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Abstract

The aim of this thesis is to study the orbital dynamics in the gravitational field
of a precessing oblate spheroid. We consider the oblate spheroid body to be an
asteroid and we also consider a body of negligible mass, let’s assume a spacecraft
of a mass much smaller than the asteroid’s, orbiting the precessing asteroid. For
several sets of initial conditions, we integrate the equations of motion in the body-
fixed (rotating) frame of reference. To compute the orbital elements for each orbit,
we use a transformation (rotating matrix in quaternion form) from the rotating to
the inertial frame. Then, using the maximum values of the semi-major axis, the
eccentricity and the inclination (Gmaz, €maz and imqz) We create dynamical maps,
that show the stable and unstable areas, regarding the initial conditions. After that,
we study individual orbits from both areas. In that way, one can see, how the shape
of the asteroid, the initial distance of the spacecraft and some other parameters
could affect the orbital stability around the precessing asteroid.

IMepirndm

Y16y0¢ auTg TNS BIMALUUTIXS EpYactag efval Vo epEUVHOEL TNV TEOYLOXT) BUVOULXA
070 BapuTind TEdlo EVOC TETAATUGUEVOL GYAULPOELBOVC UE TEQLO TEOYPY) X0 PETATTMWON).
OewEOUUE TO TETAATUCHUEVO CPULEOELDES COUL WG EVAY UG TEPOELDN Xt Vewpolue €-
mlong, éva owua apeAntéoas Palac, ag UTOYECOUUE €Val Bl TNUOTAOLO TOAD UXEOTERNG
udlog and Tou Ao TEPOLELDY), Vo TtEpLPERETAL YUPw amd auTdv. ot apxetd chvola apyixdy
SLYUINXADY, OAOXANEWOVOLUE TIC EELCWOELC TNG XiVNONG OTO TEPLOTEEPOUEVO GOT TN O
vagopde. T vao unoloyloouue ta Tpoytaxd cTolyela xdde TEOYLAC, YENOHLIOTOLOVUE
évay petaoynuotiond (mivaxa otpoghic e T ypHon quaternions) omd TO TEPLOTEE-
(pouEvO oTo adpaveloxd clotnua. Emeita, yenowonoldviog T UEYIoTES TIWES TOU
HEYGAOL NUEEOVAL, TN EXXEVTEOTNTOC Xat TNS XAONG (Amazs €maz XA Imaz ), ONUIOUE-
yoUuE SuvauLxols ydeTe, oL omolot delyvouy Tic euaTadeic xou aoTtadeic teployée, dowy
apopd TIg aEyxéc cLUVIYXES. X TN CUVEYELX, UEAETOUUE TEOYLES Xot amd TG 000 TEPLO-
yéc. Kdmotog unopel va det, ye autdv Tov TpOTO, TWOC TO OYNUA TOU AOTEQOELDT), 1
oYX ATOCTUOY TOU BLoG TAHOTAOIOU Xl XATOLEG GAAEC TUEAUETEOL, EMNEEGLOLY TNV
TeoYLoY| EVoTAdEL, YOPW AN TOV TEPLOTREPOUEVO UE UETATTWOT] AO TEQOELDM.
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1 Introduction

1.1 Asteroids

Asteroids, also called minor planets, are small bodies of the inner Solar System; rocky or
metallic, with no atmosphere. Their shapes and sizes vary, ranging from 1-meter rocks to
a dwarf planet almost 1000 km in diameter. Some examples can be seen below. A body
smaller than an asteroid is called a meteoroid. Asteroids are probably remnants left over
from the early formation of our Solar System a few billion years ago. [1]

(a) Eros 433

(b) Ceres (dwarf planet) (c) Vesta

Figure 1: Asteroid examples
According to NASA the current known asteroid count is: 1,113, 527[3]. The majority
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of that number is orbiting our Sun between Mars and Jupiter within the main asteroid
belt. An other region surrounding our Solar System, farther Neptune’s orbit, where many
asteroids can be found, is the Kuiper belt. Asteroids found orbiting Sun in the Main belt
are mainly composed of silicon rocks and metals. An exception to this is Ceres because
a big part of it is iced water. On the other hand, the asteroids of the Kuiper belt are
mainly composed of ice.

Mars \
/,\ Asteroid belt
\)( \ \

b

/),Earth ‘-‘I
ol Venu#

Mercu:fy

Figure 2: Main Asteroid and Kuiper belt.

As far as asteroid classification goes there are two more worth mentioning categories;
Trojans and Near-Earth Asteroids. Trojans are asteroids that share their orbit with a
larger planet, but do not collide with it because they gather around two special places in
the orbit (called the L4 and L5 Lagrangian points). The most significant are the Jupiter
Trojans; an extended population of asteroids sharing their orbit with Jupiter (seen in the
figure below). Finally, Near-Earth Asteroids are objects with orbits passing close to the
Earth’s orbit. [3]



Trojans

Trojans

\‘Jupiter

Figure 3: Jupiter Trojans.

As we mentioned, the size and shape of the asteroids varies. Most of them have an
irregular shape, but a few of the biggest are nearly spherical due to the influence of their
self gravity. As they revolve around the Sun in (weakly) elliptical orbits, the asteroids also
rotate. On the time-scale of millions of years the rotation speed of asteroids change due
to the momentum of photons (from the Sun) absorbed, reflected and emitted (Yarkovsky
effect) from the surface of asteroids, and due to the impact of meteorites. It is known that
most of the asteroids rotate with a period longer than 2.3 hours which can be understood
as a result of the influence of the centrifugal force on a collection of solid fragments bound
together mainly by the gravity force. However, many small asteroids rotate much faster
because of different consistency. [4]

1.2 Asteroid Space Missions

The orbital dynamics of a particle in the gravity of an asteroid is an important issue
for space missions, but a quite complex one as well, due to the irregular shape many of
the asteroids have. The irregular shape forms an irregular gravitational field close to its



surface. This gravitational field in combination with other external perturbations such as
solar gravity and solar radiation pressure, is what makes this problem more difficult than
a simple description of the two-body problem.[5]

The study of the motion of such particle is used in choosing the right orbits for close
proximity operations, landing paths, parking orbits etc. On a further note, there are space
missions, such as landings, that help us discover more about the early stage of our Solar
System, but there are also missions useful for planetary defence.

This research topic applies to many successful missions. It is worth mentioning the
Near Earth Asteroid Rendezvous (NEAR) whose landing on Eros 433 marked the first
time a U.S. spacecraft landed on an asteroid (2000) and returned valuable data. NEAR
didn’t survive the extreme cold and the contact was lost on February 2001. The Dawn
mission successfully visited the two largest objects in the main asteroid belt, Vesta (2011)
and Ceres (2015). The Dawn spacecraft is currently in a stable orbit around Ceres.[6]

Figure 4: NASA’s NEAR

Furthermore, JAXA also designed its own remarkable space missions. Two of them
are Hayabusa (2003) and Hayabusa 2 (2018) that landed Itokawa and Ryugu, respectively.
Hayabusa was the first spacecraft returning to Earth having brought asteroid samples and
the second one in history descended to the surface of an asteroid. [7]



Figure 5: NASA’s Dawn
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JAXA’s Hayabusa

Figure 6
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Let us end the conversation about asteroid missions here by mentioning a big planetary
defense mission NASA designed and launched in November 2021 (DART), with ESA’s
Hera support that is scheduled to evaluate the effects of DART. DART is the first-ever
mission aiming at demonstrating deflection of an asteroid by changing its motion in space
through kinetic impact. This spacecraft will strike Dimorphos, moon of the asteroid
Didymos, and scientists will study the change of the kinetic dynamics after the impact. [0]

(a) NASA’s DART

(b) ESA’s Hera

Figure 7: Planetary defense missions
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1.3 Asteroid precession and nutation

As mentioned before, asteroids orbiting our Sun also rotate. There are already several
well-established theories to model the rotational motion of a rigid body with a quite simple
mathematical approach, but still there is a lot of work to be done involving the rotational
properties of asteroids. An interesting study has been published in 2014 aiming to a high
precision model of precession and nutation of Ceres, Vesta, Eros, Steins and Itokawa.
The study is concentrated in particular on the motion of their spin axis in space [§]. The
rotation of a celestial body in the size and shape of an asteroid can also be chaotic. An
example of that, is Hyperion, a moon of Saturn. Hyperion is characterised by its irregular
shape, its chaotic rotation and its unexplained sponge-like appearance. Chaotic rotation
have been investigated by M. Tarnopolski [9], who used a chaos control method to suppress
chaos and even turn chaotic motion into periodic. Numerical examples were presented in
his work with parameters suitable of Hyperion, considering the shape of the satellite to
be a triaxial ellipsoid.

To understand in more detail the rotating motion of an asteroid let us explain the terms
of precession and nutation. When the orientation of the rotational axis of a rotating body
changes, then the body precesses. In an appropriate reference frame it can be defined
as a change in the first Euler angle (described in the next chapter). In other words, one
can simply say that the body precesses if its rotational axis also rotates about a second
axis. Nutation is a nodding motion in the axis of rotation and in astronomy it is caused
by the gravitational forces of other nearby bodies acting upon the spinning object. In an
appropriate reference frame it can be defined as a change in the second Euler angle (also
described in the next chapter). Although precession and nutation are defined as a change
of orientation of the rotation axis and they are caused by the same effect (gravity), they
separate so that precession being a steady long-term change in the axis of rotation, and
nutation being the combined effect of similar shorter-term variations. In physics, there
are two types of precession: torque-free and torque-induced.

12



Figure 8: Rotation (Green), Precession (Blue) and Nutation (Red).

1.4 Further general characteristics

As we previously noted, asteroids vary greatly in size. In the diagram below, one can find
the asteroids of our Solar System categorized by size and number. Although the three
largest are very much like miniature planets, it is clear that the vast majority are much
smaller and are irregularly shaped.

The four largest objects in the asteroid belt are Ceres, Vesta, Pallas and Hygiea. These
four asteroids constitute half the mass of the asteroid belt. As seen in the table below [1],
their orbital radius is similar, but we can detect differences in inclination and eccentricity.
Here, we can also see their orbital and rotation periods. It takes from five to almost
fourteen hours for one of these asteroids to complete a full rotation around themselves,
and from 3 to five years to complete an orbit around the Sun. Ceres and Pallas have the
same orbital radius and orbital period.

13



1 CERES
Diameter greater

1000 than 900 km
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than 30 km

D > 10 km
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> 3 km
= 1km
> 0.5 km
> 0.3 km
> 0.1 km
10 100 1000 10k 100k 1min 10min 100 min
CUMULATIVE VOLUME SIZE OF
OF ALL THE ASTEROIDS A SINGLE
NUMBER OF ASTEROQIDS OF THE SAME SIZE ASTEROID

Figure 9: Asteroids by size and number][I].

Attributes of largest asteroids

Orblital Orb.ital Inclination Orbital Diameter Diameter Mass Mass Density Rota.tion
Name | radius period . —_ . e S - e period
(AU) | (years) to ecliptic | eccentricity (km) (% of Moon) | ( g) | (% of Ceres) (g/lem™) (hr)
964x964x892 )
Ceres | 2.77 | 4.60 10.6° 0.079 _ 27% 938 100% 2.16x0.01 9.07
(mean 939.4)
573x557x446
Vesta 236 | 3.63 7.1° 0.089 _ 15% 259 28% 3.46+0.04 | 534
(mean 525.4)
550x516x476
Pallas | 2.77 | 4.62 34.8° 0.231 15% 204+3 21% 2.92+0.08 | 7.81
(mean 511+4)
. 450x430x424 )
Hygiea | 3.14 | 5.56 3.8° 0.117 12% 8717 9% 2.06+0.20 13.8
(mean 433+48)

Figure 10: The four largest asteroids|[1].
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2 Rigid Body Rotation

In this chapter we will examine the rotation parameters of a rigid body in three di-
mensions. A rigid body is considered to be a collection of small mass elements, whose
connection imposes that the distance between any two given points on the rigid body
remains constant in time, regardless of external forces or moments exerted on it. Hence,
there is no deformation on a rigid body.

2.1 Euler angles

According to Euler’s rotation theorem, any rotation may be described using three angles.
The three angles that Euler introduced, describe the orientation of a rigid body with
respect to the fixed coordinate frame. The common notation used for these angles is
(6,0, ).

Let’s now look in more detail what each of these angles represent. We start in the
inertial frame with coordinates X, Y, Z and we gradually take three rotations. As seen
in the figure below, ¢ represents the angle of a counterclockwise rotation about the Z
axis, leading to a new frame with coordinates X,, Y5, Z5, 0 represents the angle of a
counterclockwise rotation around the X, axis, leading to a new frame with coordinates
X3, Y3, Z3 and, finally, ¢ represents the angle of an also counterclockwise rotation around
the Z3 axis and the new frame is the body fixed frame with coordinates z, y, z. [10]

-}{3 =.-:'{E

Figure 11: Euler angles.

If the rotations are written in terms of rotation matrices, we respectfully get [11]

cos¢p sing 0]

Dy = |—sing cos¢p O (2.1)
0 0 1
10 0

Dy =10 cosf sind (2.2)
0 —sinf cosf
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and

costy siny 0
D3 =— |—siny cosy 0 (2.3)
0 0 1

The results from the multiplication of the three matrices, beginning from the last one, so
D = D3Dy D1, leads us to the 3 x 3 rotation matrix

cos 1 cos ¢ — cos 6 sin ¢ sin ¢ cos 1 sin @ + cos  cos ¢ sin Y sin ¢ sin 6
D = | —sin cos ¢ — cos 0 sin ¢ cos Y — sin ¢ sin ¢ + cos 0 cos ¢ cos cos 1 cos 6
sin # sin ¢ —sin 6 cos ¢ cos 6
(2.4)

Using this matrix, the final transformation between the inertial and the rotating frame
occurs
r=DX (2.5)

where x and X are column vectors containing the three position components of the rotat-
ing and the inertial frame, respectfully. It is clear that to find the inverse transformation,
we need only the inverse D~! matrix, so that

X =D"'2. (2.6)

On a final note, we can easily derive the above two equations to compute the corresponding
velocities. Hence, for the inertial to rotating frame velocity

V=X=D'i+D g (2.7)
and for the other way around, we have

v=i=DX+DX. (2.8)

2.2 Instantaneous angular velocity and Euler angles

We consider a rigid body rotating around one of its points, O, that is fixed. Generally,
the direction of the rotation axis, that passes through the point O, changes over time. It
is clear that the motion of the rigid body would be fully known, if the angular velocity
vector is also known as a function of time.

16



Figure 12: A rigid rotating body.
[10]

Let us now express the angular velocity vector in terms of the Eulerian angles. The w
component for the ¢ angle has a magnitude of ¢ and a direction along the Z axis. If we
consider the unit vector along this axis as ez, we can write

Wy = éez. (29)

The component associated with 6 has a magnitude 6 and is directed along the X, axis
(or X3 axis, since they coincide). Hence, we can write

wy = fey,. (2.10)

Likewise, the component associated with 1 has a magnitude @ZJ and is directed along the
Z3 axis. Hence, we can write

Wy = ey, (2.11)
Note also that ez, = e,. Finally, we want to write the total angular velocity

W =wy + wy+ wy. (2.12)

To do that properly, we will need some of the transformation equations between the
inertial frame and body fixed frame. It can be easily verified that

ez = sin sin e, + cos v sin fe, + cos fe,
. (2.13)
ey, = cosipe, — sine,.

17



Using these relations of (2.13) in (2.9) and (2.10), we get for every angular velocity
component in the body fixed frame [10]

w, = (sintsinf ¢ + cos v 0)e,
w, = (cossinf ¢ — sinv f)e, (2.14)
w, = (cosf d+ 1))e..
Working in a similar manner, we find the w components for the inertial frame of
reference. [11]
wx = (@bsinqbsin@ + 0 cos o)ex
wy = (—t) cos Ppsinf + Osin ¢)ey (2.15)
wy = (hcosh+ dley.

2.3 Rotation around a fixed point

2.3.1 Moment of Inertia tensor
The fundamental equation of motion of a rotating rigid body is

dL
— =T 2.16
where L = > r; X m;v; is the total angular momentum of the body (about the origin),
and T = > r; x F; the total external torque (about the origin).

We shall now look into this equation in more detail. The general equation for the
velocity of each mass element of the rigid body is

V, =V, +w X (2.17)

with v, representing the velocity of the translational motion and w X r; representing the
velocity of the rotational motion. For the purposes of this thesis we will consider only
a rotational motion of the rigid body about an axis passing through the origin (so that
v, =10).

The total angular momentum can now be written as

L= Zmiri X (wXr;) = Zmi [riQw — (r; - w)ri] (2.18)

where use has been made of some standard vector identities. It is very useful to write the
above formula in a matrix form

Lyl = (1yz 1yy Iy.| |wy (2.19)
LZ ‘[21’ ]Zy IZZ wZ
or in a shorter form
L=1Iw (2.20)



where

Lo =Y _mi(y} + 27) (2.21)
Ly =Y mi(a] + 27) (2.22)
L.=Y " mi(y? +23) (2.23)
Loy = Iye = — Zmleyz (2.24)
L, =1,=— Zmiyizi (2.25)
Lpp = 1w = — Zmz%?«’z (2.26)

The I matrix is also called the moment of inertia tensor. As for its values, I, is called
the moment of inertia about the x axis, I, is called the xy product of inertia, I, is called
the moment of inertia about the y axis, etc. In it is understood that L and w are
both column vectors and I is a matrix that represents the moment of inertia tensor.

Generally, the angular momentum vector, L, does not necessarily point in the same
direction as the angular velocity vector, w, that obviously means that generally L is not
parallel to w.

There are two more things left to be emphasized. The first is that the moment of
inertia tensor is symmetric and the second and final is that even though all the above
were obtained considering a fixed angular velocity, they also apply at each instant time if
the angular velocity varies.

2.3.2 Rotational Kinetic energy

Continuing with the consideration that the rigid body under study only rotates and
doesn’t transfer, its kinetic energy takes the form

1 1
K = 5 Zmz(w xr;)° = Jw Zmiri X (w X 1y) (2.27)
Hence, it follows that
1
K = oW L. (2.28)

When using the (2.20]) formula the kinetic energy can also be written as

1
K = inIw (2.29)

where w7 is the row vector of the angular velocity, the transpose of the column vector w.
If we expand this equation we can get the kinetic energy in terms of components

1
K = é(fmwa + [yywa +1Lw,?+ 2L ywewy + 2L wyw, + 21, wew,). (2.30)
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2.3.3 Principal Axes of Rotation

As we previously noted the angular momentum vector is not necessarily parallel to the
angular velocity vector. We also noted that the moment of inertia tensor represents a real
symmetric three-dimensional matrix, which depends on the frame of reference. From the
matrix theory we know that the tensor possesses three mutually orthogonal eigenvectors
which are associated with three real eigenvalues. Considering that the eigenvectors can
be normalized to unit vectors, we can write

The directions of the three mutually orthogonal unit vectors w; define the three so called
principal axes of rotation. These three axes are perpendicular to one another and have the
property when the rigid body rotates about one of them, the angular momentum vector
is parallel to the angular velocity vector.

We choose a coordinate system, body-fixed, with its axes parallel to the principal
directions of the moment of inertia tensor. In this new reference frame, the eigenvectors
of I are the unit vectors, e,, e,, and e, and the eigenvalues are the moments of inertia
about these axes, I,;, I, and I,,, respectively. Here, we must note that the products of
inertia are all zero in the new reference frame. Hence, it is easy to understand that the
moment of inertia tensor takes now the form of a diagonial matrix

L. 0 0
I=|o0 1, 0]. (2.32)
0 0 L.

Thus, we express the (2.20]) in our new system as seen below and it becomes obvious how
the angular momentum is paraller to the angular velocity

L="IL,w,e;+ 1 wye,+ 1w, e,. (2.33)

Furthermore, the kinetic energy reduces to

1
K = 5([9096 Wac2 + [yy Wy2 +1.. WzQ)- (2.34)

2.3.4 Euler’s Equations

The fundamental equation of motion of a rotating rigid body we already mentioned above

dL
— =T 2.35
o (2.35)
works only in an inertial frame. However, from our previous analysis we saw that it is very
convenient to express L in a frame of reference whose axes are aligned along the principal
axes of rotation of the body. This frame rotates with the body so it is non-inertial. Since
the body-fixed frame co-rotates with the body, it has the same instantaneous angular
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velocity. The formula connecting the time derivative of the angular momentum in the
inertial frame and the one in the rotating frame is the following

@ o drotL
dt  dt

+wxL. (2.36)

Since we know that the angular momentum and the angular velocity vector represented
in the above rotating frame are

W = wye,; +wye, +w.e, (2.37)

L= IL,w.e, + [ wee, + [,.w.e, (2.38)

we can expand ([2.36))

@ o drotL
dt — dt

and after combining the above with the fundamental equation (2.35)) we finally get a
system of three differential equations where T, T}, and 7, are the components of the
external torque about Oz, Oy and Oz of the rotating frame, respectively.

Tpqw, — (Iyy - Izz)wywz =1,

Ly — (I, — Lp)wew, =T, (2.39)
L., — Iy — Lyy)wawy, =T

This system of equations is known as Fuler’s equations. The unknown variables of this
system are the instantaneous w components.

If we want to determine the position of the rigid body rotating about the fixed point
O, we need the three Euler angles (¢, 1, #). Hence, the above system cannot be solved on
its own. The additional equations we will need are that connect the w components
to Euler angles. The solution of our six differential equations system shows the motion of
the body in space, since we find the ¢(t), 1(t), 6(t) and the instantaneous angular velocity
in terms of the rotating frame of reference, since we find the w,(t), wy(t), w,(%).

Let us now investigate a more special case in which the torque of external forces is
zero (T = 0). In this case Euler’s equations take the form

Lptoy — (Lyy — L2)wyw, =0
Iywy — (1, — Lpp)w,w, =0 (2.40)

[zzwz - (Ix:r [yy)wxwy = 0.

This system can be solved without the use of equations and give the position of
the angular velocity vector in the rotating frame. It is easy to verify, since there are
no external torques, that the vector L is a constant of the motion in the inertial frame.
Furthermore, as seen from , dL/dt = 0, so the scalar product of this equation with

21



L leads to dL?/dt = 0. In other words, what this shows is that the magnitude of the
vector L is also constant.

L?=1,%w>2+1,°w*+ [.*w.? = constant 241
zxr Wz yy Wy zz Wz

Another constant of the motion is the kinetic energy. To prove that, let us multiply the
three equations of ([2.40) with w,, w, and w, respectively and add them by parts:

Ipwawy + Iyywywy + I w,w, =0
1d

§£(Imxwx2 + Iyywy2 + Izzwz2) = 0.

It is now clear that the kinetic energy remains constant as it follows
K = 2 (Lestos® + Lo, + Luto.?) = 2.42
= 5( waWy + Lyyw,” + I,,w,”) = constant. (2.42)

Our main concern, although all of the above are useful, is to find the position of the
body in space. To do that let us consider at first an inertial frame where the direction of
the Z axis coincides with the direction of the angular momentum vector

L = Ley (2.43)

where ez is the unit vector pointing in the direction of Z axis of the inertial frame. We
also have L expressed in the rotating frame from ([2.38). The components of each frame
connect with the transformation

Lrotating = DLinertial

where D is the transformation matrix given by (2.4). After following some basic mathe-
matical operations we arrive at

I w, = Lsiny sin 6@
I wy = Lcostsing (2.44)

I, w, = LcosH

Considering the solution w(t) known, we eventually come to a result

I t
cosf = —ZZCZZ( )

]$$w$(t) (2.45)
tan g — =222\t

]yywy(t>

that gives # and i Euler angles as a function of time. To find ¢, the third equation of
(2.14) is needed to take the form

w(t) =%

2.4
cosf (2.46)

b=
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Consequently, ¢ is calculated by a simple integration, since w is a known function of time.
The above three equations refer to the inertial frame.

The above analysis covers the rotation of the rigid body about a fixed point. Let
us now investigate the case of a freely rotating rigid body when a symmetry axis exists.
This means that two out of three principal axes have the same length, leading to equal
moments of inertia. Assuming that I, = I,,, so that the z axis is the symmetry axis,

(2.40) takes the form

wawaz - (]J:x - Izz)wywz
Loy = —(Lyy — Ln)wpw, (2.47)

I,w,=0
The last equation gives right away

w, = constant. (2.48)

From the first two equations we eliminate w, and we take the differential equation with

respect to w,
2
Ixm - Izz
<[—> w,}] w, = 0. (2.49)

This is a linear second order differential equation and its solution is of the form

Wy +

w, = Asin(Bt + C') (2.50)
where I I
B = %w (2.51)

and A is a constant depending on the initial conditions. Note here that we choose tj, such
that w,(ty) = w,(0) = 0. Hence, the constant C' is zero. By replacing the solution of w,
in the second equation of (2.47)), we find

wy = Acos(Bt). (2.52)
Hence, the angular velocity vector is given analytically by
w = Asin(Bt)e, + Acos(Bt)e, + w,e.. (2.53)

Note here that w? = A? + w.? = constant and that the angular velocity vector is not

constant over the rotating system Ozyz. In fact, it rotates about z axis with constant
angular velocity B (see figure [13).
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Figure 13: Angular velocity vector.

On another note, we could use the w(t) solution to compute the Euler angles from the

analysis above. In that way, from (2.45)) and (2.46]), we have

0 = constant (2.54)
b = Bt (2.55)
o= L (2.56)

T
for ¢(0) = 0, representing the rotation of the rigid body in the inertial frame.

In the body-fixed frame, the angular velocity vector precesses about the z axis (the
symmetry axis) with the angular frequency B, tracing out a conical surface around it.
In the figure below, the frequency B is represented by the 2 and the direction of z axis
of the rotating frame is represented by the unit vector nz. The angular velocity vector
also traces out a conical surface around the Z axis of the inertial frame (and rotates
about the Z axis with a constant angular velocity L/I,,). The two cones osculate to the
instantaneous rotation axis and their axes form a constant angle #. Assuming that « is
the angle between the angular velocity vector and the z axis of the rotating frame, then
there is a formula connecting these two and separates two cases for the relative position

of the cones.
zZz

tana =

tan 6 (2.57)

From the above equation, the conclusion that easily follows is that when I, < I.., then
a > 0 and the first case (a) applies as seen below. When [,, > I,,, then @ < 0 and the
second case (b) applies.
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All the above conclusions refer to freely rotating rigid body, as well as to a rotating

rigid body about a fixed point.

L
w A

(.

space cone

2.4 Quaternions

E

(a)

¢

space cone

Figure 14: The two cases of the conical surface.

(b)

body cone

There is a better and more effective way to represent a rotating rigid body than using a
3 x 3 rotation matrix. Unit quaternions are used to represent orientations and rotations
of elements in three dimensional space. They include information about an axis-angle

representation of a rotation around an arbitrary axis.

In mathematics, an axis-angle

representation of a rotation parameterizes a rotation in a three dimensional Euclidean
space by two quantities: a unit vector e indicating the direction of an axis of rotation,
and an angle 6 describing the magnitude of the rotation about the axis.
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Figure 15: The angle # and the axis unit vector e define a rotation.

Before we introduce a more detailed analysis of the quaternion system, let us define
a spatial rotation using quaternions, considering a quaternion has four components. A
spatial rotation around a fixed point of § radians about a unit axis (X,Y, 7) is given by
the quaternion

(C,XS,YS Z8S) (2.58)
where C' = cos(0/2) and S = sin(6/2). This information will be useful further on.

2.4.1 Definition

The quaternion number system extends the complex numbers and were first described
and defined by William Rowan Hamilton (1843). This system is mostly used in pure
mathematics as well as in applied mathematics and physics, especially for rotations in
three-dimensional space. It can be used alongside other methods of rotation, such as Euler
angles and rotation matrices, or as an alternative to them, depending on the application.
Hamilton’s definition set a quaternion to be the quotient of two directed lines in a three-
dimensional space or the quotient of two vectors.
The mathematical form describing a quaternion is the following

q=qo+ @i+ qj+ gk (2.59)

where qg, q1, g2, and g3 are real numbers and i, j, and k are the basic quaternions. The
quaternion ¢ii + ¢oj + gsk is called the vector part (sometimes imaginary part) of ¢, and
qo is the scalar part (sometimes real part) of q.
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The multiplication rules for the basis elements i, j and k are

il=1i=i, jl=1j=j, kl=1k=k
iZ=j2=-1 (2.60)

It is then, easily obtained that the remaining product rules are
jk=1i, kj=-i
ki=j, ik=-—j (2.61)
ijk=-1, kK*=-1

Figure|16|depices the above multiplication rules. The non commutativity of multiplication
is depicted by colored squares.

._.
_
|
L
=
i

] | ]
e .
Figure 16: Basic quaternions multiplication table.

2.4.2 Basic algebraic properties

Addition and Multiplication
Addition of two or more quaternions acts component wise. So, let’s consider for example

the quaternion ¢ from above (1.1) and another quaternion
p = po + pii+ p2j + psk.
Adding those two quaternions leads to
p+q=(po+q)+(p1+aq)i+(p2+q)jt(s+ak (2.62)

Moreover, every quaternion ¢ has a negative —q with components —q;, © = 0,1,2, 3.
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As far as multiplication is concerned, the product of the two elements ¢ and p, called
Hamilton product, is based on the products of the basis elements and the distributive
law, that helps us to expand the product so that it becomes a sum of products of basis
elements. More specifically, we have

pq = (po + p1i + paj + psk)(qo + qui + g2j + g3k)
= pogo + poqii + pogaj + pogsk
+p1goi + p1gai* + p1geij + prgsik (2.63)
P20 + P2quji + p2aei’ + p2gsik
+p3qok + psqiKi + psgokj + psgsk’.

Now, using the multiplication rules for the basis elements i, j and k from (1.2) and (1.3),
we can get a more concise form as seen below

P9 = Poqo — P1q1 — P292 — P34q3
+(Poq1 + P1go + P23 — P3qe)i
+(Pog2 — P1a3 + P2go + P3q1)J

+(Pogs + P1g2 — p2q1 + P3qo)k.

(2.64)

Conjugation, the norm and reciprocal
Conjugation of quaternions is analogous to conjugation of complex numbers. Let’s con-
sider a quaternion q similar to the above (1.1). Tts conjugate will then be

*

¢ =q=q —qi—qj— gk (2.65)

The norm of the quaternion q is now defined by the square root of the product of it
and its conjugate and is denoted ||g||. The mathematical expression goes as follows

lall = Vag" = Varq = \/qg +@+ B+ a3 (2.66)

It easily follows that a quaternion of norm one is a unit quaternion. Dividing a non-zero
quaternion ¢ by its norm produces a unit quaternion U, called the versor of q

q
U, = L.
© ol

Taking into consideration conjugation and the norm we are now able to define the recip-
rocal of a non-zero quaternion. The product of a quaternion with its reciprocal should
equal 1, as well as the product of q and HZHQ. Hence, the reciprocal of q is defined as
follows

(2.67)

*

4 q
T e (268)

In our calculations, the condition that the norm of the quaternions equals to one
should be satisfied, so we have

\/q8+Qf+QS+Q§ =1. (2.69)
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2.4.3 Quaternion Derivations

Let us now change the notation of the quaternion so we can easily derive the formula for
q(t) later on. We will write a quaternion ¢ = s + v,i + v,j + v.k as the pair

[s,v].

Considering this, a rotation of # radians around a unit axis u is represented by the
unit quaternion

[cos(0/2),sin(0/2)u].

as discussed earlier in this chapter (see (2.58))). Hence, the scalar part is cos(6/2) and the
vector part is multiplied by sin(6/2). Generally, if ¢; and ¢ indicate rotations, then g2q;
represents the composite rotation of ¢ followed by ¢s. Before showing how the rotation
of a body is expressed using quaternions, we need to derive a formula for ¢(t). First of
all, we express the angular velocity as a vector w(t) with magnitude |w(¢)|. Naturally, the
body rotates about w(t) axis. Therefore, the rotation of the body after a period of time
At is represented by the quaternion

w(®)|At . w(t)| Aty w(t)
2 ’Sm< 2 )]w(t)\]'

At times to + At (for small At), the orientation of the body is (to within first order) the
combination of two rotations; a rotation by qq followed by a rotation with angular velocity
w(ty) for At time.

[cos

q(to + At) = [cos lq(to)- (2.70)

wito)|At <|w(t0)]At) wity)
’ 2 Jlw(to)]

We substitute in (2.70) t =ty + At and so we can express the above as

q(t) _ [COS |w(t0)|ét - tO) 7 . <|W(t0)|§t — tO)) |ZE§Z§‘]q<tO) (271)

Differentiating the expression ([2.71]) at a time t,, and since ¢(ty) is a constant, we gradually
get

d et =to) __|wlto)] . |wlto)lt—to) _ _|wlto)] . o

price 5 =—"— sin i = sin0 =0 (2.72)
d . |wlto)l(t —to) _ |wto)| ~ |wto)l(t —to) _ |wlto)| |t
i 5 = cos 5 =— cos( = 5 (2.73)

29



Thus, combining (2.72)) and (2.73)), at at time ¢, ¢(t) is expressed as follows

i) = %([cos IW(to)lét - to),sin IW(to)lét — to) |Zg3|1q“°))
() o) o)
_ D, IW(;o)I 5((;?))I] a(to) (2.74)
0, g (to)lalto)
1

The product [0,w(to)]q(to) is identical to the expression w(ty)q(to). In other words, the
term [0, w(to)] represents the angular velocity, which is of course a vector, as a quaternion
with zero scalar part. Finally, the general expression for the ¢(t) is derived

it) = Swt)(t) (2.75)

The differential equation (2.75) could be further analyzed for every component of the
quaternion ¢, with additionally using the multiplication formula (2.64)), as follows

Go(t) = %(—wl(t)% (t) — wa(t)q2(t) — wa(t)gs(t))
Gi(t) = %(wl(t)%(t) + wa(t)ga(t) — ws(t)g2(?))
2 (2.76)
Ga(t) = §(w2(t)qO(t) —wi(t)gs(t) +ws(t)q(t))
Gs(t) = %(Wl(t)%(t) — wa(t)qu(t) + ws(t)qo(?))-

It is necessary to notice the fact that in formula the angular velocity vector
w(t) = (wx(t), wy(t), wz(t)) is represented by projections on axes of the inertial frame of
reference. In case we want to express the angular velocity vector components in respect
to the rotating frame, we follow the transformation below

(0, wx (1), wy (1), wz(t) = q(t)(0, wa(t), wy(t), w:(t))q " (t)

where w,(t), wy(t), w,(t) are the angular velocity projections on the axes of the rotating
frame. After taking these into consideration and also using (2.75)) we get

i) = ()30, (2.77)

with @W(t) = (0, wy(t), wy(t), w.(t)). It is now obvious that (2.77) also can be expressed
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in the following form

olt) = 5 (0 (D) (t) — ax(t)e () — as((0)
(1) = 5a0(0)ealt) = a5(0)4 (1) + @2(D)(0)
2 (2.78)
Ga(t) = 5(%@)%@) + qo(t)wy (1) — q1(t)ws(1))
(1) = 5 (~@D)wa (1) + (1) (1) + (1) ()

2.4.4 Quaternion, Euler angles, rotation matrix

It is now time to express our rotation formula to quaternion in order to get rid of the
problems that go along with the rotation matrix and Euler angles.

Firstly, let us consider the following three rotation angles around each axis as shown
in the figure below. For a rigid body rotating, the rotation around the front-to-back axis
is called roll, the rotation around the side-to-side axis is called pitch and the rotation
around the vertical axis is called yaw. Notation wise, we denote

(roll, pitch, yaw) = (0x, 0y, 0z) (2.79)
These angles are also called the Tait—Bryan angles.

T
A

Yaw

./

Pitch

X Roll Y
Figure 17: yaw-pitch-roll.

The rotation formula for these angles is similar to the Euler angles we described
previously. The only difference is that, if we want to make a rotation of roll-pitch-yaw in
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that order, and we multiply the rotations matrices of every angle in the opposite order
D = DyauwDpiten Dyou, we finally take a rotation matrix of the form

cosflzcosly cosbzsinbysinfy —sinflzcosOx coslysinby cosfx + sin 64 sin Oy
D = |[sinfycosby sinfysinfy sinfy + cosfzcosfx sinfzsinby cosfx — coslysin by
— sin Oy cos Oy sin Ox cos By cos Oy
(2.80)
This matrix, moves a vector from the body fixed frame of reference to the inertial, like
SO
X = Dz, (2.81)

where again x and X are column vectors containing the three position components of the
rotating and the inertial frame, respectfully.

In order to express a quaternion in respect to the three angles of rotation around
every axis, we need the quaternion form . Specifically, the quaternion representing
a rotation of Ax angle around X axis is

0 Ox

gx = (cos %,sin 7,0,0), (2.82)

the quaternion representing a rotation of fy angle around Y axis is

0 0
qy = (cos .0, sin —, 0), (2.83)
2 2
and finally the quaternion representing a rotation of ; angle around Z axis is
0 0
qz = (cos 72, 0,0, sin 7Z) (2.84)

A sequence of roll, pitch, yaw angle rotations is equivalent to the quaternion product
4zqyqx- Using the quaternion multiplication rule in (2.64)) and denoting the quaternion
product gg = qo + q11+ ¢2j + g3k, we can easily express its components in terms of fx, 0y
and 6, angles.

Ox by 0z Ox . Oy . 0z

(o = COS — COS — COS — + Sin — sin — sin —

2 2 2 2 2 2

. Ox Oy 0z Ox . Oy . 04

= §in — oS — COS — — COS — §in — sin —
N g (T P g ST (2.85)

Ox . Oy 0z L 0x Oy . 0z '

= COS — §in — €08 — + Sin — oS — Sin —

42 = COS == sin - cos - + sin - cos - sin -

Ox Oy . 0z . Ox . Oy 0z

= COS — COS — SN — — 8in — Sin — COS —.

g3 = cos =~ cos —-sin - —sin —- sin —- cos -

There is of course, the reverse transformation that gives us the angles as a function of the
four quaternions components:

roll arctan 22(qoq1 + ¢2q3), 1 — 2(q1% + ¢2?)]
pitch| = arcsin[2(qoga — 1G3)] (2.86)
yaw arctan 2[2(qogs + q1¢2), 1 — 2(q2* + ¢37)]
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In addition, the rotation matrix with the use of quaternions is

1—2(g* + ¢5%)  2(q1q2 — q0g3) 2(q193 + qoq2)
D= | 2(qg+qe) 1-2(¢a*>+e¢*)  2(¢0e— q0qn) (2.87)
2(¢1943 — 9042) 2(¢2q3 + qoqn) 11— 2((112 + Q22)-

Of course, this matrix is equivalent to the one from the equation (2.80) and the trans-
formation from rotating frame of reference to the inertial is given from the (2.81)). As
discussed before, the reverse transformation requires the inverse D matrix (D).
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3 Orbital mechanics near a rotating
asteroid

This chapter examines the gravitational potential an ellipsoid forms around it. Specifying
the ellipsoid as an asteroid we then examine the dynamical equations of a particle orbiting
a rotating asteroid with such potential.

3.1 Ellipsoid Potential

The gravitational potential of an ellipsoid is given approximately by the following equation
[12]

M La+1,+1. 3 L%+ I,y +1..2°
U=l-7 "2 T2 = Jo (3:1)
where
2 2
oo = M e
5
2 2
Iy=M"2 ;C (3.2)
2 b2
L=mEt

are the moments of inertia of an ellipsoid of uniform density and I, = I,. = ., = 0.
The lengths a, b and ¢ are called the principal semi-axes of the ellipsoid. If a = b > ¢,
one has an oblate spheroid; if a = b < ¢, one has a prolate spheroid and if a = b = ¢, then
one has a sphere. In the most general case, where a # b # ¢, one has a triaxial ellipsoid.
G is the gravitational constant and M the mass of the ellipsoid. [2]
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In reality, the potential of an rigid body of arbitrary shape is given by
dM dM
U(r) = — —=-G / _— 3.3
) B r v (33)

where o = /(2 — )2+ (y — n)2 + (2 — ()%, ' = (&, n, ) is the position of the differential
mass element of the rigid body dM and r = (x, y, z) is the position of the point particle,
where we want to compute the potential (see figure .

z

(&n,0)
~ (x-€, y-n, z-7)

(xv,z)

X

Figure 20: Arbitrary shaped rigid body.

Expanding @ into a second order series, taking into account that

I, = / (i + *)dM
I, = / (€ 1 ¢)aM (3.4)
I.= /(772‘|’§2)dM

and following some calculations, one can derive the equation (3.1).

3.2 The equation of motion in the classical form

Consider a general case, where a particle orbits a rotating asteroid. Then, the equation
describing the motion can be expressed in the body fixed frame as a second-order ordinary
differential equation [13]

oU (r)

FH2wXTr+wX (wxXr)+w ><r+a—:0 (3.5)
r
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where r is the radius vector from the asteroid’s center of mass to the particle, its derivatives
are with respect to the body-fixed frame of reference, w is, as mentioned above, the angular
velocity vector and U(r) is the gravitational potential of the asteroid, given by . The
inertial frame is represented in the figure below with orange coloured axes and the body
fixed, rotating frame with blue coloured axes. The radius vector of the position of the
particle (green), as well as the other vectors (velocity, anglular velocity etc.) in are
given in the body fixed frame.

Figure 21: Inertial (orange) and body fixed (blue)frame of reference.

The Lagrangian associated to the motion of a particle in a rotating frame described

by (8.3) is [14]

£:%—i—w-(rxi')—l—%(wxr)Q—U(r). (3.6)

For convenience, we consider for the generalized coordinates q = r. Hence, the generalized
momentum is

p:g—fzi‘quxr. (3.7)
The Hamiltonian is given by
H=pq-—L. (3.8)

Combining (3.6)), (3.7) and (3.8)), and with some basic calculations, we take the final form

of the Hamiltonian )
H:%_pmwxn+ww (3.9)

If w is time invariant, then H is also time invariant and is constant (the Jacobi constant).
The mechanical energy can be written as

E=FK+U(r) (3.10)
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where K is the kinetic energy of the particle, which is given by

p? 1 1 1 9
K="=_-(f+wxr) =i+ (wxr)+-(wxr), (3.11)
2 2 2 2
We can also write the mechanical energy in terms of the effective potential V (r).
E=K+V(r) (3.12)
Let the last be defined as ]
V(r) = —§(w x1)’+U(r). (3.13)
The equation of motion (3.5) may be rewritten in terms of the effective potential as
i‘+2wxr+cbxr+a‘g(r>20. (3.14)
r

3.3 The equation of motion in the scalar form

The radius, velocity, acceleration and angular velocity vectors in (3.5)) equation, expressed
in the rotating, body fixed frame (blue axes in Figure take the form
r=xextyey+ze,
r=1tex+ye,+ze
LIS Ty S (3.15)
r=xextyey+ze,
W =wWwrex +wyey +Ww,e,
where e; with ¢ = x, y, z the unit vectors of every axis of the frame. Hence, the dynamical
equations of the orbiting particle (3.5)) can be written as [13]

T+ wyz — Wy + 2wyz — 2W,Y + Wawyly — wy2x — w4 wywyz + a7 =0
iy

. . . . . 2 2 8U

Y+ W — Wy + 20,0 — 2w 2 + Wyw,2 — W, Y — Wy Y + wWewy® + M =0 (3.16)
Y

. . . . . 2 2 aU

2+ Wal — Wy + 2wl — 2wy T + We, T — Wy 2 — Wy 2+ wWyw,y + ™ =0.

We can easily transform these equations depending on the angular velocity vector.
More specifically, the angular velocity vector could be defined by w = we,, so that its z
and y components would be zero, and it could be time invariant so that its derivatives
could be zero. In that case, the above equations would be simplified.

F—wy — 2wy —wlr 4+ — =0
ox
oU
y+wx+2wi:—w2y+a—:() (3.17)
Yy
ou
F 4 — =0.
Z+8z

Note here that the solution of the scalar form gives the position of the particle r =
(x, y, z) is in the body-fixed frame.

38



3.4 Horizontal stability

Let us now limit our analysis in a plane motion, where z = 0, and study the motion of a
particle in a central force field. In this plane the gravitational potential from (3.1)) takes

the form
Uf(): [_%_ Ix1’+[yy+[zz +§[5[3I$2+Iyyy2

r 2r3 2 7o

where now r = /x? +y2. We assume a symmetric rotational body around, so that
I, = 1,,. Hence,

]G (3.18)

M Imm - Izz
_ = | - = 4 == q. 1
U,o(r) [ — }G (3.19)
The gravitational force is

~ dU. M 3(Lue — I.2)

F(r) = ——"0= | - S+ 52226 (3.20)
The differential equation
L

mit = F(r) + — (3.21)

describes the motion of a particle in a central force field. The equilibrium points must

satisfy the condition
L

mr—OﬁF(T)—I—ﬁ—O. (3.22)
It is clear that, if the root of this equation is rg, the initial conditions r = ry and 7 = 0
correspond to an equilibrium solution that in our case represents a circular motion with
center the center of force. Taking into consideration that w = L/mr? and that v = row,
we can find the mathematical formula of the velocity needed to launch the particle from
distance 7y so the orbit will be circular. Hence, we have
o ToF(ro)

vt = R (3.23)

The differential equation of motion can also be written as

Firy+ 2 =4V (3.24)

mr3 dr

where V' is the effective potential. The equilibrium points correspond to effective poten-

tial’s extremums
aVv
— =0. 3.25
< = ) (3.25)
ro

Whether this points are stable or unstable has to do with the sign of the second order

derivative of V. Hence, if
d*v
—— >0 3.26
() .
r=rQ
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the equilibrium point is stable, and if

>V
r=ro

the equilibrium point is unstable. Expanding this analysis and deriving (3.24)), for the

stable case we have
d?V 3 L2
( ) = F'(ro) + — 3 > 0, (3.28)
r=rg

e

where F'(r) is the F' derivative in terms of . Using (§3.25]), then the condition of a stable
orbit of radius rq is expressed as

F/(ro) + TEF(TO) <0. (3.29)

Note here that circular orbits only exist on attractive force fields and consequently F(rg) <
0, so the condition takes the form

F(ro) 3
Forg) 1 >0 (3.30)

It is obvious that if we are referring to unstable orbits we have

F'(ro) 3
7o) T <O (3.31)

These conditions apply to every central force.
In our case,for an oblate spheroid (where I, < I.,), for a force given by the (3.20]),
and for stable orbits (from (3.30])) we have

r> )Ly — ). (3.32)

DO W
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4 Algorithm Description

In this chapter we will present the algorithm we built to compute the orbits of a point
mass object of a mass m, which corresponds to a spacecraft, around a rotating rigid body
of a mass M, which corresponds to an asteroid. Let the shape of the asteroid for this
analysis be an oblate spheroid, as we described it to a previous chapter. That means
that the two out of three moments of inertia are equal, therefore the two out of three
corresponding principal semi-axes are also equal. Spacecraft’s mass m is considered here
negligible in relation to asteroid’s mass M. We need to note here that, for computational
purposes, we consider the gravity constant to be G = 1 and the mass of the asteroid to
be M = 1.

4.1 Main equations

The gravitational potential of the oblate spheroid is given by the equation and the
equation of motion of the spacecraft in the rotating, body-fixed frame is given by ([3.16]).
The rigid body rotates with an angular velocity vector corresponding to in the
rotating frame. In other words, the main idea is to enter and in , that
will eventually give as a solution the position (z, y and z components) of the spacecraft
in space. It is clear that every component of position or velocity (and angular velocity)
is expressed in the body-fixed frame. Thus, the initial conditions given to integrate the
equation of motion are also needed to be expressed in the body-fixed frame.

Nevertheless, for us to know at any moment or to manually set the position of the
spacecraft in space, we need its inertial coordinates. The problem is easily solved using
the quaternion method we described above for the transformation from the one frame to
the other and vice versa. We also need the inertial frame coordinates to calculate the
orbital elements of the spacecraft. Hence, although the equations of motion refer to the
body-fixed frame, we need information from both the body-fixed and the inertial frame,
that we easily get using the transformation formula, with the rotation matrix given by
. Let us note here that the set of the four quaternions represent the orientation of
the body-fixed frame in respect to the inertial. For this to be possible, the use of the
quaternion differential equations is necessary.

The programming language used for this topic is C++. The Bulirsch-Stoer method,
implemented with the class ODESBS, is used for the numerical integration of the (3.16)
along with . The differential equations to solve are seven in total, with the three of
them being second order. It is important to understand that the three coordinates in the
rotating frame (z, y and z) and the four quaternion components, need to be known for
every time step. Moreover, the auxiliary code restroej1 is used for the orbital elements to
be calculated. The program returns three files containing the coordinates of the inertial
frame, the coordinates of the rotating frame and the orbital elements respectfully. With
these information we visualize an orbit to get the complete picture. In the Appendix
we give the module dSystemElpsdRotPrec23.cpp that contains the equations of motion.
In the Appendix [A] we give the mainIc.cpp function for a run of an individual orbit.
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4.2 Initial Conditions and Parameters

As mentioned before, the differential equations need to be solved are seven; three second
order differential equations (equations of motion) and four first order differential equations
(for the quaternions). Thus, ten initial conditions are needed for this system; three
position components, three velocity components and the four initial quaternions. Let us
mention again here that the initial quaternions represent the initial orientation of the
rotating frame. One chooses the initial position and velocity of the spacecraft in space
(inertial frame) and the initial orientation of the rotating frame and eventually gets the
evolution of the orbit in time.

We choose initial conditions of position and velocity in the inertial frame for the
particle of the form

R = (7“0, 07 O) V = (0, —ToF(To), )7 (41)

represented in the Figure 22| The velocity is the one needed for an object of negligible
mass to carry out a circular orbit, expressed above by the equation (3.23)). Then, we
choose that the initial orientation of the rotating frame will be a roll, i.e, a rotation of an
angle 0, around X axis:

roll =60,y  pitch =0 yaw = 0. (4.2)

The angle takes values from 0 to w/2. Using (2.85)), one can calculate the corresponding
quaternions. Another parameter we need to set is the angular frequency B of the angular
velocity’s vector w (see (2.53)). It takes values from 0 to 1.
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vyO

Figure 22: Initial Conditions in the inertial frame.

4.3 Unit Normalization

In a previous section we saw the lengths a, b and ¢ as the principal semi-axes of an
ellipsoid. Here, since we are referring to an oblate spheroid, it applies that a = b and
¢ < a, expressed lets say in m. This would give us big numbers as a solution, difficult
to process. That’s why we follow a normalization procedure by applying the following
scaling

¥ =zxfa,y =yla, 2 =z/a, t' = wt (4.3)

and replacing the semi-axes with the scaled ones
a=1,b=0bla,d =c/a (4.4)

in equations (3.16]). Of course, time derivatives refer now to time t'. As discussed be-
fore, the magnitude of the angular velocity vector is constant (see (2.53)). Here, in our
calculations we consider that

W' [|= VA2 + w2 =1. (4.5)

For the characteristics of the rigid body (asteroid), we consider

a=b=10 =038 (4.6)
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for the normalized semi-axes, and

0 =0.8. (4.7)
The equations of motion can now be written as

ou

i w2 —wly' + 0,2 — 2w, Y + w'w,)y — w,r — W, + w W, + 5$ =0
T
) N Y I 12 Loor a2 2y 1ol 8U7
Y+ W, — w2 + 2w, 0 — 2w, 2wy w2 —w, Y —wy Y+ wp wy ' +5?—0
Y
",_'_-// W 9 1.7 2 1y oo 12 12 /o 58_(]_0
AWyl — Wy 2w Y — 2wy T Wy Wy X — Wy 2 Wy 2wy Wy 9
(4.8)
where U = U(2/,y/, 2'), wi’ = ”";—” (with ¢ =z, y, 2) and
5=1 (4.9)

w2a3’

The parameter ¢ is special for every asteroid and for its calculation one has to substitute
the real values of u, w and a.
In the following, we omit the primes off the symbols

oU
T+ wyz — Wy + 2wy — 2W,Y + Wawyly — wy2x — W2 + wywez + 58_ =0
x
. . . . 9 9 oU
U+ WX — Wy + 20,7 — 2Wp2 + Wy,2 — W, Y — Wy Y + Wy + 5@_ =0 (4.10)
Y
.. . . . . 2 2 aU
2+ Wal — Wy + 2wl — 2wy T + Wew, T — Wy 2 — Wy 2 + wyw, Y + 5£ =0.

Furthermore, the same scaling should be applied in the force we discussed in horizontal
stability, so it would give us

F=0F (4.11)
where . 3(r )
or, if we omit the primes here too, the force is given by
1 3w — L.,)
F = ( - = —) 4.13
r? * 2r4 (4.13)

In that way, supposing the equations of motion have a solution 2/, 3’ and 2’ of the position
of the spacecraft in the rotating frame, in order to get the real distance, we need to multiply
each coordinate with the semi-axis a. For the real time value we need to divide t’ with w.
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5 Results

In this chapter we display our results. With the help of the program levelmap?2.exe,
we construct coloured maps for the maximum value of the orbit’s semi-major axis, the
eccentricity and the inclination. We make a grid of 51 x 51 in the x — y plane, where
z € (0,1.57) and y € (0,1), creating in total 2,601 initial conditions. The z values
represent the initial 6, and the y values represent the initial B (angular frequency of
the vector w). For every pair of initial conditions, we integrate the orbit and compute
the orbital elements semi-major axis (a), eccentricity (e) and inclination (7) at each step.
Finally, we output the @4z, €mar and 4,4, for each orbit. Each magnitude has its own
map. The colours of the map correspond to the value of a4z, €mar and 4., respectively.
In that way we can get the full picture of the region of initial conditions, where the
orbit remains stable. Small values generally correspond to stable orbits and large values
correspond to unstable orbits, that may lead to collision of the spacecraft with the asteroid
or escape.

The dark blue and green coloured regions represent stable orbits, that stay close to
the asteroid, the yellow represent orbits that move away from the asteroid, with some
of them stay bounded and others lead to escape, and the white for the a,,,, and bright
yellow for €,,4, and 7,,,, represent collision.

5.1 Dynamical Maps for different pairs of initial radius and as-
teroid shape
Here, we examine different values of the initial radius of the orbit (ry) an the size of the

asteroid (the parameter ¢) and see how the orbits are being affected from the changes of
these values.

51.1 rg=15and ¢c=0.7

We set for the initial radius of the orbit rp = 1.5 and for the vertical semi-axis of the
asteroid ¢ = 0.7 and consider these constant, when constructing the maps for all the pairs
of the initial conditions of 6, and B. Figure represents the dynamical map for a,,q.,
figure [24] represents the dynamical map for e,,,, and figure 25| for 4,4,
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Figure 23: Values of a,,,, for a grid (0., B) and for ry = 1.5 and ¢ = 0.7.
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Figure 24: Values of e,,4, for a grid (,, B) and for 7y = 1.5 and ¢ = 0.7.
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Figure 25: Values of i,,,, for a grid (6,, B) and for 7o = 1.5 and ¢ = 0.7.

Stable, bounded orbits A few examples of these orbits are given bellow.
For an orbit with initial conditions

0,0 =0.0628 By =0.46

we take the graph of the semi-major axis, the eccentricity, the inclination and the radius
of the orbit over time.
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Figure 26: 0,, = 0.0628 B, = 0.46

The projection of the orbit in the XY plane of the inertial frame is represented in the
figure below with black and with the green circle representing the asteroid.
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Figure 27: Orbit on the XY plane with 6,, = 0.0628 By = 0.46.

As we can see, the orbit stays bounded over time and the magnitudes of semi-major
axis, eccentricity, inclination and orbit’s radius oscillate.
Let another example be an orbit with initial conditions

0.0 = 0.1256 By =0.96

we have
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Figure 28: 6,, = 0.1256 By = 0.96.

Here, even though the orbit remains bounded, the inclination increases up to 140
degrees. In this case, the spacecraft doesn’t escape the asteroid, its orbit remains almost
circular, but the orbit’s inclination takes great values. In the projection on the XY plane,
one can see that the spacecraft appears to cross the body, but in reality it passes from
above.

The inclination seems to being affected by the initial B, since the value here is almost
double compared with the previous one. As we can see from the corresponding map in
figure [25] for small B, the inclination gets only small values.
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Figure 29: Orbit on the XY plane with 6,, = 0.1256 By = 0.96.

Let us consider another orbit with a relatively small initial B, so that

0.0 = 0.2826 By = 0.24.
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Figure 30: 6,, = 0.2826 By =0.24

Note here, that a, e, 7, and R oscillate, with the inclination having a maximum near
16°. On the XY plane
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Figure 31: Orbit on the XY plane with 6,, = 0.2826 By = 0.24.

Collision We consider an example of an orbit from the region representing collision
(white for a,,q,-figure , with initial conditions

0,0 = 0.4082 By = 0.78.

The collision happens, approximately, when the radius takes a value smaller than 1 (as a
normalized unit). Plotting the radius of that orbit over time, one can see in the figure
that the radius becomes indeed smaller than 1, which means that the spacecraft collided
with the asteroid.
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Figure 32: R —t with 6,y = 0.4082 By = 0.78 (Collision).

Escape Choosing an orbit from the yellow region of a4, (figure , i.e. an unstable
orbit with initial conditions

0.0 = 1.0676 By =0.22.

and plotting its radius, we have the evolution given in figure
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Figure 33: R —t with 6,y = 1.0676 By = 0.22 (Escape).

One can see that the radius increases up to 250 normalized units. In this case, the
orbit is unbounded and the spacecraft has escaped.

5.1.2 ro=30and c=0.7

Let us now double the initial radius of the orbit, which leads us to new dynamical maps.
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Figure 34: Values of a,,, for a grid (0., B) and for ro = 3.0 and ¢ = 0.7.
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Figure 35: Values of e,,4, for a grid (0,, B) and for o = 3.0 and ¢ = 0.7.
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Figure 36: Values of i,,,, for a grid (6,, B) and for ry = 3.0 and ¢ = 0.7.

Notice, here, that by increasing the initial distance of the spacecraft from the asteroid,
the region of instability decreases significantly. Due to greater distance, the oblate shape
of the asteroid becomes more negligible. Taking into account the potential from the
equation , one can understand that as the radius increases, the second and third
term of the potential decrease significantly and considered also negligible.

Stable, bounded orbits For an orbit with initial conditions
0.0 = 0.942 By =0.28

we have
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Figure 37: 0,0 = 0.942 By = 0.28.

The orbit on the XY plane is given in figure [39|and on the X Z plane is given in figutr
79
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Figure 38: Orbit on the XY plane with 6,, = 0.942 By = 0.28.

08 T T

Figure 39: Orbit on the X Z plane with 6,, = 0.942 By = 0.28.
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The inclination appears to continuously increasing, while the other magnitudes oscil-
late and the orbit is bounded. In fact, the inclination doesn’t continuously increase and
we can ascertain that by running the orbit for a longer period of time, as seen in the
figure below.

40 —

30 —

20 —

2000 4000 6000

Figure 40: i(t) for a longer period of time with 6,, = 0.942 By =0.28.

For an orbit with initial conditions
0.0 = 1.3188 By =0.98

we have the evolution given in figure [41| and the orbit in figure
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Figure 41: 6,, = 1.3188 By = 0.98.
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Figure 42: Orbit on the XY plane with 6,, = 1.3188 By = 0.98.
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For an orbit with initial conditions
0.0 = 0.7536 By =0.58

we have the evolution given in figure {43 and the orbit in figure 44] (XY plane) and in
figure 45| (X Z plane)

31
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Figure 43: 0,, = 0.7536 By = 0.58.
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Figure 44: Orbit on the XY plane with 6,, = 0.7536 By = 0.58.

Figure 45: Orbit on the X Z plane with 6,5, = 0.7536 By = 0.58.
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Here, the inclination takes bigger values, since the initial conditions correspond to the
green area of the i,,,, map in figure

Unstable orbits For an orbit of collision area with initial conditions
0.0 =0.314 By =0.84

we have

0 400 800 1200

t

Figure 46: R-t with 6,, = 0.314 By = 0.84 (Collision).

Here, we can see (figure that the radius value goes below 1, but becomes in general
quite large. In this case, the spacecraft moves away from the asteroid but in a bounded
orbit, and eventually they collide.

A similar form of time evolution follows the radius of an orbit with initial conditions

00 = 0.3768 By =023,

as we can see here

65



12 —

0 400 800 1200

t

Figure 47: R-t with 6,, = 0.3768 By =0..8.

Here, the orbit is bounded, although the radius takes large values, and the two bodies
don’t collide. In this case, there is a sort of instability, which we can understand better
by seen the plot of the semi-major axis (see figure .
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Figure 48: a-t with 6, = 0.3768 By =0.8.

It is clear that the semi-major axis doesn’t oscillates around small values, but follows
an irregular form and increases significantly.

5.1.3 rg=15and c=0.8

We return to the initial radius of the first case in the section B.I.1] and we increase the
semi-axis ¢ of the oblate spheroid shape of the asteroid, leading to new dynamical maps

seen in figures and
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Figure 49: Values of a4, of a grid (0., B) for ro = 1.5 and ¢ = 0.8.
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Figure 50: Values of €4, of a grid (0., B) for ro = 1.5 and ¢ = 0.8.
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Figure 51: Values of 7,,,, of a grid (6., B) for 1o = 1.5 and ¢ = 0.8.

Notice that comparatively to the results in the maps of the white and bright
yellow region has been decreased and the blue region has been increased, a fact that is
reasonable, since the shape of the asteroid became more spherical.

Stable, bounded orbits For an orbit with initial conditions
0.0 = 0.18840 By =0.24

we have the evolution in figure [52| and the orbit in figure
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Figure 52: 0,, = 0.18840
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Figure 53: Orbit on XY plane with 6,5 = 0.18840 By = 0.24.
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For another stable orbit with initial conditions

0,0 = 0.2512

By =0.72

we have for the evolution the figure [54] and for the orbit the figure

Figure 54: 6,5 = 0.2512

018

004

By = 0.72.
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Figure 55: Orbit on the XY plane with 6,, = 0.2512 By =0.72.

In this case, we notice that the inclination gets large values and the orbit remains
bounded.

Unstable orbits For an orbit with initial conditions
0.0 = 0.5338 By =0.04

we have the evolution in figure [56] and the orbit in figure
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Figure 56: 6., = 0.5338 By = 0.04.
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Figure 57: Orbit on the XY plane with 6,, = 0.5338 By = 0.04.
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Notice in figure 56| (d) that the radius of the orbit has a chaotic evolution, so the orbit
is unstable. This may lead to escape or collision over time.
Consider an orbit with initial conditions

0,0 =0.2826 By =0.88.

05

0 400 800 1200

t

Figure 58: R-t with 6,, = 0.2826 By = 0.88 (Collision).
This orbit is chaotic and ends up in a collision.

514 ro=15and c=04

Finally, we set a significantly smaller vertical semi-axis, ¢ = 0.4, with an initial radius
ro = 1.5. Figure represents the dynamical map for a,,.., figure represents the
dynamical map for e,,,, and figure [61] for 7,,42.
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Figure 59: Values of a,,,, for a grid (0., B) and for ro = 1.5 and ¢ = 0.4.
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Figure 60: Values of e,,,, for a grid (0, B) and for ryo = 1.5 and ¢ = 0.4.
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Figure 61: Values of i,,,, for a grid (6,, B) and for o = 1.5 and ¢ = 0.4.

It is important to note here, that in this case the blue region of stable, bounded orbits
has decreased compared to the cases of ¢ = 0.7 and ¢ = 0.8.

Stable, bounded orbits For an orbit with initial conditions
0.0 = 0.0314 By =0.16

we have the evolution in figure [62| and the orbit in figure
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Figure 62: 6,, = 0.0314 By = 0.16.
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Figure 63: Orbit on XY plane with 6,, = 0.0314 By = 0.16.
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As we can see, the orbit stays bounded over time and the magnitudes of semi-major
axis, eccentricity, inclination and orbit’s radius oscillate.

Collision We consider an example of an orbit from the region representing collision
(white for a,,q, - figure , with initial conditions

0.0 = 0.4396 By =0.82.

and as we can see in figure below, the spacecraft collides with the asteroid within a
sort period of time.

25 —

| ' I ! |
t

Figure 64: R-t with 6,, = 0.4396 By = 0.82 (Collision).

Escape Choosing an orbit from the yellow region of ., (figure with initial condi-
tions
0.0 = 1.0362 By =0.5.

Plotting its radius, we have the evolution given in figure
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Figure 65: R-t with 6, = 1.0362 By = 0.5 (Escape).

We can see that the orbit leads to an escape of the spacecraft.
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6 Conclusions

In this study, we studied the orbital dynamics around a precessing oblate spheroid as-
teroid. The aim of this study was to expand our knowledge about the dynamics in the
gravitational field of an asteroid, that will be useful for future missions, including landings
and planetary defense missions. In our model, we used a second order expansion of the
gravitational potential of an arbitrary shaped rigid body and made the approximation
for the oblate spheroid through the moments of inertia, which include the information of
the shape. To enter the precession in our model, we solved Euler’s equations for a freely
rotating rigid body (the oblate spheroid in our case). We integrated the equations of mo-
tion, in the rotating frame, of a spacecraft (with negligible mass) orbiting the precessing
oblate spheroid. We followed a transformation from the rotating to the inertial frame
of reference, using quaternions, in order to compute the orbital elements. To be able
to do this transformation, we integrated the differential equations of quaternions along
with the equations of motion. Quaternions include information about the rotation and
the asteroid’s orientation, since they can be transformed into angles. For several pairs
of initial conditions of 6, and B, we used the a4z, €mae and 2,4, from each orbit to
create dynamical maps. The darker colours (the black, the blue and the green) of the
maps represent small values and brighter colours (the yellow and the orange) represent
big values.

The results showed that the maps consist of regions of stable orbits and unstable
orbits. In these maps there are bounded orbits (in the stable regions), there are other
orbits that lead to collision or escape and there are chaotic orbits, whose evolution over
time may lead to a collision or escape. Thus, the form of the dynamical maps can change
depending on the integration time. From the dynamical maps of a,,,, values, for example,
we can say that the yellow region are escape orbits, since the semi-major axis takes large
values. The white represents collision. In the blue area, the semi-major axis takes small
values, but not all the orbits are necessarily bounded or periodic. That is because the
radius of some of these orbits evolves chaotically. Hence, they can end up to a collision
or an escape.

By changing the initial radius of the orbit, we noticed that an increase of its magnitude
leads to an increase to the stable orbits’ region. We doubled the initial radius (from
ro = 1.5 to rg = 3.0) and noticed the unstable region decreasing significantly.

Another parameter that affects the form of the dynamical maps is the vertical semi-
axis ¢ of the oblate spheroid. From our results, we can see that the stable region decreases
as the parameter also decreases and the rigid body becomes more oblate.

For future research, we can solve the variational equations, along with the equations
of motion and compute the Lyapunov Exponents and the Fast Lyapunov Indicator (FLI)
to detect chaos.

One more idea is to extend our analysis by entering the force caused by the solar
radiation pressure in the equations of motion.
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Appendices
A mainlc.cpp

#include <iostream>

#include ”"ODESBS.h”

#include 7"dSystemElpsdRotPrec23.h”
#include <string.h>

#include "restroe4l .h”

#include <cmath>

void ShowConfig() ;
void WriteConfig () ;
void FileOutput (int Init, double X[]) ;

double X0[NEQ];

int FLAG.GETPQ, SCRNMOD;

double timefactor , MaxResc;

double acc,dt0, DT; int Niters;

char fnameX|[256], fnameO[256], fnameXIn[256];
FILE xfilx , «filo , «filxin; //, #fili;

int main ()
{
double XI[NEQ];
double theta, A, B, q00, ql0, q20, q30, r0;
printf (”RUN_3D-ORBIT.in._the_field _of_Rotating._.oblate_\n\
n”);
double a = 1.0, b, c¢;
b= 1.0;
c = 0.7;
theta=0.7536;
B=0.58;
r0=3.0;
A = sqrt (1.0 cos(theta)xcos(theta));

I

(
initializePrecSystem (b, ¢, 0.8,A, B, 1.0e—14);

//initial quaternions
q00=cos (theta*0.5) ;

84



qlO=sin (theta*0.5);

q20=0.0;

q30=0.0;

InitRestroeB (0, 0.0, 0.8);

//initial conditions in inertial frame

XI[0]=0; /)t
XI[1]=10: //X
X1[2]=0.0; //Y
X1[3]=0.0; //Z
X1[4]=0; //VX
XI[5]=0.0; //VY
XI[6]=0.0; //VZ
XI[7] = q00; //q0
XI[8] = ql0;  //q1
XI[9] = q20;  //q2
XI[10] = q30; //q3

double Ix = (bxb + cxc) / 5, Iy = (axa + cxc) / 5, Iz =
(axa + bxb) / 5;

double F =0.8%(3+(Ix—Iz)/(2%pow(XI[1],4)) — 1/(XI[1]*XI
(11))s //3x(Le—12)/(2r"4)—1/r"2

double va = sqrt(—XI[1]«F); //approzimation for circular
orbit

XI[5] = va;

InertialtoRotating (XI,XO0) ;

double Energy0 = Energy (X0) ;

//RotatingTolnertial (X0, XI);

OEPOS oe;

GetOrbitalElements (XI, &oe, 1);

printf (7a=%f...e=%f___.i=%f\n" ;oe.a,0e.e,o0e.1);

printf ("MEAL oo ow=%f o W=%f\n” ;oe .M, oe.omega, oe.Omega);
getchar () ;

DT = 0.05;
Niters = 24000;
dt0 = 0.001;
//

//ShowConfig();
strepy (fnameX ,” testx2 . dat”) ;

strepy (fnameO |, ” testo . dat”);
strepy (fnameXIn,” testxin . dat”);
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FileOutput (0, X0

)
double YO[NEQ], Y1[NEQ];
for (int j = 0; j < NEQ; j++) YO[j] = X0[j ];
for (int i = 1; i <= Niters; i++)
{

if (!integrate.DTstep(YO0, DT, &dt0, Y1)) {
printf (” Break: Integratlon error\n ); break;
}

for (int j = 0; j<NEQ; j++) YO[j] = Y1[j];

FileOutput (1, YO0);

double dee = fabs(Energy(Y0) — Energy0) /
Energy0;

printf ("%d...x=%f . y=%f .. z=%f .. . DE/E=%1.1e\n” , i, YO
[1], YO[2], YO[3], dee);

FileOutput(—1, Y0); //fclose(fili);

printf(”\nEnd_of_Run”); getchar();
return 0;

}
N adaa

void FileOutput(int Init, double X[])

{
double Xi[NEQ];
if (Init = —1) { fclose(filx); fclose(filo); fclose(
filxin); return; }
if (Init = 0) {

filx = fopen (fnameX, "wt”);
filo = fopen (fnameO, "wt”);

filxin = fopen (fnameXIn, "wt”);

fprintf (filx , "o tocooooooon b ST Vo
uuuuuuuuu ZiiiicoeooPaccicciccn e Qoo anan
MMMMM ReooocoocccccEner\n”);

fprintf(filo, "o tocoooooooo A €
TS DU omegabar.._omega.._Omega_....M.__._._
~lambda...n/n’\n");

fprintf (filxin, "cotocooooaaoe Xebbbiiiaa N
ggggggggggg Zicccooeoeo o VXooooooooeaa o NYoooo
MMMMMMMMM VZ.._..._Radius\n”)

}
fprintf (filx , "%f.o.%11.101f..%11.101f .. %11.101f._.%11.10

1fo%11.101f .%11.101f ..%14.131f\n” X[0] ,X[1] ,.X[2] ,X
[3],X[4] . X[5] ,X[6] , Energy (X)) ;
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RotatingTolnertial (X, Xi);

double R=sqrt (pow(Xi[1l],2)+pow(Xi[2],2)+pow(Xi[3],2));

fprintf (filxin , "% %11.101f ._%11.101f __%11.101f __
%11.101f __%11.101f .. %11.101f __%11.101f\n", Xi[0], Xi
(1], Xi[2], Xi[3], Xi[4], Xi[5], Xi[6],R);

OEPOS oe ;

GetOrbitalElements (Xi, &oe, 1);

fprintf (filo , "%f o %871 __%8.7f__%8.5f__%6.3f__%6.3f__
%6.3f__%6.3f___%6.3f__%5.3f\n”, Xi[0], oe.a, oe.e, oe
.1, oe.omegabar, oe.omega, oe.Omega, oe.M, oe.lamda,
oe.meanmotion) ;
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B dSystemElpsdRotPrec23.cpp

#include<stdio . h>

#include<math . h>

#include ”"dSystemElpsdRotPrec23.h”
#include ”"ODESBS.h”

double deltai, pAmpl, pFreq, wz, Ix, Iy, Iz;

ODESBS integrate , varintegrate , quatintegrate;

void dSystemElpsdRotPrec(double t,double X[]|,double f[]);

void dSystemElpsdRotPrecVar(double t, double X[],6 double f[]);
void dSystemQuaternions(double t, double q[],double dq[]) ;

void RotMatrix (double ¢[], double D[]|[4]) ;

void DotRotMatrix (double t, double q[], double DD[][4]) ;

void BodyFixedtolnertial (double X[], double q[]) ;

void InverRotMatrix (double q[], double Dinv[][4]) ;

void DotlnverRotMatrix (double t, double q[], double DDinv[][4]) ;
void InertialtoRotating (double X[], double Y|[]) ;

void initializePrecSystem (double b, double ¢, double delta,
double precA, double precB, double acc)
//acc: accuracy of numerical integrations

//a=1, b,c normalized, delta: metric units (Gxmass/(omega "2xa
/\3)

//pressecion params @ precA=amplitude <1, precB=angular
frequency, |omega_0|=1

{

double a = 1.0;

Ix = (bxb + cxc) / 5; Iy = (axa + cxc) / 5; Iz = (axa +
bxb) / 5;

deltai = delta;

pAmpl = precA; pFreq = precB;

wz = sqrt (1 — pAmplxpAmpl); //initial norm of angular
frequency is 1

integrate .open (NEQ, dSystemElpsdRotPrec,0.000001,0.1, acc
,0) ;

//varintegrate.open(NEQV, dSystemFElpsdRotPrecVar
,0.000001,0.1,acc,0);
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void GetRotationvector(double t, double W[])

{
JS/W]=wz, W[2]=wy, W[3]=wz, W[{]=wzdot,
W[1] = pAmplxsin (pFreqxt); //wzx
W[2] = pAmplxcos(pFreqxt); //wy
W[3] = wz; //wz
W[4] = pAmplspFreq*cos(pFreqxt); //dwz
W[5] = —pAmplspFreq*sin (pFreqx*t) ; //dwy
W[6] = 0; //dwz
}

void dSystemElpsdRotPrec(double t, double X[],double f[])
{
double x = X[1], v =X[2], z =X][3], P =X[4], Q = X[5],
R = X[6];
double ir = sqrt(x * x +y * y + 2z % 2);
double Ux, Uy, Uz; // , deltai;
double W[7];

GetRotationvector (t, W);

// potential derivatives

Ux= x* (6% Ixxirsir 4+ 3*(Ix+ly+Iz)*xirxir + 2xpow(ir ,4)
—15x(Ix*x*xx + Tyxyxy + Izxzxz)) / (2xpow(ir ,7));

Uy= y*(6xIy*ir*ir 4+ 3*(Ix+ly+Iz)*irxir + 2xpow(ir ,4)
—15x(Ix*xxx + Iyxyxy + Izxzxz)) / (2xpow(ir ,7));

Uz= z*(6xIzxirxir + 3*(Ix+Iy+lz)*ir*ir + 2%pow(ir ,4)
—15x(Ix*xxxx + Tyxyxy + Izxzxz)) / (2xpow(ir ,7));

//Fellipsoid(z, y, z, &Uz, &Uy, &Uz);

// equations of motion

f[1] = P; // dx’/dt’
fl2] = Q V) dy ) dt
f[3] =R; J/ dz’/dt’
fl4] = —W[5] * z + W[6] * y — 2x W[2] * R + 2% W[3] x Q

— WI[1] = W[2] *x y + W[2] * W[2] % x + W[3] x W[3] x
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| ¥+ z — deltaix Ux; // dP
+ W[4] * z — 2x W[3] % P 4+ 2x

f[6] =—W[6] * x W[1] * R
COW[2] * W[3] %z +W[3] # W3] %y +W[1] % W[1] =
y — W[1] *« W[2] * x — deltaix Uy; // dQ

f16] =—W[4] x vy +W[5] * x — 2x W[1] x Q + 2« W[2] % P
— W[1] * W[3] * x + W[1] * W[1] * z + W[2] x W[2] x
z — W[2] * W[3] x y — deltaix Uz; // dR

f[7] = 0.5 = (-X[8] = W[1] — X[9] * W[2] — X[10] = W[3])

f[8] = 0.5 = (X[7] = W[1] — X[10] * W[2] + X[9] = W[3]);

f19] = 0.5 * (X[10] = W[1] + X[7] %= W[2] — X[8] * W[3]);

f[10] = 0.5 % (—X[9] = W[1] + X[8] x W[2] +X[7]* W[3]) ;

double Energy(double X][])

{

double t = X[0] , =X[2], z =X[3], P=X

X[1],
[4]7Q:X[5]7 []
double ir = sqrt(x * x +y * y + 2z % z);
double U,V H;
double W[7];

GetRotationvector (t, W);

U= —1/ir — ( Ix + Iy + Iz )/( 2xpow(ir,3) ) + 1.5 x (
Ix * x *x+ 1y «y xy+ Iz %z % z)/( pow(ir ,5) );
// gravitational potential U’

V=-05=% ((W[2] * z—-W[3] xy) *x (W[2] x z —W[3] %y
) + W[3] * x —W[1] % z) x (W[3] * x —W[1] % z) + (
W[1] * y —W[2] x x) = (W[1] * y — W[2] * x)) +
deltaixU; // effective potential V

H=05 « ( PxP + Q«Q + R«R ) + V; // Hamilton

return H;
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D[2][1] = 2x(q[2]*q[3] + q[l]xq[4])
D[2][2] =1 — 2x(q[2]*q[2]+ q[4]*q[4])
D[2][3] = 2x(q[3]*q[4] — q[l]xq[2])
D[3][1] = 2#(q[2]*q[4] — q[l]*q[3])
D[3][2] = 2x(q[3]*q[4] + q[l]xq[2])
D[3][3] =1 — 2«(q[2]*q[2]+ q[3]*q[3])

}

void DotRotMatrix (double t, double q[], double DD[][4])

{
double W[7], dql, dq2, dq3, dq4;
GetRotationvector (t, W);

dql = 0.5 * (—q[2] » W[1] — q[3] = W[2] — q[4] = W[3]); //

dq0

dg2 = 0.5 * (q[1] = W[1] — q[4] = W[2] + q[3] * W[3]);
//dq1

dg3 = 0.5 % (q[4] = W[1] + q[1l] = W[2] — q[2] *= W[3]);
//dq2

dgd = 0.5 * (—q[3] = W[1] + q[2] » W[2] + q[1l] * W[3]);
//dq3

DD[1][1] = —4x (q[3]*dq3 + q[4]*dq4d);

DD[l][§; = 2x((da2+q[3] + q[2]*dq3) — (dql*q[4] + q[1]x
dq4

DD[1][3] = 2x((dq2xq[4] + q[2]xdq4) + (dql*xq[3] + q[1]x
dq3))

DD | = 2x((da2xq[3] + q[2]xdq3) + (dqlxq[4] + q[1]*

—4x (q[2]*dq2 + q[4]xdq4);
2% ((da3+q[4] + q[3]*daq4) — (dalxq[2] + q[1]*

DD[3][§; = 2x((da2xq[4] + q[2]+dqd) — (dql*q[3] + q[1]=*

dq3) ) ;

DD[3][)2; = 2x((dg3*q[4] + q[3]xdq4) + (dql*xq[2] + q[1]=
dq2));

DD[3][3] = —4x (q[2]*dq2 + q[3]*dq3);
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//multiplication matrzi z vector of size 3
void MxV(double D[][4], double v[], double Vout[])
{
for (int i 0; i <= 3; i++) Vout[i] = 0.0;
for (int i 1; i <= 3; i++) for (int j = 1; j <= 3; j
) Vout[i] +=D[i][j] * v[j]:

}
void RotatingTolnertial (double X[], double Y|[])
{
Y[0] = X[0];
double v1[4], v2[4], v3[4], v4[4], q[b];
double D[4][4], DD[4][4];
q[1] = X[7]; a[2] =X[8]; q[3] =X[9]; q[4] = X[10];
//rotate position
VI[1] = X[1]; vi[2] = X[2]; vi[3] = X[3];
RotMatrix (q, D);
MxV(D, vl1, v3);
Y[1] = v3[1]; Y[2] = v3[2]; Y[3] = v3[3];
//rotate wvelocity
va[1] = X[4]; v2[2] = X[5]; v2[3] = X[6];
DotRotMatrix (X[0], q, DD);
MXV(D v2, v3);
MxV (DD, vl va);
Y[4] = v3][1 ]+V4[1]; Y[5] = v3[2]+v4[2]; Y[6] = v3[3]+Vv4
[31;
}

void InverRotMatrix (double q[], double D[][4]) //transpose of D

{

DI1][1] = 1 — 2x(q[3]*q[3] + q[4]*q[4])
D[2][1] = 2x(q[2]*q[3] — q[l]*xq[4]);
D[3][1] = 2x(q[2]*q[4] + q[l]*xq[3]);
D[1][2] = 2#(q[2]*q[3] + q[l]xq[4])
D[2][2] =1 — 2x(q[2]*q[2]+ q[4]*q[4])
D[3][2] = 2x(q[3]*q[4] — q[l]xq[2])
D[1][3] = 2x(q[2]*q[4] — aq[l]*q[3]);
D[2][3] = 2#(q[3]*xq[4] + q[l]*q[2]);
D[3][3] = 1 — 2x(q[2]*q[2] [3]*q[3])
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void DotInverRotMatrix(double t, double q[], double DD[]|[4])

{

double W[7], dql, dq2, dq3, dqg4;
GetRotationvector (t, W);

dql = 0.5 * (—q[2] = W[1] — q[3] = W[2] — q[4] = W[3]); //

dq0

dg2 = 0.5 * (q[1] = W[1] — q[4] = W[2] + q[3] * W[3]);
//dql

dg3 = 0.5 * (q[4] = W[1] + q[1] = W[2] — q[2] = W[3]);
//dq2

dgd = 0.5 % (—q[3] = W[1] + q[2] * W[2] + q[1] * W[3]);

DD[1][1] = —4x (q[3]*dq3 + q[4]*dq4);

DD[2H)1; = 2x((da2#q[3] + q[2]xdqg3) — (dalxq[4] + q[1]x
dq4

DD[3][1] = 2x((da2xq[4] + q[2]xdq4) + (dqlxq[3] + q[1]=*
dq3))

DD | = 2x((dq2xq[3] + q[2]xdq3) + (dql*xq[4] + q[1]*

—4x (q[2]*dq2 + q[4]*dq4d);
2%((dg3xq[4] + q[3]*dq4) — (dql*q[2] + q[l]*

?; 2% ((dq2+q[4] + q[2]*dq4) — (dqlxq[3] + q[1]*
DD[2H;’>; = 2x((dg3xq[4] + q[3]xdqd) + (dqlxq[2] + q[1]=*
3]

= —4x (q[2]*dq2 + q[3]*dq3);

void InertialtoRotating (double X[], double Y][])

{

Y[0] = X[0];

double v1[4], v2[4], v3[4], v4[4], q[b];

double Dinv[4][4], DDinv[4][4];

q[1] =X[7]; q[2] =X[8]; q[3] =X[9]; q[4] = X[10];
//rotate position
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v[1] = X[1]; vi[2] = X[2]; v1[3] = X[3];

InverRotMatrix (q, Dinv);
MxV(Dinv, vl, v3);

Y[1] = v3[1]; Y[2] = v3[2]; Y[3] = v3[3];

//rotate wvelocity

v2[1] = X[4]; v2[2] = X[5]; v2[3] = X[6];

DotInverRotMatrix (X[0], q, DDinv);
MXV(Dlnv v2, v3);
MxV(DDinv, Vl vd) ;
Y[4 ][ ]—V?)[ ]+v4[1]; Y[5] = v3[2]+v4[2];
3
Y[7] =

94

Y[6]

v3[3]+v4



References

[1]
2]
3]

[4]

[9]

[10]
[11]

[12]

[Online]. Available: https://en.wikipedia.org/wiki/Asteroid
https://en.wikipedia.org/wiki/Ellipsoid.

[Online|. Available:  |https://solarsystem.nasa.gov/asteroids-comets-and-meteors/
asteroids/in-depth /#otp_many_shapes_and_sizes

B. Persson and J. Biele, “On the stability of spinning asteroids,” Tribology Letters,
vol. 70, no. 2, pp. 1-19, 2022.

D. Karydis, G. Voyatzis, and K. Tsiganis, “A continuation approach for comput-
ing periodic orbits around irregular-shaped asteroids. an application to 433 eros,”
Advances in Space Research, vol. 68, no. 11, pp. 4418-4433, 2021.

[Online|. Available: https://solarsystem.nasa.gov/
[Online]. Available: https://global.jaxa.jp/projects/sas/muses_c/

A. Petit, J. Souchay, and C. Lhotka, “High precision model of precession and nutation
of the asteroids (1) ceres,(4) vesta,(433) eros,(2867) steins, and (25143) itokawa,”
Astronomy € Astrophysics, vol. 565, p. A79, 2014.

M. Tarnopolski, “Rotation of an oblate satellite: Chaos control,” Astronomy € As-
trophysics, vol. 606, p. A43, 2017.

R. Fitzpatrick, “Newtonian dynamics,” 2011.
D. Xar{nonuntpiov, “Gewpnticn Mnyavikn,” Nevtwvera Myxavikn, 1983.

D. H. Andrews, “The theory of the potential (macmillan, william duncan),” 1930.

[13] Y. Jiang and H. Baoyin, “Orbital mechanics near a rotating asteroid,” Journal of

Astrophysics and Astronomy, vol. 35, no. 1, pp. 17-38, 2014.

[14] V. Martinusi and D. Condurache, “Remarks on the hamiltonian of a particle in

a rotating frame,” Buletinul Institutulut Politehnic din lasi. Sectia I. Matematica,
Mecanica Teoretica, Fizica, vol. 55, 01 2009.

95


https://en.wikipedia.org/wiki/Asteroid
https://en.wikipedia.org/wiki/Ellipsoid
https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/in-depth/#otp_many_shapes_and_sizes
https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/in-depth/#otp_many_shapes_and_sizes
https://solarsystem.nasa.gov/
https://global.jaxa.jp/projects/sas/muses_c/

	Introduction
	Asteroids
	Asteroid Space Missions
	Asteroid precession and nutation
	Further general characteristics

	Rigid Body Rotation
	Euler angles
	Instantaneous angular velocity and Euler angles
	Rotation around a fixed point
	Moment of Inertia tensor
	Rotational Kinetic energy
	Principal Axes of Rotation
	Euler's Equations

	Quaternions
	Definition
	Basic algebraic properties
	Quaternion Derivations
	Quaternion, Euler angles, rotation matrix


	Orbital mechanics near a rotating asteroid
	Ellipsoid Potential
	The equation of motion in the classical form
	The equation of motion in the scalar form
	Horizontal stability

	Algorithm Description
	Main equations
	Initial Conditions and Parameters
	Unit Normalization

	Results
	Dynamical Maps for different pairs of initial radius and asteroid shape
	r0=1.5 and c=0.7
	r0=3.0 and c=0.7
	r0=1.5 and c=0.8
	r0=1.5 and c=0.4


	Conclusions
	main1c.cpp
	dSystemElpsdRotPrec23.cpp

