of the families contain a range of stable orbits. Only near L1,
the libration point between the two primaries, are there no stable
orbits for certain values of u. In that case the stable range decreases
with increasing u, until it disappears at u =0.0573. Near the other
libration points, stable orbits exist for all mass ratios investigated
between 0 and 1. In addition, the orbits increase in size with in-

creasing u.

1. INTRODUCTION

One of the most freguently studied models in celestial mechanics is the
three-body problem. Of particular interest are the paths of motion of an
infinitesimal particle under the gravitational influence of two other
finite bodies. This study is concerned with motion resulting from particular
initial conditions which produce periodic, three-dimensional 'halo' orbits.
Robert Farquhar coined the term ‘'halo' for these orbits in his Ph.D.
thesis (Farquhar, 1968). In studies related to exploring the far side of
the Moon (Farquhar, 1968, 1970), he found a family of three-dimensional
almost periodic orbits around the equilibrium point L, in the Earth-Moon
system - the translunar collinear libration point. At Goddard (Farquhar,
1972) , Farquhar lobbied for a communications station in such an orbit for
use with Apollo 18. A satellite or space station placed in this orbit has
the advantage of continuous contact with both the far side of the Moon and
the Earth. With control, it is never blocked from view by the Moon, thus

the term 'halo'. Apollo 18 was, of course, later cancelled.

In 1973, Farquhar and Kamel (1973) used the method of Lindstedt-

Poincaré to produce analytic solutions for quasi-periodic orbits about L2.

* Present address: School of Aeronautics and Astronautics, Purdue University,
West Lafayette, IN 47907, U.S.A.

Celestial Mechanics 32 (1984) 53-71.  0008-8714/84/0321-0053 $02.85.
© 1984 by D. Reidel Publishing Company.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1984CeMec..32...53H

54 K. C. HOWELL

Their solutions included nonlinearities, lunar orbit eccentricity and the
Sun's gravitational field, all of which are hereafter ignored. The
linearized motion consisted of periodic motion in the plane of the Moon's
orbit, and simple harmonic motion out of the plane. For certain large
values of the in-plane amplitude, a corresponding value of the out-of-
plane amplitude would produce a purely periodic three-dimensional path.
Farquhar and Kamel calculated some members of this halo family, all of
which were unstable. The convergence of their truncated series does
deteriorate, however, as orbit size increases.

A scientific satellite, the International Sun Earth Explorer (ISEE),

was recently in a similar periodic halo orbit about L the libration point

’
between the Sun and Earth (Farquhar et al., 1977; Ric;ardson, 1979) . This
orbit is also unstable. Station keeping costs have been modest for the
ISEE satellite but could be even lower if the orbit were stable - an
important consideration if applied to a large space colony in the future.
In 1979, Breakwell and Brown (1979) extended the L2 family numerical-
ly, from the perfectly periodic orbits discovered by Farquhar and Kamel as
far as almost-rectilinear orbits near the Moon. They also calculated the L1
family as it moves toward the Moon. Both families have more out-of-plane
motion and shorter periods as they approach the Moon. Of significance is
the range of stable orbits found for each roughly halfway between the
libration point and the Moon. Current work extends this to other mass ratios

of the two finite bodies.

2. ANALYSIS

2.1. Equations of Motion

The three-body problem involves the two finite masses m, and Moy,

to be point masses, moving around their common mass center, each under the

assumed

gravitational influence of the other. A rotating coordinate system, with
origin at the barycenter is chosen as shown in Figure 1. u is defined as

the mass ratio m, to the sum m1+m2.

The mass ratios of some familiar systems are: Earth-Moon (0.012),

L
5
Fig. 1. Libration points in the 3-body problem.
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6

Sun-Jupiter (9.5x10_4) and Sun-Earth (3x10 °). The x-y plane is the plane

of motion of m, and m, . A z—-axis out of the paper completes the right

handed system. The third body, My is assumed massless but may travel in

all of the three dimensions. In this system, it is well known that there

are five equilibrium points, or libration points, where gravitational and
centrifugal forces balance each other. Temporarily assuming m2<m1, the

points are defined as shown in the figure. Of the collinear points, L3 is

defined as being on the far side of the larger mass, L., is between themn,

1
and L2 on the far side of the smaller mass. As m1 and m, travel around
the barycenter, all five points remain in the same position relative to
the masses for a given u. For convenience, nondimensional units were

chosen such that the following quantities are equal to unity: the angular

velocity of the rotating frame, the distance between m, and M, and the
sum of the primary masses, m,+m, .
The equations of motion for the system are:
U
R - 2y = —
0X
oU
v + 2% = — (1)
oy
oU
3 o=
3z
where
(1 - u) H
U= 3"+ yP) e b —
d1 d2
a; =[x+~ + y2 + 22]1/2;
d2 = [(x - 1 + p)2 + YZ + 22]1/2;
H-= m,;
1T - u=m

This system does admit a constant of integration, the Jacobi constant,
C, such that

Co=2u - (%2 + 9% + 29, (2)
Let g be defined as the column vector (x, v, 2z, X, ¥, z)T. Then the diffe-
rential equation for the transition matrix ¢(t, 0), the matrix of partial

derivatives Bz(t)/BX(O) associated with these equations of motion, is
d
— o(t, 0) = F(t)o(t, 0). (3)
dt

F is a 6x6 matrix which is divided into 4 submatrices, éach 3x3

0 I
F = ,
Ugy |29
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where

zero matrix,

]

identity matrix,

0 1 O
£ =1-1 0 0f,
0 0 0
And U is the symmetric matrix of second partial derivatives of U with

XX
respect to x, y, z evaluated along the orbit. The initial condition ¢(0, 0)

is equal to the identity matrix. The problem thus presents 42 first order

differential equations of motion. For orbits calculated close to m,, a time
transformation from t to 1T was used, such taht

dt

- = d,, (4)
bringing the total number of differential equations to 43.
2.2. Numerical Algorithm
The following analysis closely follows Breakwell and Brown (1979). In

preparing Equation (1) for integration, the initial conditions can be
chosen by noting the invariance of the system under the transformation
y » -y and t » -t. Then the 0ld and transformed equations will produce the
same solution for the same initial conditions. The same initial conditions

demand that the initial vector is

T . T

—)SO = (XO’ 0, ZOI 0, yos 0y,
which is perpendicular to the x-z plane. The solution will also be
symmetric with respect to the x-z plane, so if another perpendicular

crossing can be found, such that

%(T/2) = (x, 0, z, 0, ¥, 0)°,

then the orbit will be periodic with period T.

The transition matrix at T/2 can be used to adjust the initial values
of a nearby periodic orbit. Using a Kutta-Merson integration procedure,
the equations are integrated until y changes sign. Then the step-size
is reduced and the integration goes forward again. This is repeated, until

lyl < 10_11, and the time at this point is defined to be T/2.

The orbit is considered 'periodic' if |%] and 2| < 10—8 at T/2. If
this is not the case, X and 2 can be reduced by correcting two of the
three initial conditions and integrating again. ]

Assume |%| and |2| are too large. Let (6x0, 0, 620, 0, 6?0, 0)T be the
corrections to the initial vector §0. Since yv(T/2) = 0 at this point,
then &% = -%X and 62z = -2 are the only desired changes in the end
conditions. The corrections can be calculated from

BD:¢

§X = o(T/2, 0) 6%, + — &(T/2),
ot
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where
§dy = 0 = @216x0 + @23620 + ¢256y0 + y8(T/2).
If it is desired to change only 2z and yo, and leave X fixed,
the result is
() T [G2 29 -2 (3) s oas] (22) - (5)
5§z bey Ops g \ 2 23 25 Yo
To keep zg fixed and change only Xq and 90, use
() 2 [ 22 () v 200 |5 ()
z 61 “65/ ¢ ‘% 0

Using this methodology, the convergence to a periodic halo orbit is rapid
and in most cases three to four iterations are sufficient. Because the
orbit is symmetric about the x-z plane, it is not necessary to calculate
the second half of the orbit,

The transition matrix at the end of a complete cycle, ¢(T, 0), is
needed to determine the first order stability of a given periodic orbit.
Integration of the second half of the orbit to obtain ¢(T, 0) is, however,
not required since ¢ (T, 0) can be calculated directly from ¢(T/2, 0) which
is already available. The transformation previously mentioned of y -» -y,

t » -t is performed first. The new vector z can be written in terms of g as

Y = AX, (7)
where
1 0 0 0 O O
0-1 0 0 0 O
A = 0O 0 1 0 0 O .
0 0 0-1 0 O
o 0 0 o0 1 O
o 0 0 o0 0 -1
The new transition matrix, ¥, is then

Y = AdA. (8)
The transformation leaves the equations of motion unchanged, so

¥(-t) = &(t) or VY(T/2) = &(-T/2).
Using relations (7) and (8) as well as the property

@(tz, 0) = @(tz, t1)¢(t1, 0),
the following can be derived:

o(T, 0) = A&~ (T/2, 0)Ad(T/2, 0). (9)

1

Now define ¢* = VOV ' and note that ¢* is symplectic, i.e., oxTgox = s,

where superscript T means transpose and

PN )

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1984CeMec..32...53H

K. C. HOWELL

58
Then
sV (r/2, 0) = vs W TeT(1/2, 0)vTsv. (10)
For a final result,
0 —I\ T /—29 I
o(T, 0) = A< ) o~ (T/2, 0) \ ) A®(T/2, 0). (11)
I -29 -I 0

First-order stability of a particular orbit is determined by the eigen-
values of the full cycle transition matrix ¢(T, 0). For periodicity, the
eigenvalues must have a modulus of 1. In addition, some observations can

be made initially about the 6 eigenvalues of ¢(T, 0). First, the relation
in Equation (10) shows that ®_1 and @T, or ¢, have the same eigenvalues.
Second, the determinant is 1, so zero eigenvalues are excluded. Third, it
can be shown that two of the eigenvalues are always 1. It may be easier and
more accurate to calculate the 4 eigenvalues which are needed directly

from a 4x4 matrix M:

dx 6x0
dz =M ézo . (12)
dx 6&0
dz 6%0
since it is shown that §y = Gyo = 0. To determine an expression for M,

start with the following total derivative:

dx §x

e

0
dy §¥, y
dz | _ 5 | %20 4+ 2] s(p/2). (13)
ax 5% %

0
ay 5%, g
az 52, %

Assume XO' ZO' io, ZO vary so that the Jacobi constant, C, from Equation

(2) remains constant. The derivative of (2), evaluated at t = 0, produces

6y0 as a function of §x, and 620, since

0

oC aC aC

—_ 8§y, t §x, + §z, = 0
0 0 0 !

ayo axo azo

with only three nonzero terms. §(T/2) can also be expressed as a function,

then, of 6x0, 620, éko, 620 by using the second of the Equations in (13)

dy = 0 = 0,,0%, *+ 90,0820 + 0, 8%, + 0, 89 + 0,82, + Y§(T/2).
The resulting M matrix is
®11 %93 %94 %96 o5
_ | %31 %33 %314 %36 T %35 ¢3C oC

M=, ® o o T e | ® o 0 o)
41 43 44 46 oC/ 3y 45 dx, 9z
o o o o No o 0
61 °“63 ‘64 “66 65
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0

' o o fas 2 N
2 |« [(%1 %23 %24 %2¢ sy, Voxg BZOO °)] -

Z

The eigenvalues determined from M will be the reciprocal pairs A1, 1/%1,

Az, 1/A2. A solution will be periodic only if the modulus of X is equal

to 1. Since complex A will be accompanied by its conjugate, all A must

be on the unit circle for stability. To more easily show results, two

stability indices have been defined.
v, = é(ki + 1/Ai), i=1, 2.

For a given orbit, stability is indicated if

3. RESULTS

Approximately 1000 orbits were calculated to produce the following results.
This number was necessary because a reasonable initial guess for an orbit
was derived from the initial conditions of a previous solution. The study
was started by using values obtained by Breakwell and Brown in the Earth-

Moon case (u;0.012).

3.1. The L1 Halo Family

Shown in Figures 2a-c are members of the L1 family at u=0.04. Table I

contains the initial conditions (x zZ 90) and final values for some of

o’ 0’

0.2 —

P | |
0.6 0.8 1

X

rig. 2a. X-Z projection, L, family, u=0.04.
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0.2 —

-0.2 —

0.6 0.8 1

Fig. 2b. X-Y projection, L, family, u=0.04.

1

0.4 | T |

0.2 —

0.0 —

0.2 ! |

Fig. 2c. Y-Z projection, L, family, u=0.04.

1

the orbits shown in the figures. In Table I, recall that X is defined from
the barycenter, T/2 is the number of nondimensional time units in half the
period for the given orbit. C is the Jacobi constant from Equation (2),

and v1 and v, are the stability indices. In the figures is the northern
family. In all cases a mirror-image southern family can be obtained by
reversing the sign of z. Note the small size of the orbits. The period is

decreasing as the move closer to m Work done by Breakwell and Brown

9.
suggests that even closer to the mass than those shown, the orbits get
larger with increasing z values and longer in period. The region of stable

orbits is bounded by the dashed orbits seen in the figures. It is located
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in Table I between the orbits with values x,=0.729988 and x,=0.801125,

To study the stability, each orbit in ghe family is degignated by its
minimum x value. The maximum z value also occurs at this point which was
used as the starting point in the numerical integration. Using these as
identifying points for each orbit, the stability indices for pu=0.04 are
shown in Figure 3. Recall that vy and v, are calculated from the eigen-

TABLE I: Initial conditions for L1 family at u=0.04.

X 0.723268 0.729988 0.753700 0.777413 0.801125 0.817724
z, 0.040000 0.215589 0.267595 0.284268 0.299382 0.313788
yo 0.198019 0.397259 0.399909 0.361870 0.312474 0.271306
T/2 1.300177 1.348532 1.211253 1.101099 1.017241 0.978635
C 3.329168 3.030033 2,937178 2.928754 2.930700 2.929481
vy 1181.69 51.07839 4.95816 1.101843 0.94834 1.10361
Vo 0.98085 -0.90203 -0.40587 -0.420200 -1.58429 -2.09182

10 . T

5_ 4

\h ma

L 1 1

0.7 0.8 0.8 1
MINIMUM X

Fig. 3. Stability indices, L, family, u=0.04.

1

values of the M matrix and that both must be between -1 and +1 for stability.

The region of stable orbits indicated earlier is seen to exist. For the
orbits closer to m, but not shown, the stability indices return to Ivi| <1
but they are near-collision orbits and were not of interest in this study.
Figure 4 uses the stability curves at various mass ratios and shows only
the parts of the curves at or near the 'middle' stable zone. All curves

have been normalized such that the distance of L1 to m, is equal.
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taining primary masses equal to the Sun and Jupiter. The curve u=3x 10
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u=.06 \
.05
04 g2
.01
3%107°
0 L o

)

A}

MINIMUM X
4. Stability indices, L1 families.
0.4 T T T
0.2 — —
0.0 — X X |
L ma
[P I I T SR O B N
0.6 0.8 1
MINIMUM X

5. X-Z profile, L, family, u=0.04.

1

top values, define the boundary of the stable range of orbits

\)1,

The bottom values, Vor define the boundary near m, . Increasing

g7 but also increases v1.
to dip below +1 when u=0.0573. Other families at higher mass ratios

ratio moves the curves close to L

pursued. The curves labelled u=0.001 was done for a system con-
6

represents the Sun-Earth system.
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0.4 —
_— n=.05 N
N — p=.04
— =02
0.2 — ]
™
=
) | _
= p=.01
>
=
_23=10°®
0.0 w=3-10 —
]_1 Mo
r_ —
-0.2
MINIMUM X
Fig. 6. Stable regions, L1 families.
0.4

&QL—

0.0 — —
05 | L |
0.8 1 1.2 1.4

Fig. 7a. X-Z projection, L, family, u=0.04.

2
The effects of mass ratio can also be studied by using plots like

Figure 5. Using x for orbit identification, a curve plotting X in versus

the correspondingm;zax values is presented for the u=0.04 family. ;2 is
seen to be the left boundary of the x-z projection in Figure 2a. A similar
profile can be drawn for each mass ratio. In Figure 6, only the parts of
those profiles whose orbits fall in the stable zone have been drawn.
Again, the curves have been normalized so the L1 to m, distance is equal.
Increasing u moves the stable zone closer to the libration point. It also
increases the out-of-plane motion, thus making the orbits larger. The size

of the zone appears to be decreasing, however.
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3.2. The L2 Halo Family

The families originating near the equilibrium point L., are more interesting

because the stable halos continue to exist for all Vaiues of u tested. The
projections of this family at u=0.04 are shown in Figures 7a-c. The initial
conditions for some of these orbits are contained in Table II. As before,
the stable range is bounded by dashed orbits. In the table these are con-
tained within the range from x0=1.057222 to x0=1.140216. The size of all
the orbits is comparable to those near L1. Somewhat similar to L the

moves away from m

1!
period of the orbits increases as x

0 2°

0.2 —

=%

-0.2 —

Fig. 7b. X-Y projection, L, family, u=0.04.

2

0.4 i i i
0.2 —
~ . _
0.0 — —
N ] l | | |
0.2 -0.2 0 0.2
Y

Fig. 7c. Y-Z projection, L2 family, u=0.04.
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TABLE II:

THREE~-DIMENSIONAL, PERIODIC,

Initial conditions for L

'HALO'

ORBITS

2

family at u=0.04.

1.057222 1.092791 1.140216 1.173474 1.220839 1.258203
0.300720 0.309254 0.298898 0.272900 0.200987 0.050000
-0.238026 -0.281140 -0.316028 -0.324710 -0.310434 -0.250410
1.019032 1.205930 1.433655 1.562199 1.700458 1.791154
3.001826 2.987945 3.006462 3.046136 3.140834 3.262822
-0.01038 0.61156 11.54674 35.36097 143.9507 458.2081
-1.43755 -0.71170 -0.98759 -0.61975 0.38028 0.98301

T
1
Ol
-
o
~

N

: =

MAXIMUM X

Fig. 8. families.

Stability indices, L2

Since L2 is on the far side of My, orbits in this family are designated

by their maximum x value, as seen in Figure 7a. Again, this point corre-

sponds to the maximum z value and was the initial point for integration.

Unlike L however, calculating orbits with values of X ax less than those

1’
shown, would produce decreasing values of z

v
1 amd 2

orbit defined by its x value is plotted versus its stability indices.
2 to L2
curves. The 'middle' stable region of interest, where |vili1, is roughly
and L. g7 the

2 2
It is defined near the mass, m ¢ The plot
v, returns to the stable

2" 72
in fact, happens at all the mass ratios. As in the L

max "’

Some values of V can be seen in Figure 8. The position of each

max

The scale is again chosen so that the m distance is equal for all

halfway between m It is defined on the right near L, by Vv

2
57 On the left by v

that near to m

upper value.
also shows in the case of u=0.5,
This,

zone. family,

1
they become near-collision, almost rectilinear orbits and were not initially

considered. Orbits in the region have generated new interest since Figure 8
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0.4
0.2 +— —
[aN]
=
2
E — —
>
<
P
0.0 — X X —
Mo |_2
05 1 | | |
0.8 1 1.2 1.4
MAXIMUM X

Fig. 9. X-~Z profile, L, family, u=0.04.

2

1.0 — /u=.50 |
— ///,M——pa32 —
-  p=20
]
0.5 — —
= =0
<
= u=.04
OI]%B [j
MAXIMUM X -

Fig. 10. Stable regions, L2 families.
indicates that for p>0.5 the two regions of stability may merge. This
possibility is explored further in the next section.

The locus of initial points of the u=0.04 L, family is shown in

2
Figure 9. A corresponding curve can be drawn for other mass ratios.

Figure 10 uses the parts of those profiles, scaled appropriately, which
include stable orbits. The increasing size of the stable zone with u is

apparent. As was the case with L,, the large values of u have more out-of-

1
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plane motion as well. The orbits at p=0.5 are quite a bit larger than those
at u=0.04. At u=0.05, the z values are almost 4 times the values of

max
u=0.04. .In contrast to L these stable solutions are moving closer to the

1'
mass m, rather than the libration point.

3.3. The L, Halo Family

In the three-body problem, the libration point on the far side of the larger

mass is defined to be L3. Therefore, when u is greater than 0.5, the point
to its right in Figure 1, which has been labelled L2, is now L3. This, of
course, means that now m, >m,. However, the mass ratio is still defined

2 1
u=m2/(m1+m2). All the conditions present in the L, families still hold, and

2
the same trends continue. L3 families can be viewed as the extension of
those near L2 for u approaching 1.
TABLE III: Initial conditions for L3 family at u=0.96.
X, 0.268434 0.528350 0.801947 1.212341 1.485937 1.670940
z, 1.812789 1.797900 1.675254 1.311769 0.869490 0.100000
yo -0.194347 -0.391878 -0.598423 -0.904561 -1.108238 -1.246284
T/2 2.801110 2.953177 3.010512 3.049978 3.063561 3.069570
C 1.121650 1.190433 1.361169 1.774411 2.148595 2.444230
v, 0.99740 1.31950 1.51942 1.82300 2.14123 2.419349
v, 0.74492 0.91490 0.95994 0.98686 0.99596 0.99995
2 T
1 —
M
(0] o % |
mo Ls
| l L
0 1 2
X

Fig. 1la. X-Z projection, L3 family, u=0.96.
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Fig. 11b. X-Y projection, L3 family, u=0.96.

Fig. 11c. Y-Z projection, L3 family, u=0.96.

The L3 family p=0.96 is the completion of the case where the smaller
mass has the value 0.04, The projections of the orbits in this family
appear in Figures 2 and 7. Some of the corresponding initial conditions are
shown in Table III. These orbits are much larger than those shown in Figures
2 and 7. In the case u=0.96, the members of th L3 family have dimensions at
least 5 times the size of corresponding orbits in the L., and L., families.

1 2
As they approach the mass the orbits grow very long and thin and the period
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decreases, although only slightly. These projections show no dashed orbits
used previously to indicate stability. The orbit shown with X ax closest

to m, in Figure 17a, is actually just on the edge of a stable region.

Figure 12 shows the values of Vg and vy for three mass ratios. Clearly

the stability indices return to the stable zone near m The figure adds

5-
support to a possible merger of the 'middle' stable zone and the region

close to the mass. A mass ratio of 0.80 is the highest value at which two

-2
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Fig. 12. Stability indices, L3 families.
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Fig. 13. X-Z profile, L, family, u=0.96.
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Fig. 14. Stable regions, L3 families.

separate regions of stability could be calculated. The case U=0.96 shows

the large change in appearance of curves v1 and Ve Although dramatic in

the figure, it does happen gradually as y grows. v, for u=0.96 is very

1
close to dipping below +1, showing that solution to be on the edge of

stability. Further members of this family could not be produced because of
numerical difficulties encountered in calculating the orbits any closer to

m, at that value of p. These orbits are becoming long, thin and near

2
collision, which is causing the numerical problems.
Figure 13 is the locus of initial points for u=0.96. No point here is

actually stable, but the point nearest m, is bordering the region. Parts

2
of other such curves at different mass ratios in the important 'middle'’
stable region are shown in Figure 14. (The curve for u=0.5 is, of course,

the same for both L, and L3.) Figure 14 shows again an increase in out-of-

2
plane motion and an increase in size of the stable range consistent with
results in the L2 case. The curve p= 0.88 is marked incomplete because of
the numerical difficulties encountered. The Z ax values and the right

boundary of the stable range can be noted though for p=0.88.

4, CONCLUSIONS AND FUTURE WORK

Halo orbits exist near all three collinear libration points at a wide range

of mass ratios. Near L1 and L2 they are comparable in size for a given mass

ratio, and increase in size as u increases. As a continuation of the L2
families, the orbits near L3 continue to grow in size with p. For a given

small value of the smaller mass, the L3 family may be an order of magnitude

larger than those at L1 and L2. Most orbits decrease in period as they

approach the nearest mass. Stable orbits exist roughly halfway between each
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each libration point and its nearest mass. Near L the stable orbits move

1’
closer to the libration point with increasing u until they disappear at

and L

u= 0.0573. Near L2 37

nearest mass. At high mass ratios near L

this 'middle' stable range moves closer to the
37 it may possible merge with
another stable zone of near collision orbits.

The numerical difficulties encountered have delayed answers to ques-
tions arising during the study. Currently, a regularizing program is being

written which will produce solutions as distance from m, approaches zero,

2
as well as indicate the stability of those solutions. More investigations
of the L3 family may also include p=0.988, which represents the Earth-Moon

case.
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