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ABSTRACT

Predicting the stability of a system has paramount importance in dynamical systems and
celestial mechanics. One of the hot topics in the last few decades is the stability of planetary
systems that seem to exist with very different configurations. Actually the stability problem
and evolution of planetary systems is reduced to the the stability of classical N-body
problem which is a chaotic dynamical system. A comparative study of some chaos indica-
tors, utilizing deviation vectors taken by integrating the variational equations, is performed
applying them to the 3-planet system HD 82943, after presenting the necessary theoret-
ical background regarding dynamical systems, celestial mechanics, and that of variational
equations and the chaos indicators, specifically LCN, DFLI, MEGNO, SALI, and RLI.

IIEPIAHYH

Auvvopix) cuoTNRETLY 3-TAaVNTOY — Acixteg evotdieiog/(doVs TEOYLWOY

H mpoPiedn g evotdldelog evog cuotipatog elvon xdplog onpaciog oto Suvouixd
CUCTAUOTA ok TNV oupdviar unyovixy|. Eva and tor mo xowtd Yéyata Twv TeAeuTaiwy
dexaeTicdv elvon 1 TEOBAedm Tne eucTddelag TAAVNTIXDY CUOTNUATWY To oTolol eppavilovto
vou Uy oLV Yia TOAD StopopeTixée Slopoppnoels. poypatind to npdBinua euatdielog xou
1N EEMEN TV TAAVNTIXWY GUGTNUATWY AVEYETU 0TV ELGTAYELX TOL XAATGIXOU TEOBAAUATOG
Twv N-cwpdtwy to onolo elvor éva yaoTixd Suvouxd cbotnuo. Mot cuyxpltixy ueAétn
AATOLWY YOOTIXWY SEXTWV, YENOLOTOLOVTOS SLVOOUTO amOXMaNG Tar omolor AouBdvovton
OAOXANPOVOVTAC TIC EELOMOELS UETABOAMY, TpayHaTomolelTal @apuolovTog auTtols G6To
ocVotnua 3-mAavntov HD 82943, agpdtou napouciaotel To anapaitnto Yewentind undBodpo
OYETXS UE SUVOUIXA CUGTAUOTO, OURGIVLOL UMYOVIXY|, X0 AUTO TeV EELOMOEWY UETOBOADY
%o YooTxmyv dextdy, ouyxexpwwévo LON, DFLI, MEGNO, SALI, xou RLI
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An extensive abstract written in Greek due to thesis requirements.

Avvouixd ovotnua elvan éva cbotnua to omolo meplypdgeTal and €va apliud
YEOVOECAOTNUEVLY PETOPBANTAOY, dnhady) To clotnua €xel wa e€€AEn oTo yeovo. H e&éhin
TOV UETOBANTOV X0 XATA CUVETEL TOU CUCTAUNTOS TEPLYQPAPETAL ATO EVOL XUVOVAL TIOU OE
yeovixy otiypn ¢t xodopilel tn xatdotaon oe ypovix t + 6t. O oprduds Twv YeToBANTOV
xodop(lel TN SLdOTAUON TOU CUCTAUATOS XL O YWPEOE OTOV OTOl0 ATMOTUTOVETHL 1) eEEMEN
ovopdleton Ywpog @doewy (1 xataotdoeny). Eva cuveyéc duvapixd chotnuo neplypdpeton
amd yiar poY) xau €vor avTioTolyo GUeTNUA SlaPopIXY EELCMOEMY.

Mot onuovTiny xatnyoplo SUVaUIX®OY cUOTNUATWY efvor Tot XoUIATOVIONVE GUOTAUATO TWV
onolwv 1 xivnorn xodopileton TApws and 0 cuvdeTnon XAUAToV HECW TOU GUUTAEXTIXOU
popuaiiopol. Ta XowAtoviavd cucthuata eivar ohoxAnpewotuo edy undpyel emopxeic
apLIUOS OROXANEWUATWY, dNAadr TocoTHTWY Tou Statnpolvton otadepés. Mn-ohoxhnpwota
ocuoThdata epgpaviCouvy ydog.

Xdog, 6mee nopatneeiton oTo SUVOUIXA CUCTHUATA, ELVAL TO PUUVOUEVO ToU YopaxTnelleTo
and meplteyveg, anpoPAenteg, xou aneplodixéc cuumepipopéc. Eugavileta oe cuothuata
oL €UPAVICOVY UN-YEOUULXOTNTA UE ATOTEAEGHUA TOANOTAOXWY, QPULVOUEVIXE TUYOUWY TEOYLWOV
META amd xdmolo yeovo. Aev umdpyel axplfrc optopds tou ydoug. Evac xowvog oplopdg
xotd Devaney opllet w¢ ydog éva cbotnua pe evaiointn e&dptnom ot apyixéc ouvinxeg,
TOTOAOYIXY| UETABOTIXOTNTA, Xot TUXVES TEPLOSIXES TPOYIEC GTO YWpo Qdoemy. Ol TeyVIXéS
ebpeong ydoug ywellovton oe ypapxés dnwe topéc Poincaré xou aprdunuxhc avdiuong twv
TEOYLOY 61w ol delxteg mou Bacilovtar oty e&EMEN TwV Slavuoudteny andxhiong.

Katogebyoupe o apriuntixéc yedddoug S1oTL ol Slapopixés e€lowaoelg eV YEVEL dEV
Aovovtan . Mo pédodog mou emitpénetl udmAnc axp(Belag Aol Ye ENAYLOTO UTOAOYLOTIXO
x6otog elvon 1 Bulirsch-Stoer mou cuvdudlel tpelg Wéec. Xuyxexpiuéva Tn mopexBoAn
Richardson, wior pédodo mpooapuoyrc (cuvaptnotox B moAvwviuxr moeexBoiy), xou ™
Tpononotnuévn uédodo péoou Briuatoc (oAoxhnewmthc).

To nedPAnua TedBredne e xivnong xdmolwy cwudtwy utd v auolBola BapuTtixy Toug
alnhenidpaon opilel to meplgpnuo TEdBANUa Twv N-cwpdtwy. O edlowoelc xivnong ot
XopAtoviowT TpocgYYIoT TEOXUTTOUY VeWP®VTIS TO Boputind duvouxd Tou xdde oWUATOS
UTIO TNV EMARELDL TWV GAAWDY CWUATWY, TO onolo pog emteénel Vo yedhouue 0 Xohtoviowvy
TOU GUGTAUATOS Xol 1) OTIO{0L UEGK TOU GUUTAEXTIXOU (poppahiogol Sivel Tig e€lotoelg xivnong.
To cbotnua €xel 10 ohoxAnpouoata Tig xivnong xou cLVenwg yia N > 2 elvan un-ohoxhnewoylo.
To mhovntind TedPAnud eivon to mEdPANue twv (N + 1)-cwudtwy 6mou to 1 eivon mohd
BopUtepo amd Tl UTOAOLTIOL XU GTO OTO(O HAS EVOLAPEREL 1) X(VNoT TwY uToholnwy N.

Eyovtog i e€lodoeig xivnorng uropolue vo Bpolue Tig e€Lotoelg HETHBOAGY, TwV OTolwY 1|
enthuon Sivel T Tpoytd evog Slaviouatog, amoxaAoVUEVO SLAVUCUA ATOXALOTG, TIOU TEQLYPAPEL
wo Startaipory ) TG xovovixig Tpoylds mou egellocetal egantopevixd tng ponc. Katd tnv
apLiunTixy ohoxhfpwor ol e€lowoelg UETHBOADY Wwag divouv TAnpogopial OYETXd UE TNV
(In-tééne) evotdietor xoTd TO YPOVO OAOXAAEWOTC.

Eyovtog v e&éMEn tou Staviopatog amdxilone xou yvwpeilovioag nwe 1o xdog
xopoxtneileton and evoiotntn e€dptnon oTic apyxés cuviixeg unopolue vor utoloyicouue
™ wetofolr Tou Swavbouatog andxiione. IIdve oe auth v Wéa otneilovtar ol yootixol
delnteg yvwotol xou w¢ delxtec yetofordyv. Egopuoy oautdv tov Sextiv ot évor TAéyua
APV GUVINXOY Yot To GOGTNUA Tou ueAeTdTon pog dlvel évar ydotn euotddetag.
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e évo mAavnTixd cLoTNUA Ol SUVOULXES TIORAUETEOL EVAL TAL TEOYLOXA GTOLYElol Xou OL
wdleg twv mhavntov. H napodoa epyacio epeuvd toug Seixteg yaoTixdtnog yetoBdhhovtog
To oTolyelo Tou €€WTEPXOD TAAVATY O éval GUOTNUA 3-TAOYNTADV.
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PROLOGUE

A dynamical system is a system which evolves over time and its evolution is depicted on
a phase (or state) space. Qualitatively there’s a need to know its asymptotic properties,
what happens to it after a long time period. Knowing a particular orbit it’s natural to
wonder what happens when there’s a small change to its initial conditions.

Stability theory arises to answer the question of whether nearby (i.e. perturbed) orbits
will remain close or diverge or converge. To numerically investigate the stability of dynam-
ical systems, frequency map analysis (or newer variations, such as spectral analysis of
orbital elements) or integration of variational equations and computation of chaos indica-
tors can be used.

A number of celestial bodies interacting gravitationally, forming what is known as the
N-body problem, are described by a dynamical system. Currently the number of exoplanets
and systems those are arranged in exceed 5000 and 4000 respectively!. Numerically inte-
grating and predicting the stability of integrated orbits allows to restrict their data and
whence improve the accuracy of studies that use that.

Overall, studying the N-body problem contributes to our understanding of celestial
mechanics, planetary systems, and exoplanets, while also offering a testing ground for
mathematical and computational techniques, with implications for space missions and
astronomical observations.

The thesis is split into four chapters and one where the numerical integrations for a 3-
planet system are shown, on which the comparative study and conclusions are based. The
theoretical chapters present the necessary background for understanding (i) dynamical
systems and utilized numerical integration scheme, (ii) the planetary problem and its
equations of motion, (iii) the variational equations of the previous problem, (iv) chaos
indicators.

We also show some specific examples of the presented theory in every theoretical
chapter, and how the equations required for studying those examples can be extracted
computationally using the computer algebra system Maxima. In the appendix parts of the
code used for the numerical integrations are provided to complement the presented theory.

Acknowledgments. The author thanks his thesis supervisor and teacher, prof. George
Voyatzis, for suggesting the thesis topic and their patience in the longer than expected
time it took for completion. Some results presented in this work have been produced using
AUTh HPC infrastructure.

1. As of 30 Oct 2023 based on data from exoplanet.eu there’re 5521 confirmed exoplanets arranged in 4070
systems, 885 systems having >1 planets (noting that is 588 of 2 and 177 of 3 planets).


exoplanet.eu




CHAPTER 1

DYNAMICAL SYSTEMS

1.1. INTRODUCTION

Dynamical systems, of which origins lie in the early mathematical and physical inquiries
into behaviors of mechanical systems and celestial motion, constitute a foundational and
interdisciplinary framework for investigating the temporal evolution of diverse phenomena.
Their theory describe the behavior of systems as they transition from one state to another
over time, under the influence of internal dynamics or external forces.

Formally, a dynamical system is a mathematical or/and physical system of which the
state is fully described by finite independent variables z; (if physical ; € R) that evolve in
time ¢ € R, meaning the variables are time dependent, that is x; = x;(¢)[1][2]. Their time
evolution, and by extension the system, is described by a rule z;— x; that for a moment
t defines the state of the system at moment ¢ 4+ é7. The number of variables n define the
dimension of the system and the n-dimensional space F¥ C R™ defined from those is called
phase space (or state space).

Symbolically, a dynamical system is defined as a flow (or map) ¢(x,t) on phase space

0:RXE—E (1.1)

that moves (or maps) a point @ at time ¢ to a point @ at ¢/[1|[2]. The time ¢ can be either
continuous or discrete, in which case t =tg+ kd7. If the flow does’t depend explicitly on
time, that is if dyp =0, then the system is called autonomous whereas if it does is called
non-autonomous. If the rule doesn’t include any randomness the system is deterministic
whereas if it does is stochastic.

A continuous dynamical flow can be described by the differential equations

dx dSUZ' e
E_f(w7t)<:>ﬁ_fl(xjvt) (1'2)
whereas a discrete map by the equations
24D = f (@), k) o 2 = (2l k) (1.3)

Given an initial state xg=x(to) the dynamical system forms an initial value problem. The
points representing the time evolution of an initial state in the case of continuous systems
define a trajectory, a continuous curve, whereas in the case of discrete systems define an
orbit, a set of discrete points in the phase space.

A dynamical system is called integrable if it has sufficiently many conserved quantities
(also called first integrals or integrals of motion), presence of algebraic geometry, and the
ability to give explicit solutions. That is the system can be solved in some way. One way
this can happen is if the flow of the vector field can be constructed analytically. However,
this can almost never be done (in terms of elementary functions).

The equations f; define the system’s vector field that describe the motion on the phase
space. The f; are defined in space (x,t) called the extended phase space. Assuming that
the f; and their first derivatives are continuous in the open subset of (x,t) the solutions
are unique.

11
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A periodic orbit constitutes a special type of solution for a dynamical system. It’s one
which repeats itself in time. We define periodic orbit the solution v(t; xg) = @¢(xo) for which
it holds

pr+1(20) = pi(z0) & Y(t+T) = (1) (1.4)

1.2. HAMILTONIAN SYSTEMS

Named after the eminent mathematician and physicist W. R. Hamilton, these systems
are characterized by their conservation of energy and symplectic structure, offering an
elegant framework for understanding the behavior of physical systems. They represent
a distinguished class of dynamical systems that play a pivotal role in many scientific
disciplines.

Formally, these[1]|[3] are systems of which the time evolution is described fully by the
Hamilton function (also called simply Hamiltonian) through the 2N equation system

5=J.VH J:(_OI ;) (1.5)

and for canonically conjugate variables, z = (p, q), the equations split into two sets of N
equations

G=0,H p=—0,H (1.6)

Here the N coordinates q represent the system’s configuration variables (e.g. positions) and
the canonically conjugate p, called momenta, represent the impetus gained by movement.
Those equations represent the equations of motion of the system. If H does not contain ¢
explicitly it’s called autonomous and H is a constant of motion. Meaning

H=0,Hq+0,Hp=0=H(q,p)=H(qo, Po) (1.7)

If the equations are mechanical, the Hamiltonian is the total energy of the system and has
the form

H=T(p) 4 V()) =Y 42+ V(g 19

and the Hamilton equations become
g=p p=-9V(q) (1.9)

As an historical note, the previous function is the one Hamilton showed could be used to
derive Newton’s equations for particles in a conservative field. This formulation gives a
convenient restatement of Newton’s system but shouldn’t be regarded as just a simplifica-
tion of it[3].

A 2N Hamiltonian system is integrable if there’re IV first integrals. There is a class of
Hamiltonian systems, action-angle systems, whose solutions can be obtained analytically,
and there is a well-accepted definition of integrability due to Liouville in which each inte-
grable Hamiltonian is (locally) equivalent to these action-angle systems|[3].

A Hamiltonian system is written in action-angle form if there is a set of canonical
variables (6, I) and such that H depends only upon the actions H(I). In this case the
equations of motion become

O=VH(I)=QI) I=0
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Those can be solved giving the solution
z=(0,1)=(60+Q(lo)t, lo)

meaning the the angles move along the invariant torus I = Iy with fixed frequency vector
Q[3]. Systems with >2 degrees of freedom cannot always be reduced to such form, giving
rise to chaos. As examples, the 2-body problem is integrable but the N-body, N > 2,
problem is nonintegrable.

If a system has the form

H(0,1)=Ho(I)+eH'(0,1) (1.10)

and is integrable at e =0, it still has a large set of invariant tori if € < 1[3]. This is the
essence of Kolmogorov-Arnold-Moser (KAM) theory which is used to deal with persistence,
under perturbation, of quasi-periodic motions|3]. Specifically the KAM theorem constitutes
a condition for the preservation of regularity of motion and states:

THEOREM. If the bounded motion of an integrable Hamiltonian Hy is disturbed by a small
perturbation eH' that makes the total Hamiltonian H = Hy+ eH’ nonintegrable, and if
a. the perturbation is small
b. the frequencies w of Hy are incommensurate
then the motion remains confined on an N-torus except for a megligible set of initial
conditions that result in a meandering trajectory in the energy surface.

That is when the perturbation is regarded as small the orbits will be stable, slightly
altered, and will be bounded to the same region of phase space as the unperturbed ones.

One of the original motivations for KAM theory was to find bounded motions in the
planetary (N + 1)-body problem. Those systems can be seen as a perturbation of N decou-
pled two-body systems (star-planet). Essentially if masses, eccentricities, and inclinations
are small enough (alternatively the planetary system lies in the neighborhood of circular
and coplanar Keplerian orbits) there is subset of phase space leading to quasiperiodic
motions, in which the semimajor axi remain close to original value, while eccentricities,
and inclinations remain small[4].

1.3. CHAOS

Chaos, as observed in dynamical systems, is a phenomenon characterized by intricate,
unpredictable, and aperiodic behaviors. It manifests within systems that exhibit nonlin-
earity resulting in a cascade of complex, seemingly random trajectories over time.

Its roots can be traced to the early 20th century. It was Lorenz in the 1960s that
popularized chaos by his revelation of sensitive dependence on initial conditions that is
epitomized by the metaphorical “butterfly effect”. Hamiltonian systems, such as exoplanet
systems that this work examines, constitute dynamical systems and exhibit chaos. Specif-
ically those are systems that have both regular (or ordered) and chaotic orbits in phase
space.

There’s no universally accepted definition of chaos. A commonly used one formulated
by R. L. Devaney. We start by defining the essential properties.

DEFINITION 1.1. The f: X — X is sensitive dependent to initial conditions if

30 > 0:Vo € XV0x3y € dx An=0: || f™(x) — f™(y)| >0
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DEFINITION 1.2. The f: X — X 1is topologically transitive if

YU,V CX3k>0: fHU)NV £0

DEFINITION 1.3. The f: X — X has dense periodic orbits in X if

Vee X306 >0Ay eyt y): |z —y| <o

Intuitively, sensitive dependence t initial conditions exists if there are points arbitrarily
close to  which eventually separate from x by at least distance § under iteration, is
topologically transitive if all points eventually move under iteration from one arbitrarily
small neighborhood to any other, and has dense periodic orbits if every point is arbitrarily
close to a periodic orbit.

Then the chaos definition according to Devaney states|5]:

DEFINITION 1.4. Let X be a set and f: X — X a map on this set. Then f is chaotic on X if
1. f is sensitive to initial conditions
1. [ 1is topologically transitive
1. [ has dense periodic orbits in X

This chaos definition gives chaos three components: unpredictability, non-partitioning
into non-interacting subsystems, and regularity. For continuous maps it can be proved
that the last two properties imply the first[6]. An also common weaker (as in having less
properties) definition is utilizing only the first two properties.

Chaos detection techniques are split between two overarching categories: those based
on visualization of orbits, such as Poincaré surface of section (also referred to as Poincaré
section or Poincaré map), and those based on numerical analysis of orbits. Subcategory of
the later are indicators based on the evolution of deviation vectors for a given orbit. It is
those indicators that we will be examining.

1.4. NUMERICAL INTEGRATION METHODS

Differential equations, such as those describing the N-body problem, cannot be solved ana-
lytically in the general case. An alternative method is solving them numerically. There’re
few schemes but here we only present in depth the Bulirsch-Stoer, which is what we’ll use
in our numerical integration, and briefly the symplectic schemes that are often used in
studies related to stability of dynamical systems.

1.4.1. Bulirsch-Stoer

The Bulirsch-Stoer method combines few ideas|7][8]; Richardson’s extrapolation, polyno-
mial extrapolation (or rational function extrapolation), and modified midpoint method.

Richardson’s extrapolation considers the final answer of a numerical calculation as
being an analytic function f(h) of stepsize h. Then this function is probed by performing
the calculation with various values h. When enough is known about the function, it’s fit
to some analytic form and then is evaluated at A =0. For the fit either a rational function
or polynomial extrapolation is used. Finally, we have to use a method of which the error
function is strictly even, allowing the fit function to be in terms h2. Such method is the
modified midpoint.
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The “modified” midpoint method takes n small steps of size h to cover the interval
to—to+ 7 (thus h=7/n). Then, considering 3 the mid approximations,

o= 9(to)
y1=9(t1) = g0+ h f (to, Yo)
Gig1=Ytis1) =Ji—1 +h f(ts,5) ti=to+ih,i€[l,n—1] (1.11)
1,. - -
y(t0+7)%_[yn+yn71+hf(t0+77yn)]

2

Its error series consists of only the even powers of A
y(to+7) —y(to) =Y _ kih®

The polynomial extrapolation is done taking two estimates for y(tp+ 7) using n and 2n
steps
4yon — Yn

3
This estimate is 4th order accurate, same as 4th order Runge-Kutta. If Yn(k) represents the
k-th order estimate then

y(to+7)=

k) _v-(B)
|

(nj/mj—r)*—1
A B.-S. method step covers tg — tg+ 7 with n substeps of modified midpoint method
which steps are then extrapolated to zero stepsize. The sequence of attempts to cover
7 is made with increasing values of n, the number of substeps. The originally proposed
sequence of n was nj>3=2n;>3—2=1{2,4,6,8,12,...}. A more performant sequence of
nisnj=2j=1{2,4,6,....}. After each n; we extrapolate and obtain an error estimate. If
satisfactory we go to next step.

(1.12)

(k+1) _ (k)
=y

1.4.2. Symplectic
A subcategory of geometric integrators; integrators preserving exactly some of the geo-
metric properties of the phase-space flow. Assume the Hamilton function H is the sum of
two separable parts, T'(p) and V(gq). Ignoring the second part

q/:q p’:p—TaqV (1.13)
and ignoring the first part

p'=p ¢=q+10,V (1.14)

By defining the operator Dg={:, S} where {-, -} the (antisymmetric) Poisson bracket, the
equations of motion are written and solved as

2={z,H}=Dyz=z=ePiz, (1.15)

Let A= Dyp and B = Dy be the integrable parts of the Hamiltonian, and Dy = Dr+ Dy
the sum of them. Then, the exact time evolution with step 7 is given

2(t+7) =Pz =T(ATB)y (1.16)

The operator can be approached by an integrator of k steps. The two elementary algebraic
maps are

eCzTA:{q,:q+clTp p,:p} (117)
and
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These maps give the exact solution for the canonical equations generative of the functions
H=H+ O(7?). The integrator preserves the energy of this new function but not the old
although it bounds the energy error for H to O(72).

The previous forms the basis for what is referred to as explicit method or T+ V
algorithm. Higher-order integrators of that type are detailed in [9]. Taking advantage of
the analytical solution in the unperturbed Keplerian problem, the mixed-variable inte-
grators were developed which are efficient yet retain symplectic advantages. In brief, the
Hamiltonian is split such that star-planet and intra-planetary interactions are separated.
Then the star-planet part is evolved analytically.

1.5. SHOWCASING AN EXAMPLE SYSTEM

Consider the d =2 mechanical system with unity masses

1
H =5 (pz+py) +V(x,y)

in potential
1 1
V(z,y) =5 +y°) + (ny - gy?’)

This represents the Hénon—Heiles potential for A =1, the commonly taken value in clas-
sical chaos studies. The potential can be considered as the composition of two harmonic
oscillators coupled with perturbation terms x%y — y3/3. Setting A leaves only one free
parameter of the system, H = h itself representing the energy of the system. Hénon—Heiles
is a simple, yet providing complex motions, systems commonly used in chaos studies.
The Hamilton equations can be easily computed by hand and be found to assume the

form

T=py Pa=—T—21Y

y=py py=-y— (@ —y?)

Alternatively using the Maxima computer algebra system:

(%i1) Vi: 1/2%(x"2+y"2) + x~2xy-y~3/3

3 2 2
o1y —L ¥+

2
3 5 +xcy

(%1i2) H1: 1/2*(plx]~2+p[y]~2) + V1
Pytrs Yt P4’

5 37T 3

(ho2) + 22y

(%hi3) qi: [x, yl$
(hi4) pl: [plx], plyll$
(%i5) qdotl: map(lambda([v], diff(H1, v)), pl)

(%05) [Pz, Dyl

(4i6) pdotl: map(lambda([v], -diff(H1, v)), ql)

(%06) [2xy—x,y?—y — 27
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Like other such systems, Maxima provides a routine for numerically integrating ODEs
and the utilized integrator is a 4th order Runge-Kutta method. We choose the following
initial conditions:

Type h o Yo Yo
regular 0.125 0 01 O
chaotic 0.125 0 -0.25 0

Table 1.1.
Then first finding Z¢ = py;0 from Hamiltonian, we can solve the initial value problem
and plot the trajectory for each of the initial conditions.

(%i7) solve(H1 = 0.125, plx]), x=0, plyl=0, y=0.1

rat: replaced -0.1203333333333333 by -361/3000 = -0.1203333333333333

oT) | po= ——120_ pp=—2
' P10V T 10 V15

(%i8) float (%)

(%08) [po=—0.490577890519606, pg = 0.490577890519606]

(%i9) solr: rk(
[px,py,-2*x*y-x,y"2-y-x"2],
[x,y,px,pyl,
[0,0.1,0.490577890519606,0] ,
(t, 0, 100, 0.021)$

(%110) tm_plot2d([discrete, makelist(
(pl2], p(3]], p, solr)], [xlabel, "x"], [ylabel, "y"1)$

05

04t

0.3 |

0.2 |

0.1 ¢}
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(%i11) solve(H1 = 0.125, p[x]), x=0, plyl=0, y=-0.25

rat: replaced -0.08854166666666666 by -17/192 = -0.08854166666666667

, V17 V17
o 11 = — s =
(ot 1) | o 4./6 po 4./6

(%112) float (%)
(%012) [po=—0.4208127057650867, po = 0.4208127057650867]

(%113) solir: rk(
[px,py,-2*x*y-x,y"2-y-x"2],
[x,y,px,pyl,
[0,-0.25,0.4208127057650867,0] ,
[t, 0, 100, 0.02])%$

(%i14) tm_plot2d([discrete, makelist(
[pl2], p[3]], p, solir)], [xlabel, "x"], [ylabel, "y"1)$

0.6 |

04

0.2t

0.2 }

-04 t

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Notice how the dynamics differ and in the case of chaotic orbit the movement appears
aperiodic and random. Nevertheless, as expected from KAM theorem due to perturbation
being small, the motion is bounded to the same region as the regular orbit and is similar
in shape.

Let’s try again by introducing a small displacement in the initial conditions.

(%115) solr2: rk(
[px,py,-2*x*y-x,y"2-y-x"2],
[x,y.px,pyl,
[0,0.1-0.002,0.490577890519606,0] ,
[t, 0, 100, 0.02]1)%$



1.5 SHOWCASING AN EXAMPLE SYSTEM 19

(%116) tm_plot2d([discrete, makelist(
[pl2], p[3]1], p, solr2)], [xlabel, "x"], [ylabel, "y"1)$

05

04

03 |

0.2

0.1}

-0.1

-0.2

03t

04 |

(%i17) solir2: rk(
[px,py,-2*x*y-x,y"2-y-x"2] ,
[x,y,px,pyl,
[0,-0.25-0.001,0.4208127057650867,0] ,
[t, 0, 100, 0.02])%

(%118) tm_plot2d([discrete, makelist(
[pl2], p(3]], p, solir2)], [xlabel, "x"], [ylabel, "y"1)$

0.6 |
0.4 |
0.2}
0 o / ’
— ‘i‘/'iﬁ,?,"
0.2 | ’Iz"/!/%'/.’ s
(=
-0.4 J‘l\"//’
-0.6 -6.4 -6.2 0 0‘.2 0‘.4 0.6

We then plot the evolution portraits for z(; x(0) = z¢) and z(; (0) = z¢ + dx) for the
regular and irregular orbit.

(%i19) zip(1lstl, 1st2) := makelist([1lst1[i],1st2[i]],i,1,length(lst1))$
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(%120) makezip(d, 1lstl, 1lst2) :=
zip(makelist(p[d],p,lstl) ,makelist(p[d],p,1st2))$

(%121) tm_plot2d([discrete, makezip(2,solr,solr2)],
[xlabel, "x(;x(0)=x0)"], [ylabel, "x(;x(0)=x0+dx)"]1)$

04t

0.2 f

X0+dx)

o

X(:x(0)

0.2

0.4 |

-05 -04 -03 -02 -01 0 01 02 03 04 05
X(;X(0)=x0)

(%122) tm_plot2d([discrete, makezip(3,solr,solr2)],
[xlabel, "y(;x(0)=x0)"], [ylabel, "y(;x(0)=x0+dx)"]1)$

X0+dx)

y(x(0)

04 03 -02 -01 0 01 02 03 04 05
y(;x(0)=x0)
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(%123) tm_plot2d([discrete, makezip(2,solir,solir2)],
[xlabel, "x(;x(0)=x0)"], [ylabel, "x(;x(0)=x0+dx)"]1)$

0.6 F
0.4 |
0.2 |
=
S
+
<
i 0
o
X
3
-0.2
0.4
-0.6 . . . . |
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

X(:x(0)=x0)

(%124) tm_plot2d([discrete, makezip(3,solir,solir2)],
[xlabel, "y(;x(0)=x0)"], [ylabel, "x(;y(0)=x0+dx)"]1)$

0.6 |
0.4 |

X o2}

S

o

x

11

s

= o0

4
.02 L
04}

-0.6 04 0.2 0 0.2 0.4 0.6 0.8

y(;x(0)=x0)

Notice that in case of regular orbit, the disturbed (or perturbed) orbit closely follows the
original. For the chaotic this only happens at the beginning and then quickly diverges from
the original. This is the essence of chaos and its sensitive dependence on initial conditions
when it exists.

Although Maxima and other symbolic algebra systems can numerically integrate such
equations, for the times required for dynamical studies they’re very slow to provide result
in case of more complex systems such as the N-body problem. Rather using such packages,
high performant code is better fit for those. Based on theory presented in this chapter

we’ll be using an in-house built B.-S. integrator to perform the numerical integrations of
the final chapter.






CHAPTER 2
CELESTIAL MECHANICS

The branch of astronomy dealing with the motions of celestial bodies, usually but not
necessary utilizing principles of classical mechanics and oftentimes restricted to gravitation,
has come to be called celestial mechanics. Being a centuries old science means only a brief
background can be provided which for our work is enough.

At the heart of classical celestial mechanics lies the application of Newtonian mechanics
and gravitational theory to celestial objects. Early luminaries such as J. Kepler, I. Newton,
and P.-S. Laplace established the fundamental principles that underpin the field, including
Kepler’s laws of planetary motion and Newton’s law of universal gravitation. These prin-
ciples enabled astronomers to predict the orbits and positions of celestial bodies with
remarkable accuracy, altering our understanding of the cosmos.

Celestial mechanics also delves into the study of gravitational perturbations, where the
gravitational interactions among celestial bodies lead to subtle but critical alterations in
their orbits.

2.1. ORBITS

The general parameters (derived from mechanics) characterizing orbital mentions are

e Position (7): the vector of the orbiting body’s position relative to the inertial frame
and point of origin.

e Velocity (v): the vector of the orbiting body’s velocity relative to the inertial frame
and point of origin.

e Specific angular momentum (h =7 x v): the orbiting body’s angular momentum
divided by its mass.

e Specific energy (€): the total energy of the system divided by the reduced mass.

e Period (P): the time it takes for the orbiting body to make a complete closed
trajectory around the main body.

e Gravitational parameter (u): simply defined as p=G(mo+m)~Gmyg

The, also called orbital state, vectors of position r and velocity v uniquely determine the
trajectory of an orbiting body and are defined with respect to a reference frame. The orbit
coinciding with the current orbital state vectors is called osculating orbit.

As orbits follow conic sections it’s more convenient characterizing the motions by quan-
tities describing the geometrical properties of the orbit and the position on it. Orbital
elements are the parameters that uniquely identify a specific orbit and the instantaneous
position of the body on it. In absence of perturbation all but the one characterizing
the position are time independent. In the perturbed case vary non-linearly and in real
astronomical orbits the osculating elements can evolve very quickly. The orbital elements
are:

e Semimajor axis (a): the sum of the periapsis and apoapsis distances divided by two.
e Eccentricity (e): describes how much elongated is the ellipse compared to a circle.

e Inclination (7): the vertical tilt of the ellipse with respect to the reference plane;
it’s measured at the ascending node where the orbit passes upward through the
reference plane.

23



24 CELESTIAL MECHANICS

e Longitude of the ascending node (£2): horizontal orientation of he ascending node.

e Argument of periapsis (w): orientation of the ellipse in the orbital plane; it’s measure
from the ascending node to the periapsis.

e True anomaly (v =v(t)): position of the orbiting body along the ellipse.

Ecliptic
Plane

Line of Nodes

Figure 2.1. Orbital elements shown schematically. The Euler-like angles i, €2, w describe the
orientation of the orbit relative to the ecliptic plane. The true anomaly specifies the position of
the orbiting body.

The first two parameters specify the shape of the ellipse, the next three the orientation,
corresponding to the three Euler angles, and the last one the position of the body on the
orbit. Besides those parameters the following are introduced:

e Eccentric anomaly (E = E(t)): the angle subtended at the center of the ellipse by
the projection of the position on the circle with radius a and tangent to the ellipse
at pericenter and apocentre.

e Mean anomaly (M = M (t)): the angular distance from the pericenter at arbitrary
time. The mean and eccentric anomaly are connected via the Kepler’s equation
M=F —esinF.

e Longitude of pericenter (w): defined w=Q + w.

e Mean longitude (A= A(t)): defined A=w + M.

Thus the tuple (a,e,i,Q,w,v or E or M) gives the instantaneous position of the orbiting
body and is equivalent to the tuple (r,v),r=(z,y,2),v=7=(2,9, 2).

2.2. EQUATIONS OF MOTION

Celestial bodies are assumed to be point masses (planetary systems) or rigid or deformable
bodies (satellite geodesy and Earth rotation)[10]. We’ll only concentrate to first that is a
system of point masses and only considering gravitational forces. Some basic concepts such
as inertial frames are assumed known.
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Let’s start with a body, viewed as a particle, in orbit around a more massive one. The
kinetic energy of the orbiting body is given

2

T(p) :2p_m (2.1)

and the gravitation potential energy of a particle in orbit is obtained

Viq)=

S Ly (g) = -0
q q

(2.2)

where G is the gravitational constant, u is the gravitational parameter depending on the
mass of the massive body, and g =r,p=m . The Hamiltonian governing the motion of
the orbiting body then is

2 2
goP_mp g Pt amm

2.
2m q 2m q (2.3)
and the Hamilton equations become
g=p p=-muq/¢ (2.4)

Those are the equations of motion of the body under the gravitational influence of the
massive one.

2.3. IN-BODY PROBLEM

As N-body is called the problem of predicting the individual motions of a gravitationally
interacting group of objects. The case of planets or/and stars in dynamical systems theory
represents a small-N system.

The potential field for a body ¢ under the influence of the NV — 1 other bodies is

q)=—-G Z m@mf (2.5)

i=1,j%#1

The Hamiltonian of the system is then written as

N
mims;
=T Z sz_ Z . Qijj (26)
i=1,7>1

where G is the gravitational constant and ¢;; = ||qij|| = |/g: — g;||. Then the Hamilton

equations take the form
N
G=p pi=-G Y g, (2.7)

e W

Similar to free particle, those are the equations of motion of body ¢ under the gravitational
influence of the other bodies. Those are 6 N equations in total. There’re scalar functions
of positions and velocities that are known to be time-independent. Those are the first
integrals of the system. The energy and the angular momentum are such quantities as

. . d
H=0 L:EZ gi X pi=0 (2.8)
Extending for the later !
N

m; .
Zmququ G Z 4% qij=0=) migix ¢=C (2.9)
ij=1j#i 14 i=1
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The relationship states the total angular momentum of the system remains constant. The
previous relationship can be rewritten in coordinates to reference frame as

Ly=> mi(yi%i— zi) =c¢

Y-

-
I
—

mz(zle — Z’ZZZ) =C (2.10)

mh
I
.MZ

@
Il
—

mi(x39; — yits) =c

-

L,=

=1

The former can also be found via the equations of motion (Newtonian approach)

Z m; qiG;=G Z Z—3](12‘(]2] Z m; qiq; — 2 Z —J=F (2.11)
i,5=1,5#i @i i,5=1,7%1 dij
which can be rewritten
E=T4+U (2.12)
where
qu_ st g1y (2.13)
v 2m; 2 L= gy '
=1 17]:17]%1

The position and momentum of center of mass is found

1
_ (a1 2.14
(gcm, pem) e ;: mi(qi, Pi) (2.14)

where mot =Y m; the total mass of the system.
By summing p; and integrating twice

N
Zmiiji:0:>z midizcliz m;q;=cit +co (2.15)
i=1 i=1 i=1

The ¢1, co rewritten in coordinates to reference frame provide the last integrals of motion.
The relationships state that total momentum is conserved and that the center of mass
moves in space with constant velocity and hence can be considered as stable to the system’s
inertial frame.

For computational purposes, the conservation of energy and angular momentums intro-
duce an accuracy indicator to the utilized integration scheme, whereas the stability of the
center of mass can be utilized to reduce the integrated equation set from that of N bodies
to N —1 as the position and velocity of the Nth body can be deduced from the center of
mass after all other bodies have moved.

2.4. PLANETARY PROBLEM

In a planetary system we have few small objects, the planets, orbiting a large one (also
called the primary body), the host star. Based on that we assume that n =N + 1. All
objects are assumed to be of constant mass. We can rewrite the equations of motions as

N
r=-G Z %’I"ij (2.16)

j=lg#i W
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If mass my dominates all other masses it makes sense to rearrange the equation to describe
the motion relative to the position of mass mg. We introduce the vectors

T, =x; — X (217)

called the heliocentric position vectors. The equations of motion in the inertial system can
be converted to corresponding equations in heliocentric frame subtracting the equation for
mass mg from the equation for mass m;~o. We obtain

=i —dg=—G Y s GZ ur (2.18)

n
p— N Ti (Tij Ty
The Hamiltonian of the system is

H=T(p)+V(q —2m0+2( momz) G Z m’mJ (2.20)

1=1,7>1

2.5. SHOWCASING IN 3-PLANET SYSTEM

As a specific example to previous, we are showcasing the 3-planet system that we’ll numer-
ical study in the final section. The equations are extracted using the Maxima computer
algebra system.

(%i1) Hnb(n) := sum(p[i]l~2/(2*m[i]), i, O, n) -
Gksum(sum(m[il*m[j]l/(q[jl-q[il), j, i+1, n), i, O, n)$

(%i2) Hnb(n)

(%02) X Omz szl Z

Jj=1i+1

QJ_(IZ

(%i3) H3 : Hnb(3)

(%03) —( 4+

2
mom mi1m mom mim mom mom

23+ 13+03Jr 12+02+01>G+p3
g3 — q2 43— q1 43— qo g2 — q1 q2 — qo q1 — qo

p5 | pt | pb

2me  2my1  2myg

(%i4) map(lambda([v], declare(v,constant)), cons(G,makelist(m[i],i,0,3)))$
(%1i5) g3 : makelist(qlil,i,0,3)$

(%i6) p3 : makelist(p[i],i,0,3)$

(%17) qdot3 : map(lambda([v], diff(H3, v)), p3)

(ho7) | 2o PL P2 D3
mo mi1 ms’ ms
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(%i8) pdot3 : map(lambda([v], -diff(H3, v)), g3)

moms moma momi mims mi1mo
(%08) + + G, ( + _
[<(CI3— 90)?  (g2— qo)? (Q1_QO)2> (3—q1)?  (@2—q1)?

momy >G< mamz  mimg  mgmy )G (_ mamz  mimg
b

(g1 — q0)? (3—q2)? (©2—q1)? (g2—qo)? (63— @) (53— q1)?
momsa
(q3— qo)2> G}

Note that differentiation was done considering values as scalars. But actually each
component after requires the unit vector g;;/ ¢;; resulting in the theoretical written g;;/ qf’j
values.



CHAPTER 3

VARIATIONAL EQUATIONS (VEQS)

Variational equations constitute a foundational concept within the realm of dynamical
systems theory, offering a powerful mathematical framework for probing the sensitivity
and stability of evolving systems. These equations are a key instrument in assessing how
small perturbations or variations in a system’s initial conditions or parameters can lead
to significant alterations in its trajectory or behavior over time. They exist for all initial
value problems[11] and most often appear in[11]| stability studies for specific solutions
of differential equations, parameter estimation theory, and error propagation theory in
numerical integration.

3.1. VEQS OF DYNAMICAL SYSTEMS

We want to derive the variational equations associated with the general initial value

problem

w(n) — f(t7 x, Cb, Cé, ceeny w(n_l)vi)laﬁ% .. 7[777’&) (31)

2O(to)=al’, i=0,1,...,n—1

The initial value problem is referred to as the primary equations system. The dynamical
parameters p; are included so the impact of changing one or more of them can be studied.
The orbital elements of the planets and even masses if those aren’t considered constant are
such examples of dynamical parameters.

The partial derivative of the solution vector is designated

t_&v

w( )_a—p (3.2)

By taking the partial derivatives with respect to the components of the solution vector and
its first n — 1 derivatives, then the partial derivatives of these components with respect to
parameter p, the previous is a particular solution of the system

n—1

w(t) =" Aiyw (1) + f,(t) (3.3)

=0

where the components of the square matrices of dimension d x d

o 9F
A jw(t) = ol (3.4)

are the elements of the Jacobian of vector f(...). This differential equation system is called
the system of variational equations for parameter p of the original system (the primary
equations). If the partial derivatives are with respect only to the components then the
system assumes the form

w () =" Ait)w(t) (3.5)

29
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As initial conditions can take the tangent direction to the flow, that is
T
wy=— (3.6)
|z
but depending on problem another set of initial conditions can be taken (or even preferred).
A benefit of integrating the system of variational equations along the primary system is
the obtainment of information concerning its (first order) stability within the time interval
of the integration.

3.2. VEQs oF HAMILTONIAN SYSTEMS

Let’s consider an autonomous Hamiltonian system having a function

H(q1,49,---,9N, 1, P2, - - -, PN) = h = const. (3.7)
where the ¢;, p;,i=1,2,..., N the generalized coordinates and conjugate momenta respec-
tively. An orbit is defined by the vector
where ;= q;, xitN=pi, ¢ =1,2,..., N.

The time evolution of the orblt is governed by the Hamilton’s equations of motion
z=J-VH=:J-Dgy (3.9)

An initial deviation vector w(tg) = 0z(tp) from an orbit z(¢) evolves in tangent space
according to the equations

=(J-Di(z(1) - w=A(t) w (3.10)
with D% (2(t)) is the Hessian matrix of Hamiltonian calculated on the reference orbit, i.e.,
O°H
2 —

We now consider an autonomous mechanical system, that is one of which the Hamiltonian

assumes the form
N 2
)
L~ 2m;
=1

The Hamilton equations become

SORES

and the variational equations take the form

P &I o op
w_<®>_<—Da«mm> (314

with D¥(q(t)) written )
D} (q(t)) = 219

0q;0qx

(3.12)

(3.15)

The tangent dynamics of the Hamiltonian is represent by the time-dependent Hamiltonian
function

v(0q. dp:1) QE)m QE;DV )) k0500 (3.16)
Js
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which is called the tangent dynamics Hamiltonian (THD) and of which the equations of
motion are exactly the variational equations|[12].
The deviation vector of body i is, according to previous, given by

- ( op; ) ( —D(q;(t))dq; ) (3.17)

For a 6N order system (motion in 3d space, such as the N-body problem), do(t) = (doir),
q;— (QZk)v k= ]., 2, 3, and[9]

v oV 9V
8¢%  09i10qi2  0gi10qi3
92V a2V 9?2V
DU a)=| 55> 72 oo (3.18)

0g:10qi2 g2y 04:20q;3
92V a2V %V
09i10qi3  0qi20qi3  Oqis

and thus
92V v
g% ogi1 + Bq 10q; 25%2 - 9qi10q; i3
92V 9*v
D%/(ql(t))(SqZ: m(g i1 + 5%24‘ 5972003 5%3 (319)
02V a2V
0qi10¢:3 0gi1 + 3qz'2<9q1'35qi2 + @5%3

3.3. VEQs orFr N-BODY PROBLEM

Let’s consider an N-body system. We follow [13] which utilizes the same approach shown
previously. Alternatively we could substitute the gravitational potential in the previous
equations. The differential equations for the N-body problem are

N
. m;
r=-G E _3]”] (3.20)
. j=1j#i 4
or in component form
N
) m;
Via=—G g 3J Tij.a (3.21)
J=1,j#i

Differentiating the equations with respect to r; 3

8’[)2‘@ . mk""zk a
drjp  Orj, b( G2 3 )

k,k+i

m(6ij — Okj)Oab 3METik,aTik,b
= ¢y e B (3.22)
k ki ik k, ki ik

mg 0, oMUk Tk, aTi e
GZ < k ab 3 k zkf;a zk,b) lf’L:]
_ k ki Tik
m;o 3m*7“-- Tii e
+G ]3 ab_G 7 z?),a i5,b lf’L#]
T’ij Tij

Those are of course the elements of the Hessian matrix of the potential. The interested
reader can refer to [13] if they want to introduce varying masses in the system. The
aforementioned reference also derives the 2nd-order N-body variational equations.
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3.4. VEQS OF PLANETARY PROBLEM
For simplicity let’s first consider the 2-body problem. According to the previous procedure,
the corresponding variational equations are obtained by taking the partial derivative of the

respective equations. The result is[11]

r% 3rirs 3rirs

131 _
2 r2 r2
2
.. T T Tor
=] 32y 33 3rors (3.23)
r 72 r2 r9
3rirs 3rors 37“%
2 2 1— 2
T r r

which can be rewritten with the more compact notation
w_—ﬁ<E—%r®rT>w (3.24)
r

where 7 @ rT is the Cartesian, or outer, product of the column array r with its transpose
rT'. Similar to the differential equations of the 2-body problem, it’s possible to derive closed
solutions of the previous variational equations|11].

The differential equations of n-planet system can be written

n

.. T Tij Tj

'r‘i:—G(mo—i—mi)—é— Z m]<%——§> (3.25)
TSt N T

The variational equations for the planetary system are obtained by taking the partial

derivative of the primary equations. To simplify the resulting equations the auxiliary

matrices C;j, Cio, Ajj, Aj; are introduced|[11].

3(ri — 1) @ (ri—7;)T
cij—% E— (ri =) 2( i) i j=1,2,...,n,j+i (3.26)
Tij T’ij
ol
Cio=C g 3Wi@ri) 1 g (3.27)
T T;
Aij: —mj(—CZ-j — Cjo) i,j=1,2,...,n,7 751 (328)
n
Ail-:—(mo—i—mi)Cio— Z ijZ'j 1=1,2,....,n (3.29)
j=1,0
The auxiliary matrices A;;,4,j=1,2,...,n (of dimension 3 x3) can now arranged in one

matrix (of dimension 3n x3n)

All A12 Aln
Ag=| P (3.30)

A Ane ... Ay
Utilizing those matrices, the variational equations assume the standard form

w=Aow pec{p1,p2-..,Pen} (3.31)
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The initial values w(tp), w(tp) are obtained by taking the partial derivatives of the equa-
tions defining the initial conditions in the initial value problem. If the parameters refer
to any of the masses, either one of the planet’s or the solar, the corresponding system of
variational equations is inhomogeneous

w=Aow+ f, pe{mo,mi,...,mpn} (3.32)

3.5. SHOWCASING IN EXAMPLE SYSTEM

We consider again the Hénon-Heiles system

1 1 1
H=g(ps+py) +5(x2+y°) + <x2y - gy?’)
and its equations of motion that have been computed

T=py DPr=—T—2TY
J=py Py=-y—(a®—y?

Assume a deviation vector w = (dz, 6y,0p., dpy). The variational equations governing its
evolution can be found by linearizing (differentiating) the equations of motion. Specifically

(%i1) qdoti: [plx], plyll

(%01) [Pz, pyl

(%i2) pdotl: [-2*x*y-x, y~2-y-x~2]
(%02) [22y—z,y*—y — 27

(%i3) diff(qdotl)

(%03) [d(pz), d(py)]

(%i4) diff(pdot1)

(hot) [(—2y—1)dx—2zxdy, 2y —1)dy —2xdz]
which to better show their symmetry can be rewritten

(0z) =0ps  (Ops) =—(1+2y)dz — 2xdy
(0y) =dpy  (dpy) = —2xbx — (1 —2y)dy
We again choose the initial conditions:
Type h o Yo Yo

regular 0.125 0 01 O
chaotic 0.125 0 -0.25 0

Table 3.1.
and we’ll be plotting the value log [|[w|], |w]|| = yw-w,w = (dx, 6y, Ips, Ipy). As we’ll

discuss later this represents a widely used chaos indicator (specifically FLI) in dynamical
systems.
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(%15) norm(x) := sqrt(x . x)$

(%16) normdv(p) :=
norm(makelist(p[i],i,ceiling(length(p)/2)+1,length(p)))$
(%i7) xOr: [0,0.1,0.490577890519606,0]%

(%1i8) vOr: xOr/norm(xOr)

(%08) [0,0.1997338654842404,0.9798501839458537, 0

(%19) XOr: flatten([x0r, vOr])$

(%110) solr: rk(
[px,py,-2*x*y-x,y"2-y-x"2,
dpx,dpy, (-2%y-1) *dx-2*xx*dy, (2*y-1) *dy-2*x*dx] ,
[x,y,px,py,dx,dy,dpx,dpy], XOr,
[t, 0, 500, 0.05])$%
(%111) tm_plot2d([discrete, makelist(
[p[1], log(normdv(p))], p, solr)],
[xlabel, "t"], [ylabel, "log |lu(t)|1"1)$

log [Ju(®)l|

0 100 200 300 400 500
t
(%i12) x0ir: [0,-0.25,0.4208127057650867,0]%

(%113) vOir: x0ir/norm(x0Oir)

(%013) [0,—0.5107539184552491, 0.8597269536210953, O]

(%i14) XO0ir: flatten([x0ir, vO0ir])$

(%115) solir: rk(
[px,py,-2*x*y-x,y"2-y-x"2,
dpx,dpy, (-2%y-1) *dx-2*xx*dy, (2*y-1) *dy-2*x*dx] ,
[x,y,px,py,dx,dy,dpx,dpyl, XOir,
[t, 0, 500, 0.05])%

VARIATIONAL EQUATIONS (VEQSs)
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(%116) tm_plot2d([discrete, makelist(
[p[1], log(normdv(p))], p, solir)],
[xlabel, "t"], [ylabel, "log |lu(t)|1"1)$

log [l

0 100 200 300 400 500

We see the difference in behavior for a regular and a chaotic orbit. Whereas for the
regular orbit the quantity increases logarithmically (that is there’s an increase but remains
in low values), for the chaotic it increases linearly in time. The indicator quantifies the
qualitative results shown by the images of the trajectories giving thus a tool for stating
whether an orbit is regular or chaotic.






CHAPTER 4

STABILITY ANALYSIS

The stability of an orbit of a dynamical system concerns whether nearby orbits will remain
in a neighborhood or diverge. Asymptotic stability additionally characterizes attraction of
nearby orbits (convergence) in the long-time limit. Stability analysis arises to study and
discern the state in the long-time limit of orbits when subjected to small deviations from
a reference state[1][14].

Formally, stability means the orbits are located in a bounded region of phase space. If
the region is not bounded the orbits could leave the domain through chaotic diffusion. In
this case the orbits become unstable. Thus to perform stability investigation of dynamical
systems we can detect ordered and chaotic behaviors of the orbits of the system.

That said chaos does not necessarily imply instability[15]. Therefore although we can
say that regular orbits lead to stable system doesn’t mean chaotic orbits lead to unstable
one. An example is the well-studied GJ 876 demonstrating chaotic yet stable motion[16].

Worth noting the related concept of structural stability that concerns stability of the
system in perturbations of the map. Briefly a map is structurally stable if “nearby” maps are
topologically conjugate to it. In our case the map remains constant and it’s the parameters
changing.

4.1. CHAOS INDICATORS

As has already been described in introductory chapter, a characteristic of chaotic behavior
is the sensitive dependence on initial conditions. For distinguishing between regular and
chaotic orbits, numerical tools based on this characteristic have been developed. All sub-
sequently presented indicators are based on the time evolution of deviation (infinitesimal
small tangent to the orbit) vectors provided*! by the variational equations. For this reason
those indicators are also referred to as variational indicators.

4.1.1. LCE/LCN

Assuming two trajectories with nearby initial states of distance d9=9(0), their divergence
in time will be §(t) ~e*". The exponent ) is called the Lyapunov characteristic exponent
(LCE), or mazimal Lyapunov exponent (MLE), and is an indicator showing the mean rate
of exponential divergence of nearby trajectories. It’s computed[1][18]

5(t)

o1 .1 lv(t)]|
A= lim —log—~ = lim —lo 4.1
oo 878 s b2 o] b

4.1. Alternatively can be calculated by independently evolving a shadow orbit with initial conditions slightly
perturbed. But the variational approach has the advantages of being scale-free and circumventing numerical pitfalls
associated with the shadow method[17][13].

37
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In general there exists an m-dimensional basis {&;} such that for any v, A takes of
the m values A\; = \(xg, vo; é;). Those values are called simply Lyapunov exponents. In
autonomous Hamiltonian system the m exponents are ordered in pairs of opposite sign
numbers and two of them are 0. Therefore the computation of Aj is sufficient for deter-
mining the nature of an orbit[12].

The Lyapunov characteristic number (LCN), or Lyapunov indicator (LI) or local Lya-
punov exponent (LLE), is computed after every computational step and is defined as the
running average[1][18]

LCN(¢ lwll 4 — pat 4.2
Z o ™ (42)

To avoid numerical overflow in the lengths of the vectors in case of a chaotic orbits, a re-
normalization procedure has to be applied at given intervals (usually after every step) on
the tangential vectors. For the initial deviation vector it’s common to use the Euclidean
norm setting dp = ||vo|| = 1.
Theoretically the LCN tends toward the maximal Lyapunov exponent. That is
lim LCN(tg) = A (4.3)
k—o0
The maximal Lyapunov exponent defines the direction to which linearly independent devi-
ation vectors will align for chaotic orbits. Essentially the value A counts the average
exponential divergence around a reference orbit. For a regular orbit LCN(¢;) — 0 (no
average divergence) whereas for a chaotic orbit LCN(tx) — A > 0 (exponential divergence).
Its final value matters and acts as an indicator of the chaos strength[1].

The Lyapunov characteristic number (LCN) is considered reliable indicator for dis-
tinguishing regular and chaotic orbits but demands long-time numerical computation
especially in case of weak chaos. If only a distinction between regular and chaotic orbits
is needed, modifications of it have been developed that give a faster result.

4.1.2. FLI/DFLI

By not re-initializing the deviation vector and retaining only the initial part of the com-
putation of largest LI, we take fast Lyapunov indicator (FLI). Originally[19][20] it was
conceived as the supremum of the norms of an evolving basis of deviation vectors of initial
unitary length but shortly afterwards was replaced by[21][20][1]

FLI=log||v(t)]| (4.4)

It’s a computationally cheaper definition requiring only one deviation vector of length
5(t) = |lv(t)||. It can also distinguish between circulation and libration, something the
ordinary LCE cannot do[21][20]. It’s defined in such way that FLI/¢ tends to the largest
Lyapunov exponent for t— oo, i.e.,

lim T A

k— o0 t
For a regular orbit %FLI ~ 0 (slow increase) whereas for a chaotic orbit the increase is
significant. Therefore a small value implies a normal evolution whereas a large one implies

chaos. Based on previous, the value of FLI to ¢ often appears in literature as the threshold
between regularity and chaos|[22][23][24].
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An improved version to reduce fluctuations is to only retain the largest FLI at each
computational step up to this point[25]. Specifically

FLI= sup log|lv(t)|| (4.5)
0<t/<t
Another improvement is to avoid the linear trend of FLI. The de-trended FLI (DFLI)[26]
can simply be defined as

DFLI=FLI—logt= logw (4.6)
In our later study we’ll be computing the DFLI but won’t be taking the supremum.

Also worth noting that the FLI and rate of its growth depends on the orientation of
the initial vector v(t). Some studies compute the average (or alternatively the maximum)
of the FLIs obtained for an orthonormal basis of tangent vectors|20].

4.1.3. OFLI/2

The orthogonal fast Lyapunov indicator (OFLI)[27][28] is variation of FLI that uses the
component of deviation vector that is orthogonal to the flow. It was introduced as analo-
gous to the FLI definition reducing fluctuations

OFLI= sup log||v*(t)|| (4.7)
0/t
An advantage of OFLI is that can distinguish periodicity as it tends to constant value for
a periodic orbit, whereas for quasiperiodic and chaotic orbits retains the same behavior as
FLI.
An improved version, named OFLI2 method[29][28], to minimize spurious artifacts
makes use of 2nd-order variational equations. It’s given

Hv(t) —i—%é?m(t)}l

where with 6®z(t) we denote the i-th order deviation vectors and having replaced dx(t) =
v(t). Methods based on higher than 1st order variations such as OFLI2 can alleviate
problems in systems and initial conditions that Lyapunov exponents may vanish.

Advantages of OFLI can be transferred to other indicators by avoiding the tangent
direction in the initial conditions for the variational equations. For Hamiltonian systems
such a set of initial conditions can be[30][28]

OFLI2= sup log
0<t/<t

(4.8)

Vo :(5180 = (4.9)

And in Hamiltonian systems with 1 d.o.f this is the only choice available. In cases of more
d.o.f other choices are utilizing random initial conditions, and basically in cases of systems
with many d.o.f. such as the n-body problem can simply take v((]l) =1, v((]z) =0,7>1 that
is vo=(1,0,0,...,0), or evolve multiple deviation vectors as already mentioned is done

regarding FLI.

4.1.4. MEGNO

The mean exponential growth of nearby orbits (MEGNO) initially introduced while studying
dynamics in non-axisymmetric galactic potentials[31], was later formalized as a technique
on its own[32]. As will be detailed is both a fast indicator and can provide an estimate
of the LCN converging to the null value faster than the classical algorithm[31][33].
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We first rewrite LCN in integral form.

Lon( =1 /Otuvu')ndt/: < Hv(t)ll> 0.10)

[[vol [[woll

Then MEGNO is defined as the quantity

28 2 o)
Y(t)—t/ot S e t/ot ARG (4.11)

and for discrete time systems

l|vj ]
(4.12)
[|[vj—1ll

n
2
Y(n)=— j
(n)==>_ jlog
7j=1
Essentially MEGNO introduces a time weight giving larger weight to values taken at longer
times. Then the continuous quantity for computational purposes can be rewritten as the

running sum
k

2 il :
i=1

It’s proved|33] that for a regular orbit is approximated

2In(1+ Mt
()~ 2RI o () (4.14)
T
Introducing the time average
_ 1 [t _ _
Yi(t) :_/ Yi(t')dt' = Y, = lim Yi(t) =2 (4.15)
t 0 t—o00
For a chaotic orbit is approximated
and averaging
Y= lim Yi(t) = lim iy oo (4.17)
t—oo t—oo 2

Hence for regular orbits MEGNO is osculating around 2 for finite time spans but tends to a

constant value for time tending to infinity, whereas for chaotic orbits it’s increasing linearly
in time. Note that since %EN Air/2 it’s possible to get, by linear fitting Y;;(¢), an accurate
estimate for LCE in shorter times than classical algorithm which approaches by logt/t.

Overall, the time average can take the general form
Y(t)=at+b (4.18)
with values depending on the motion given in the following table.
irregular /chaoticmotion a=A/2,b~0
quasiperiodic motion a=0,b~2

stable periodic orbits b2
unstable periodic orbits b2 2
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MEGNO exhibits an analytical relation with FLI[34][33]. The time averaged FLI is given

FLI(t) =+ / log 8(¢) dt’ (4.19)

0

From the definition of MEGNO, assuming dp=1

V() =2 / t - flog 8(¢)] dt' = Q[Iné(t) . /0 g 6() dt/] (4.20)

And comparing with previous
Y (t) = 2[FLI(t) — FLI(t)] (4.21)

Hence MEGNO is twice the difference between FLI and its time average over the interval
(0,t). This highlight two points regarding MEGNO. It (i) takes advantage of the dynamical
information of the evolution of the tangent vector along the complete orbit, and (ii) shows
why it distinguishes chaos at absolute scale (regular orbits tend asymptotically to*2 2)
whereas FLI at relative.

For discrete-time systems the relation is slightly different. Since we’re essentially using
the discrete algorithm, it’s worth mentioning this as well. The average FLI in this case is

FLI(n Z log ||v;]| = Z log 6(j (4.22)

and from the definition of MEGNO[34]
2 n
Y(n)= EZong(S Z]logéj—l

| j=1 j=1

n—1
= log 0(j logd(j—1)
Z]g ngj

H—|[\D

= 2|logd(j ——Z log 6(j %log&(n)

= 2[FLI(n) — FLI(n)] +(2/t)logd(n) (4.23)
So we find the relation is similar but with an error of order A, that is,

Y (n) =2[FLI(n) — FLI(n)] + O()\) (4.24)

4.1.5. SALI/GALI

Let’s assume two deviation vectors vy, v for an orbit. For chaotic orbits the two initially
different deviation vectors tend to coincide with the direction defined by the maximal
Lyapunov exponent.

4.2. The actual value is of course determined by the arbitrarily chosen multiplication factor of the integral in
the definition. Nevertheless the dynamic picture is the same regardless of which factor is chosen.
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Upon this the smaller alignment index (SALI)[35][36] can be introduced. It’s defined,
with vy, v2 defining an orthonormal basis of deviation vectors,

SALI=min {|[61 — |, |01 + o]l } ;= HZ%H (4.25)
(2
which means

For chaotic orbits
SALI(t) x e~ M2t

whereas for regular orbits it fluctuates around a value within the interval (0, v/2].

Geometrically, SALI effectively measures the area of the parallelogram formed by the
two deviation vectors. Specifically

191 = all[91 + B2l _ g gy, max {01 = vall, [91 +Bll} g garr (a27)

A: 3. ) p—
|91 A D2 5 5

Therefore an alternative definition simply sets it equal to the area[36]. That is*3
SALI =/2A = /2|6 A || = /2 sin(¢) (4.28)

where we set the multiplication factor /2 (also similar to MEGNO which also has an
arbitrarily chosen multiplication factor) so the result coincides with original definition. The
essential part though is that for chaotic motion it exponentially tends to zero whereas for
regular orbits it fluctuates around non-zero values.

Based on this the generalized alignment index (GALI)[37][36] is introduced and for 2n-
dimensional space extends SALI to k deviation vectors such that 2 <k < 2n.

GALIg = ||91A ... AUk (4.29)
For chaotic orbits

GALI, x e 2=} g

The relation is valid even if some Lyapunov exponents are equal or close to each other. As
can be seen SALI is just the form GALI takes for k=2 or more precisely, and considering
the multiplication factor, SALI = /2 GALI.

4.1.6. RLI

Let’s assume two nearby orbits. If those are regular then the LCN is expected to have a
similar evolution for both such that over time the difference tends towards zero. If those
are chaotic then difference will be non-zero.

Upon this the relative Lyapunov indicator (RLI)[38][24] can be introduced. Instead of
computing LCN for a large time scale, it’s computed for two nearby orbits (the “base” and
its “shadow”) separated by distance dx. Then RLI is defined as

RLI(t; zo) = |LCN(t; xo + dx) — LCN(¢; zo)| (4.30)

4.3. Although ¥ A U2 and ¥ X U2 mathematically correspond to different entities, it’s |91 A ¥ = ||U1 X v2||.
Therefore the definition could alternatively use the cross rather wedge product. For more regarding exterior algebra
and the wedge product can refer to [18].
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To eliminate the high frequency fluctuation, the smoothed (averaged) RLI defined as
k
= 1 .
RLI(tx) = (RLI(tg; z0)) e = o E RLI(t;; z9) tj=1dt (4.31)
k4
i=1

is more preferred|24]. The values for chaotic motion are several orders of magnitude higher
than for regular motion. The distance dx is chosen arbitrarily depending on the problem
studied and should be small enough to reflect the local properties of the phase space.
Alongside the need for a threshold means RLI has two free parameters. For ordered orbits
it shows linear dependence on dx but for chaotic orbits it’s practically invariant to the
choice made. Thus the choice of 0z does not modify essentially the behavior of the RLI[24].

4.2. SHOWCASING IN EXAMPLE SYSTEM

We consider again the Hénon-Heiles system
1 1 1
H=5(pz+py) + 5@ +y%) + <x2y - §y3>

Its equations of motion and variational equations for deviation vector w = (dx, 8y,0pz, Opy)
are

L=py Pa=—T—22Y
y=py py=-y—(a®—y?

(62) =6ps  (6ps) = —(1 + 2y)6x — 2ady

(6y)=0dpy  (0py) = —2wéx — (1 — 2y)dy

Hénon—Heiles system has been extensively studied in literature. Related to orbit classifica-
tion someone can read [39] and references within. We will only show the evolution of the
indicators for a regular and a chaotic orbit but no commentary will be given other than
what discussed above.

The comparative study of them will take place in the later section with the numerical
integration of a 3-planet system. Such study for HH system can be found in [23][24]. A
similar but for few other 4d maps can be found in [22], and for few 2d dynamical systems
in [40].

We again choose the initial conditions:

Type h ®o Yo Yo
regular 0.125 0 01 O

chaotic 0.125 0 -0.25 0

Table 4.1.

(%117) zip(1lstl, 1st2) := makelist([lst1[i],1st2[i]],i,1,length(1lst1))$
(%118) tlst: makelist(p[1], p, solr)$
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(%119) ratprint: false$

4.2.1. LCE/LCN

We plot the temporal evolution of A;. To get an approximate value for X in case of chaotic

orbit we can perform a linear fit to the near-linear part.

(%120) tm_plot2d([discrete, makelist(

[p[1], log(normdv(p))/pl[1]l], p, rest(solr))],

[xlabel, "t"], [ylabel, "11"1)$
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(%121) tm_plot2d([discrete, makelist(

[p[1], log(normdv(p))/pl[1]1], p, rest(solir))],

[xlabel, "t"], [ylabel, "11"1)$
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Then we plot the temporal evolution of LCN. Since here we cannot renormalize after
each computational step we compute via the following routine that replicates this after the
entire computation has run®*.

(%122) lcn(norms) := block([res : [1, s : 0, prev : 1],
while norms # [] do (
ksi : first(norms),
s : log(ksi/prev) + s,
prev : ksi,
norms : rest(norms),
res : cons(s, res)),
reverse(res))$

(%123) normsr: makelist(normdv(p), p, solr)$
(%124) tm_plot2d([discrete, makelist(

[pl1], pl[2]/p[1]], p, rest(zip(tlst, lcn(normsr))))],
[xlabel, "t"], [ylabel, "LCN"])$
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(%125) normsir: makelist(normdv(p), p, solir)$

4.4. Based on a blog comment by S. Macrakis about implementing an efficient cumulative sum on Maxima.
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(%126) tm_plot2d([discrete, makelist(
[pl1], p[2]1/p[1]1]1, p, rest(zip(tlst, lcn(normsir))))],
[xlabel, "t"], [ylabel, "LCN"])$
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4.2.2. FLI/DFLI

The plots shown as example in the variational equations chapter actually correspond to
FLI. We plot them again to compare to DFLI. Notice how DFLI has no linear trend.

(%127) tm_plot2d([discrete, makelist(
[p[1], log(normdv(p))], p, rest(solr))],
[xlabel, "t"], [ylabel, "FLI"])$
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(%128) tm_plot2d([discrete, makelist(
[p(1], log(normdv(p)/p[11)], p, rest(solr))],
[xlabel, "t"], [ylabel, "DFLI"])$
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(%129) tm_plot2d([discrete, makelist(
[p[1], log(normdv(p))], p, rest(solir))],
[xlabel, "t"], [ylabel, "FLI"])$

FLI

0 50 100 150 200 250 300 350 400 450 500



48 STABILITY ANALYSIS

(%130) tm_plot2d([discrete, makelist(
[p[1], log(normdv(p)/pl[1]1)], p, rest(solir))],
[xlabel, "t"], [ylabel, "DFLI"])$
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4.2.3. MEGNO

Similar to LCN here we cannot renormalize or apply the time weight after each compu-
tational step, so we compute via the following routine that replicates this after the entire
computation has run.

(%131) megno(t, norms) := block([res : [], s : O, prev : 1],
while (t, norms) # [] do (
ksi : first(norms),
s : first(t)*log(ksi/prev) + s,
prev : ksi,
norms : rest(norms),
t : rest(t),
res : cons(s, res)),
reverse(res))$
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(%132) tm_plot2d([discrete, makelist(
[pl1], 2xp[2]1/p[1]1]1, p, rest(zip(tlst, megno(tlst, normsr))))],
[xlabel, "t"], [ylabel, "MEGNO"]1)$
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(%133) tm_plot2d([discrete, makelist(
[pl1], 2xp[2]/p[1]], p, rest(zip(tlst, megno(tlst, normsir))))],
[xlabel, "t"], [ylabel, "MEGNO"])$
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4.2.4. SALI

To compute SALI we’ve to evolve two deviation vectors. The simplest will be evolve two
orbits with different set of initial conditions for the deviation vector. This will sub-optimal
implementation since we will be solving the primary equations twice whereas the difference
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lies only in the variational equations. So what we’re doing is we introduce an extra set of
variational equations with (dq)’, (dpy)’ rather (dq), (0py) that’ll evolve the other deviation

vector.
(%i34)

(%135)

(%136)
(%137)
(%138)

(%139)

14t

1.2

SALI

0.8

0.6 |

uv(vec) := vec/norm(vec)$

solsr: rk(
[px,py,-2*x*y-x,y"2-y-x"2,
dpx,dpy, (-2*%y-1) *dx-2*x*dy, (2*y-1) *dy-2*x*dx,
dpx1,dpyl, (-2xy-1) *dx1-2*x*dyl, (2*xy-1) *dy1-2*x*dx1],
[x,y,px,py,dx,dy,dpx,dpy,dx1,dyl,dpx1l,dpyl],
[0,0.1,0.490577890519606,0,1,0,0,0,0,1,0,0],
[t, 0, 500, 0.05]1)$%

ul: makelist(uv([p[6], p[7], p[8], p[91]), p, solsr)$
u2: makelist(uv([p[10], p[11], pl[12], p[13]1]), p, solsr)$

sali: makelist(
min(norm(ul[i]-u2[i]) ,norm(ul[i]+u2[i])),i,1,length(ul))$

tm_plot2d([discrete, zip(tlst, sali)],
[x1label, "t"], [ylabel, "SALI"])$

!
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(%165) solsir: rk(
[px,py,-2*x*y-x,y"2-y-x"2,
dpx,dpy, (-2*%y-1) *dx-2*x*dy, (2*y-1) *dy-2*x*dx,
dpx1,dpyl, (-2xy-1) *dx1-2*x*dyl, (2*xy-1) *dy1-2*x*dx1],
[x,y,px,py,dx,dy,dpx,dpy,dx1,dyl,dpx1l,dpyl],
[0,-0.25,0.4208127057650867,0,1,0,0,0,0,1,0,0],
[t, 0, 500, 0.05]1)$%

(%i66) ul: makelist(uv([p(6], p(7], p[8], p[9]1), p, solsir)$
(%i67) u2: makelist(uv([p[10], pl[11], p[12], p[13]]), p, solsir)$

(%168) sali: makelist(
min(norm(ul[i]-u2[i]) ,norm(ul[i]+u2[i])),i,1,length(ul))$

(%169) tm_plot2d([discrete, zip(tlst, sali)],
[x1label, "t"], [ylabel, "SALI"])$
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4.2.5. RLI

(%145) X1r: copylist(XOr)$
(%i46) X1r[1]: XOr[1]+10e-10$

(%147) solrl: rk(
[px,py,-2*x*y-x,y"2-y-x"2,
dpx,dpy, (-2%y-1) *dx-2*xx*dy, (2*y-1) *dy-2*x*dx] ,
[x,y,px,py,dx,dy,dpx,dpy], Xir,
[t, 0, 500, 0.05])%

(%148) lcnOr: lcn(normsr)$

(%149) normsrl: makelist(normdv(p), p, solrl)$
(%150) lecnlr: lcn(normsril)$

(%151) rli: abs(lcnOr-lcnir)$
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(%152) tm_plot2d([discrete, zip(tlst, rli)],
[xlabel, "t"], [ylabel, "RLI"])$
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(%i53) Xlir: copylist(X0ir)$
(%154) X1ir[1]: X1ir[1]+10e-10$

(%155) solirl: rk(
[px,py,-2*x*y-x,y"2-y-x"2,
dpx,dpy, (-2*y-1) *dx-2*x*dy, (2*y-1) *dy-2*x*dx] ,
[x,y,px,py,dx,dy,dpx,dpy], Xlir,
[t, 0, 500, 0.5])%

(%156) lcnOir: lcn(normsir)$

(%i57) normsirl: makelist(normdv(p), p, solirl)$
(%158) lcnlir: lcn(normsrl)$

(%159) rli: abs(lcnOir-lcnlir)$



4.2 SHOWCASING IN EXAMPLE SYSTEM

(%160) tm_plot2d([discrete, zip(tlst, rli)],
[xlabel, "t"], [ylabel, "RLI"])$
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CHAPTER 5

NUMERICAL INTEGRATIONS

Having introduced the necessary theory and having shown some examples, we proceed to
applying that theory to the 3-planet problem (4-body n-problem), that is 3 bodies in orbit
around a more massive one. We’ll study the chaos in a 3-planet system computing the
indicators DFLI, MEGNO, SALI, and RLI. Our objective is to compare those indicators as
fast predictors to a planetary system’s stability. The OFLI is excluded as we aren’t looking
to discern periodic orbits specifically and is having the same behavior with FLI otherwise.

For the integration an in-house code originally written for the 2-planet problem is
modified for usage in the 3-planet problem. Rather utilizing variable arrays and there-
fore converting it to an n-planet integrator, the expressions for the 3-planet problem are
hardcoded. The reason behind this being that it’s a specific problem and static variables
result in better performance, something welcomed as long integrations are required for such
study.

For the study, we’ve chosen, based on values commonly used in literature[26][22][23][24],
max DFLI to be 30 (31 in case of error), max MEGNO to be 7 (8 in case of error)®!, min
SALI to be 10=* (0 in case of error), and max RLI to be 10~* (0 in case of error) with
separation set to 10710, For all integrations the energy and angular momentum are accurate
to 10711,

The studied system is HD 829435-2. It was for many years known to harbor two planets
and, although had been previously suggested|41][42], only recently good indications for a
third one were found[15]. Numerical simulations have shown the inner two-planet system,
planets b and ¢, to reside in stable resonant state[43|[44][45], specifically an apsidal corota-
tion resonance®-3. But the dynamical status of planet d is uncertain as of latest observational
data. It may reside in as well as slightly out of the 5:2 resonance. The orbital period
and minimum masses have been found but the eccentric parameters are uncertain|15].

The system has a host star with mass 1.18 Mgy, and planets with masses and orbital
elements given in the following table®%.

Planet m (Mj,p) a (AU) e i (deg) Q (deg) w (deg) M (deg)

b 4.78 0.746 0.425 19.4 0 133 NA

c 4.8 1.190 0.203 19.4 0 107 NA

d 0.29 2.145 0.001 19.4 0 NA NA
Table 5.1.

5.1. Since for regular orbits MEGNO oscillates around 2, we’ve to pick a value higher than it to make sure we
don’t classify as chaotic a regular orbit.

5.2. As trivia HD 82943 is at distance d = 22.46 pc from us and it has a GO type host star.
5.3. Apsidal corotation resonance refers to simultaneous apsidal alignment and mean-motion resonance[43].

5.4. Data taken from expoplanet.eu. Note that data for 2-planet system b, ¢ and d in database are from different
papers. A fancy plot made using REBOUND package of the orbits for those initial conditions setting wq = 180 deg,
M; =0Vj can be seen on the cover of this thesis.
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Note that the actual masses found observationally are msiné. The data above consider
this and with ¢ known give m. Nevertheless this is the minimum mass for the body.

Since system is coplanar we set ¢; =0 and to make the comparative study of chaotic
indicators simpler we set {}; =w;=0Vj and M= M.=0. That is planets b and c are set in
alignment at the start of the integration, something that can be done due to them known to
be in apsidal alignment with Az (¢") =0. Then we start by studying the position of planet d.

We generate ag — My stability maps for a4 € [1.5,3.0], M, € [0,360]. The maps are shown
for times 10* years.

28.07 360.00

23.38

18.69 288.00
14.00
9.31 216.00

144.00

72.000

288.00 -1.80 288.00

216.000

-3.61 216.00

144.000

144.000

72.00 72.00

1.50 1.80 210 2.490 2.70 3.00 1.50 1.80 210 2.490 2.70 3.00

Figure 5.1. (top) DFLI left, MEGNO right, (bottom) log SALI left, log RLI right. The white
spots show when integration has failed, i.e., a collision has occurred. The (z,y) axis are (aq4, My)
respectively.

We choose the following regular and chaotic parameters.

Type aq My
regular 2.52 180.0
chaotic 2.42 180.0

Table 5.2. Regular and chaotic orbit for e;=10.001.

The evolution of a,e (i =const.) for regular orbit is
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Figure 5.2. Evolution of a,e for regular orbit (a4, My) = (2.52,180).
The evolution of a,e (i =const.) for chaotic orbit is
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Figure 5.3. Evolution of a,e for chaotic orbit (a4, My) = (2.42,180).
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The evolution of the indicators is then taken to the end without early breaking in the

case of chaotic orbit.
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Figure 5.4. Evolution of DFLI, MEGNO, SALI, log RLI for for regular orbit (aq, Mq) =(2.52,180).
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Figure 5.5. Evolution of DFLI, MEGNO, SALI, RLI for for chaotic orbit (aq, My) = (2.42,180).

To also compare computational expense, the times it took for integrations to reach the
end and for indicators to reach break value are given below.

Type t
plain orbit (no vegs) 18.11s
plain orbit (w/ veqs) 44.29s

LCN 44.60s
DFLI 44.29s
MEGNO 44.47s
SALI *70.21s
RLI 89.51s (~2x LCN)

Table 5.3. Time to fully integrate orbits. Compare with integrating orbit without computing an
indicator and without computing the variational equations.
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Indicator Threshold tr Alt. threshold tr
DFLI 30 NaN t 5.15000e+03
MEGNO 7 4.43600e+03 2 2.24000e+02
SALI 1074 7.69000e+02
RLI 1074 8.45000e+02

Table 5.4. Simulation time till breakvalue. Also in case of theoretical breakvalues for FLI and
MEGNO.

About the dynamics, for the system to be stable planet d has to be significantly distant
from planets b, ¢ so orbits won’t intersect. We note that planet can exist in stable anti-
aligned position at M =nrad =180deg if a = 2.45.

Setting Mg=7 rad we generate aq— eq stability maps for a4 € [1.5,3.0], eq € [0.001,0.5].

: 4
The maps are shown for times 10* years.

28.07 0.50 7.25
23.38 6.04
18.69 0.90 4383
14.00 3.62
9.32 0.30 2.42
4.63 1.21

0.20

0.10

0.00
-0.19 0.50 -1.30
-1.04 -3.38
-1.90 0.40 5.6
-2.76 -7.54
361 0.30 -9.62
-a.47 -11.70

0.20

0.10

0.00

Figure 5.6. (top) DFLI left, MEGNO right, (bottom) log SALI left, log RLI right. The white
spots show when integration has failed, i.e., a collision has occurred. The (z, y) axis are (agq, €q)
respectively.
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1.50 1.80 210 2.0 2.70 3.00

We choose the following regular and chaotic parameters.
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Type aq eq
regular 2.52 0.02
chaotic 2.52 0.1

Table 5.5. Regular and chaotic orbit for M,;=180.0.

The evolution of a,e (i =const.) for regular orbit is
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Figure 5.7. Evolution of a,e for regular orbit (a4, eq) = (2.52,0.02).
The evolution of a,e (i =const.) for chaotic orbit is
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Figure 5.8. Evolution of a,e for chaotic orbit (a4, eq) = (2.52,0.1).
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The evolution of the indicators is then taken to the end without early breaking in the
case of chaotic orbit.
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Figure 5.9. Evolution of DFLI, MEGNO, SALI, log RLI for for regular orbit (a4, eq) =(2.52,0.02).
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Figure 5.10. Evolution of DFLI, MEGNO, SALI, RLI for for chaotic orbit (a4, eq) =(2.52,0.1).

To also compare computational expense, the times it took for integrations to reach the

end and for indicators to reach break value are given below.

Indicator Threshold tr Alt. threshold tr
DFLI 30 NaN t 9.17000e+03
MEGNO 7 5.11300e+03 2 9.46000e-+02
SALI 10=%  3.59000e+03
RLI 10~4 1.93300e+03

Table 5.6. Simulation time till breakvalue. Also in case of theoretical breakvalues for FLI and
MEGNO.

The RLI, SALI can give very fast results (in iterations) but is reminded their higher

computational complexity. SALI shows some strange behavior some time after reaching the
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theoretical value 0. A possible explanation is accumulation of numerical errors, although
something strange isn’t seen in other indicators.

For MEGNO a higher threshold than theoretical value was chosen since it tends asymp-
totically to 2 but can oscillate slightly above or below in finite times. It’s worth pointing
its very close behavior to DFLI. Both indicators show oscillation around some value for
regular orbits and linear increase for chaotic. This is distinct from plain FLI that for regular
orbits shows logarithmic increase.

For the maps we’ve chosen a high DFLI value which value though is often used for
longer integration times (>100 ky). If the theoretical threshold ¢ is used we find that it
gives results in same time span as MEGNO.

Overall, all indicators show strengths and weaknesses. DFLI being very simple to imple-
ment but requiring a good threshold choice, MEGNO having a slightly higher complexity
but having the strong advantage of providing a theoretical max value (though for which
we still have to consider oscillations that can put an orbit higher than it), SALI, and RLI
being very fast but having higher complexity requiring evolution of two deviation vectors
and two orbits respectively as well as choosing a good threshold.

Overall, a low mass 3rd planet introduced to the strongly resonant 2-planet system
HD 82943, for short orbital distances, has regular orbits only for anti-aligned position and
having low eccentricity. If orbital distance increases enough then there are stability regions
for any starting position as long as eccentricity stays low but we notice chaoticity regions
interwinding with them®°. At those chaoticity regions (for specific orbital distances) the
planet d is in near-resonance with one of the inner planets. Finally, interestingly in both
chaotic cases examined the system remained stable in the studied time span. Hence future
research paths could be (i) exploring the chaoticity regions appearing inbetween stability
regions, and (ii) exploring the prediction of stable and unstable chaos.

5.5. Ruminant of Kirkwood gaps found in the distribution of the semi-major axes of the orbits of main-belt
asteroids.



CONCLUSIONS

Summing up, we presented the necessary background in (i) dynamical systems and numer-
ical integration schemes, (ii) the planetary problem and its equations of motion, (iii) the
variational equations of the previous problem, (iv) chaos indicators.

We showed some examples of the presented theory in every theoretical chapter, and
how the equations required for studying those examples can be extracted computationally
using the computer algebra system Maxima.

Finally we run numerical integrations for the system HD 82943 to compare the indica-
tors in accuracy and performance. The comparison was made making stability maps for
initial conditions of dynamical parameters of the outer planet. The indicators compared
were DFLI, MEGNO, SALI, and RLI. Although the OFLI was presented in theory it was
excluded because it has same behavior with FLI except the case of periodic orbits. Our
results showed all indicators have strengths and weaknesses.

On the dynamics of the 3-planet system, we showed how introduction of 3rd planet
modifies the dynamics of the planetary system and how changes in dynamical parameters
of the outer body in the 3-planet system changes the stability of the orbits of the system
with some parameters resulting in regular and some in chaotic motion. That is order and
chaos co-exist in the N-body problem.
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APPENDIX A

SOURCES

A.1. VARIATIONAL EQUATIONS

A partial extract from the in-house program, written in C, to showcase the utilized method.
As already mentioned, for this thesis the code was modified by the author of this thesis
from 2-planet to the 3-planet problem#-1.

The array y[1 (of size 2 x 6n+ 1 =37 in case of n =3) contains time, and components
of the position and velocity of primary and variational equations. Essentially it represents
the vector

y=(t,x1,22,T3, Y1,...,23, L1, L2, L3, Y1,...23,0x1, 0T, 0T3, 0Y1,...023, 0X'1, 0L, 03, 0Y1,...0%3)

The array dd[] contains the differential equations of the system with respect to y[].
Essentially it represents the vector
:ﬁé::(l,xl,xg,xg,yl,”.,23,x1,x2,x3,yl,”.,23,5x1,5x2,5x3,5y1,”.523,5x1,5x2,5x3,5y1,”.523)
The variational equations are implemented in form w =P -w,P = A + B, as presented in
theory. Note the order of rows is different due to order of components differing.

void dSystem4BPveq(__attribute__ ((unused)) double t, double y[],double
dd[1)
{

//0th body

double
sx0=- (m1*y [1]+m2*y [2] +m3*y [3]) /mO,
sy0=- (m1*y [4]+m2*y [5]+m3*y [6]) /mO,
sz0=- (m1*y [7]+m2*y [8] +m3*y [9]) /mO;

//differences xi-xj

double
wx12=y[1]-y[2], wx13=y[1]-y[3], wx23=y[2]-y[3],
wyl2=y[4]-y[5], wyl3=y[4]-y[6], wy23=y[5]-yl[6],
wzl12=y[7]-y[8], wz13=y[7]-y[9], wz23=y[8]-y[9],
wx10=y[1]-sx0, wx20=y[2]-sx0, wx30=y[3]-sx0,
wyl0=y[4]-sy0, wy20=y[5]-sy0, wy30=y[6]-sy0,
wz10=y[7]-s20, wz20=y[8]-s20, wz30=y[9]-s20;

//distances - powers

//x72

double
r122=wx12*wx12+wyl12*xwy12+wz12*wz12,
r132=wx13*wx13+wyl13*wyl13+wz13*wz13,
r232=wx23*wx23+wy23*wy23+wz23*wz23,
r102=wx10*wx10+wy1l0*wy10+wz10*wz10,

A.1. An N-body variant, utilizing a symplectic map, is detailed in [9].
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r202=wx20*wx20+wy20*xwy20+wz20*wz20,
r302=wx30*wx30+wy30*wy30+wz30*wz30;

//x

double
r12=sqrt(r122), ri13=sqrt(r132), r23=sqrt(r232),
r10=sqrt(r102), r20=sqrt(r202), r30=sqrt(r302);

//t~(-3), 3*r~(-5)

double
ir123=1.0/(r122*r12), ir133=1.0/(r132xr13), ir233=1.0/(r232+r23),
ir125=3.0%ir123/r122, ir135=3.0%*ir133/r132, ir235=3.0%*ir233/r232,
ir103=1.0/(r102*r10), ir203=1.0/(r202*r20), ir303=1.0/(r302*r30),
ir105=3.0%ir103/r102, ir205=3.0%ir203/r202, ir305=3.0%ir303/r302;

//Differential equations of 1st ORDER

//xdi=vi

dd[1]=y[10];

dd[2]=y[11];

dd[3]=y[12];

dd[4]=y[13];

dd[5]=y[14];

dd[6]=y[15];

dd[7]=y[16];

dd[8]=y[17];

dd[9]=y[18];

//vdi=-sum(mj*wxij*irij3)
dd[10]=-mO*wx10*ir103-m2*wx12*ir123-m3*wx13*ir133;
dd[11]=-mO*wx20*ir203+ml*wx12*ir123-m3*wx23*1ir233;
dd[12]=-mO*wx30*ir303+ml*wx13*ir133+m2*wx23*1r233;
dd [13]=-mO*wy10*ir103-m2*wy12*ir123-m3*wy13*ir133;
dd [14]=-mO*wy20*ir203+ml*wy12*ir123-m3*wy23*ir233;
dd [15]=-mO*wy30*ir303+ml*wy13*ir133+m2*wy23*ir233;
dd[16]=-m0*wz10*ir103-m2*wz12*ir123-m3*wz13*ir133;
dd[17]=-m0*wz20*ir203+m1*wz12*ir123-m3*wz23*ir233;
dd [18]=-m0*wz30*ir303+m1*wz13*ir133+m2*wz23*ir233;

[/ = e -

//veqs vdot=P.v, P=A+B;

[/ = m -

//row -> (j,b)=(0,0),(1,0),(2,0),(0,1),... (j the mass on the row)

//col -> (i,2)=(0,0),(1,0),(2,0),(0,1),...
double B[9][9];// Matrix B
double
bxx12=-ir123+wx12*wx12*ir125, byyl2=-ir123+wyl2*wyl2*irl125, bzz12=-
ir123+wz12*wz12*xir125,
bxy12=wx12*wyl2*ir125, bxzl12=wx12*wz12*ir125,
byz12=wy12*wz12xir125,
bxx13=-ir133+wx13*wx13*ir135, byyl3=-ir133+wyl3*wyl13*ir135, bzz13=-
ir133+wz13*wz13*ir135,
bxy13=wx13*wy13*ir135, bxzl13=wx13*wzl13*ir135,
byz13=wy13*wz13*ir135,
bxx23=-ir233+wx23*wx23*ir235, byy23=-ir233+wy23*wy23*ir235, bzz23=-
ir233+wz23*wz23*xir235,
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bxy23=wx23*wy23*ir235, bxz23=wx23*wz23*ir235,
byz23=wy23*wz23*1ir235;

R —
double A[9][9];// Matrix A
double
m01=mO+m1, m02=mO+m2, m03=mO+m3;
double

txx1=-ir103+wx10*wx10*ir105, txx2=-ir203+wx20*wx20*ir205, txx3=-
ir303+wx30*wx30*xir305,

tyyl=-ir103+wyl0*wy10*ir105, tyy2=-ir203+wy20*wy20*ir205, tyy3=-
ir303+wy30*wy30*ir305,

tzz1=-ir103+wz10*wz10*ir105, tzz2=-ir203+wz20*wz20*ir205, tzz3=-
ir303+wz30*wz30*xir305;

double

txyl=wx10*wylO*irl105, txy2=wx20*wy20*ir205, txy3=wx30*wy30*ir305,

txz1=wx10*wz10*ir105, txz2=wx20*wz20*ir205, txz3=wx30*wz30*ir305,

tyzl=wylO*wz10*ir105, tyz2=wy20*wz20*ir205, tyz3=wy30*wz30*ir305;

//xx;(0,0)

A[0] [0]=mO1*txx1l; A[0] [1]=m2*txx1; A[0] [2]=m3*txx1;

A[1] [O]=mi1*txx2; A[1] [1]1=mO02*txx2; A[1] [2]=m3*txx2;

A[2] [0)=mi1*txx3; A[2] [1]=m2*txx3; A[2] [2]=mO03*txx3;

//yy;(1,1)

A[3] [3]=mO1*tyyl; A[3][4]=m2*xtyyl; A[3][5]=m3*tyyl;

A[4] [3]=mixtyy2; A[4] [4]=m02*tyy2; A[4] [5]=m3*tyy2;

A[5] [3]=mixtyy3; A[5][4]=m2xtyy3; A[5][5]=m03*tyy3;

//zz;(2,2)

A[6] [6]1=mO1*tzz1; A[6] [7]=m2*tzzl; A[6] [8]=m3*tzz1;

A[7] [6]=m1xtzz2; A[7][7]=m02*tzz2; A[7] [8]=m3*tzz2;

A[8] [6]=m1x*tzz3; A[8][7]1=m2+*tzz3; A[8] [8]1=m03*tzz3;

//xy;(0,1)&(1,0)

A[0] [3]=A[3] [0]=mO1x*txyl; A[0] [4]=A[3] [1]=m2*txy1;
A[0] [56]=A[3] [2]=m3*txy1;

A[1]1[3]=A[4] [0]=mi1xtxy2; A[1][4]1=A[4][1]=m02*txy2;
A[1][5]=A[4] [2]=m3*txy2;

A[2] [3]1=A[5] [0]=mi1*txy3; A[2] [4]=A[5] [1]=m2*txy3;
A[2] [5]=A[5] [2]=m03*txy3;

//xz;(0,2)&(2,0)

A[0][6]=A[6] [0]=mO1x*txz1l; A[0][7]1=A[6] [1]=m2*txz1;
AT0] [8]1=A[6] [2]=m3*txz1;

A[1][6]1=A[7] [0)=mix*txz2; A[1] [7]=A[7] [1]=m02*txz2;
A[1] [8]=A[7] [2]=m3*txz2;

A[2] [6]=A[8] [0]=m1*txz3; A[2] [7]=A[8] [1]=m2*txz3;
A[2] [8]1=A[8] [2]=m03*txz3;

//yz; (1,2)&(2,1)

A[3][6]=A[6] [3]=mO1*tyz1l; A[3][7]1=A[6] [4]=m2*tyz1;
A[3][8]=A[6] [6]=m3*tyz1;

A[4] [6]=A[7] [3]=mixtyz2; A[4] [7]1=A[7] [4]=m02*tyz2;
A[4] [8]=A[7] [5]=m3*tyz2;
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A[5][6]=A[8] [3]=ml*tyz3; A[5] [7]=A[8] [4]=m2*tyz3;
A[5] [8]=A[8] [6]=m03*tyz3;

for(int i=0;i<9;i++) for(int j=0;3j<9;j++) A[i][jI1+=B[i][j];
//A becomes the total matrix

for(int i=19;i<28;i++) dd[i]l=y[i+9];

for(int i=0;i<9;i++){
double sum=0;
for(int j=0;3j<9;j++) sum+=A[i] [j1*y[19+j];
dd[28+i]=sum;

A.2. CHAOS INDICATORS

Similar to previous, for this thesis the code was partially modified by the author of this
thesis. Specifically based on already existent MLCN and FLI code, subroutines for all were
made. This will show the slight implementation difference for the computation of those
indicators.

The subroutines take as input an array x0[] corresponding to y shown previously and
a pointer *ptr_ci to a scalar value corresponding to the indicator computed and returns
the iteration at which the integration ended. Each subroutine modifies this scalar to the
final value of the indicator.

The global variables utilized across all are NNEQ, NEQ, Niters, DT that correspond to
the number of differential equations of the primary system (or else the components of
primary equations), the total number of differential equations (or else the components)
when including the variational, the total number of integration steps , and the integration
time step. Those variables NNEQ, NEQ were defined because code is modifiable to also
include mass as parameters and in case program is run with an N-body integration class.
The breakvalues for each indicator are also defined as global variables. Those are the
self-explained LCN_BREAKVAL, DFLIMAX, MEGNOMAX, SALT_BREAKVAL, RLI_BREAKVAL. There’s
also RLI_SEP that sets the distance of shadow orbit modifying y[1] (essentially x1).

The vsys.DTstep(yin[],DT,*dt,yout []) performs an integration step for yin = y(¢)
populating yout=y(t +DT). The value dt sets the minimum integration time and is varied
as explained in theory for the B.-S. integrator.

int GetLCN(double xO[], double *ptr_lcn)
{
double XO[NEQ], X1[NEQ];
for(int j=0;j<NNEQ;j++) X0[jl=x0[j];
X0[0]=0.0;
int k;
double dt=0.01, ksi=0, intdt=0, lcn;
for(int j=NNEQ;j<NEQ;j++) X0[j]1=0;
X0 [NNEQ]=1;
for(k=1;k<=Niters;k++)
{
if ('vsys.DTstep(X0,DT,&dt,X1)) {
*xptr_lcn=1.0/k;
return k;
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ksi=0;
for(int j=NNEQ;j<NEQ;j++) ksi+=X1[j1*X1[j];
ksi=sqrt(ksi);

intdt+=1logl0(ksi);
lcn=1log10(intdt/X1[0]);
//if (Lcn<LCN_BREAKVAL) break;

for(int j=0;j<NNEQ;j++) X0[jl1=X1[j];
for(int j=NNEQ;j<NEQ;j++) X0[jl=X1[j]/ksi;
3
*ptr_lcn=lcn;
return k;

For the FLI there’s a choice between taking as initial conditions for deviation vector
vg)zlﬂﬁ)zo,ﬁ>1tmnisvoz(lJLOV.WO)ortmgmmtotheoﬂmfwar/Hiw Of
course that part can be applied to others indicators. It’s only here because was used to
test whether different initial condition for deviation vector resulted in different dynamical
results, something that we found wasn’t the case.

int GetDFLI(double x0[], double *dfli)

{
double XO[NEQ], X1[NEQJ;
for(int j=0;j<NNEQ;j++) X0[jl=x0[j];
X0[0]=0.0;
int k;
double dt=0.01, ksi=0, flisup=-DFLIMAX, fli; //init val
//GetDV{
//=simple deviation vector choice
for(int j=NNEQ;j<NEQ;j++) X0[j]1=0;
X0 [NNEQ]=1;
//=deviation vector tangent to flow at tO
//for(int j=1;j<NNEQ;j++) ksi+=X0[jl*X0[j];
//ksi=sqrt (ksi);
//for(int j=NNEQ;j<NEQ;j++) XO0[jI=XO0[j-NNEQ]/ksi;
//}
for(k=1;k<=Niters;k++)
{

if ('vsys.DTstep(X0,DT,&dt,X1)) {
//*df1i=DFLIMAX;

*df1i=31;
return k;
}
ksi=0;

for (int j=NNEQ;j<NEQ;j++) ksi+=X1[jl1*X1[j];
ksi=sqrt(ksi);
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int

}

fli=logl0(ksi/X1[0]);

if (flisup<fli) flisup=fli;

if (f1i>DFLIMAX) {
*df1i=DFLIMAX-1;
return k;

}

for(int j=0;j<NEQ;j++) X0[jl=X1[j];
X
*dfli=flisup;
return k;

GetMEGNO(double xO[], double *ptr_mgn)

double XO[NEQ], X1[NEQJ;
for(int j=0;j<NNEQ;j++) X0[jl1=x0[j];
X0[0]=0.0;
int k;
double dt=0.01, ksi=0, intdt=0, mgn;
for(int j=NNEQ;j<NEQ;j++) X0[j1=0;
X0 [NNEQ]=1;
for(k=1;k<=Niters;k++)
{
if ('vsys.DTstep(X0,DT,&dt,X1)) {
*ptr_mgn=MEGNOMAX+1;
return k;

ksi=0;
for(int j=NNEQ;j<NEQ;j++) ksi+=X1[jl*X1[j];
ksi=sqrt(ksi);

intdt+=1log10 (ksi)*X1[0];

mgn=intdt*2/X1[0];

if (mgn>MEGNOMAX) {
*ptr_mgn=MEGNOMAX;
return k;

}

for(int j=0;j<NNEQ;j++) X0[jl1=X1[j];
for(int j=NNEQ;j<NEQ;j++) X0[jl=X1[j]/ksi;
}
*ptr_mgn=mgn ;
return k;

For the SALI we used a sub-optimal implementation for simplicity. Specifically we’re

evolving two orbits rather including an extra set of variational equations to evolve only
two deviation vectors as shown in example for HH. For the times we considered this and
subtract the time that takes to evolve a second orbit.
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int GetSALI(double x0[], double *ptr_sali)

{

double XO[NEQ], YO[NEQ], X1[NEQ], Y1[NEQ], XY[NEQ];
for(int j=0;j<NNEQ;j++) X0[jl1=x0[j];
for(int j=0;j<NNEQ;j++) YO[jl=x0[j];
X0[0]1=Y0[0]=0.0;
int k;
double dt=0.01, ksi=0, sali, a, b;
for(int j=NNEQ;j<NEQ;j++) X0[j1=0;
for(int j=NNEQ;j<NEQ;j++) YO[j1=0;
X0 [NNEQ]=YO [NNEQ+3]=1;
for(k=1;k<=Niters;k++)
{
if (!vsys.DTstep(X0,DT,&dt,X1)) {
*ptr_sali=0.0;
return k;
}
if ('vsys.DTstep(YO,DT,&dt,Y1)) {
*ptr_sali=0.0;
return k;

}

//normalize u_1

ksi=0;

for(int j=NNEQ;j<NEQ;j++) ksi+=X1[j1*X1[j];
ksi=sqrt(ksi);

for (int j=NNEQ;j<NEQ;j++) X1[jI1=X1[j]/ksi;

//normalize u_2

ksi=0;

for (int j=NNEQ;j<NEQ;j++) ksi+=Y1[jl1*Y1[j];
ksi=sqrt(ksi);

for (int j=NNEQ;j<NEQ;j++) Y1[j1=Y1[j]/ksi;

//compute ||lu_1-u_2]]|

for(int j=NNEQ;j<NEQ;j++) XY[j1=X1[j1-Y1[jl;
ksi=0;

for(int j=NNEQ;j<NEQ;j++) ksi+=XY[jI*XY[jl;
a=sqrt(ksi);

//compute ||u_1+u_2|]|

for(int j=NNEQ;j<NEQ;j++) XY[jl=X1[jl+Y1[j];
ksi=0;

for(int j=NNEQ;j<NEQ;j++) ksi+=XY[jl1*XY[j];
b=sqrt(ksi);

//find min(...)

sali=a<b?a:b;

if (sali<SALI_BREAKVAL) {
*ptr_sali=SALI_BREAKVAL;
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return k;

}

for(int j=0;j<NEQ;j++) X0[jl=X1[j];
for(int j=0;j<NEQ;j++) YO[jl=Y1[j];
}
*ptr_sali=sali;
return k;

GetRLI(double x0[], double *ptr_rli)

double XO[NEQ], SXO[NEQ], X1[NEQ], SX1[NEQ];
for(int j=0;j<NNEQ;j++) X0[jl=x0[j];

for(int j=0;j<NNEQ;j++) SX0[jl=x0[j];
X0[0]=8X0[0]=0.0;

//simple separation

SX0[1]=XO0[1]+RLI_SEP;

int k;

double dt=0.01, ksi=0, intdt=0, intdts=0, lcn, lcns, dlcn, rli;
for(int j=NNEQ;j<NEQ;j++) X0[j1=0;

for(int j=NNEQ;j<NEQ;j++) SX0[j1=0;

X0 [NNEQ] =SXO0 [NNEQ] =1;

for(k=1;k<=Niters;k++)

{

if ('vsys.DTstep(X0,DT,&dt,X1)) {
*ptr_rli=1.0;
return k;

}

if ('vsys.DTstep(SX0,DT,&dt,SX1)) {
*ptr_rli=1.0;
return k;

}

//normal orbit LCN compute and d.v. normalize
ksi=0;

for(int j=NNEQ;j<NEQ;j++) ksi+=X1[jl*X1[j];
ksi=sqrt(ksi);

intdt+=logl10(ksi);
lcn=log10(intdt/X1[0]);

for(int j=NNEQ;j<NEQ;j++) X0[jl=X1[j]/ksi;

//shadow orbit LCN compute and d.v. normalize
ksi=0;

for(int j=NNEQ;j<NEQ;j++) ksi+=SX1[jl*SX1[j];
ksi=sqrt(ksi);

intdts+=log10(ksi) ;
lcns=1logl0(intdts/SX1[0]);
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for(int j=NNEQ;j<NEQ;j++) SXO[j]=SX1[j]/ksi;

dlcn=abs(lcn-1lcns);

rli=dlcn;

if (r1i>RLI_BREAKVAL) {
*ptr_r1i=RLI_BREAKVAL;
return k;

}

for(int j=0;j<NNEQ;j++) X0[jl1=X1[j];
for(int j=0;j<NNEQ;j++) SXO[jl=SX1[j];
3
*ptr_rli=rli;
return k;
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