
Aristotele University of Thessaloniki
MSc Computational Physics

Master Thesis

Orbital dynamics around a rotating
and precessing oblate spheroid

Liagka Aggeliki

Supervisor: Voyatzis George

October,2022

Abstract

The aim of this thesis is to study the orbital dynamics in the gravitational field
of a precessing oblate spheroid. We consider the oblate spheroid body to be an
asteroid and we also consider a body of negligible mass, let’s assume a spacecraft
of a mass much smaller than the asteroid’s, orbiting the precessing asteroid. For
several sets of initial conditions, we integrate the equations of motion in the body-
fixed (rotating) frame of reference. To compute the orbital elements for each orbit,
we use a transformation (rotating matrix in quaternion form) from the rotating to
the inertial frame. Then, using the maximum values of the semi-major axis, the
eccentricity and the inclination (amax, emax and imax) we create dynamical maps,
that show the stable and unstable areas, regarding the initial conditions. After that,
we study individual orbits from both areas. In that way, one can see, how the shape
of the asteroid, the initial distance of the spacecraft and some other parameters
could affect the orbital stability around the precessing asteroid.

Περίληψη

Στόχος αυτής της διπλωματικής εργασίας είναι να ερευνήσει την τροχιακή δυναμική

στο βαρυτικό πεδίο ενός πεπλατυσμένου σφαιροειδούς με περιστροφή και μετάπτωση.

Θεωρούμε το πεπλατυσμένο σφαιροειδές σώμα ως έναν αστεροειδή και θεωρούμε ε-

πίσης, ένα σώμα αμελητέας μάζας, ας υποθέσουμε ένα διαστημόπλοιο πολύ μικρότερης

μάζας από του αστεροιειδή, να περιφέρεται γύρω από αυτόν. Για αρκετά σύνολα αρχικών

συνθηκών, ολοκληρώνουμε τις εξισώσεις της κίνησης στο περιστρεφόμενο σύστημα α-

ναφοράς. Για να υπολογίσουμε τα τροχιακά στοιχεία κάθε τροχιάς, χρησιμοποιούμε

έναν μετασχηματισμό (πίνακα στροφής με τη χρήση quaternions) από το περιστρε-
φόμενο στο αδρανειακό σύστημα. ΄Επειτα, χρησιμοποιώντας τις μέγιστες τιμές του

μεγάλου ημιάξονα, της εκκεντρότητας και της κλίσης (amax, emax και imax), δημιουρ-
γούμε δυναμικούς χάρτες, οι οποίοι δείχνουν τις ευσταθείς και ασταθείς περιοχές, όσων

αφορά τις αρχικές συνθήκες. Στη συνέχεια, μελετούμε τροχιές και από τις δύο περιο-

χές. Κάποιος μπορεί να δει, με αυτόν τον τρόπο, πώς το σχήμα του αστεροειδή, η

αρχική απόσταση του διαστημοπλοίου και κάποιες άλλες παράμετροι, επηρεάζουν την

τροχιακή ευστάθεια, γύρω από τον περιστρεφόμενο με μετάπτωση αστεροειδή.

1

Contents

1 Introduction 6
1.1 Asteroids . 6
1.2 Asteroid Space Missions . 8
1.3 Asteroid precession and nutation . 12
1.4 Further general characteristics . 13

2 Rigid Body Rotation 15
2.1 Euler angles . 15
2.2 Instantaneous angular velocity and Euler angles 16
2.3 Rotation around a fixed point . 18

2.3.1 Moment of Inertia tensor . 18
2.3.2 Rotational Kinetic energy . 19
2.3.3 Principal Axes of Rotation . 20
2.3.4 Euler’s Equations . 20

2.4 Quaternions . 25
2.4.1 Definition . 26
2.4.2 Basic algebraic properties . 27
2.4.3 Quaternion Derivations . 29
2.4.4 Quaternion, Euler angles, rotation matrix 31

3 Orbital mechanics near a rotating asteroid 34
3.1 Ellipsoid Potential . 34
3.2 The equation of motion in the classical form 36
3.3 The equation of motion in the scalar form 38
3.4 Horizontal stability . 39

4 Algorithm Description 41
4.1 Main equations . 41
4.2 Initial Conditions and Parameters . 42
4.3 Unit Normalization . 43

5 Results 45
5.1 Dynamical Maps for different pairs of initial radius and asteroid shape . . . 45

5.1.1 r0 = 1.5 and c = 0.7 . 45
5.1.2 r0 = 3.0 and c = 0.7 . 55
5.1.3 r0 = 1.5 and c = 0.8 . 67
5.1.4 r0 = 1.5 and c = 0.4 . 76

6 Conclusions 83

A main1c.cpp 84

2

B dSystemElpsdRotPrec23.cpp 88

3

List of Figures
1 Asteroid examples . 6
2 Main Asteroid and Kuiper belt. 7
3 Jupiter Trojans. 8
4 NASA’s NEAR . 9
5 NASA’s Dawn . 10
6 JAXA’s Hayabusa . 10
7 Planetary defense missions . 11
8 Rotation (Green), Precession (Blue) and Nutation (Red). 13
9 Asteroids by size and number[1]. 14
10 The four largest asteroids[1]. 14
11 Euler angles. 15
12 A rigid rotating body. 17
13 Angular velocity vector. 24
14 The two cases of the conical surface. 25
15 The angle θ and the axis unit vector e define a rotation. 26
16 Basic quaternions multiplication table. 27
17 yaw-pitch-roll. 31
18 Prolate and oblate spheroids. 35
19 Examples of ellipsoids.(Top:Sphere, Bottom left:Spheroid, Bottom right:Triaxial

ellipsoid)[2] . 35
20 Arbitrary shaped rigid body. 36
21 Inertial (orange) and body fixed (blue)frame of reference. 37
22 Initial Conditions in the inertial frame. 43
23 Values of amax for a grid (θx, B) and for r0 = 1.5 and c = 0.7. 46
24 Values of emax for a grid (θx, B) and for r0 = 1.5 and c = 0.7. 46
25 Values of imax for a grid (θx, B) and for r0 = 1.5 and c = 0.7. 47
26 θx0 = 0.0628 B0 = 0.46 . 48
27 Orbit on the XY plane with θx0 = 0.0628 B0 = 0.46. 49
28 θx0 = 0.1256 B0 = 0.96. 50
29 Orbit on the XY plane with θx0 = 0.1256 B0 = 0.96. 51
30 θx0 = 0.2826 B0 = 0.24 . 52
31 Orbit on the XY plane with θx0 = 0.2826 B0 = 0.24. 53
32 R− t with θx0 = 0.4082 B0 = 0.78 (Collision). 54
33 R− t with θx0 = 1.0676 B0 = 0.22 (Escape). 55
34 Values of amax for a grid (θx, B) and for r0 = 3.0 and c = 0.7. 56
35 Values of emax for a grid (θx, B) and for r0 = 3.0 and c = 0.7. 56
36 Values of imax for a grid (θx, B) and for r0 = 3.0 and c = 0.7. 57
37 θx0 = 0.942 B0 = 0.28. 58
38 Orbit on the XY plane with θx0 = 0.942 B0 = 0.28. 59
39 Orbit on the XZ plane with θx0 = 0.942 B0 = 0.28. 59
40 i(t) for a longer period of time with θx0 = 0.942 B0 = 0.28. 60
41 θx0 = 1.3188 B0 = 0.98. 61

4

42 Orbit on the XY plane with θx0 = 1.3188 B0 = 0.98. 62
43 θx0 = 0.7536 B0 = 0.58. 63
44 Orbit on the XY plane with θx0 = 0.7536 B0 = 0.58. 64
45 Orbit on the XZ plane with θx0 = 0.7536 B0 = 0.58. 64
46 R-t with θx0 = 0.314 B0 = 0.84 (Collision). 65
47 R-t with θx0 = 0.3768 B0 = 0.8. 66
48 a-t with θx0 = 0.3768 B0 = 0.8. 67
49 Values of amax of a grid (θx, B) for r0 = 1.5 and c = 0.8. 68
50 Values of emax of a grid (θx, B) for r0 = 1.5 and c = 0.8. 68
51 Values of imax of a grid (θx, B) for r0 = 1.5 and c = 0.8. 69
52 θx0 = 0.18840 B0 = 0.24. 70
53 Orbit on XY plane with θx0 = 0.18840 B0 = 0.24. 71
54 θx0 = 0.2512 B0 = 0.72. 72
55 Orbit on the XY plane with θx0 = 0.2512 B0 = 0.72. 73
56 θx0 = 0.5338 B0 = 0.04. 74
57 Orbit on the XY plane with θx0 = 0.5338 B0 = 0.04. 75
58 R-t with θx0 = 0.2826 B0 = 0.88 (Collision). 76
59 Values of amax for a grid (θx, B) and for r0 = 1.5 and c = 0.4. 77
60 Values of emax for a grid (θx, B) and for r0 = 1.5 and c = 0.4. 77
61 Values of imax for a grid (θx, B) and for r0 = 1.5 and c = 0.4. 78
62 θx0 = 0.0314 B0 = 0.16. 79
63 Orbit on XY plane with θx0 = 0.0314 B0 = 0.16. 80
64 R-t with θx0 = 0.4396 B0 = 0.82 (Collision). 81
65 R-t with θx0 = 1.0362 B0 = 0.5 (Escape). 82

5

1 Introduction

1.1 Asteroids

Asteroids, also called minor planets, are small bodies of the inner Solar System; rocky or
metallic, with no atmosphere. Their shapes and sizes vary, ranging from 1-meter rocks to
a dwarf planet almost 1000 km in diameter. Some examples can be seen below. A body
smaller than an asteroid is called a meteoroid. Asteroids are probably remnants left over
from the early formation of our Solar System a few billion years ago. [1]

(a) Eros 433

(b) Ceres (dwarf planet) (c) Vesta

Figure 1: Asteroid examples

According to NASA the current known asteroid count is: 1, 113, 527[3]. The majority

6

of that number is orbiting our Sun between Mars and Jupiter within the main asteroid
belt. An other region surrounding our Solar System, farther Neptune’s orbit, where many
asteroids can be found, is the Kuiper belt. Asteroids found orbiting Sun in the Main belt
are mainly composed of silicon rocks and metals. An exception to this is Ceres because
a big part of it is iced water. On the other hand, the asteroids of the Kuiper belt are
mainly composed of ice.

Figure 2: Main Asteroid and Kuiper belt.

As far as asteroid classification goes there are two more worth mentioning categories;
Trojans and Near-Earth Asteroids. Trojans are asteroids that share their orbit with a
larger planet, but do not collide with it because they gather around two special places in
the orbit (called the L4 and L5 Lagrangian points). The most significant are the Jupiter
Trojans; an extended population of asteroids sharing their orbit with Jupiter (seen in the
figure below). Finally, Near-Earth Asteroids are objects with orbits passing close to the
Earth’s orbit. [3]

7

Figure 3: Jupiter Trojans.

As we mentioned, the size and shape of the asteroids varies. Most of them have an
irregular shape, but a few of the biggest are nearly spherical due to the influence of their
self gravity. As they revolve around the Sun in (weakly) elliptical orbits, the asteroids also
rotate. On the time-scale of millions of years the rotation speed of asteroids change due
to the momentum of photons (from the Sun) absorbed, reflected and emitted (Yarkovsky
effect) from the surface of asteroids, and due to the impact of meteorites. It is known that
most of the asteroids rotate with a period longer than 2.3 hours which can be understood
as a result of the influence of the centrifugal force on a collection of solid fragments bound
together mainly by the gravity force. However, many small asteroids rotate much faster
because of different consistency. [4]

1.2 Asteroid Space Missions

The orbital dynamics of a particle in the gravity of an asteroid is an important issue
for space missions, but a quite complex one as well, due to the irregular shape many of
the asteroids have. The irregular shape forms an irregular gravitational field close to its

8

surface. This gravitational field in combination with other external perturbations such as
solar gravity and solar radiation pressure, is what makes this problem more difficult than
a simple description of the two-body problem.[5]

The study of the motion of such particle is used in choosing the right orbits for close
proximity operations, landing paths, parking orbits etc. On a further note, there are space
missions, such as landings, that help us discover more about the early stage of our Solar
System, but there are also missions useful for planetary defence.

This research topic applies to many successful missions. It is worth mentioning the
Near Earth Asteroid Rendezvous (NEAR) whose landing on Eros 433 marked the first
time a U.S. spacecraft landed on an asteroid (2000) and returned valuable data. NEAR
didn’t survive the extreme cold and the contact was lost on February 2001. The Dawn
mission successfully visited the two largest objects in the main asteroid belt, Vesta (2011)
and Ceres (2015). The Dawn spacecraft is currently in a stable orbit around Ceres.[6]

Figure 4: NASA’s NEAR

Furthermore, JAXA also designed its own remarkable space missions. Two of them
are Hayabusa (2003) and Hayabusa 2 (2018) that landed Itokawa and Ryugu, respectively.
Hayabusa was the first spacecraft returning to Earth having brought asteroid samples and
the second one in history descended to the surface of an asteroid. [7]

9

Figure 5: NASA’s Dawn

Figure 6: JAXA’s Hayabusa

10

Let us end the conversation about asteroid missions here by mentioning a big planetary
defense mission NASA designed and launched in November 2021 (DART), with ESA’s
Hera support that is scheduled to evaluate the effects of DART. DART is the first-ever
mission aiming at demonstrating deflection of an asteroid by changing its motion in space
through kinetic impact. This spacecraft will strike Dimorphos, moon of the asteroid
Didymos, and scientists will study the change of the kinetic dynamics after the impact.[6]

(a) NASA’s DART

(b) ESA’s Hera

Figure 7: Planetary defense missions

11

1.3 Asteroid precession and nutation

As mentioned before, asteroids orbiting our Sun also rotate. There are already several
well-established theories to model the rotational motion of a rigid body with a quite simple
mathematical approach, but still there is a lot of work to be done involving the rotational
properties of asteroids. An interesting study has been published in 2014 aiming to a high
precision model of precession and nutation of Ceres, Vesta, Eros, Steins and Itokawa.
The study is concentrated in particular on the motion of their spin axis in space [8]. The
rotation of a celestial body in the size and shape of an asteroid can also be chaotic. An
example of that, is Hyperion, a moon of Saturn. Hyperion is characterised by its irregular
shape, its chaotic rotation and its unexplained sponge-like appearance. Chaotic rotation
have been investigated by M.Tarnopolski [9], who used a chaos control method to suppress
chaos and even turn chaotic motion into periodic. Numerical examples were presented in
his work with parameters suitable of Hyperion, considering the shape of the satellite to
be a triaxial ellipsoid.

To understand in more detail the rotating motion of an asteroid let us explain the terms
of precession and nutation. When the orientation of the rotational axis of a rotating body
changes, then the body precesses. In an appropriate reference frame it can be defined
as a change in the first Euler angle (described in the next chapter). In other words, one
can simply say that the body precesses if its rotational axis also rotates about a second
axis. Nutation is a nodding motion in the axis of rotation and in astronomy it is caused
by the gravitational forces of other nearby bodies acting upon the spinning object. In an
appropriate reference frame it can be defined as a change in the second Euler angle (also
described in the next chapter). Although precession and nutation are defined as a change
of orientation of the rotation axis and they are caused by the same effect (gravity), they
separate so that precession being a steady long-term change in the axis of rotation, and
nutation being the combined effect of similar shorter-term variations. In physics, there
are two types of precession: torque-free and torque-induced.

12

Figure 8: Rotation (Green), Precession (Blue) and Nutation (Red).

1.4 Further general characteristics

As we previously noted, asteroids vary greatly in size. In the diagram below, one can find
the asteroids of our Solar System categorized by size and number. Although the three
largest are very much like miniature planets, it is clear that the vast majority are much
smaller and are irregularly shaped.

The four largest objects in the asteroid belt are Ceres, Vesta, Pallas and Hygiea. These
four asteroids constitute half the mass of the asteroid belt. As seen in the table below [1],
their orbital radius is similar, but we can detect differences in inclination and eccentricity.
Here, we can also see their orbital and rotation periods. It takes from five to almost
fourteen hours for one of these asteroids to complete a full rotation around themselves,
and from 3 to five years to complete an orbit around the Sun. Ceres and Pallas have the
same orbital radius and orbital period.

13

Figure 9: Asteroids by size and number[1].

Figure 10: The four largest asteroids[1].

14

2 Rigid Body Rotation
In this chapter we will examine the rotation parameters of a rigid body in three di-
mensions. A rigid body is considered to be a collection of small mass elements, whose
connection imposes that the distance between any two given points on the rigid body
remains constant in time, regardless of external forces or moments exerted on it. Hence,
there is no deformation on a rigid body.

2.1 Euler angles

According to Euler’s rotation theorem, any rotation may be described using three angles.
The three angles that Euler introduced, describe the orientation of a rigid body with
respect to the fixed coordinate frame. The common notation used for these angles is
(ϕ, θ, ψ).

Let’s now look in more detail what each of these angles represent. We start in the
inertial frame with coordinates X, Y, Z and we gradually take three rotations. As seen
in the figure below, ϕ represents the angle of a counterclockwise rotation about the Z
axis, leading to a new frame with coordinates X2, Y2, Z2, θ represents the angle of a
counterclockwise rotation around the X2 axis, leading to a new frame with coordinates
X3, Y3, Z3 and, finally, ψ represents the angle of an also counterclockwise rotation around
the Z3 axis and the new frame is the body fixed frame with coordinates x, y, z. [10]

Figure 11: Euler angles.

If the rotations are written in terms of rotation matrices, we respectfully get [11]

D1 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (2.1)

D2 =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (2.2)

15

and

D3 = −

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.3)

The results from the multiplication of the three matrices, beginning from the last one, so
D = D3D2D1, leads us to the 3× 3 rotation matrix

D =

 cosψ cosϕ− cos θ sinϕ sinψ cosψ sinϕ+ cos θ cosϕ sinψ sinψ sin θ
− sinψ cosϕ− cos θ sinϕ cosψ − sinψ sinϕ+ cos θ cosϕ cosψ cosψ cos θ

sin θ sinϕ − sin θ cosϕ cos θ


(2.4)

Using this matrix, the final transformation between the inertial and the rotating frame
occurs

x = DX (2.5)

where x and X are column vectors containing the three position components of the rotat-
ing and the inertial frame, respectfully. It is clear that to find the inverse transformation,
we need only the inverse D−1 matrix, so that

X = D−1x. (2.6)

On a final note, we can easily derive the above two equations to compute the corresponding
velocities. Hence, for the inertial to rotating frame velocity

V = Ẋ = D−1ẋ+ Ḋ−1x (2.7)

and for the other way around, we have

v = ẋ = DẊ + ḊX. (2.8)

2.2 Instantaneous angular velocity and Euler angles

We consider a rigid body rotating around one of its points, O, that is fixed. Generally,
the direction of the rotation axis, that passes through the point O, changes over time. It
is clear that the motion of the rigid body would be fully known, if the angular velocity
vector is also known as a function of time.

16

Figure 12: A rigid rotating body.
[10]

Let us now express the angular velocity vector in terms of the Eulerian angles. The ω
component for the ϕ angle has a magnitude of ϕ̇ and a direction along the Z axis. If we
consider the unit vector along this axis as eZ , we can write

ωϕ = ϕ̇eZ . (2.9)

The component associated with θ has a magnitude θ̇ and is directed along the X2 axis
(or X3 axis, since they coincide). Hence, we can write

ωθ = θ̇eX2 . (2.10)

Likewise, the component associated with ψ has a magnitude ψ̇ and is directed along the
Z3 axis. Hence, we can write

ωψ = ψ̇eZ3 . (2.11)

Note also that eZ3 = ez. Finally, we want to write the total angular velocity

ω = ωϕ + ωθ + ωψ. (2.12)

To do that properly, we will need some of the transformation equations between the
inertial frame and body fixed frame. It can be easily verified that

eZ = sinψ sin θex + cosψ sin θey + cos θez

eX2 = cosψex − sinψey.
(2.13)

17

Using these relations of (2.13) in (2.9) and (2.10), we get for every angular velocity
component in the body fixed frame [10]

ωx = (sinψ sin θ ϕ̇+ cosψ θ̇)ex

ωy = (cosψ sin θ ϕ̇− sinψ θ̇)ey

ωz = (cos θ ϕ̇+ ψ̇)ez.

(2.14)

Working in a similar manner, we find the ω components for the inertial frame of
reference. [11]

ωX = (ψ̇ sinϕ sin θ + θ̇ cosϕ)eX

ωY = (−ψ̇ cosϕ sin θ + θ̇ sinϕ)eY

ωZ = (ψ̇ cos θ + ϕ̇)eZ .

(2.15)

2.3 Rotation around a fixed point

2.3.1 Moment of Inertia tensor

The fundamental equation of motion of a rotating rigid body is

dL

dt
= T (2.16)

where L =
∑

ri ×mivi is the total angular momentum of the body (about the origin),
and T =

∑
ri × Fi the total external torque (about the origin).

We shall now look into this equation in more detail. The general equation for the
velocity of each mass element of the rigid body is

vi = vo + ω × ri (2.17)

with vo representing the velocity of the translational motion and ω × ri representing the
velocity of the rotational motion. For the purposes of this thesis we will consider only
a rotational motion of the rigid body about an axis passing through the origin (so that
vo = 0) .

The total angular momentum can now be written as

L =
∑

miri × (ω × ri) =
∑

mi

[
ri

2ω − (ri · ω)ri
]

(2.18)

where use has been made of some standard vector identities. It is very useful to write the
above formula in a matrix formLxLy

Lz

 =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

ωxωy
ωz

 (2.19)

or in a shorter form
L = Iω (2.20)

18

where
Ixx =

∑
mi(y

2
i + z2i) (2.21)

Iyy =
∑

mi(x
2
i + z2i) (2.22)

Izz =
∑

mi(y
2
i + x2i) (2.23)

Ixy = Iyx = −
∑

mixiyi (2.24)

Iyz = Izy = −
∑

miyizi (2.25)

Ixz = Izx = −
∑

mixizi. (2.26)

The I matrix is also called the moment of inertia tensor. As for its values, Ixx is called
the moment of inertia about the x axis, Ixy is called the xy product of inertia, Iyy is called
the moment of inertia about the y axis, etc. In (2.20) it is understood that L and ω are
both column vectors and I is a matrix that represents the moment of inertia tensor.

Generally, the angular momentum vector, L, does not necessarily point in the same
direction as the angular velocity vector, ω, that obviously means that generally L is not
parallel to ω.

There are two more things left to be emphasized. The first is that the moment of
inertia tensor is symmetric and the second and final is that even though all the above
were obtained considering a fixed angular velocity, they also apply at each instant time if
the angular velocity varies.

2.3.2 Rotational Kinetic energy

Continuing with the consideration that the rigid body under study only rotates and
doesn’t transfer, its kinetic energy takes the form

K =
1

2

∑
mi(ω × ri)

2 =
1

2
ω ·
∑

miri × (ω × ri) (2.27)

Hence, it follows that

K =
1

2
ω · L. (2.28)

When using the (2.20) formula the kinetic energy can also be written as

K =
1

2
ω⊺Iω (2.29)

where ω⊺ is the row vector of the angular velocity, the transpose of the column vector ω.
If we expand this equation we can get the kinetic energy in terms of components

K =
1

2
(Ixxωx

2 + Iyyωy
2 + Izzωz

2 + 2Ixyωxωy + 2Iyzωyωz + 2Ixzωxωz). (2.30)

19

2.3.3 Principal Axes of Rotation

As we previously noted the angular momentum vector is not necessarily parallel to the
angular velocity vector. We also noted that the moment of inertia tensor represents a real
symmetric three-dimensional matrix, which depends on the frame of reference. From the
matrix theory we know that the tensor possesses three mutually orthogonal eigenvectors
which are associated with three real eigenvalues. Considering that the eigenvectors can
be normalized to unit vectors, we can write

Ĩω̂i = λiω̂i. (2.31)

The directions of the three mutually orthogonal unit vectors ω̂i define the three so called
principal axes of rotation. These three axes are perpendicular to one another and have the
property when the rigid body rotates about one of them, the angular momentum vector
is parallel to the angular velocity vector.

We choose a coordinate system, body-fixed, with its axes parallel to the principal
directions of the moment of inertia tensor. In this new reference frame, the eigenvectors
of Ĩ are the unit vectors, ex, ey, and ez, and the eigenvalues are the moments of inertia
about these axes, Ixx, Iyy, and Izz, respectively. Here, we must note that the products of
inertia are all zero in the new reference frame. Hence, it is easy to understand that the
moment of inertia tensor takes now the form of a diagonial matrix

Ĩ =

Ixx 0 0
0 Iyy 0
0 0 Izz

 . (2.32)

Thus, we express the (2.20) in our new system as seen below and it becomes obvious how
the angular momentum is paraller to the angular velocity

L = Ixx ωx ex + Iyy ωy ey + Izz ωz ez. (2.33)

Furthermore, the kinetic energy reduces to

K =
1

2
(Ixx ωx

2 + Iyy ωy
2 + Izz ωz

2). (2.34)

2.3.4 Euler’s Equations

The fundamental equation of motion of a rotating rigid body we already mentioned above

dL

dt
= T (2.35)

works only in an inertial frame. However, from our previous analysis we saw that it is very
convenient to express L in a frame of reference whose axes are aligned along the principal
axes of rotation of the body. This frame rotates with the body so it is non-inertial. Since
the body-fixed frame co-rotates with the body, it has the same instantaneous angular

20

velocity. The formula connecting the time derivative of the angular momentum in the
inertial frame and the one in the rotating frame is the following

dL

dt
=
drotL

dt
+ ω × L. (2.36)

Since we know that the angular momentum and the angular velocity vector represented
in the above rotating frame are

ω = ωxex + ωyey + ωzez (2.37)

L = Ixxωxex + Iyyωyey + Izzωzez (2.38)

we can expand (2.36)

dL

dt
=
drotL

dt
+ ω × L = (Ixxω̇xex + Iyyω̇yey + Izzω̇zez) + ω × L

and after combining the above with the fundamental equation (2.35) we finally get a
system of three differential equations where Tx, Ty and Tz are the components of the
external torque about Ox, Oy and Oz of the rotating frame, respectively.

Ixxω̇x − (Iyy − Izz)ωyωz = Tx

Iyyω̇y − (Izz − Ixx)ωzωx = Ty

Izzω̇z − (Ixx − Iyy)ωxωy = Tz.

(2.39)

This system of equations is known as Euler’s equations. The unknown variables of this
system are the instantaneous ω components.

If we want to determine the position of the rigid body rotating about the fixed point
O, we need the three Euler angles (ϕ, ψ, θ). Hence, the above system cannot be solved on
its own. The additional equations we will need are (2.14) that connect the ω components
to Euler angles. The solution of our six differential equations system shows the motion of
the body in space, since we find the ϕ(t), ψ(t), θ(t) and the instantaneous angular velocity
in terms of the rotating frame of reference, since we find the ωx(t), ωy(t), ωz(t).

Let us now investigate a more special case in which the torque of external forces is
zero (T = 0). In this case Euler’s equations take the form

Ixxω̇x − (Iyy − Izz)ωyωz = 0

Iyyω̇y − (Izz − Ixx)ωzωx = 0

Izzω̇z − (Ixx − Iyy)ωxωy = 0.

(2.40)

This system can be solved without the use of equations (2.14) and give the position of
the angular velocity vector in the rotating frame. It is easy to verify, since there are
no external torques, that the vector L is a constant of the motion in the inertial frame.
Furthermore, as seen from (2.16), dL/dt = 0, so the scalar product of this equation with

21

L leads to dL2/dt = 0. In other words, what this shows is that the magnitude of the
vector L is also constant.

L2 = Ixx
2ωx

2 + Iyy
2ωy

2 + Izz
2ωz

2 = constant (2.41)

Another constant of the motion is the kinetic energy. To prove that, let us multiply the
three equations of (2.40) with ωx, ωy and ωz respectively and add them by parts:

Ixxω̇xωx + Iyyω̇yωy + Izzω̇zωz = 0

1

2

d

dt
(Ixxωx

2 + Iyyωy
2 + Izzωz

2) = 0.

It is now clear that the kinetic energy remains constant as it follows

K =
1

2
(Ixxωx

2 + Iyyωy
2 + Izzωz

2) = constant. (2.42)

Our main concern, although all of the above are useful, is to find the position of the
body in space. To do that let us consider at first an inertial frame where the direction of
the Z axis coincides with the direction of the angular momentum vector

L = LeZ (2.43)

where eZ is the unit vector pointing in the direction of Z axis of the inertial frame. We
also have L expressed in the rotating frame from (2.38). The components of each frame
connect with the transformation

Lrotating = DLinertial

where D is the transformation matrix given by (2.4). After following some basic mathe-
matical operations we arrive at

Ixxωx = L sinψ sin θ

Iyyωy = L cosψ sin θ

Izzωz = L cos θ

(2.44)

Considering the solution ω(t) known, we eventually come to a result

cos θ =
Izzωz(t)

L

tanψ =
Ixxωx(t)

Iyyωy(t)

(2.45)

that gives θ and ψ Euler angles as a function of time. To find ϕ, the third equation of
(2.14) is needed to take the form

ϕ̇ =
ωz(t)− ψ̇

cos θ
. (2.46)

22

Consequently, ϕ is calculated by a simple integration, since ψ̇ is a known function of time.
The above three equations refer to the inertial frame.

The above analysis covers the rotation of the rigid body about a fixed point. Let
us now investigate the case of a freely rotating rigid body when a symmetry axis exists.
This means that two out of three principal axes have the same length, leading to equal
moments of inertia. Assuming that Ixx = Iyy, so that the z axis is the symmetry axis,
(2.40) takes the form

Ixxω̇x = (Ixx − Izz)ωyωz

Ixxω̇y = −(Ixx − Izz)ωxωz

Izzω̇z = 0

(2.47)

The last equation gives right away

ωz = constant. (2.48)

From the first two equations we eliminate ωy and we take the differential equation with
respect to ωx

ω̈x +

[(
Ixx − Izz
Ixx

)2

ωz
2

]
ωx = 0. (2.49)

This is a linear second order differential equation and its solution is of the form

ωx = A sin(Bt+ C) (2.50)

where

B =
Ixx − Izz
Ixx

ωz (2.51)

and A is a constant depending on the initial conditions. Note here that we choose t0, such
that ωx(t0) = ωx(0) = 0. Hence, the constant C is zero. By replacing the solution of ωx
in the second equation of (2.47), we find

ωy = A cos(Bt). (2.52)

Hence, the angular velocity vector is given analytically by

ω = A sin(Bt)ex + A cos(Bt)ey + ωzez. (2.53)

Note here that ω2 = A2 + ωz
2 = constant and that the angular velocity vector is not

constant over the rotating system Oxyz. In fact, it rotates about z axis with constant
angular velocity B (see figure 13).

23

Figure 13: Angular velocity vector.

On another note, we could use the ω(t) solution to compute the Euler angles from the
analysis above. In that way, from (2.45) and (2.46), we have

θ = constant (2.54)

ψ = Bt (2.55)

ϕ =
L

Ixx
t (2.56)

for ϕ(0) = 0, representing the rotation of the rigid body in the inertial frame.
In the body-fixed frame, the angular velocity vector precesses about the z axis (the

symmetry axis) with the angular frequency B, tracing out a conical surface around it.
In the figure below, the frequency B is represented by the Ω and the direction of z axis
of the rotating frame is represented by the unit vector n̂3. The angular velocity vector
also traces out a conical surface around the Z axis of the inertial frame (and rotates
about the Z axis with a constant angular velocity L/Ixx). The two cones osculate to the
instantaneous rotation axis and their axes form a constant angle θ. Assuming that α is
the angle between the angular velocity vector and the z axis of the rotating frame, then
there is a formula connecting these two and separates two cases for the relative position
of the cones.

tanα =
Izz
Ixx

tan θ (2.57)

From the above equation, the conclusion that easily follows is that when Ixx < Izz, then
α > θ and the first case (a) applies as seen below. When Ixx > Izz, then α < θ and the
second case (b) applies.

24

All the above conclusions refer to freely rotating rigid body, as well as to a rotating
rigid body about a fixed point.

Figure 14: The two cases of the conical surface.

2.4 Quaternions

There is a better and more effective way to represent a rotating rigid body than using a
3× 3 rotation matrix. Unit quaternions are used to represent orientations and rotations
of elements in three dimensional space. They include information about an axis-angle
representation of a rotation around an arbitrary axis. In mathematics, an axis-angle
representation of a rotation parameterizes a rotation in a three dimensional Euclidean
space by two quantities: a unit vector e indicating the direction of an axis of rotation,
and an angle θ describing the magnitude of the rotation about the axis.

25

Figure 15: The angle θ and the axis unit vector e define a rotation.

Before we introduce a more detailed analysis of the quaternion system, let us define
a spatial rotation using quaternions, considering a quaternion has four components. A
spatial rotation around a fixed point of θ radians about a unit axis (X, Y, Z) is given by
the quaternion

(C,X S, Y S, Z S) (2.58)

where C = cos(θ/2) and S = sin(θ/2). This information will be useful further on.

2.4.1 Definition

The quaternion number system extends the complex numbers and were first described
and defined by William Rowan Hamilton (1843). This system is mostly used in pure
mathematics as well as in applied mathematics and physics, especially for rotations in
three-dimensional space. It can be used alongside other methods of rotation, such as Euler
angles and rotation matrices, or as an alternative to them, depending on the application.
Hamilton’s definition set a quaternion to be the quotient of two directed lines in a three-
dimensional space or the quotient of two vectors.

The mathematical form describing a quaternion is the following

q = q0 + q1i+ q2j+ q3k (2.59)

where q0, q1, q2, and q3 are real numbers and i, j, and k are the basic quaternions. The
quaternion q1i+ q2j+ q3k is called the vector part (sometimes imaginary part) of q, and
q0 is the scalar part (sometimes real part) of q.

26

The multiplication rules for the basis elements i, j and k are

i1 = 1i = i , j1 = 1j = j , k1 = 1k = k

i2 = j2 = −1

ij = k , ji = −k

(2.60)

It is then, easily obtained that the remaining product rules are

jk = i , kj = −i

ki = j , ik = −j

ijk = −1 , k2 = −1

(2.61)

Figure 16 depices the above multiplication rules. The non commutativity of multiplication
is depicted by colored squares.

Figure 16: Basic quaternions multiplication table.

2.4.2 Basic algebraic properties

Addition and Multiplication
Addition of two or more quaternions acts component wise. So, let’s consider for example
the quaternion q from above (1.1) and another quaternion

p = p0 + p1i+ p2j+ p3k.

Adding those two quaternions leads to

p+ q = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j+ (p3 + q3)k. (2.62)

Moreover, every quaternion q has a negative −q with components −qi, i = 0, 1, 2, 3.

27

As far as multiplication is concerned, the product of the two elements q and p, called
Hamilton product, is based on the products of the basis elements and the distributive
law, that helps us to expand the product so that it becomes a sum of products of basis
elements. More specifically, we have

pq = (p0 + p1i+ p2j+ p3k)(q0 + q1i+ q2j+ q3k)

= p0q0 + p0q1i+ p0q2j+ p0q3k

+p1q0i+ p1q1i
2 + p1q2ij+ p1q3ik

+p2q0j+ p2q1ji+ p2q2j
2 + p2q3jk

+p3q0k+ p3q1ki+ p3q2kj+ p3q3k
2.

(2.63)

Now, using the multiplication rules for the basis elements i, j and k from (1.2) and (1.3),
we can get a more concise form as seen below

pq = p0q0 − p1q1 − p2q2 − p3q3

+(p0q1 + p1q0 + p2q3 − p3q2)i

+(p0q2 − p1q3 + p2q0 + p3q1)j

+(p0q3 + p1q2 − p2q1 + p3q0)k.

(2.64)

Conjugation, the norm and reciprocal
Conjugation of quaternions is analogous to conjugation of complex numbers. Let’s con-
sider a quaternion q similar to the above (1.1). Its conjugate will then be

q∗ = q = q0 − q1i− q2j− q3k. (2.65)

The norm of the quaternion q is now defined by the square root of the product of it
and its conjugate and is denoted ||q||. The mathematical expression goes as follows

||q|| =
√
qq∗ =

√
q∗q =

√
q20 + q21 + q22 + q23. (2.66)

It easily follows that a quaternion of norm one is a unit quaternion. Dividing a non-zero
quaternion q by its norm produces a unit quaternion Uq called the versor of q

Uq =
q

||q||
. (2.67)

Taking into consideration conjugation and the norm we are now able to define the recip-
rocal of a non-zero quaternion. The product of a quaternion with its reciprocal should
equal 1, as well as the product of q and q∗

||q||2 . Hence, the reciprocal of q is defined as
follows

q−1 =
q∗

||q||2
. (2.68)

In our calculations, the condition that the norm of the quaternions equals to one
should be satisfied, so we have √

q20 + q21 + q22 + q23 = 1. (2.69)

28

2.4.3 Quaternion Derivations

Let us now change the notation of the quaternion so we can easily derive the formula for
q̇(t) later on. We will write a quaternion q = s+ υxi+ υyj+ υzk as the pair

[s, υ].

Considering this, a rotation of θ radians around a unit axis u is represented by the
unit quaternion

[cos(θ/2), sin(θ/2)u].

as discussed earlier in this chapter (see (2.58)). Hence, the scalar part is cos(θ/2) and the
vector part is multiplied by sin(θ/2). Generally, if q1 and q2 indicate rotations, then q2q1
represents the composite rotation of q1 followed by q2. Before showing how the rotation
of a body is expressed using quaternions, we need to derive a formula for q̇(t). First of
all, we express the angular velocity as a vector ω(t) with magnitude |ω(t)|. Naturally, the
body rotates about ω(t) axis. Therefore, the rotation of the body after a period of time
∆t is represented by the quaternion

[cos
|ω(t)|∆t

2
, sin

(|ω(t)|∆t
2

) ω(t)
|ω(t)|

].

At times t0 +∆t (for small ∆t), the orientation of the body is (to within first order) the
combination of two rotations; a rotation by q0 followed by a rotation with angular velocity
ω(t0) for ∆t time.

q(t0 +∆t) = [cos
|ω(t0)|∆t

2
, sin

(|ω(t0)|∆t
2

) ω(t0)
|ω(t0)|

]q(t0). (2.70)

We substitute in (2.70) t = t0 +∆t and so we can express the above as

q(t) = [cos
|ω(t0)|(t− t0)

2
, sin

(|ω(t0)|(t− t0)

2

) ω(t0)
|ω(t0)|

]q(t0). (2.71)

Differentiating the expression (2.71) at a time t0, and since q(t0) is a constant, we gradually
get

d

dt
cos

|ω(t0)|(t− t0)

2
= −|ω(t0)|

2
sin

|ω(t0)|(t− t0)

2
= −|ω(t0)|

2
sin 0 = 0 (2.72)

d

dt
sin

|ω(t0)|(t− t0)

2
=

|ω(t0)|
2

cos
|ω(t0)|(t− t0)

2
=

|ω(t0)|
2

cos 0 =
|ω(t0)|

2
(2.73)

29

Thus, combining (2.72) and (2.73), at at time t0, q̇(t) is expressed as follows

q̇(t) =
d

dt

(
[cos

|ω(t0)|(t− t0)

2
, sin

|ω(t0)|(t− t0)

2

ω(t0)

|ω(t0)|
]q(t0)

)
=

d

dt

(
[cos

|ω(t0)|(t− t0)

2
, sin

|ω(t0)|(t− t0)

2

ω(t0)

|ω(t0)|
]
)
q(t0)

= [0,
|ω(t0)|

2

ω(t0)

ω(t0)|
]q(t0)

[0,
1

2
ω(t0)]q(t0)

=
1

2
[0, ω(t0)]q(t0).

(2.74)

The product [0, ω(t0)]q(t0) is identical to the expression ω(t0)q(t0). In other words, the
term [0, ω(t0)] represents the angular velocity, which is of course a vector, as a quaternion
with zero scalar part. Finally, the general expression for the q̇(t) is derived

q̇(t) =
1

2
ω(t)q(t). (2.75)

The differential equation (2.75) could be further analyzed for every component of the
quaternion q, with additionally using the multiplication formula (2.64), as follows

q̇0(t) =
1

2
(−ω1(t)q1(t)− ω2(t)q2(t)− ω3(t)q3(t))

q̇1(t) =
1

2
(ω1(t)q0(t) + ω2(t)q3(t)− ω3(t)q2(t))

q̇2(t) =
1

2
(ω2(t)q0(t)− ω1(t)q3(t) + ω3(t)q1(t))

q̇3(t) =
1

2
(ω1(t)q2(t)− ω2(t)q1(t) + ω3(t)q0(t)).

(2.76)

It is necessary to notice the fact that in formula (2.75) the angular velocity vector
ω(t) = (ωX(t), ωY (t), ωZ(t)) is represented by projections on axes of the inertial frame of
reference. In case we want to express the angular velocity vector components in respect
to the rotating frame, we follow the transformation below

(0, ωX(t), ωY (t), ωZ(t)) = q(t)(0, ωx(t), ωy(t), ωz(t))q
−1(t)

where ωx(t), ωy(t), ωz(t) are the angular velocity projections on the axes of the rotating
frame. After taking these into consideration and also using (2.75) we get

q̇(t) =
1

2
q(t)ω(t), (2.77)

with ω(t) = (0, ωx(t), ωy(t), ωz(t)). It is now obvious that (2.77) also can be expressed

30

in the following form

q̇0(t) =
1

2
(−q1(t)ωx(t)− q2(t)ωy(t)− q3(t)ωz(t))

q̇1(t) =
1

2
(q0(t)ωx(t)− q3(t)ωy(t) + q2(t)ωz(t))

q̇2(t) =
1

2
(q3(t)ωx(t) + q0(t)ωy(t)− q1(t)ωz(t))

q̇3(t) =
1

2
(−q2(t)ωx(t) + q1(t)ωy(t) + q0(t)ωz(t)).

(2.78)

2.4.4 Quaternion, Euler angles, rotation matrix

It is now time to express our rotation formula to quaternion in order to get rid of the
problems that go along with the rotation matrix and Euler angles.

Firstly, let us consider the following three rotation angles around each axis as shown
in the figure below. For a rigid body rotating, the rotation around the front-to-back axis
is called roll, the rotation around the side-to-side axis is called pitch and the rotation
around the vertical axis is called yaw. Notation wise, we denote

(roll, pitch, yaw) = (θX , θY , θZ) (2.79)

These angles are also called the Tait–Bryan angles.

Figure 17: yaw-pitch-roll.

The rotation formula for these angles is similar to the Euler angles we described
previously. The only difference is that, if we want to make a rotation of roll-pitch-yaw in

31

that order, and we multiply the rotations matrices of every angle in the opposite order
D = DyawDpitchDroll, we finally take a rotation matrix of the form

D =

cos θZ cos θY cos θZ sin θY sin θX − sin θZ cos θX cos θZ sin θY cos θX + sin θZ sin θX
sin θZ cos θY sin θZ sin θY sin θX + cos θZ cos θX sin θZ sin θY cos θX − cos θZ sin θX
− sin θY cos θY sin θX cos θY cos θX

 .
(2.80)

This matrix, moves a vector from the body fixed frame of reference to the inertial, like
so

X = Dx, (2.81)

where again x and X are column vectors containing the three position components of the
rotating and the inertial frame, respectfully.

In order to express a quaternion in respect to the three angles of rotation around
every axis, we need the quaternion form (2.58). Specifically, the quaternion representing
a rotation of θX angle around X axis is

qX = (cos
θX
2
, sin

θX
2
, 0, 0), (2.82)

the quaternion representing a rotation of θY angle around Y axis is

qY = (cos
θY
2
, 0, sin

θY
2
, 0), (2.83)

and finally the quaternion representing a rotation of θZ angle around Z axis is

qZ = (cos
θZ
2
, 0, 0, sin

θZ
2
). (2.84)

A sequence of roll, pitch, yaw angle rotations is equivalent to the quaternion product
qZqY qX . Using the quaternion multiplication rule in (2.64) and denoting the quaternion
product qE = q0+ q1i+ q2j+ q3k, we can easily express its components in terms of θX , θY
and θZ angles.

q0 = cos
θX
2

cos
θY
2

cos
θZ
2

+ sin
θX
2

sin
θY
2

sin
θZ
2

q1 = sin
θX
2

cos
θY
2

cos
θZ
2

− cos
θX
2

sin
θY
2

sin
θZ
2

q2 = cos
θX
2

sin
θY
2

cos
θZ
2

+ sin
θX
2

cos
θY
2

sin
θZ
2

q3 = cos
θX
2

cos
θY
2

sin
θZ
2

− sin
θX
2

sin
θY
2

cos
θZ
2
.

(2.85)

There is of course, the reverse transformation that gives us the angles as a function of the
four quaternions components: rollpitch

yaw

 =

arctan 2[2(q0q1 + q2q3), 1− 2(q1
2 + q2

2)]
arcsin[2(q0q2 − q1q3)]

arctan 2[2(q0q3 + q1q2), 1− 2(q2
2 + q3

2)]

 (2.86)

32

In addition, the rotation matrix with the use of quaternions is

D =

1− 2(q2
2 + q3

2) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 1− 2(q1

2 + q3
2) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2(q1
2 + q2

2).

 (2.87)

Of course, this matrix is equivalent to the one from the equation (2.80) and the trans-
formation from rotating frame of reference to the inertial is given from the (2.81). As
discussed before, the reverse transformation requires the inverse D matrix (D−1).

33

3 Orbital mechanics near a rotating
asteroid

This chapter examines the gravitational potential an ellipsoid forms around it. Specifying
the ellipsoid as an asteroid we then examine the dynamical equations of a particle orbiting
a rotating asteroid with such potential.

3.1 Ellipsoid Potential

The gravitational potential of an ellipsoid is given approximately by the following equation
[12]

U =
[
− M

r
− Ixx + Iyy + Izz

2r3
+

3

2

Ixxx
2 + Iyyy

2 + Izzz
2

r5

]
G (3.1)

where

Ixx =M
b2 + c2

5

Iyy =M
a2 + c2

5

Izz =M
a2 + b2

5

(3.2)

are the moments of inertia of an ellipsoid of uniform density and Ixy = Iyz = Izx = 0.
The lengths a, b and c are called the principal semi-axes of the ellipsoid. If a = b > c,
one has an oblate spheroid; if a = b < c, one has a prolate spheroid and if a = b = c, then
one has a sphere. In the most general case, where a ̸= b ̸= c, one has a triaxial ellipsoid.
G is the gravitational constant and M the mass of the ellipsoid. [2]

34

Figure 18: Prolate and oblate spheroids.

Figure 19: Examples of ellipsoids.(Top:Sphere, Bottom left:Spheroid, Bottom
right:Triaxial ellipsoid)[2]

35

In reality, the potential of an rigid body of arbitrary shape is given by

U(r) = −G
∫
dM

|ϱ|
= −G

∫
dM

|r− r′|
(3.3)

where ϱ =
√

(x− ξ)2 + (y − η)2 + (z − ζ)2, r′ = (ξ, η, ζ) is the position of the differential
mass element of the rigid body dM and r = (x, y, z) is the position of the point particle,
where we want to compute the potential (see figure 20).

Figure 20: Arbitrary shaped rigid body.

Expanding 1
|ϱ| into a second order series, taking into account that

Ixx =

∫
(η2 + ζ2)dM

Iyy =

∫
(ξ2 + ζ2)dM

Izz =

∫
(η2 + ξ2)dM

(3.4)

and following some calculations, one can derive the equation (3.1).

3.2 The equation of motion in the classical form

Consider a general case, where a particle orbits a rotating asteroid. Then, the equation
describing the motion can be expressed in the body fixed frame as a second-order ordinary
differential equation [13]

r̈+ 2ω × ṙ+ ω × (ω × r) + ω̇ × r+
∂U(r)

∂r
= 0 (3.5)

36

where r is the radius vector from the asteroid’s center of mass to the particle, its derivatives
are with respect to the body-fixed frame of reference, ω is, as mentioned above, the angular
velocity vector and U(r) is the gravitational potential of the asteroid, given by (3.1). The
inertial frame is represented in the figure below with orange coloured axes and the body
fixed, rotating frame with blue coloured axes. The radius vector of the position of the
particle (green), as well as the other vectors (velocity, anglular velocity etc.) in (3.5) are
given in the body fixed frame.

Figure 21: Inertial (orange) and body fixed (blue)frame of reference.

The Lagrangian associated to the motion of a particle in a rotating frame described
by (3.5) is [14]

L =
ṙ2

2
+ ω · (r× ṙ) +

1

2
(ω × r)2 − U(r). (3.6)

For convenience, we consider for the generalized coordinates q = r. Hence, the generalized
momentum is

p =
∂L
∂ṙ

= ṙ+ ω × r. (3.7)

The Hamiltonian is given by
H = pq̇− L. (3.8)

Combining (3.6), (3.7) and (3.8), and with some basic calculations, we take the final form
of the Hamiltonian

H =
p2

2
− p · (ω × r) + U(r). (3.9)

If ω is time invariant, then H is also time invariant and is constant (the Jacobi constant).
The mechanical energy can be written as

E = K + U(r) (3.10)

37

where K is the kinetic energy of the particle, which is given by

K =
p2

2
=

1

2
(ṙ+ ω × r)2 =

1

2
ṙ2 + ṙ · (ω × r) +

1

2
(ω × r)2. (3.11)

We can also write the mechanical energy in terms of the effective potential V (r).

E = K + V (r) (3.12)

Let the last be defined as

V (r) = −1

2
(ω × r)2 + U(r). (3.13)

The equation of motion (3.5) may be rewritten in terms of the effective potential as

r̈+ 2ω × r+ ω̇ × r+
∂V (r)

∂r
= 0. (3.14)

3.3 The equation of motion in the scalar form

The radius, velocity, acceleration and angular velocity vectors in (3.5) equation, expressed
in the rotating, body fixed frame (blue axes in Figure 21) take the form

r = x ex + y ey + z ez

ṙ = ẋ ex + ẏ ey + ż ez

r̈ = ẍ ex + ÿ ey + z̈ ez

ω = ωx ex + ωy ey + ωz ez

(3.15)

where ei with i = x, y, z the unit vectors of every axis of the frame. Hence, the dynamical
equations of the orbiting particle (3.5) can be written as [13]

ẍ+ ω̇yz − ω̇zy + 2ωyż − 2ωzẏ + ωxωyy − ωy
2x− ωz

2x+ ωzωxz +
∂U

∂x
= 0

ÿ + ω̇zx− ω̇xz + 2ωzẋ− 2ωxż + ωyωzz − ωz
2y − ωx

2y + ωxωyx+
∂U

∂y
= 0

z̈ + ω̇xy − ω̇yx+ 2ωxẏ − 2ωyẋ+ ωxωzx− ωx
2z − ωy

2z + ωyωzy +
∂U

∂z
= 0.

(3.16)

We can easily transform these equations depending on the angular velocity vector.
More specifically, the angular velocity vector could be defined by ω = ωez, so that its x
and y components would be zero, and it could be time invariant so that its derivatives
could be zero. In that case, the above equations would be simplified.

ẍ− ω̇y − 2ωẏ − ω2x+
∂U

∂x
= 0

ÿ + ω̇x+ 2ωẋ− ω2y +
∂U

∂y
= 0

z̈ +
∂U

∂z
= 0.

(3.17)

Note here that the solution of the scalar form gives the position of the particle r =
(x, y, z) is in the body-fixed frame.

38

3.4 Horizontal stability

Let us now limit our analysis in a plane motion, where z = 0, and study the motion of a
particle in a central force field. In this plane the gravitational potential from (3.1) takes
the form

Uz=0 =
[
− M

r
− Ixx + Iyy + Izz

2r3
+

3

2

Ixxx
2 + Iyyy

2

r5

]
G (3.18)

where now r =
√
x2 + y2. We assume a symmetric rotational body around, so that

Ixx = Iyy. Hence,

Uz=0(r) =
[
− M

r
+
Ixx − Izz

2r3

]
G. (3.19)

The gravitational force is

F (r) = −dUz=0

dr
=
[
− M

r2
+

3(Ixx − Izz)

2r4

]
G. (3.20)

The differential equation

mr̈ = F (r) +
L

mr3
(3.21)

describes the motion of a particle in a central force field. The equilibrium points must
satisfy the condition

mr̈ = 0 ⇒ F (r) +
L

mr3
= 0. (3.22)

It is clear that, if the root of this equation is r0, the initial conditions r = r0 and ṙ = 0
correspond to an equilibrium solution that in our case represents a circular motion with
center the center of force. Taking into consideration that ω = L/mr0

2 and that υ = r0ω,
we can find the mathematical formula of the velocity needed to launch the particle from
distance r0 so the orbit will be circular. Hence, we have

υ2 = −r0 F (r0)
m

. (3.23)

The differential equation of motion can also be written as

F (r) +
L

mr3
= −dV

dr
(3.24)

where V is the effective potential. The equilibrium points correspond to effective poten-
tial’s extremums (

dV

dr

)
r0

= 0. (3.25)

Whether this points are stable or unstable has to do with the sign of the second order
derivative of V . Hence, if (

d2V

dr2

)
r=r0

> 0 (3.26)

39

the equilibrium point is stable, and if(
d2V

dr2

)
r=r0

< 0 (3.27)

the equilibrium point is unstable. Expanding this analysis and deriving (3.24), for the
stable case we have (

d2V

dr2

)
r=r0

= F ′(r0) +
3

r0

L2

mr03
> 0, (3.28)

where F ′(r) is the F derivative in terms of r. Using (3.25), then the condition of a stable
orbit of radius r0 is expressed as

F ′(r0) +
3

r0
F (r0) < 0. (3.29)

Note here that circular orbits only exist on attractive force fields and consequently F (r0) <
0, so the condition takes the form

F ′(r0)

F (r0)
+

3

r0
> 0. (3.30)

It is obvious that if we are referring to unstable orbits we have

F ′(r0)

F (r0)
+

3

r0
< 0. (3.31)

These conditions apply to every central force.
In our case,for an oblate spheroid (where Ixx < Izz), for a force given by the (3.20),

and for stable orbits (from (3.30)) we have

r >

√
3

2
(Izz − Ixx). (3.32)

40

4 Algorithm Description
In this chapter we will present the algorithm we built to compute the orbits of a point
mass object of a mass m, which corresponds to a spacecraft, around a rotating rigid body
of a mass M , which corresponds to an asteroid. Let the shape of the asteroid for this
analysis be an oblate spheroid, as we described it to a previous chapter. That means
that the two out of three moments of inertia are equal, therefore the two out of three
corresponding principal semi-axes are also equal. Spacecraft’s mass m is considered here
negligible in relation to asteroid’s mass M . We need to note here that, for computational
purposes, we consider the gravity constant to be G = 1 and the mass of the asteroid to
be M = 1.

4.1 Main equations

The gravitational potential of the oblate spheroid is given by the equation (3.1) and the
equation of motion of the spacecraft in the rotating, body-fixed frame is given by (3.16).
The rigid body rotates with an angular velocity vector corresponding to (2.53) in the
rotating frame. In other words, the main idea is to enter (2.53) and (3.1) in (3.16), that
will eventually give as a solution the position (x, y and z components) of the spacecraft
in space. It is clear that every component of position or velocity (and angular velocity)
is expressed in the body-fixed frame. Thus, the initial conditions given to integrate the
equation of motion are also needed to be expressed in the body-fixed frame.

Nevertheless, for us to know at any moment or to manually set the position of the
spacecraft in space, we need its inertial coordinates. The problem is easily solved using
the quaternion method we described above for the transformation from the one frame to
the other and vice versa. We also need the inertial frame coordinates to calculate the
orbital elements of the spacecraft. Hence, although the equations of motion refer to the
body-fixed frame, we need information from both the body-fixed and the inertial frame,
that we easily get using the transformation formula, with the rotation matrix given by
(2.87). Let us note here that the set of the four quaternions represent the orientation of
the body-fixed frame in respect to the inertial. For this to be possible, the use of the
quaternion differential equations (2.78) is necessary.

The programming language used for this topic is C++. The Bulirsch–Stoer method,
implemented with the class ODESBS, is used for the numerical integration of the (3.16)
along with (2.78). The differential equations to solve are seven in total, with the three of
them being second order. It is important to understand that the three coordinates in the
rotating frame (x, y and z) and the four quaternion components, need to be known for
every time step. Moreover, the auxiliary code restroe41 is used for the orbital elements to
be calculated. The program returns three files containing the coordinates of the inertial
frame, the coordinates of the rotating frame and the orbital elements respectfully. With
these information we visualize an orbit to get the complete picture. In the Appendix B
we give the module dSystemElpsdRotPrec23.cpp that contains the equations of motion.
In the Appendix A we give the main1c.cpp function for a run of an individual orbit.

41

4.2 Initial Conditions and Parameters

As mentioned before, the differential equations need to be solved are seven; three second
order differential equations (equations of motion) and four first order differential equations
(for the quaternions). Thus, ten initial conditions are needed for this system; three
position components, three velocity components and the four initial quaternions. Let us
mention again here that the initial quaternions represent the initial orientation of the
rotating frame. One chooses the initial position and velocity of the spacecraft in space
(inertial frame) and the initial orientation of the rotating frame and eventually gets the
evolution of the orbit in time.

We choose initial conditions of position and velocity in the inertial frame for the
particle of the form

R = (r0, 0, 0) V = (0,
√

−r0F (r0), 0), (4.1)

represented in the Figure 22. The velocity is the one needed for an object of negligible
mass to carry out a circular orbit, expressed above by the equation (3.23). Then, we
choose that the initial orientation of the rotating frame will be a roll, i.e, a rotation of an
angle θx around X axis:

roll = θx0 pitch = 0 yaw = 0. (4.2)

The angle takes values from 0 to π/2. Using (2.85), one can calculate the corresponding
quaternions. Another parameter we need to set is the angular frequency B of the angular
velocity’s vector ω (see (2.53)). It takes values from 0 to 1.

42

Figure 22: Initial Conditions in the inertial frame.

4.3 Unit Normalization

In a previous section we saw the lengths a, b and c as the principal semi-axes of an
ellipsoid. Here, since we are referring to an oblate spheroid, it applies that a = b and
c < a, expressed lets say in m. This would give us big numbers as a solution, difficult
to process. That’s why we follow a normalization procedure by applying the following
scaling

x′ = x/a, y′ = y/a, z′ = z/a, t′ = ωt (4.3)

and replacing the semi-axes with the scaled ones

a′ = 1, b′ = b/a, c′ = c/a (4.4)

in equations (3.16). Of course, time derivatives refer now to time t′. As discussed be-
fore, the magnitude of the angular velocity vector is constant (see (2.53)). Here, in our
calculations we consider that

∥ ω′ ∥=
√
A2 + ωz2 = 1. (4.5)

For the characteristics of the rigid body (asteroid), we consider

a′ = b′ = 1.0, c′ = 0.8 (4.6)

43

for the normalized semi-axes, and
δ = 0.8. (4.7)

The equations of motion can now be written as

ẍ′ + ω̇′
yz

′ − ω̇′
zy

′ + 2ωy
′ż′ − 2ωz

′ẏ′ + ωx
′ωy

′y′ − ωy
′2x′ − ωz

′2x′ + ωz
′ωx

′z′ + δ
∂U

∂x′
= 0

ÿ′ + ω̇′
zx

′ − ω̇′
xz

′ + 2ωz
′ẋ′ − 2ωx

′ż′ + ωy
′ωz

′z′ − ωz
′2y′ − ωx

′2y′ + ωx
′ωy

′x′ + δ
∂U

∂y′
= 0

z̈′ + ω̇′
xy

′ − ω̇′
yx

′ + 2ωx
′ẏ′ − 2ωy

′ẋ′ + ωx
′ωz

′x′ − ωx
′2z′ − ωy

′2z′ + ωy
′ωz

′y′ + δ
∂U

∂z′
= 0.

(4.8)

where U = U(x′, y′, z′), ωi
′ = ωi

∥ω∥ (with i = x, y, z) and

δ =
µ

ω2a3
. (4.9)

The parameter δ is special for every asteroid and for its calculation one has to substitute
the real values of µ, ω and a.

In the following, we omit the primes off the symbols

ẍ+ ω̇yz − ω̇zy + 2ωyż − 2ωzẏ + ωxωyy − ωy
2x− ωz

2x+ ωzωxz + δ
∂U

∂x
= 0

ÿ + ω̇zx− ω̇xz + 2ωzẋ− 2ωxż + ωyωzz − ωz
2y − ωx

2y + ωxωyx+ δ
∂U

∂y
= 0

z̈ + ω̇xy − ω̇yx+ 2ωxẏ − 2ωyẋ+ ωxωzx− ωx
2z − ωy

2z + ωyωzy + δ
∂U

∂z
= 0.

(4.10)

Furthermore, the same scaling should be applied in the force we discussed in horizontal
stability, so it would give us

F = δF ′ (4.11)

where

F ′ = − 1

r′2
+

3(I ′xx − I ′zz)

2r′4
, (4.12)

or, if we omit the primes here too, the force is given by

F = δ
(
− 1

r2
+

3(Ixx − Izz)

2r4

)
(4.13)

In that way, supposing the equations of motion have a solution x′, y′ and z′ of the position
of the spacecraft in the rotating frame, in order to get the real distance, we need to multiply
each coordinate with the semi-axis a. For the real time value we need to divide t′ with ω.

44

5 Results
In this chapter we display our results. With the help of the program levelmap2.exe,
we construct coloured maps for the maximum value of the orbit’s semi-major axis, the
eccentricity and the inclination. We make a grid of 51 × 51 in the x − y plane, where
x ∈ (0, 1.57) and y ∈ (0, 1), creating in total 2, 601 initial conditions. The x values
represent the initial θx and the y values represent the initial B (angular frequency of
the vector ω). For every pair of initial conditions, we integrate the orbit and compute
the orbital elements semi-major axis (a), eccentricity (e) and inclination (i) at each step.
Finally, we output the amax, emax and imax for each orbit. Each magnitude has its own
map. The colours of the map correspond to the value of amax, emax and imax, respectively.
In that way we can get the full picture of the region of initial conditions, where the
orbit remains stable. Small values generally correspond to stable orbits and large values
correspond to unstable orbits, that may lead to collision of the spacecraft with the asteroid
or escape.

The dark blue and green coloured regions represent stable orbits, that stay close to
the asteroid, the yellow represent orbits that move away from the asteroid, with some
of them stay bounded and others lead to escape, and the white for the amax and bright
yellow for emax and imax represent collision.

5.1 Dynamical Maps for different pairs of initial radius and as-
teroid shape

Here, we examine different values of the initial radius of the orbit (r0) an the size of the
asteroid (the parameter c) and see how the orbits are being affected from the changes of
these values.

5.1.1 r0 = 1.5 and c = 0.7

We set for the initial radius of the orbit r0 = 1.5 and for the vertical semi-axis of the
asteroid c = 0.7 and consider these constant, when constructing the maps for all the pairs
of the initial conditions of θx and B. Figure 23 represents the dynamical map for amax,
figure 24 represents the dynamical map for emax and figure 25 for imax.

45

Figure 23: Values of amax for a grid (θx, B) and for r0 = 1.5 and c = 0.7.

Figure 24: Values of emax for a grid (θx, B) and for r0 = 1.5 and c = 0.7.

46

Figure 25: Values of imax for a grid (θx, B) and for r0 = 1.5 and c = 0.7.

Stable, bounded orbits A few examples of these orbits are given bellow.
For an orbit with initial conditions

θx0 = 0.0628 B0 = 0.46

we take the graph of the semi-major axis, the eccentricity, the inclination and the radius
of the orbit over time.

47

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 26: θx0 = 0.0628 B0 = 0.46

The projection of the orbit in the XY plane of the inertial frame is represented in the
figure below with black and with the green circle representing the asteroid.

48

Figure 27: Orbit on the XY plane with θx0 = 0.0628 B0 = 0.46.

As we can see, the orbit stays bounded over time and the magnitudes of semi-major
axis, eccentricity, inclination and orbit’s radius oscillate.

Let another example be an orbit with initial conditions

θx0 = 0.1256 B0 = 0.96

we have

49

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 28: θx0 = 0.1256 B0 = 0.96.

Here, even though the orbit remains bounded, the inclination increases up to 140
degrees. In this case, the spacecraft doesn’t escape the asteroid, its orbit remains almost
circular, but the orbit’s inclination takes great values. In the projection on the XY plane,
one can see that the spacecraft appears to cross the body, but in reality it passes from
above.

The inclination seems to being affected by the initial B, since the value here is almost
double compared with the previous one. As we can see from the corresponding map in
figure 25, for small B, the inclination gets only small values.

50

Figure 29: Orbit on the XY plane with θx0 = 0.1256 B0 = 0.96.

Let us consider another orbit with a relatively small initial B, so that

θx0 = 0.2826 B0 = 0.24.

51

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 30: θx0 = 0.2826 B0 = 0.24

Note here, that a, e, i, and R oscillate, with the inclination having a maximum near
16◦. On the XY plane

52

Figure 31: Orbit on the XY plane with θx0 = 0.2826 B0 = 0.24.

Collision We consider an example of an orbit from the region representing collision
(white for amax-figure 23), with initial conditions

θx0 = 0.4082 B0 = 0.78.

The collision happens, approximately, when the radius takes a value smaller than 1 (as a
normalized unit). Plotting the radius of that orbit over time, one can see in the figure 32
that the radius becomes indeed smaller than 1, which means that the spacecraft collided
with the asteroid.

53

Figure 32: R− t with θx0 = 0.4082 B0 = 0.78 (Collision).

Escape Choosing an orbit from the yellow region of amax (figure 23), i.e. an unstable
orbit with initial conditions

θx0 = 1.0676 B0 = 0.22.

and plotting its radius, we have the evolution given in figure 33

54

Figure 33: R− t with θx0 = 1.0676 B0 = 0.22 (Escape).

One can see that the radius increases up to 250 normalized units. In this case, the
orbit is unbounded and the spacecraft has escaped.

5.1.2 r0 = 3.0 and c = 0.7

Let us now double the initial radius of the orbit, which leads us to new dynamical maps.

55

Figure 34: Values of amax for a grid (θx, B) and for r0 = 3.0 and c = 0.7.

Figure 35: Values of emax for a grid (θx, B) and for r0 = 3.0 and c = 0.7.

56

Figure 36: Values of imax for a grid (θx, B) and for r0 = 3.0 and c = 0.7.

Notice, here, that by increasing the initial distance of the spacecraft from the asteroid,
the region of instability decreases significantly. Due to greater distance, the oblate shape
of the asteroid becomes more negligible. Taking into account the potential from the
equation (3.1), one can understand that as the radius increases, the second and third
term of the potential decrease significantly and considered also negligible.

Stable, bounded orbits For an orbit with initial conditions

θx0 = 0.942 B0 = 0.28

we have

57

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 37: θx0 = 0.942 B0 = 0.28.

The orbit on the XY plane is given in figure 39 and on the XZ plane is given in figutr
??

58

Figure 38: Orbit on the XY plane with θx0 = 0.942 B0 = 0.28.

Figure 39: Orbit on the XZ plane with θx0 = 0.942 B0 = 0.28.

59

The inclination appears to continuously increasing, while the other magnitudes oscil-
late and the orbit is bounded. In fact, the inclination doesn’t continuously increase and
we can ascertain that by running the orbit for a longer period of time, as seen in the
figure below.

Figure 40: i(t) for a longer period of time with θx0 = 0.942 B0 = 0.28.

For an orbit with initial conditions

θx0 = 1.3188 B0 = 0.98

we have the evolution given in figure 41 and the orbit in figure 42

60

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 41: θx0 = 1.3188 B0 = 0.98.

61

Figure 42: Orbit on the XY plane with θx0 = 1.3188 B0 = 0.98.

62

For an orbit with initial conditions

θx0 = 0.7536 B0 = 0.58

we have the evolution given in figure 43 and the orbit in figure 44 (XY plane) and in
figure 45 (XZ plane)

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 43: θx0 = 0.7536 B0 = 0.58.

63

Figure 44: Orbit on the XY plane with θx0 = 0.7536 B0 = 0.58.

Figure 45: Orbit on the XZ plane with θx0 = 0.7536 B0 = 0.58.

64

Here, the inclination takes bigger values, since the initial conditions correspond to the
green area of the imax map in figure 36.

Unstable orbits For an orbit of collision area with initial conditions

θx0 = 0.314 B0 = 0.84

we have

Figure 46: R-t with θx0 = 0.314 B0 = 0.84 (Collision).

Here, we can see (figure 46) that the radius value goes below 1, but becomes in general
quite large. In this case, the spacecraft moves away from the asteroid but in a bounded
orbit, and eventually they collide.

A similar form of time evolution follows the radius of an orbit with initial conditions

θx0 = 0.3768 B0 = 0.8,

as we can see here

65

Figure 47: R-t with θx0 = 0.3768 B0 = 0.8.

Here, the orbit is bounded, although the radius takes large values, and the two bodies
don’t collide. In this case, there is a sort of instability, which we can understand better
by seen the plot of the semi-major axis (see figure 48).

66

Figure 48: a-t with θx0 = 0.3768 B0 = 0.8.

It is clear that the semi-major axis doesn’t oscillates around small values, but follows
an irregular form and increases significantly.

5.1.3 r0 = 1.5 and c = 0.8

We return to the initial radius of the first case in the section 5.1.1 and we increase the
semi-axis c of the oblate spheroid shape of the asteroid, leading to new dynamical maps
seen in figures 49, 50 and 51.

67

Figure 49: Values of amax of a grid (θx, B) for r0 = 1.5 and c = 0.8.

Figure 50: Values of emax of a grid (θx, B) for r0 = 1.5 and c = 0.8.

68

Figure 51: Values of imax of a grid (θx, B) for r0 = 1.5 and c = 0.8.

Notice that comparatively to the results in the maps of 5.1.1 the white and bright
yellow region has been decreased and the blue region has been increased, a fact that is
reasonable, since the shape of the asteroid became more spherical.

Stable, bounded orbits For an orbit with initial conditions

θx0 = 0.18840 B0 = 0.24

we have the evolution in figure 52 and the orbit in figure 53

69

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 52: θx0 = 0.18840 B0 = 0.24.

70

Figure 53: Orbit on XY plane with θx0 = 0.18840 B0 = 0.24.

71

For another stable orbit with initial conditions

θx0 = 0.2512 B0 = 0.72

we have for the evolution the figure 54 and for the orbit the figure 55

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 54: θx0 = 0.2512 B0 = 0.72.

72

Figure 55: Orbit on the XY plane with θx0 = 0.2512 B0 = 0.72.

In this case, we notice that the inclination gets large values and the orbit remains
bounded.

Unstable orbits For an orbit with initial conditions

θx0 = 0.5338 B0 = 0.04

we have the evolution in figure 56 and the orbit in figure 57

73

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 56: θx0 = 0.5338 B0 = 0.04.

74

Figure 57: Orbit on the XY plane with θx0 = 0.5338 B0 = 0.04.

75

Notice in figure 56 (d) that the radius of the orbit has a chaotic evolution, so the orbit
is unstable. This may lead to escape or collision over time.

Consider an orbit with initial conditions

θx0 = 0.2826 B0 = 0.88.

Figure 58: R-t with θx0 = 0.2826 B0 = 0.88 (Collision).

This orbit is chaotic and ends up in a collision.

5.1.4 r0 = 1.5 and c = 0.4

Finally, we set a significantly smaller vertical semi-axis, c = 0.4, with an initial radius
r0 = 1.5. Figure 59 represents the dynamical map for amax, figure 60 represents the
dynamical map for emax and figure 61 for imax.

76

Figure 59: Values of amax for a grid (θx, B) and for r0 = 1.5 and c = 0.4.

Figure 60: Values of emax for a grid (θx, B) and for r0 = 1.5 and c = 0.4.

77

Figure 61: Values of imax for a grid (θx, B) and for r0 = 1.5 and c = 0.4.

It is important to note here, that in this case the blue region of stable, bounded orbits
has decreased compared to the cases of c = 0.7 and c = 0.8.

Stable, bounded orbits For an orbit with initial conditions

θx0 = 0.0314 B0 = 0.16

we have the evolution in figure 62 and the orbit in figure 63

78

(a) a(t) (b) e(t)

(c) i(t) (d) R(t)

Figure 62: θx0 = 0.0314 B0 = 0.16.

79

Figure 63: Orbit on XY plane with θx0 = 0.0314 B0 = 0.16.

80

As we can see, the orbit stays bounded over time and the magnitudes of semi-major
axis, eccentricity, inclination and orbit’s radius oscillate.

Collision We consider an example of an orbit from the region representing collision
(white for amax - figure 59), with initial conditions

θx0 = 0.4396 B0 = 0.82.

and as we can see in figure 64 below, the spacecraft collides with the asteroid within a
sort period of time.

Figure 64: R-t with θx0 = 0.4396 B0 = 0.82 (Collision).

Escape Choosing an orbit from the yellow region of amax (figure 59) with initial condi-
tions

θx0 = 1.0362 B0 = 0.5.

Plotting its radius, we have the evolution given in figure 65

81

Figure 65: R-t with θx0 = 1.0362 B0 = 0.5 (Escape).

We can see that the orbit leads to an escape of the spacecraft.

82

6 Conclusions
In this study, we studied the orbital dynamics around a precessing oblate spheroid as-
teroid. The aim of this study was to expand our knowledge about the dynamics in the
gravitational field of an asteroid, that will be useful for future missions, including landings
and planetary defense missions. In our model, we used a second order expansion of the
gravitational potential of an arbitrary shaped rigid body and made the approximation
for the oblate spheroid through the moments of inertia, which include the information of
the shape. To enter the precession in our model, we solved Euler’s equations for a freely
rotating rigid body (the oblate spheroid in our case). We integrated the equations of mo-
tion, in the rotating frame, of a spacecraft (with negligible mass) orbiting the precessing
oblate spheroid. We followed a transformation from the rotating to the inertial frame
of reference, using quaternions, in order to compute the orbital elements. To be able
to do this transformation, we integrated the differential equations of quaternions along
with the equations of motion. Quaternions include information about the rotation and
the asteroid’s orientation, since they can be transformed into angles. For several pairs
of initial conditions of θx and B, we used the amax, emax and imax from each orbit to
create dynamical maps. The darker colours (the black, the blue and the green) of the
maps represent small values and brighter colours (the yellow and the orange) represent
big values.

The results showed that the maps consist of regions of stable orbits and unstable
orbits. In these maps there are bounded orbits (in the stable regions), there are other
orbits that lead to collision or escape and there are chaotic orbits, whose evolution over
time may lead to a collision or escape. Thus, the form of the dynamical maps can change
depending on the integration time. From the dynamical maps of amax values, for example,
we can say that the yellow region are escape orbits, since the semi-major axis takes large
values. The white represents collision. In the blue area, the semi-major axis takes small
values, but not all the orbits are necessarily bounded or periodic. That is because the
radius of some of these orbits evolves chaotically. Hence, they can end up to a collision
or an escape.

By changing the initial radius of the orbit, we noticed that an increase of its magnitude
leads to an increase to the stable orbits’ region. We doubled the initial radius (from
r0 = 1.5 to r0 = 3.0) and noticed the unstable region decreasing significantly.

Another parameter that affects the form of the dynamical maps is the vertical semi-
axis c of the oblate spheroid. From our results, we can see that the stable region decreases
as the parameter also decreases and the rigid body becomes more oblate.

For future research, we can solve the variational equations, along with the equations
of motion and compute the Lyapunov Exponents and the Fast Lyapunov Indicator (FLI)
to detect chaos.

One more idea is to extend our analysis by entering the force caused by the solar
radiation pressure in the equations of motion.

83

Appendices

A main1c.cpp

#include <iostream>
#include ”ODESBS. h”
#include ”dSystemElpsdRotPrec23 . h”
#include <s t r i n g . h>
#include ” r e s t r o e 41 . h”
#include <cmath>

void ShowConfig () ;
void WriteConfig () ;
void FileOutput (int In i t , double X[]) ;

double X0 [NEQ] ;

int FLAGGETPQ, SCRNMOD;
double t ime fac to r , MaxResc ;
double acc , dt0 , DT; int Ni t e r s ;
char fnameX [2 5 6] , fnameO [2 5 6] , fnameXIn [2 5 6] ;
FILE * f i l x , * f i l o , * f i l x i n ; // , * f i l i ;

int main ()
{

double XI [NEQ] ;
double theta , A, B, q00 , q10 , q20 , q30 , r0 ;
p r i n t f (”RUN 3D=ORBIT in the f i e l d o f Rotating ob la t e \n\

n”) ;
double a = 1 . 0 , b , c ;
b = 1 . 0 ;
c = 0 . 7 ;
theta =0.7536;
B=0.58;
r0 =3.0 ;
A = sq r t (1.0= cos (theta) * cos (theta)) ;
i n i t i a l i z eP r e c Sy s t em (b , c , 0 . 8 ,A, B, 1 . 0 e=14) ;

// i n i t i a l qua tern ions
q00=cos (theta *0 . 5) ;

84

q10=s in (theta *0 . 5) ;
q20=0.0 ;
q30=0.0 ;
In i tRest roeB (0 , 0 . 0 , 0 . 8) ;
// i n i t i a l c ond i t i on s in i n e r t i a l frame
XI [0]=0 ; // t
XI [1]= r0 ; //X
XI [2]=0 . 0 ; //Y
XI [3]=0 . 0 ; //Z
XI [4]=0 ; //VX
XI [5]=0 . 0 ; //VY
XI [6]=0 . 0 ; //VZ
XI [7] = q00 ; //q0
XI [8] = q10 ; //q1
XI [9] = q20 ; //q2
XI [1 0] = q30 ; //q3

double Ix = (b*b + c*c) / 5 , Iy = (a*a + c*c) / 5 , I z =
(a*a + b*b) / 5 ;

double F =0.8*(3*(Ix=I z) /(2*pow(XI [1] , 4)) = 1/(XI [1] *XI
[1])) ; //3*(Ix=I z) /(2 r ˆ4)=1/r ˆ2

double va = sq r t (=XI [1] *F) ; // approximation f o r c i r c u l a r
o r b i t

XI [5] = va ;

I n e r t i a l t oRo t a t i n g (XI ,X0) ;

double Energy0 = Energy (X0) ;
// Ro ta t ingToIne r t i a l (X0, XI) ;
OEPOS oe ;
GetOrbitalElements (XI , &oe , 1) ;
p r i n t f (”a=%f e=%f i=%f \n” , oe . a , oe . e , oe . i) ;
p r i n t f (”M=%f w=%f W=%f \n” , oe .M, oe . omega , oe .Omega) ;
getchar () ;

DT = 0 . 0 5 ;
N i t e r s = 24000 ;
dt0 = 0 . 0 0 1 ;
//========================
//ShowConfig () ;
s t r cpy (fnameX , ” t e s tx2 . dat”) ;
s t r cpy (fnameO , ” t e s t o . dat”) ;
s t r cpy (fnameXIn , ” t e s t x i n . dat”) ;

85

FileOutput (0 , X0) ;
double Y0 [NEQ] , Y1 [NEQ] ;
for (int j = 0 ; j < NEQ; j++) Y0 [j] = X0 [j] ;
for (int i = 1 ; i <= Ni t e r s ; i++)
{

i f (! i n t e g r a t e . DTstep (Y0 , DT, &dt0 , Y1)) {
p r i n t f (”Break : I n t e g r a t i on e r r o r \n”) ; break ;
}

for (int j = 0 ; j<NEQ; j++) Y0 [j] = Y1 [j] ;
Fi leOutput (1 , Y0) ;
double dee = fabs (Energy (Y0) = Energy0) /

Energy0 ;
p r i n t f (”%d x=%f y=%f z=%f DE/E=%1.1e\n” , i , Y0

[1] , Y0 [2] , Y0 [3] , dee) ;
}

FileOutput (=1 , Y0) ; // f c l o s e (f i l i) ;

p r i n t f (”\nEnd o f Run”) ; getchar () ;
return 0 ;

}

///
void FileOutput (int In i t , double X[])
{

double Xi [NEQ] ;
i f (I n i t == =1) { f c l o s e (f i l x) ; f c l o s e (f i l o) ; f c l o s e (

f i l x i n) ; return ; }
i f (I n i t == 0) {

f i l x = fopen (fnameX , ”wt”) ;
f i l o = fopen (fnameO , ”wt”) ;
f i l x i n = fopen (fnameXIn , ”wt”) ;
f p r i n t f (f i l x , ” t x y

z P Q
R Ener\n”) ;

f p r i n t f (f i l o , ” t a e
i omegabar omega Omega M

lambda n/n ’\n”) ;
f p r i n t f (f i l x i n , ” t X Y

Z VX VY
VZ Radius\n”) ;

}
f p r i n t f (f i l x , ”%f %11.10 l f %11.10 l f %11.10 l f %11.10

l f %11.10 l f %11.10 l f %14.13 l f \n” ,X[0] ,X[1] ,X[2] ,X
[3] ,X[4] ,X[5] ,X[6] , Energy (X)) ;

86

Rota t ingToIne r t i a l (X, Xi) ;
double R=sqr t (pow(Xi [1] , 2)+pow(Xi [2] , 2)+pow(Xi [3] , 2)) ;
f p r i n t f (f i l x i n , ”%f %11.10 l f %11.10 l f %11.10 l f

%11.10 l f %11.10 l f %11.10 l f %11.10 l f \n” , Xi [0] , Xi
[1] , Xi [2] , Xi [3] , Xi [4] , Xi [5] , Xi [6] ,R) ;

OEPOS oe ;
GetOrbitalElements (Xi , &oe , 1) ;
f p r i n t f (f i l o , ”%f %8.7 f %8.7 f %8.5 f %6.3 f %6.3 f

%6.3 f %6.3 f %6.3 f %5.3 f \n” , Xi [0] , oe . a , oe . e , oe
. i , oe . omegabar , oe . omega , oe .Omega , oe .M, oe . lamda ,
oe . meanmotion) ;

}

87

B dSystemElpsdRotPrec23.cpp

#include<s t d i o . h>
#include<math . h>
#include ”dSystemElpsdRotPrec23 . h”
#include ”ODESBS. h”

double de l t a i , pAmpl , pFreq , wz , Ix , Iy , I z ;

ODESBS in t eg ra t e , va r in t eg ra t e , qua t i n t eg ra t e ;
void dSystemElpsdRotPrec (double t , double X[] , double f []) ;
void dSystemElpsdRotPrecVar (double t , double X[] , double f []) ;
void dSystemQuaternions (double t , double q [] , double dq []) ;
void RotMatrix (double q [] , double D[] [4]) ;
void DotRotMatrix (double t , double q [] , double DD[] [4]) ;
void BodyFixedto Ine r t i a l (double X[] , double q []) ;
void InverRotMatrix (double q [] , double Dinv [] [4]) ;
void DotInverRotMatrix (double t , double q [] , double DDinv [] [4]) ;
void I n e r t i a l t oRo t a t i n g (double X[] , double Y[]) ;

void i n i t i a l i z eP r e c Sy s t em (double b , double c , double de l ta ,
double precA , double precB , double acc)

//acc : accuracy o f numerical i n t e g r a t i o n s
//a=1, b , c normalized , d e l t a : metr ic un i t s (G*mass/(omegaˆ2*a

ˆ3)
// pre s s e c i on params : precA=ampli tude <1, precB=angu lar

frequency , | omega 0 |=1
{

double a = 1 . 0 ;
Ix = (b*b + c*c) / 5 ; Iy = (a*a + c*c) / 5 ; I z = (a*a +

b*b) / 5 ;
d e l t a i = de l t a ;
pAmpl = precA ; pFreq = precB ;
wz = sq r t (1 = pAmpl*pAmpl) ; // i n i t i a l norm of angu lar

f requency i s 1
i n t e g r a t e . open (NEQ, dSystemElpsdRotPrec , 0 . 0 0 0 001 , 0 . 1 , acc

, 0) ;
// v a r i n t e g r a t e . open (NEQV, dSystemElpsdRotPrecVar

,0 . 000001 ,0 .1 , acc , 0) ;
}

88

void GetRotat ionvector (double t , double W[])
{

//W[1]=wx , W[2]=wy , W[3]=wz , W[4]=wxdot ,

W[1] = pAmpl* s i n (pFreq* t) ; //wx
W[2] = pAmpl* cos (pFreq* t) ; //wy
W[3] = wz ; //wz
W[4] = pAmpl*pFreq* cos (pFreq* t) ; //dwx
W[5] = =pAmpl*pFreq* s i n (pFreq* t) ; //dwy
W[6] = 0 ; //dwz

}

void dSystemElpsdRotPrec (double t , double X[] , double f [])
{

double x = X[1] , y = X[2] , z = X[3] , P = X[4] , Q = X[5] ,
R = X[6] ;

double i r = sq r t (x * x + y * y + z * z) ;
double Ux, Uy, Uz ; // , d e l t a i ;
double W[7] ;

GetRotat ionvector (t , W) ;

// p o t e n t i a l d e r i v a t i v e s
Ux= x*(6* Ix * i r * i r + 3*(Ix+Iy+Iz) * i r * i r + 2*pow(i r , 4)

=15*(Ix *x*x + Iy *y*y + Iz *z*z)) / (2*pow(i r , 7)) ;
Uy= y*(6* Iy * i r * i r + 3*(Ix+Iy+Iz) * i r * i r + 2*pow(i r , 4)

=15*(Ix *x*x + Iy *y*y + Iz *z*z)) / (2*pow(i r , 7)) ;
Uz= z *(6* I z * i r * i r + 3*(Ix+Iy+Iz) * i r * i r + 2*pow(i r , 4)

=15*(Ix *x*x + Iy *y*y + Iz *z*z)) / (2*pow(i r , 7)) ;

// F e l l i p s o i d (x , y , z , &Ux , &Uy , &Uz) ;

// equa t ions o f motion
f [1] = P; // dx ’/ dt ’
f [2] = Q; // dy ’/ dt ’
f [3] = R; // dz ’/ dt ’
f [4] = = W[5] * z + W[6] * y = 2* W[2] * R + 2* W[3] * Q

= W[1] * W[2] * y + W[2] * W[2] * x + W[3] * W[3] *

89

x = W[3] * W[1] * z = d e l t a i * Ux; // dP
f [5] = = W[6] * x + W[4] * z = 2* W[3] * P + 2* W[1] * R

= W[2] * W[3] * z + W[3] * W[3] * y + W[1] * W[1] *

y = W[1] * W[2] * x = d e l t a i * Uy; // dQ
f [6] = = W[4] * y + W[5] * x = 2* W[1] * Q + 2* W[2] * P

= W[1] * W[3] * x + W[1] * W[1] * z + W[2] * W[2] *

z = W[2] * W[3] * y = d e l t a i * Uz ; // dR
f [7] = 0 .5 * (=X[8] * W[1] = X[9] * W[2] = X[1 0] * W[3])

;
f [8] = 0 .5 * (X[7] * W[1] = X[1 0] * W[2] + X[9] * W[3]) ;
f [9] = 0 .5 * (X[1 0] * W[1] + X[7] * W[2] = X[8] * W[3]) ;
f [1 0] = 0 .5 * (=X[9] * W[1] + X[8] * W[2] +X[7] * W[3]) ;

}

double Energy (double X[])
{

double t = X[0] , x = X[1] , y = X[2] , z = X[3] , P = X
[4] , Q = X[5] , R = X[6] ;

double i r = sq r t (x * x + y * y + z * z) ;
double U,V,H;
double W[7] ;

GetRotat ionvector (t , W) ;
U = =1/ i r = (Ix + Iy + Iz) /(2*pow(i r , 3)) + 1 .5 * (

Ix * x * x + Iy * y * y + Iz * z * z) /(pow(i r , 5)) ;
// g r a v i t a t i o n a l p o t e n t i a l U’

V = =0.5 * ((W[2] * z = W[3] * y) * (W[2] * z = W[3] * y
) + (W[3] * x = W[1] * z) * (W[3] * x = W[1] * z) + (
W[1] * y = W[2] * x) * (W[1] * y = W[2] * x)) +
d e l t a i *U; // e f f e c t i v e p o t e n t i a l V

H = 0.5 * (P*P + Q*Q + R*R) + V; // Hamilton

return H;

}

void RotMatrix (double q [] , double D[] [4])
{

D[1] [1] = 1 = 2*(q [3] * q [3] + q [4] * q [4]) ;
D [1] [2] = 2*(q [2] * q [3] = q [1] * q [4]) ;

90

D[1] [3] = 2*(q [2] * q [4] + q [1] * q [3]) ;

D [2] [1] = 2*(q [2] * q [3] + q [1] * q [4]) ;
D [2] [2] = 1 = 2*(q [2] * q [2]+ q [4] * q [4]) ;
D [2] [3] = 2*(q [3] * q [4] = q [1] * q [2]) ;

D [3] [1] = 2*(q [2] * q [4] = q [1] * q [3]) ;
D [3] [2] = 2*(q [3] * q [4] + q [1] * q [2]) ;
D [3] [3] = 1 = 2*(q [2] * q [2]+ q [3] * q [3]) ;

}

void DotRotMatrix (double t , double q [] , double DD[] [4])
{

double W[7] , dq1 , dq2 , dq3 , dq4 ;
GetRotat ionvector (t , W) ;

dq1 = 0 .5 * (=q [2] * W[1] = q [3] * W[2] = q [4] * W[3]) ; //
dq0
dq2 = 0 .5 * (q [1] * W[1] = q [4] * W[2] + q [3] * W[3]) ;

//dq1
dq3 = 0 .5 * (q [4] * W[1] + q [1] * W[2] = q [2] * W[3]) ;

//dq2
dq4 = 0 .5 * (=q [3] * W[1] + q [2] * W[2] + q [1] * W[3]) ;

//dq3

DD[1] [1] = =4* (q [3] * dq3 + q [4] * dq4) ;
DD[1] [2] = 2* ((dq2*q [3] + q [2] * dq3) = (dq1*q [4] + q [1] *

dq4)) ;
DD[1] [3] = 2* ((dq2*q [4] + q [2] * dq4) + (dq1*q [3] + q [1] *

dq3)) ;

DD[2] [1] = 2* ((dq2*q [3] + q [2] * dq3) + (dq1*q [4] + q [1] *
dq4)) ;

DD[2] [2] = =4* (q [2] * dq2 + q [4] * dq4) ;
DD[2] [3] = 2* ((dq3*q [4] + q [3] * dq4) = (dq1*q [2] + q [1] *

dq2)) ;

DD[3] [1] = 2* ((dq2*q [4] + q [2] * dq4) = (dq1*q [3] + q [1] *
dq3)) ;

DD[3] [2] = 2* ((dq3*q [4] + q [3] * dq4) + (dq1*q [2] + q [1] *
dq2)) ;

DD[3] [3] = =4* (q [2] * dq2 + q [3] * dq3) ;
}

91

// mu l t i p l i c a t i o n matrxi x v e c t o r o f s i z e 3
void MxV(double D[] [4] , double v [] , double Vout [])
{

for (int i = 0 ; i <= 3 ; i++) Vout [i] = 0 . 0 ;
for (int i = 1 ; i <= 3 ; i++) for (int j = 1 ; j <= 3 ; j

++) Vout [i] += D[i] [j] * v [j] ;
}

void Rota t ingToIne r t i a l (double X[] , double Y[])
{

Y[0] = X[0] ;
double v1 [4] , v2 [4] , v3 [4] , v4 [4] , q [5] ;
double D[4] [4] , DD[4] [4] ;
q [1] = X[7] ; q [2] = X[8] ; q [3] = X[9] ; q [4] = X[1 0] ;
// r o t a t e p o s i t i o n
v1 [1] = X[1] ; v1 [2] = X[2] ; v1 [3] = X[3] ;
RotMatrix (q , D) ;
MxV(D, v1 , v3) ;
Y[1] = v3 [1] ; Y[2] = v3 [2] ; Y[3] = v3 [3] ;
// r o t a t e v e l o c i t y
v2 [1] = X[4] ; v2 [2] = X[5] ; v2 [3] = X[6] ;
DotRotMatrix (X[0] , q , DD) ;
MxV(D, v2 , v3) ;
MxV(DD, v1 , v4) ;
Y[4] = v3 [1]+ v4 [1] ; Y[5] = v3 [2]+ v4 [2] ; Y[6] = v3 [3]+ v4

[3] ;
}

void InverRotMatrix (double q [] , double D[] [4]) // t ranspose o f D
{

D[1] [1] = 1 = 2*(q [3] * q [3] + q [4] * q [4]) ;
D [2] [1] = 2*(q [2] * q [3] = q [1] * q [4]) ;
D [3] [1] = 2*(q [2] * q [4] + q [1] * q [3]) ;

D [1] [2] = 2*(q [2] * q [3] + q [1] * q [4]) ;
D [2] [2] = 1 = 2*(q [2] * q [2]+ q [4] * q [4]) ;
D [3] [2] = 2*(q [3] * q [4] = q [1] * q [2]) ;

D [1] [3] = 2*(q [2] * q [4] = q [1] * q [3]) ;
D [2] [3] = 2*(q [3] * q [4] + q [1] * q [2]) ;
D [3] [3] = 1 = 2*(q [2] * q [2]+ q [3] * q [3]) ;

92

}

void DotInverRotMatrix (double t , double q [] , double DD[] [4])
{

double W[7] , dq1 , dq2 , dq3 , dq4 ;
GetRotat ionvector (t , W) ;

dq1 = 0 .5 * (=q [2] * W[1] = q [3] * W[2] = q [4] * W[3]) ; //
dq0
dq2 = 0 .5 * (q [1] * W[1] = q [4] * W[2] + q [3] * W[3]) ;

//dq1
dq3 = 0 .5 * (q [4] * W[1] + q [1] * W[2] = q [2] * W[3]) ;

//dq2
dq4 = 0 .5 * (=q [3] * W[1] + q [2] * W[2] + q [1] * W[3]) ;

//dq3

DD[1] [1] = =4* (q [3] * dq3 + q [4] * dq4) ;
DD[2] [1] = 2* ((dq2*q [3] + q [2] * dq3) = (dq1*q [4] + q [1] *

dq4)) ;
DD[3] [1] = 2* ((dq2*q [4] + q [2] * dq4) + (dq1*q [3] + q [1] *

dq3)) ;

DD[1] [2] = 2* ((dq2*q [3] + q [2] * dq3) + (dq1*q [4] + q [1] *
dq4)) ;

DD[2] [2] = =4* (q [2] * dq2 + q [4] * dq4) ;
DD[3] [2] = 2* ((dq3*q [4] + q [3] * dq4) = (dq1*q [2] + q [1] *

dq2)) ;

DD[1] [3] = 2* ((dq2*q [4] + q [2] * dq4) = (dq1*q [3] + q [1] *
dq3)) ;

DD[2] [3] = 2* ((dq3*q [4] + q [3] * dq4) + (dq1*q [2] + q [1] *
dq2)) ;

DD[3] [3] = =4* (q [2] * dq2 + q [3] * dq3) ;
}

void I n e r t i a l t oRo t a t i n g (double X[] , double Y[])
{

Y[0] = X[0] ;
double v1 [4] , v2 [4] , v3 [4] , v4 [4] , q [5] ;
double Dinv [4] [4] , DDinv [4] [4] ;
q [1] = X[7] ; q [2] = X[8] ; q [3] = X[9] ; q [4] = X[1 0] ;
// r o t a t e p o s i t i o n

93

v1 [1] = X[1] ; v1 [2] = X[2] ; v1 [3] = X[3] ;
InverRotMatrix (q , Dinv) ;
MxV(Dinv , v1 , v3) ;
Y[1] = v3 [1] ; Y[2] = v3 [2] ; Y[3] = v3 [3] ;
// r o t a t e v e l o c i t y
v2 [1] = X[4] ; v2 [2] = X[5] ; v2 [3] = X[6] ;
DotInverRotMatrix (X[0] , q , DDinv) ;
MxV(Dinv , v2 , v3) ;
MxV(DDinv , v1 , v4) ;
Y[4] = v3 [1]+ v4 [1] ; Y[5] = v3 [2]+ v4 [2] ; Y[6] = v3 [3]+ v4

[3] ;
Y[7] = q [1] ; Y[8] = q [2] ; Y[9] = q [3] ; Y[1 0] = q [4] ;

}

94

References
[1] [Online]. Available: https://en.wikipedia.org/wiki/Asteroid

[2] https://en.wikipedia.org/wiki/Ellipsoid.

[3] [Online]. Available: https://solarsystem.nasa.gov/asteroids-comets-and-meteors/
asteroids/in-depth/#otp many shapes and sizes

[4] B. Persson and J. Biele, “On the stability of spinning asteroids,” Tribology Letters,
vol. 70, no. 2, pp. 1–19, 2022.

[5] D. Karydis, G. Voyatzis, and K. Tsiganis, “A continuation approach for comput-
ing periodic orbits around irregular-shaped asteroids. an application to 433 eros,”
Advances in Space Research, vol. 68, no. 11, pp. 4418–4433, 2021.

[6] [Online]. Available: https://solarsystem.nasa.gov/

[7] [Online]. Available: https://global.jaxa.jp/projects/sas/muses c/

[8] A. Petit, J. Souchay, and C. Lhotka, “High precision model of precession and nutation
of the asteroids (1) ceres,(4) vesta,(433) eros,(2867) steins, and (25143) itokawa,”
Astronomy & Astrophysics, vol. 565, p. A79, 2014.

[9] M. Tarnopolski, “Rotation of an oblate satellite: Chaos control,” Astronomy & As-
trophysics, vol. 606, p. A43, 2017.

[10] R. Fitzpatrick, “Newtonian dynamics,” 2011.

[11] D. Xατζηδηµητρίoυ, “θεωρητική Μηχανική,” Nευτώνεια Mηχανική, 1983.

[12] D. H. Andrews, “The theory of the potential (macmillan, william duncan),” 1930.

[13] Y. Jiang and H. Baoyin, “Orbital mechanics near a rotating asteroid,” Journal of
Astrophysics and Astronomy, vol. 35, no. 1, pp. 17–38, 2014.

[14] V. Martinusi and D. Condurache, “Remarks on the hamiltonian of a particle in
a rotating frame,” Buletinul Institutului Politehnic din Iaşi. Secţia I. Matematică,
Mecanică Teoretică, Fizică, vol. 55, 01 2009.

95

https://en.wikipedia.org/wiki/Asteroid
https://en.wikipedia.org/wiki/Ellipsoid
https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/in-depth/#otp_many_shapes_and_sizes
https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/in-depth/#otp_many_shapes_and_sizes
https://solarsystem.nasa.gov/
https://global.jaxa.jp/projects/sas/muses_c/

	Introduction
	Asteroids
	Asteroid Space Missions
	Asteroid precession and nutation
	Further general characteristics

	Rigid Body Rotation
	Euler angles
	Instantaneous angular velocity and Euler angles
	Rotation around a fixed point
	Moment of Inertia tensor
	Rotational Kinetic energy
	Principal Axes of Rotation
	Euler's Equations

	Quaternions
	Definition
	Basic algebraic properties
	Quaternion Derivations
	Quaternion, Euler angles, rotation matrix

	Orbital mechanics near a rotating asteroid
	Ellipsoid Potential
	The equation of motion in the classical form
	The equation of motion in the scalar form
	Horizontal stability

	Algorithm Description
	Main equations
	Initial Conditions and Parameters
	Unit Normalization

	Results
	Dynamical Maps for different pairs of initial radius and asteroid shape
	r0=1.5 and c=0.7
	r0=3.0 and c=0.7
	r0=1.5 and c=0.8
	r0=1.5 and c=0.4

	Conclusions
	main1c.cpp
	dSystemElpsdRotPrec23.cpp

