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Abstract

In previous work we defined and studied a notion of typicality,
originated with B. Russell, for properties and objects in the context
of general infinite first-order structures. In this paper we consider
this notion in the context of finite structures. In particular we define
the typicality degree of a property φ(x) over finite L-structures, for a
language L, as the limit of the probability of φ(x) to be typical in an
arbitrary L-structure M of cardinality n, when n goes to infinity. This
poses the question whether the 0-1 law holds for typicality degrees for
certain kinds of languages. One of the results of the paper is that, in
contrast to the classical well-known fact that the 0-1 law holds for the
sentences of every relational language, the 0-1 law fails for degrees of
properties of relational languages containing unary predicates. On the
other hand it is shown that the 0-1 law holds for degrees of some basic
properties of graphs, and this gives rise to the conjecture that the 0-1
law holds for relational languages without unary predicates. Another
theme is the “neutrality” degree of a property φ(x) ( i.e., the fraction
of L-structures in which neither φ nor ¬φ is typical), and in particular
the “regular” properties (i.e., those with limit neutrality degree 0). All
properties we dealt with, either of a relational or a functional language,
are shown to be regular, but the question whether every such property
is regular is open.
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1 Typicality à la Russell

In [6] we set out an investigation of a notion of typicality which is originated
with B. Russell. Specifically in [5, p. 89], Russell defines a typical English-
man to be one “who possesses all the properties possessed by a majority
of Englishmen.” The notion seems captivating in its simplicity and natu-
ralness, but in order to be formally defined one has to distinguish between
properties of an object language and properties of the metalanguage, else
typicality itself would be one of the properties we have to check about an En-
glishman, and thus circularity arises. Once we make the aforementioned dis-
tinction using a first-order language L, given any L-structure M = 〈M, . . .〉
we can define typical elements of M in the spirit of Russell, provided we
first define what a typical property is. Given a formula φ(x) of L without
parameters, let φ(M) denote the extension of φ(x) in M, i.e.,

φ(M) = {a ∈ M : M |= φ(a)}.

Definition 1.1 Let M = 〈M, . . .〉 be an L-structure. A property φ(x) of L
is said to be typical over M, if |φ(M)| > |¬φ(M)| = |M\φ(M)|. Then an
element a ∈ M is said to be typical if it satisfies every typical property over
M.

In [6], among other things, we established the existence of typical elements
in many infinite structures. For example the standard structure of reals (or
second-order arithmetic) contains |R|-many typical reals, while only < |R|-
many nontypical ones. (A variant of the same notion of typicality, adjusted
to fit to the context of set theory and generating a new inner model of ZF,
has appeared in [7].)

Instead, in the present paper we are interested only in typical properties
(not in typical objects), and only over the finite structures of a (finite) lan-
guage L. Specifically, we set out to study the probabilities for L-properties
φ(x), in one free variable, to be typical over arbitrary L-structures M of
cardinality n, and further to compute the limits of these probabilities, as n
tends to infinity. This study parallels the classical results of Finite Model
Theory about the probabilities of sentences of L to be true over finite struc-
tures and the fundamental 0-1 law about these truth probabilities.
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2 Typicality degrees of first-order properties over
finite structures

2.1 Asymptotic truth probabilities and 0-1 Laws

Typicality degrees of properties over finite structures and their asymptotic
behavior are, in some sense, generalizations of the truth degrees (or truth
probabilities) of sentences. So we need to recall first some definitions and
notation about the latter, see for example [1, §3], or the original paper [2].
The terminology and notation here is mostly that of [2].

Let L be a first-order language consisting of a finite set of (non-logical)
relational symbols. For every n, let Sn(L) be the set of L-structures M =
〈M, . . .〉 with |M | = n, or simply M = {1, 2, . . . , n}. For every L-sentence φ,
let Modn(φ) be the subset of structures of Sn(L) which satisfy φ. Let also

µn(φ) =
|Modn(φ)|
|Sn(L)| , and µ(φ) = lim

n→∞µn(φ),

if this limit exists. Given a class Φ of L-sentences we say that Φ satisfies the
0-1 law if for every φ ∈ Φ, µ(φ) = 0 or 1. The following is a fundamental
result of Finite Model Theory. The following Theorem is independently due
to Fagin [2] and Glebskii et al. [3].

Theorem 2.1 (0-1 Law for FOL) If L is a first-order language with no
function or constant symbols, then the set of sentences of L satisfies the 0-1
law.

Nevertheless Theorem 2.1 fails when L contains function symbols. The
following is the standard example used to prove this failure (see [2, §4] and
[1, Example 3.1.1]).

Example 2.2 Let L = {F}, where F is a unary function symbol. If φ is
the L-sentence φ := ∀x(F (x) 6= x), then µ(φ) = e−1, thus the 0-1 law fails
in general for the sentences of L.

Proof. Observe that for any n ≥ 1, the number of structures M =
〈M, f〉 ∈ Sn(L) that satisfy φ := (∀x)(F (x) 6= x) is just the number of
functions f : M → M , |M | = n, such that f(x) 6= x for every x ∈ M . This
number is (n − 1)n (since f(x) may take independently for each x, n − 1
possible values). On the other hand, |Sn(L)| = nn. Therefore µn(φ) =
(1− 1/n)n, and hence limn→∞ µn(φ) = e−1. a
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2.2 Typicality degrees of properties

Let us first elaborate a bit on the general definition 1.1. Recall that we de-
note by φ(M) the extension of φ is M, i.e., φ(M) = {a ∈ M : M |= φ(a)}.
When we deal with typicality of elements of a structure, we naturally dis-
tinguish them into just typical and non-typical, but when we deal with typ-
icality of properties, especially over finite structures, we should distinguish
them into three kinds, according to the size of their extension.

Definition 2.3 Let M be an L-structure and let φ(x) be a property of L
(without parameters). We say that:

• φ(x) is typical for M, if |φ(M)| > |¬φ(M)|.
• φ(x) is atypical for M, if |φ(M)| < |¬φ(M)|.
• φ(x) is neutral for M, if |φ(M)| = |¬φ(M)| (i.e., if neither φ(x) nor

¬φ(x) is typical).

The above distinction of properties is valid for all structures, infinite
and finite, but is particularly useful when dealing with finite structures. If
we apply the preceding definition to a structure M of Sn(L), then φ(x) is
typical, atypical and neutral for M, if and only if |φ(M)| > n/2, |φ(M)| <
n/2 and |φ(M)| = n/2, respectively, the latter case of course being possible
only for even n. Since for every φ and M∈ Sn(L),

|φ(M)| < n/2 ⇔ |¬φ(M)| > n/2,

that is,
φ(x) is atypical for M⇔ ¬φ(x) is typical for M,

to simplify terminology henceforth we shall not refer to “atypical φ(x)” but
to “typical ¬φ(x)” instead. Let us also fix for every L and n the following
subclasses of Sn(L).

Sn(φ : typ) = {M ∈ Sn(L) : φ(x) is typical for M} = {M : |φ(M)| > n/2},

Sn(φ : ntr) = {M ∈ Sn(L) : φ(x) is neutral for M} = {M : |φ(M)| = n/2}.
The second of the above classes exists only for even n, so for each property
φ(x), Sn(L) splits as follows for odd and even n:

S2n+1(L) = S2n+1(φ : typ) ∪ S2n+1(¬φ : typ), (1)

while
S2n(L) = S2n(φ : typ) ∪ S2n(¬φ : typ) ∪ S2n(φ : ntr). (2)
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Then, by analogy with the probabilities µn(φ), and asymptotic probability
µ(φ) = limn→∞ µn(φ) for the truth of L-sentences referred to in Section 2.1
above, we can naturally define the corresponding probabilities for a prop-
erty φ(x) to be typical or neutral over an arbitrary structure M ∈ Sn(L).
Specifically, for each n, we set

dn(φ : typ) =
|Sn(φ : typ)|
|Sn(L)| , d2n(φ : ntr) =

|S2n(φ : ntr)|
|S2n(L)| ,

and, further,

d(φ : typ) = lim
n→∞ dn(φ : typ), d(φ : ntr) = lim

n→∞ d2n(φ : ntr),

whenever these limits exist. dn(φ : typ) and d2n(φ : ntr) are the n-typicality
degree and n-neutrality degree of φ(x), respectively, while d(φ : typ) and
d(φ : ntr) are the corresponding asymptotic degrees. Here are some first
consequences of the definitions.

Fact 2.4 (i) If ` φ(x) → ψ(x), then dn(φ : typ) ≤ dn(ψ : typ), for all n ≥ 1.
Therefore, if d(ψ : typ) = 0, then d(φ : typ) = 0 too.

(ii) If ` φ(x) ↔ ψ(x), then dn(φ : typ) = dn(ψ : typ), and also d2n(φ :
ntr) = d2n(ψ : ntr) for all n ≥ 1.

(iii) For all φ(x) and n, d2n(φ : ntr) = d2n(¬φ : ntr).
(iv) If d(φ : typ) = a > 0 (resp. d(φ : ntr) = a > 0), then the set

{n : Sn(φ : typ) 6= ∅} (resp. {n : S2n(φ : ntr) 6= ∅}) is cofinite.

Proof. For (i) and (ii) just note that if ` φ(x) → ψ(x), then for every
structure M, φ(M) ⊆ ψ(M), hence |φ(M)| ≤ |ψ(M)|, so

M∈ Sn(φ : typ) ⇔ |φ(M)| > n/2 ⇒ |ψ(M)| > n/2 ⇔M ∈ Sn(ψ : typ),

therefore Sn(φ : typ) ⊆ Sn(ψ : typ). Moreover ` φ(x) ↔ ψ(x) implies
Sn(φ : typ) = Sn(ψ : typ) and also S2n(φ : ntr) = S2n(ψ : ntr), for every n.

(iii) If |M | = 2n, then for every φ(x), obviously |φ(M)| = n ⇔
|¬φ(M)| = n, so S2n(φ : ntr) = S2n(¬φ : ntr).

(iv) Let d(φ : typ) = a > 0. If we pick some 0 < ε < a, then clearly
there is n0 such that for all n ≥ n0, dn(φ : typ) > a − ε. Since dn(φ :
typ) = |Sn(φ:typ)|

|Sn(L)| , it follows that for all n ≥ n0 |Sn(φ : typ)| 6= 0, and hence
Sn(φ : typ) 6= ∅. The claim for {n : S2n(φ : ntr) 6= ∅} is shown similarly. a

By the definition of µ(φ) in Section 2.1, it follows immediately that for
any language L and any L-sentence φ, if µ(φ) exists, then so does µ(¬φ) and
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µ(¬φ) = 1 − µ(φ). What about typicality degrees? Is it true that d(¬φ :
typ) = 1−d(φ : typ) whenever d(φ : typ) exists, for any property φ(x)? The
question is eventually open and the reason is the limit limn→∞ d2n(φ : ntr).
Namely, while by (1)

d2n+1(φ : typ) + d2n+1(¬φ : typ) = 1,

(2) implies that

d2n(φ : typ) + d2n(¬φ : typ) + d2n(φ : ntr) = 1.

Thus in the second case we have

lim
n→∞ d2n(¬φ : typ) = 1− lim

n→∞ d2n(φ : typ)− lim
n→∞ d2n(φ : ntr),

and in order to infer that limn→∞ d2n(¬φ : typ) = 1− limn→∞ d2n(φ : typ),
we must establish that limn→∞ d2n(φ : ntr) = 0. We don’t know if this is
the case for every property φ(x) of every language. So we shall give a name
to properties satisfying this interesting and convenient condition.

3 Regularity of properties

Definition 3.1 A property φ(x) of L is said to be regular if d(φ : ntr) = 0.

Fact 3.2 (i) φ(x) is regular if and only if ¬φ(x) is regular.
(ii) If d(φ : typ) exists, then so does limn→∞ d2n+1(¬φ : typ) and

lim
n→∞ d2n+1(¬φ : typ) = 1− d(φ : typ).

(iii) If φ(x) is regular, then also

lim
n→∞ d2n(¬φ : typ) = 1− d(φ : typ).

and therefore
d(¬φ : typ) = 1− d(φ : typ).

Proof. (i) By Fact 2.4 (iii), for every n, d2n(φ : ntr) = d2n(¬φ : ntr),
therefore d(φ : ntr) = 0 if and only if d(¬φ : ntr) = 0.

(ii) If d(φ : typ) = a, then also limn→∞ d2n+1(φ : typ) = a, thus by (1),
limn→∞ d2n+1(¬φ : typ) = 1− a.

6



(iii) If d(φ : typ) = a and φ(x) is regular, then limn→∞ d2n(φ : ntr) = 0,
so by (2)

lim
n→∞ d2n(¬φ : typ) = 1− a− lim

n→∞ d2n(φ : ntr) = 1− a.

a
All specific properties we treat below are regular. So it is natural to

ask whether every property is regular. The question is open for general
languages. In the next subsection we show that it is true for a large class of
properties of the language L = {U1, . . . , Uk} which consists of an arbitrary
number of unary predicates.

3.1 Regularity of properties of L = {U1, . . . , Uk}
Let L = {U1, . . . , Uk} be a language with k unary predicates. For each
i ∈ {1, . . . , k}, let U1

i (x) = Ui(x) and U0
i (x) = ¬Ui(x). Then given a

function e ∈ {0, 1}k, we set φe(x) = U
e(1)
1 (x) ∧ U

e(2)
2 (x) ∧ · · · ∧ U

e(k)
k (x).

The properties φe(x), for e ∈ {0, 1}k, form the 2k atoms of the (syntactic)
Boolean algebra Bprop generated by the properties Ui(x), i ∈ {1, . . . , k},
and any two distinct atoms φe1(x), φe2(x) are mutually inconsistent, i.e.,
φe1(x) ∧ φe2(x) ` ⊥. Besides each of the 22k

elements of Bprop has the form
φE(x) =

∨
e∈E φe(x), for some E ⊆ {0, 1}k.

We shall generalize the class of formulas φe(x) defined above, by relaxing
the condition that for every i ≤ k, either Ui(x) or ¬Ui(x) must be a conjunct
of φe. Namely for any p such that 1 ≤ p ≤ k, a p-subsequence of 〈1, . . . , k〉
is a p-tuple 〈i1, . . . , ip〉 such that 1 ≤ i1 < i2 < · · · < ip ≤ k. Given a
p-subsequence s̄ = 〈i1, . . . , ip〉 and an e ∈ {0, 1}k, let

φs̄,e(x) = U
e(i1)
i1

(x) ∧ · · · ∧ U
e(ip)
ip

(x).

We refer to formulas φs̄,e(x) as basic formulas of L. The main result of this
subsection is that every basic formula of L is regular.

Given an L-structure M = 〈M,W1, . . . , Wk〉, let W 1
i = Wi and W 0

i =
M\Wi. For every e ∈ {0, 1}k, let Xe = W

e(1)
1 ∩W

e(2)
2 ∩ · · · ∩W

e(k)
k . Clearly

the sets Xe, for e ∈ {0, 1}k, are pairwise disjoint, but their difference from
φe(x) is that not all of them need to be nonempty. Let Bset ⊆ P(M) be
the Boolean algebra generated by the sets Wi, i ∈ {1, . . . , k} with at most
2k atoms. As before for each E ⊆ {0, 1}k, we set XE =

⋃
e∈E Xe. Further

for any p-subsequence s̄ = 〈i1, . . . , ip〉 of 〈1, . . . , k〉, with 1 ≤ p ≤ k, and any
e ∈ {0, 1}k, we write Xs̄,e = W

e(i1)
i1

∩ · · · ∩ W
e(ip)
ip

. Finally each set XE is
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defined in M by the property φE(x), i.e., XE = φE(M), and each Xs̄,e is
defined by φs̄,e(x), i.e., φs̄,e(M) = Xs̄,e.

Lemma 3.3 Given an L-structure M = 〈M, W1, . . . , Wk〉 as above, the de-
finable (without parameters) subsets of M are exactly the sets XE. Therefore
every L-property φ(x) is equivalent overM to a φe(x), for some E ⊆ {0, 1}k.

Proof. Towards reaching a contradiction assume that there is an L-
property φ(x) such that φ(M) = A and A 6= XE for every E ⊆ {0, 1}k.
Since the sets Xe form a partition of M , in order for a set Y ⊆ M to have
the property

(∀e)(∀a, b ∈ Xe)(a ∈ Y ⇔ b ∈ Y ),

it is necessary and sufficient that Y ∈ B, where B is the Boolean algebra
mentioned above, i.e., Y = XE for some E ⊆ {0, 1}k. So since by assumption
A /∈ B it follows that there exists e ∈ {0, 1}k such that

(∃a, b ∈ Xe)(a ∈ A ⇔ b /∈ A), (3)

Now observe that every bijection f : M → M which preserves the sets Wi,
i.e., such that f [Wi] = Wi for every i = 1, . . . , k, is an automorphism of
M = 〈M, W1, . . . , Wk〉. By (3) we can pick Xe and a, b ∈ Xe such that
a ∈ A ⇔ b /∈ A and take the bijection f1 : Xe → Xe which interchanges
a and b. Let also idM\Xe

be the identity on the complement of Xe and
f = f1 ∪ idM\Xe

. Then f is an automorphism of M such that f(a) = b.
Since we assumed that there is φ(x) such that A = φ(M), f must preserve
A. But

a ∈ A ⇔ a ∈ φ(M) ⇔M |= φ(a) ⇔M |= φ(f(a)) ⇔ f(a) ∈ A ⇔ b ∈ A,

a contradiction. This completes the proof. a

Let us notice here a result which is involved in all proofs of regularity
of properties. Whenever we try to check the regularity of a property over a
structure M with 2n elements, we shall necessarily deal with the number

(
2n
n

)

which counts the subsets M having half of its elements. The numbers
(
2n
n

)
are known as “central binomial coefficients” and several useful combinatorial
facts are known about them (see e.g. [8]). In particular the following upper
bound is particularly helpful and will be used below.

Fact 3.4 ([8]) For every n ≥ 1,
(
2n
n

) ≤ 4n√
πn

.
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For k ≤ n, we shall denote by (n)k the number of k-tuples of distinct
elements chosen from a set of n elements. It is well known that

(n)k =
n!

(n− k)!
= (n− k + 1)(n− k + 2) · · ·n.

Then (n)1 = n, (n)n = n!, (n)k = 0 for k > n. In particular we set (n)0 = 1.
The numbers (n)m are called falling factorials. Notations nm and P (n,m)
are often used in the bibliography instead of (n)m.

Below we shall employ the relation f(n) ∼ g(n) of asymptotic equality
between functions f, g : N → R, as well as that of asymptotic inequal-
ity f(n) . g(n). f(n) ∼ g(n) means, by definition, limn→∞

f(n)
g(n) = 1, or

equivalently, f(n) = g(n) + o(g(n)), where o(g(n)) is a function such that
limn→∞

o(g(n))
g(n) = 0. f(n) . g(n) means f(n) ≤ g(n) + o(g(n)). The proper-

ties of ∼ and . we shall need are the following, and are either well-known
or easily verified.

Fact 3.5 (i) The relation ∼ is preserved by the usual operations, i.e. if
f1 ∼ g1 and f2 ∼ g2, then f1 + f2 ∼ g1 + g2, f1 · f2 ∼ g1 · g2, and f1

f2
∼ g1

g2
.

(ii) If f(n) ∼ g(n) and limn→∞ f(n) = a ∈ R, then limn→∞ g(n) = a.
(iii) If f(n) ∼ g(n) and g(n) ≤ h(n), then f(n) . h(n).
(iv) If 0 ≤ f(n) . g(n) and limn→∞ g(n) = 0, then limn→∞ f(n) = 0.

[For completeness we sketch the proof of (ii). Let f(n) ∼ g(n) and
limn→∞ f(n) = a ∈ R. Then clearly both f, g are bounded, and let b be
a bound for g, i.e., ∀n |g(n)| ≤ b. We have f(n) = g(n) + o(g(n)), where
limn→∞

o(g(n))
g(n) = 0. So for all n:

(1) |g(n)− a| ≤ |g(n)− f(n)|+ |f(n)− a| = |o(g(n))|+ |f(n)− a|.
Fix some ε > 0. There is n1 such that ∀n ≥ n1 |o(g(n))

g(n) | ≤ ε
2b , hence:

(2) ∀n ≥ n1 |o(g(n))| ≤ ε
2b |g(n)| ≤ ε

2 .
Also there is n2 such that:

(3) ∀n ≥ n2 |f(n)− a| < ε
2 .

If n0 = max(n1, n2), (1), (2) and (3) yield ∀n ≥ n0 |g(n)− a| < ε.]

For example, for any fixed k such that 1 ≤ k < n, (n)k is a polynomial
in n of degree k with leading coefficient 1, so

(n)k ∼ nk. (4)

We shall apply relation (4) several times without explicit reference to that.
We shall also make use of the following result.
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Fact 3.6
∑

k<n/2

(
n
k

)
=

∑
k>n/2

(
n
k

) ∼ 2n−1.

Proof. The first equality is well-known. Moreover for every n,∑n
k=0

(
n
k

)
= 2n. If n is odd,

∑n
k=0

(
n
k

)
=

∑
k<n/2

(
n
k

)
+

∑
k>n/2

(
n
k

)
, so∑

k<n/2

(
n
k

)
= 2n

2 = 2n−1. If n is even and n = 2m, then 2(
∑

k<n/2

(
n
k

)
) +(

2m
m

)
= 2n, that is,

∑
k<n/2

(
n
k

)
= 1

2(2n − (
2m
m

)
) = 2n−1 − 1

2

(
2m
m

)
. Therefore

∑
k<n/2

(
n
k

)

2n−1
= 1− 1

22m

(
2m

m

)
.

So it suffices to see that limm→∞ 1
22m

(
2m
m

)
= 0. But this follows from Fact

3.4, since 1
22m

(
2m
m

) ≤ 1
22m

4m√
πm

= 1√
πm

−→m 0. a

Theorem 3.7 Every basic property φs̄,e(x) of L = {U1, . . . , Uk} is regular.
In particular every property φe(x), as well as every Ui(x) and ¬Ui(x), for
i = 1, . . . , k, is regular.

Proof. Let us fix the ground set M of all M = 〈M, W1, . . . , Wk〉 ∈
S2n(L), i.e. |M | = 2n, and fix also a basic formula φs̄,e(x), for some p-
subsequence s̄ = 〈i1, . . . , ip〉 of 〈1, . . . , k〉 and some e ∈ {0, 1}k. We have to
compute the limit of the probability

d2n(φs̄,e : ntr) =
|S2n(φs̄,e : ntr)|

|S2n(L)| .

Note that each L-structure M is determined by a k-tuple 〈W1, . . . ,Wk〉
of elements of P(M), rather than a k-element subset {W1, . . . ,Wk}. This is
because an interpretation of L in M is a mapping I : {U1, . . . , Uk} → P(M),
or I : {1, . . . , k} → P(M), such that I(i) = Wi = UM

i . Each such I
determines a k-tuple 〈W1, . . . , Wk〉. To be precise, each Wi must be different
from ∅ and M , but this does not affect the asymptotic behavior of the
neutrality degree. Namely, by (4),

|S2n(L)| = (22n−2)k ∼ 22kn. (5)

In order to compute |S2n(φ(s̄,e) : ntr)| we fix temporarily a set A ⊆ M

such that |A| = n. Since φs̄,e(M) = W
e(i1)
i1

∩ · · · ∩W
e(ip)
ip

, we set

Z(A) = {〈W1, . . . ,Wk〉 : W
e(i1)
i1

∩ · · · ∩W
e(ip)
ip

= A}.
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Then clearly

|S2n(φ(s̄,e) : ntr)| = |Z(A)| ·
(

2n

n

)
. (6)

Now |Z(A)| = |Z1(A)| · |Z2(A)|, where

Z1(A) = {〈W e(i1)
i1

, · · · ,W
e(ip)
ip

〉 : W
e(i1)
i1

∩ · · · ∩W
e(ip)
ip

= A},

and
Z2(A) = {〈W e(j1)

j1
, . . . ,W

e(jk−p)
jk−p

〉 : {W e(j1)
j1

, . . . ,W
e(jk−p)
jk−p

} ⊆

⊆ P(M)\{W e(i1)
i1

, . . . , W
e(ip)
ip

}}.
In order to compute (or find upper bounds for) |Z1(A)| and |Z2(A)|, we
must distinguish the cases p = 1 and 2 ≤ p ≤ k.

Case 1. p = 1. Without loss of generality we may assume that s̄ is the
1-subsequence (1), i.e., φ(s̄,e)(x) is either U1(x) or ¬U1(x). By Fact 3.2 (i), it
suffices to consider only U1(x). Then U1(M) = W1, so Z(A) = {W1 : W1 =
A}, and hence |Z1(A)| = 1. Also Z2(A) = {〈W2, . . . , Wk}〉 : {W2, . . . , Wk} ⊆
P(M)\{W1}}, so, in view of (4),

|Z2(A)| = (22n − 1)k−1 ∼ 22(k−1)n.

Thus also |Z(A)| = |Z2(A)| ∼ 22(k−1)n, and therefore, letting A range over
all sets of cardinality n,

S2n(U1(x) : ntr) ∼
(

2n

n

)
· 22(k−1)n.

From the last equality, (5) and Fact 3.4 we get

d2n(U1(x) : ntr) ∼
(

2n

n

)
·2

2(k−1)n

2kn
∼

(
2n

n

)
· 1
22n

≤ 4n

√
πn
· 1
22n

=
1√
πn

−→n= 0.

Therefore U1(x) is regular.

Case 2. 2 ≤ p ≤ k. Fix a p-subsequence of 〈1, . . . , k〉 and an e ∈ {0, 1}p.
Then φs̄,e(M) = W

e(i1)
il

∩ · · · ∩W
e(ip)
ip

. Fixing temporarily a set A ⊆ M , as

before Z2(A) consists of the (k−p)-tuples of P(M)\{W e(i1)
i1

, . . . , W
e(ip)
ip

}, so

|Z2(A)| = (22n − p)k−p ∼ 22(k−p)n.

11



The main difference of this case from the previous one lies in the computation
of Z1(A). Observe that W

e(i1)
il

∩ · · · ∩ W
e(ip)
ip

= A implies A ⊆ W
e(ij)
ij

, for
each j = 1, . . . , p. For each ij we consider the cases e(ij) = 1 and e(ij) = 0.

(a) If e(ij) = 1, then A ⊆ Wij , so Wij = A ∪ Yj , for some Yj ⊆ M\A.
(b) If e(ij) = 0, then A ⊆ M\Wij , so M\Wij = A ∪ Yj for some Yj ⊆

M\A.
Thus in both cases for each j = 1, . . . , p there are at most as many

possible choices for Wij as are the choices for Yj ⊆ M\A, i.e., 2|M\A| = 2n.
In fact the choices of such Yij ’s are not independent. They must satisfy the

condition
⋂p

j=1 Yij = ∅ (since otherwise
⋂p

j=1 W
e(ij)
ij

6= A). Nevertheless, the
number of possible p-tuples of Z1(A) are at most as many as the p-tuples of
P(M\A), i.e., (2n)p ∼ 2pn. Therefore

|Z1(A)| ≤ (2n)p ∼ 2pn.

So
|Z(A)| = |Z1(A)| · |Z2(A)| . 22(k−p)n · 2pn ∼ 2(2k−p)n.

Letting A range over all sets of cardinality n, we have

|S2n(φ(s̄,e) : ntr)| . 2(2k−p)n ·
(

2n

n

)
.

So, by (5) and Fact 3.4,

d2n(φ(s̄,e) : ntr) .
2(2k−p)n · (2n

n

)

22kn
∼

(
2n
n

)

2pn
≤ 4n

2pn · √πn
.

Since p ≥ 2, 4n

2pn·√πn
≤ 4n

4n·√πn
= 1√

πn
. So d2n(φ(s̄,e) : ntr) −→n 0, according

to Fact 3.5. This completes the proof. a

It is still open however whether every property of L, i.e., every φE(x) =∨
e∈E φe(x), for E ⊆ {0, 1}k, is regular.

Question 3.8 Is every property φE(x) of L = {U1, . . . , Uk} regular?

More generally:

Question 3.9 Is every property of a finite relational language regular?

12



3.2 A necessary condition for regularity

Next we shall give a necessary condition in order for a property φ(x), (a) to
have typicality degree 0, and (b) to be regular.

Let L be a language not necessarily relational. For any L-property φ(x)
and every m ≥ 1 let us set

φ(m) := (∃x1 · · · ∃xm)


(

∧

i 6=j

xi 6= xj) ∧ (
m∧

i=1

φ(xi))


 .

φ(m) is a sentence and says that φ(x) is satisfied by at least m objects. So
m < k implies φ(k) → φ(m), and thus for every m < k ≤ n,

Modn(φ(k)) ⊆ Modn(φ(m)). (7)

As usual for every n let bn
2 c be the greatest integer ≤ n/2. Then notice that

by the definition of Sn(φ : typ), for every M∈ Sn(L),

M∈ Sn(φ : typ) ⇔M |= φ(bn
2
c+1),

or
Sn(φ : typ) = Modn(φ(bn

2
c+1)). (8)

On the other hand, for every M and k ≤ |M |, |φ(M)| = k ⇒M |= φ(k), so

M∈ S2n(φ : ntr) ⇒M |= φ(n),

or
S2n(φ : ntr) ⊆ Mod2n(φ(n)). (9)

Lemma 3.10 Let L be any language and φ(x) be an L-property. If there is
m ≥ 1 such that µ(φ(m)) = 0, then:

(i) d(φ : typ) = 0, and
(ii) φ(x) is regular.

Proof. Let µ(φ(m)) = 0 for some fixed m. It means that

µn(φ(m)) =
|Modn(φ(m))|
|Sn(L)| −→n 0. (10)

(i) For all n ≥ 2m we have m < bn
2 c+ 1, so by (7) and (8)

Sn(φ : typ) = Modn(φ(bn
2
c+1)) ⊆ Modn(φ(m)).

13



Consequently, for every n ≥ 2m,

|Sn(φ : typ)|
|Sn(L)| ≤ |Modn(φ(m))|

|Sn(L)| . (11)

Then (11) combined with (10) yields

|Sn(φ : typ)|
|Sn(L)| −→n 0,

i.e. d(φ : typ) = 0.
(ii) For every n ≥ m, by (7), (9) and (10) we have

d2n(φ : ntr) =
|S2n(φ : ntr)|
|S2n(L)| ≤ |Mod2n(φ(n))|

|S2n(L)| ≤ |Mod2n(φ(m))|
|S2n(L)| −→n 0.

Thus φ(x) is regular. a

Corollary 3.11 If d(φ : typ) = 1, then (∀m ≥ 1)(µ(φ(m)) = 1).

Proof. Assume d(φ : typ) = 1. First note that if L is relational, then
the claim follows immediately from 3.10 by the help of Theorem 2.1 about
the 0-1 law for sentences of a relational L. For d(φ : typ) = 1 implies
d(φ : typ) 6= 0, so by 3.10 (∀m ≥ 1)(µ(φ(m)) 6= 0) is true, and hence by 2.1
(∀m ≥ 1)(µ(φ(m)) = 1).

However the claim can be shown without appeal to Theorem 2.1, by a
direct argument similar to that of 3.10. Namely, assuming d(φ : typ) = 1
we have |Sn(φ : typ)|

|Sn(L)| −→n 1, (12)

and since by (11) above, we have that for every n ≥ 2m,

|Sn(φ : typ)|
|Sn(L)| ≤ |Modn(φ(m))|

|Sn(L)| ,

it follows that for all m ≥ 1,

|Modn(φ(m))|
|Sn(L)| −→n 1,

i.e., (∀m ≥ 1)(µ(φ(m)) = 1). a
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4 The 0-1 law for typicality degrees and its failure
for languages with unary properties

Given a language L, the 0-1 law for typicality degrees of properties of L can
be defined by complete analogy with the corresponding law for sentences
described in Section 2.1, as follows.

Definition 4.1 Let L be a finite language. We say that the 0-1 law holds
for typicality degrees of properties of L, if for every L-property φ(x), either
d(φ : typ) = 0 or d(φ : typ) = 1.

We show in this Section that the 0-1 law fails for the language L =
{U1, . . . , Uk} with k unary predicates. Recall from the previous section the
definition of a basic property φs̄,e(x) of L, for a p-subsequence s̄ of 〈1, . . . , k〉
and an e ∈ {0, 1}k.

Theorem 4.2 Let L = {U1, . . . , Uk} with k ≥ 1, and φs̄,e(x) be a basic
property of L.

(i) If s̄ is a 1-sequence, then d(φs̄,e : typ) = 1/2.
(ii) If s̄ is a p-sequence for p ≥ 2, then d(φs̄,e : typ) = 0.

The subcase for p = 2 of this Theorem requires special treatment, and it
is more convenient to consider it separately. So we shall split Theorem 4.2
into Lemmas 4.3 and 4.4 below. The proof of the Theorem is an immediate
consequence of these Lemmas.

Lemma 4.3 (i) If s̄ is a 1-sequence, then d(φs̄,e : typ) = 1/2.
(ii) If s̄ is a p-sequence for p ≥ 3, then d(φs̄,e : typ) = 0.

Proof. Let M = 〈M,W1, . . . , Wk〉 be an L-structure with |M | = n, and
fix a property φs̄,e(x) as above. Recall that given φs̄,e(M) = W

e(i1)
i1

∩ · · · ∩
W

e(ip)
ip

. The proof has many similarities with the proof of Theorem 3.7.
Given any set A ⊆ M let us define Z(A), Z1(A), Z2(A) exactly as in the
aforementioned proof. Then, as before, |Z(A)| = |Z1(A)| · |Z2(A)|.

Setting Z(m) =
⋃{Z(A) : |A| = m}, we have |Z(m)| = (

n
m

) · |Z(A)|, for
any A with |A| = m, and also

|Sn(φ(s̄,e : typ)| =
∑

m>n/2

|Z(m)|. (13)
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(i) Let s̄ be a 1-sequence. Without loss of generality we assume that
φs̄,e(x) = U1(x), so φs̄,e(M) = W1. Arguing exactly as in the proof of 3.7,
we see that |Z1(A)| = 1, and

|Z2(A)| = (2n − 1)k−1 ∼ 2(k−1)n.

Thus also |Z(A)| = |Z2(A)| ∼ 2(k−1)n, and therefore

Sn(φs̄,e(x) : typ) ∼
∑

m>n/2

(
n

m

)
· 2(k−1)n ∼ 2n−1 · 2(k−1)n,

hence by (5),

dn(φs̄,e : typ) ∼ 2n−1 · 2(k−1)n

2kn
∼ 2n−1

2n
=

1
2
.

Thus d(φs̄,e : typ) = 1
2 , according to Fact 3.5.

(ii) Let s̄ be a p-sequence with 3 ≤ p ≤ k. Arguing as in the corre-
sponding part of the proof of 3.7, for each A with |A| = m, the p-tuples
of Z1(A) are as many as the p-tuples 〈Yj1 , . . . , Yjp〉 of elements of P(M\A)
whose members are pairwise disjoint. The number of all such sequences is
(2n−m)p and constitutes an upper bound of |Z1(A)|, that is

|Z1(A)| ≤ (2n−m)p.

So
|Z1(A)| ≤ (2n−m)p, while |Z2(A)| = (2n − p)k−p.

Therefore

|Z(A)| = |Z1(A)| · |Z2(A)| ≤ (2n − p)k−p · (2n−m)p,

and

|Z(m)| ≤
(

n

m

)
· (2n − p)k−p · (2n−m)p.

So

Sn(φs̄,e : typ) ≤
∑

m>n/2

(
n

m

)
[(2n − p)k−p · (2n−m)p] =

= (2n − p)k−p ·
∑

m>n/2

(
n

m

)
(2n−m)p ∼ 2(k−p)n ·

∑

m>n/2

(
n

m

)
(2n−m)p.
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Since |Sn(L)| = (2n)k ∼ 2kn, it follows from the last relation that

dn(φs̄,e : typ) . 1
2pn

·
∑

m>n/2

(
n

m

)
(2n−m)p.

Setting n−m = i, this is written

dn(φs̄,e : typ) . 1
2pn

·
∑

i<n/2

(
n

i

)
(2i)p. (14)

[Note that for p > 2i, i.e., for i < log2 p, (2i)p = 0, so the above sum is equal
to

∑
log2 p≤i<n/2

(
n
i

)
(2i)p, however for notational simplicity we let i range

over all i < n/2.]
Now for every n, k, besides the relation (n)k ∼ nk, the relation (n)k ≤ nk

holds too. In particular (2i)p ≤ 2pi, and also for i < n/2, 2pi < 2
pn
2 , so (14)

implies

dn(φs̄,e : typ) . 2
pn
2

2pn
·

∑

i<n/2

(
n

i

)
=

1

2
pn
2

∑

i<n/2

(
n

i

)
.

Now by Fact 3.6,
∑

i<n/2

(
n
i

) ∼ 2n−1, therefore

dn(φs̄,e : typ) . 2n−1

2
pn
2

. (15)

Since p ≥ 3, we have

2n−1

2
pn
2

≤ 2n−1

2
3n
2

=
1

2
n
2
+1

−→n 0,

so, by Fact 3.5, (15) yields dn(φs̄,e : typ) −→n 0. This proves clause (ii) and
completes the proof of the Lemma. a

In the proof of the next Lemma we shall make use of Stirling numbers
of the second kind. Recall that they are denoted

{
n
k

}
, or S(n, k), where,

for 1 ≤ k ≤ n,
{

n
k

}
counts the number of partitions of {1, . . . , n} into k

nonempty parts. The explicit formula for
{

n
k

}
is (see [4, p. 231] or [9]):

{
n

k

}
=

1
k!

k∑

i=0

(−1)k−i

(
k

i

)
in. (16)

Lemma 4.4 If s̄ is a 2-sequence then d(φ(s̄,e : typ) = 0.
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Proof. Fix a 2-subsequence s̄ = 〈i1, i2〉 of 〈1, . . . , k〉 and an e ∈ {0, 1}k.
For any set A ⊆ M ,

Z1(A) = {〈W e(i1)
i1

,W
e(i2)
i2

〉 : W
e(i1)
i1

∩W
e(i2)
i2

= A},

so W
e(i1)
i1

= A∪Y1 and W
e(i2)
i2

= A∪Y2, where Y1, Y2 ⊆ M\A and Y1∩Y2 = ∅.
It follows that |Z1(A)| = |P (A)|, where

P (A) = {〈Y1, Y2〉 : Y1, Y2 ⊆ M\A ∧ Y1 ∩ Y2 = ∅}.
The pairs 〈Y1, Y2〉 are of two kinds: those for which Y1, Y2 form a partition
of M\A, i.e., Y1 ∪Y2 = M\A, and those for which Y1 ∪Y2 6= M\A. That is,
P (A) = P1(A) ∪ P2(A), where

P1(A) = {〈Y1, Y2〉 : Y1 ∩ Y2 = ∅ ∧ Y1 ∪ Y2 = M\A},
P2(A) = {〈Y1, Y2〉 : Y1 ∩ Y2 = ∅ ∧ Y1 ∪ Y2 6= M\A},

and
|Z1(A)| = |P (A)| = |P1(A)|+ |P2(A)|. (17)

Now |P1(A)| and |P2(A)| can be easily calculated in terms of the 2-partitions
and 3-partitions of M\A, respectively. Let Π(M\A, 2), Π(M\A, 3) denote
the sets of partitions of M\A into 2 and 3 nonempty parts, respectively.
Then |Π(M\A, 2)| = {

n−m
2

}
and |Π(M\A, 3)| = {

n−m
3

}
. Now a member of

Π(M\A, 2) is a 2-element subset of M\A, while P1(A) consists of ordered
pairs of such subsets, therefore

|P1(A)| = 2 · |Π(M\A, 2)| = 2 ·
{

n−m

2

}
.

Analogously every member of Π(M\A, 3) is a 3-element subset of M\A, and
each such subset provides (3)2 pairs that belong to P2(A) so

|P2(A)| = (3)2 · |Π(M\A, 3)| = 6 ·
{

n−m

3

}
.

For every n ≥ 2, it is easy to see (without appealing to (16)) that
{

n
2

}
=

2n−1 − 1, so for every A with |A| = m ≤ n− 2,

|P1(A)| = 2 · (2n−m−1 − 1) = 2n−m − 2.

If P1(m) =
⋃{P1(A) : |A| = m}, then for m ≤ n− 2,

|P1(m)| =
(

n

m

)
· (2n−m − 2). (18)
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On the other hand, for every n ≥ 3,
{

n
3

}
is calculated by the help of formula

(16) which yields: {
n

3

}
=

1
6
[3− 3 · 2n + 3n].

Therefore, for |A| = m ≤ n− 3,

|P2(A)| = 3− 3 · 2n−m + 3n−m.

So setting as before P2(m) =
⋃{P2(A) : |A| = m}, we have for m ≤ n− 3,

|P2(m)| =
(

n

m

)
· (3− 3 · 2n−m + 3n−m). (19)

Finally by (17), (18) and (19) above we obtain, for |A| = m ≤ n− 3,

|Z1(m)| = |P1(m)|+ |P2(m)| =
(

n

m

)
(3n−m − 2n−m+1 + 1).

Recall also from above that for p = 2,

|Z2(m)| ∼
(

n

m

)
2(k−2)n,

so for m ≤ n− 3,

|Z(m)| = |Z1(m)| · |Z2(m)| ∼
(

n

m

)
· [2(k−2)n · (3n−m − 2n−m+1 + 1)]. (20)

Now it is easy to see that

Sn(φs̄,e : typ) =
∑

n≥m>n/2

|Z(m)| ∼
∑

n−3≥m>n/2

|Z(m)|,

so by (20),

Sn(φs̄,e : typ) ∼ 2(k−2)n ·
∑

n−3≥m>n/2

(
n

m

)
· (3n−m − 2n−m+1 + 1),

and, given that Sn(L) = 2kn,

dn(φs̄,e : typ) ∼ 1
22n

·
∑

n−3≥m>n/2

(
n

m

)
· (3n−m − 2n−m+1 + 1).
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Setting n−m = i, this is written

dn(φs̄,e : typ) ∼ 1
22n

·
∑

3≤i<n/2

(
n

i

)
·(3i−2i+1+1) ≤ 1

22n
·

∑

3≤i<n/2

(
n

i

)
·(3n

2−2
n
2
+1+1) =

=
3

n
2 − 2

n
2
+1 + 1

22n
·

∑

3≤i<n/2

(
n

i

)
≤ 3

n
2 − 2

n
2
+1 + 1

22n
·

∑

0≤i<n/2

(
n

i

)
.

By Fact 3.6, the last quantity is

∼ 3
n
2 − 2

n
2
+1 + 1

22n
· 2n−1 ∼ 3

n
2 − 2

n
2
+1 + 1

2n+1
∼ 1

2

(
3

n
2

4
n
2

− 1
2

n
2
−1

+
1
2n

)
.

So finally,

dn(φs̄,e : typ) . 1
2

(
3

n
2

4
n
2

− 1
2

n
2
−1

+
1
2n

)
−→n 0.

This completes the proof. a

An immediate consequence of clause (i) of Theorem 4.2 is the following.

Corollary 4.5 The 0-1 law for typicality degrees of properties of a relational
language fails in general.

Let us consider at this point another question related to property “U(x)”,
namely the question about the probability of the sentences U(x)(m), for
m ≥ 1. We can see that, in contrast to the typicality degree 1/2 of U(x),
the truth probability of the sentences U(x)(m) is 1.

Proposition 4.6 For every m ≥ 1, µ(U(x)(m)) = 1.

Proof. The sentence U(x)(m) says that “U(x) is satisfied by at least m
elements”. Therefore Modn(U(x)(m)) = {A ⊆ {1, . . . , n} : |A| ≥ m}, or
|Modn(U(x)(m))| = 2n −∑

0≤i<m

(
n
i

)
, and therefore

µn(U(x)(m)) =
2n −∑

0≤i<m

(
n
i

)

2n
= 1−

∑
0≤i<m

(
n
i

)

2n
.

The nominator
∑

0≤i<m

(
n
i

)
of the fraction on the right-hand side is a poly-

nomial in n of degree m− 1, so its quotient by the exponential 2n goes to 0
an n grows. Thus µ(U(x)(m)) = limn→∞ µn(U(x)(m)) = 1. a
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Question 4.7 Does the 0-1 law about typicality degrees hold for every prop-
erty of a relational language without unary predicates?

We close this section with a remark about Question 4.7. Some people
believe that the answer to this question must be positive on the basis that
the rather general method of “extension axioms” that was used by R. Fagin
in [2] to prove the 0-1 law for truth degrees of sentences of a relational
language, could be also applied somehow to the case of typicality degrees
of properties.1 The problem however is that this specific method works for
sentences of every relational language, including those that contain unary
predicates, while, as we saw above, in the case of typicality degrees the
method should not work when unary predicates are included. I don’t know
how this gap could be bridged and if Fagin’s method is actually applicable
to the present case.

5 Some results about regularity and degrees of
properties of the language L={F}

The failure of 0-1 law for typicality degrees of properties of languages with
unary predicates is a divergence from the behavior of truth probabilities
of sentences. In this Section we consider some properties of the language
L = {F} where F is a unary function symbol. We saw in Example 2.2 that
µ(∀x(F (x) 6= x)) = e−1, which means that the 0-1 law does not hold for
sentences of L. The question is whether the 0-1 law fails also for typicality
degrees of properties of this language. In this section we consider two prop-
erties: 1) φ(x) := (F (x) 6= x) and 2) ψ(x) := ∃y(F (y) = x). It is shown
that both are regular, the degree of φ(x) is 1, while the degree of ψ(x) is
not known, although we give evidence that it is 1 too.

5.1 The property φ(x):=(F(x) 6= x) and its negation

Proposition 5.1 Let L = {F} and let φ(x) := (F (x) 6= x). Then

d(φ : typ) = 1.

Proof. Let M = 〈M, f〉 with |M | = n and A ⊆ M such that A = φ(M).
Then a ∈ A ⇔ f(a) 6= a and a /∈ A ⇔ f(a) = a. Thus if G(A) =
{f ∈ MM : φ(M) = A}, every f ∈ G(A) can be identified with the pair

1In contrast the method of Glebskii et al. in [3] seems to be rather ad hoc.
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(f¹A, id(M\A)), or since id(M\A) is unique, with f¹(M\A). As we argued
in Example 2.2, if |A| = m then |G(A)| = (n − 1)m. Let us set G(m) =⋃{G(A) : A ⊆ M & |A| = m}. Then, since there are

(
n
m

)
sets of cardinality

m, |G(m)| = (
n
m

)
(n− 1)m. Also by definition,

Sn(φ : typ) =
⋃
{G(m) : m > n/2},

therefore

|Sn(φ : typ)| =
∑

m>n/2

|G(m)| =
∑

m>n/2

(
n

m

)
(n− 1)m. (21)

It is more convenient to set m = n− k and write this sum in the form:

|Sn(φ : typ)| =
∑

k<n/2

(
n

n− k

)
(n− 1)n−k =

∑

k<n/2

(
n

k

)
(n− 1)n−k,

or
|Sn(φ : typ)| =

∑

k<n/2

ak(n), (22)

where ak(n) =
(
n
k

)
(n− 1)n−k. Then

dn(φ : typ) =
|Sn(φ : typ)|

nn
=

∑

k<n/2

ak(n)
nn

.

Setting for simplicity, an =
∑

k<n/2
ak(n)
nn , we have to compute the limit

d(φ : typ) = lim
n→∞ an. (23)

Now ak(n)
nn = 1

nn ·
(
n
k

)
(n− 1)n−k, or, multiplying and dividing the right-hand

side by (n− 1)k, this is written

ak(n)
nn

=
(n− 1)n

nn
·
(

n

k

)
1

(n− 1)k
.

Therefore

an =
∑

k<n/2

(
n− 1

n

)n

·
(

n

k

)
1

(n− 1)k
=

(
n− 1

n

)n

·
∑

k<n/2

(
n

k

)
1

(n− 1)k
= bn·cn,

where bn =
(

n−1
n

)n and cn =
∑

k<n/2

(
n
k

)
1

(n−1)k , and

lim
n→∞ an = ( lim

n→∞ bn) · ( lim
n→∞ cn). (24)
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Now limn→∞ bn = e−1. So it remains to compute

lim
n→∞ cn = lim

n→∞
∑

k<n/2

(
n

k

)
1

(n− 1)k
. (25)

We shall show that limn→∞ cn = e. It suffices to show that

lim
n→∞ c2n = lim

n→∞ c2n+1 = e.

(a) Proof of limn→∞ c2n = e. We have

c2n =
∑

k<n

(
2n

k

)
1

(2n− 1)k
=

n−1∑

k=0

(
2n

k

)
1

(2n− 1)k
.

However it is easy to see that limn→∞ c2n = limn→∞ c′2n, where

c′2n =
n∑

k=0

(
2n

k

)
1

(2n− 1)k
.

This is because c′2n − c2n =
(
2n
n

)
1

(2n−1)n , which goes to 0 when n goes to
infinity, as follows easily from Fact 3.4. Therefore it suffices to show that

lim
n→∞ c′2n = e.

To show that, we compare each term c′2n with the term

gn =
n∑

k=0

(
n

k

)
1

(n− 1)k
=

(
1 +

1
n− 1

)n

=
(

n

n− 1

)n

,

for which it is well-known that limn→∞ gn = e. Specifically we compare each
summand Ak(n) =

(
2n
k

)
1

(2n−1)k of c′2n, for k ≤ n, with the corresponding

summand Bk(n) =
(
n
k

)
1

(n−1)k of gn. Then we have

Ak(n) =
1
k!

(2n− k + 1)(2n− k + 2) · · · 2n

(2n− 1)k
=

1
k!

P (2n)
Q(2n)

,

while
Bk(n) =

1
k!

(n− k + 1)(n− k + 2) · · ·n
(n− 1)k

=
1
k!

P (n)
Q(n)

,
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where P (x) and Q(x) are polynomials of degree k. If αk and βk are the
leading coefficients of P (x) and Q(x), respectively, then

lim
n→∞

P (2n)
Q(2n)

= lim
n→∞

P (n)
Q(n)

=
αk

βk
,

therefore limn→∞(Ak(n)−Bk(n)) = 0. Besides,

c′2n − gn =
n∑

k=0

Ak(n)−
n∑

k=0

Bk(n) =
n∑

k=0

(Ak(n)−Bk(n)),

so

lim
n→∞(c′2n − gn) =

n∑

k=0

lim
n→∞(Ak(n)−Bk(n)) = 0.

Therefore limn→∞ c′2n = limn→∞ gn = e, as required.

(b) Proof of limn→∞ c2n+1 = e. This is almost the same as in (a). First
notice that k < (2n + 1)/2 ⇔ k ≤ n, so

c2n+1 =
∑

k<(2n+1)/2

(
2n + 1

k

)
1

(2n)k
=

n∑

k=0

(
2n + 1

k

)
1

(2n)k
.

Then we set for every k ≤ n,

A′k(n) =
(

2n + 1
k

)
1

(2n)k
=

1
k!

P (2n + 1)
Q(2n + 1)

and compare it again with

Bk(n) =
1
k!

P (n)
Q(n)

of the preceding case. As before we have

lim
n→∞

P (2n + 1)
Q(2n + 1)

= lim
n→∞

P (n)
Q(n)

=
αk

βk
,

therefore limn→∞(A′k(n)−Bk(n)) = 0, and hence

lim
n→∞(c2n+1 − gn) =

n∑

k=0

lim
n→∞(A′k(n)−Bk(n)) = 0.

So limn→∞ c2n+1 = limn→∞ gn = e. This completes the proof. a
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Proposition 5.2 The property φ(x) := (F (x) 6= x) is regular.

Proof. Let M = 〈M, f〉 be an L-structure with |M | = 2n. Then M ∈
S2n(φ : ntr) if and only if |φ(M)| = n. Let A = φ(M). Then A = {a ∈
M : f(a) 6= a} and hence a /∈ A ⇔ f(a) = a, that is, f¹(M\A) = idM\A.
Since idM\A is unique, it follows that if G(A) is the set of f ∈ MM such
that φ(M) = A, then

|G(A)| = |{f¹A : φ(M) = A}| = |{g ∈ MA : ∀x(g(x) 6= x)}|.

Since |M | = 2n and |A| = n we have, as argued in Example 2.2, |G(A)| =
(2n− 1)n. Since there are

(
2n
n

)
such sets A, it follows that

|S2n(φ : ntr)| = |
⋃
{G(A) : |A| = n}| =

(
2n

n

)
· (2n− 1)n.

On the other hand |S2n(L)| = (2n)2n, hence

|S2n(φ : ntr)|
|S2n(L)| =

(
2n
n

) · (2n− 1)n

(2n)2n
≤

(
2n
n

) · (2n)n

(2n)2n
=

(
2n
n

)

(2n)n
.

By Fact 3.4,
(
2n
n

) ≤ 4n√
πn

, so the preceding inequality implies

|S2n(φ : ntr)|
|S2n(L)| ≤ 4n

(2n)n · √πn
=

2n

nn · √πn
−→n 0.

a

Corollary 5.3 d(F (x) = x : typ) = 0.

Proof. By Proposition 5.2, F (x) = x is regular, while by Proposition 5.1
d(F (x) 6= x : typ) = 1. Therefore in view of Fact 3.2 (iii), d(F (x) = x :
typ) = 1− d(F (x) 6= x : typ) = 0. a

Next Proposition shows that the criterion of Lemma 3.10 (ii), which
allows one to deduce the regularity of property φ(x) whenever for some
m ≥ 1, µ(φ(m)) = 0, cannot be used for properties F (x) 6= x and F (x) = x.

Proposition 5.4 For every m ≥ 1,
(i) µ((F (x) 6= x)(m)) = 1.
(ii) e−1

m! ≤ ((F (x) = x)(m)) ≤ 1
m! . In particular, µ((F (x) = x)(1)) =

1− e−1.
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Proof. (i) By definition (F (x) 6= x)(m) holds in 〈M, f〉 if and only if there
are distinct x1, . . . , xm ∈ M such that f(xi) 6= xi for every i = 1, . . . , m.
Equivalently, if and only if for every A ⊆ M such that f¹A = id, |A| ≤
|M | − m. Fixing M with |M | = n, for a given A ⊆ M the totality of f
such that f¹A = id are nn−|A|, while when A ranges over all subsets with
|A| ≤ n −m, the totality of f for which 〈M, f〉 satisfies (F (x) 6= x)(m) has
cardinality

|Modn((F (x) 6= x)(m))| =
∑

|A|≤n−m

nn−|A| =
∑

m≤i≤n

ni.

Therefore µn((F (x) 6= x)(m)) =
∑

m≤i≤n ni

nn −→n 1.

(ii) Let us show first the second claim, that µ((F (x) = x)(1)) = 1 −
e−1. This follows from Example 2.2, and the fact that for every sentence φ,
µ(¬φ) = 1− µ(φ). So

µ((F (x) = x)(1)) = µ(∃x(F (x) = x)) = µ(¬(∀x)(F (x) 6= x)) =

= 1− µ(∀x(F (x) 6= x)) = 1− 1
e

=
e− 1

e
.

Now consider the sentence (F (x) = x)(m) for m ≥ 1. (F (x) = x)(m)

holds in 〈M,f〉 if and only if there are distinct x1, . . . , xm ∈ M such that
f(xi) = xi for every i = 1, . . . ,m, i.e., if there is A ⊆ M with |A| = m
such that f¹A = id. If |M | = n, for each A with |A| = m there are
nn−m functions such that f¹A = id. Since there are

(
n
m

)
such sets A with

|A| = m, the totality of functions of this kind is at most
(

n
m

)
nn−m (because

this totality possibly contains repetitions). So

|Modn((F (x) = x)(m))| ≤
(

n

m

)
nn−m.

On the other hand, for a fixed A with |A| = m, let XA be the collection of
functions f such that f¹A = id and f(x) 6= x for every x ∈ M\A. Since
for every f ∈ XA, f(x) may take independently n − 1 possible values on
M\A, it follows that |XA| = (n − 1)n−m and, moreover, if A 6= A′ then
XA ∩XA′ = ∅. So

|Modn((F (x) = x)(m))| ≥
(

n

m

)
(n− 1)n−m.

Therefore
(

n
m

)
(n− 1)n−m

nn
≤ µn((F (x) = x)(m)) ≤

(
n
m

)
nn−m

nn
. (26)
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Denoting by ln the preceding lower bound in (26) we have

ln =

(
n
m

)
(n− 1)n−m

nn
=

(
n
m

)

(n− 1)m
· (n− 1)n

nn
=

=
1
m!

(n−m + 1)(n−m + 2) · · · (n− 1)n
(n− 1)m

·
(

n− 1
n

)n

.

So

lim
n→∞ ln =

1
m!

lim
n→∞

(n−m + 1)(n−m + 2) · · · (n− 1)n
(n− 1)m

· lim
n→∞

(
n− 1

n

)n

.

Now limn→∞
(n−m+1)(n−m+2)···(n−1)n

(n−1)m = 1, because both the nominator and
the denominator are polynomials of degree m with leading coefficients 1,
while limn→∞

(
n−1

n

)n = e−1. Therefore limn→∞ ln = e−1

m! .

Similarly, if un = (n
m)nn−m

nn is the upper bound in (26) above, then

un =

(
n
m

)

nm
=

1
m!

· (n−m + 1)(n−m + 2) · · · (n− 1)n
nm

,

and comparing as before the polynomials of the fraction we find
limn→∞ un = 1

m! . So finally

e−1

m!
≤ µ((F (x) = x)(m)) = lim

n→∞µn((F (x) = x)(m)) ≤ 1
m!

.

Notice that the value 1− e−1 = e−1
e of µ((F (x) = x)(1)) conforms with the

general bounds given above, since e−1 ≤ e−1
e ≤ 1. a

Corollary 5.5 The converse of Lemma 3.10 (i) is false for the language
L = {F}. Namely, there is φ(x) of L such that d(φ : typ) = 0 while
∀m ≥ 1 µ(φ(m)) > 0.

Proof. Take φ(x) : (F (x) = x). By Corollary 5.3, d(F (x) = x : typ) = 0,
while by Proposition 5.4, for every m ≥ 1 µ((F (x) = x)(m)) ≥ e−1

m! . a

6 Degrees of some properties of graphs

In this Section we examine the typicality degree of some natural first-order
properties of finite undirected graphs. The language of graphs is L = {E},
where E is the symbol of a binary symmetric and irreflexive relation. Thus
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an L-structure is a pair G = 〈A, E〉, where A is the set of nodes of G and
E is its adjacency relation. xEy means that “the nodes x, y are adjacent”,
i.e., connected with an edge. By assumption xEy ⇔ yEx and for all x ∈ A
¬(xEx). So E is a set of 2-element subsets of A, that is E ⊆ [A]2, and
G |= xEy ⇔ {x, y} ∈ E. So if |A| = n, then |[A]2| =

(
n
2

)
, therefore

|Sn(L)| = 2(n
2).

Let us consider the following examples of first-order properties of L:

(1) φnone(x): “x is an isolated node” [(∀y)¬(xEy))].
(2) φall(x): “x is adjacent to every node” [(∀y)(xEy)].
(3) φone(x): “x is adjacent to exactly one node” [(∃!y)(xEy)].

Proposition 6.1 Properties φnone(x), φall(x) and φone(x) have typicality
degree 0. That is, d(φnone : typ) = d(φall : typ) = d(φone : typ) = 0.

Proof. We shall prove the claim using Lemma 3.10 (i), namely it suffices
to prove that µ(φ(1)

none) = µ(φ(1)
all ) = µ(φ(1)

one) = 0.
(i) µ(φ(1)

none) = 0: We have φ
(1)
none := (∃x)(∀y)¬(xEy). We must show that

|Modn(φ(1)
none)|

|Sn(L)| −→n 0. (27)

We saw above that |Sn(L)| = 2(n
2), so we have to estimate also

|Modn(φ(1)
none)|. Let G = 〈A,E〉 be a graph with n nodes satisfying φ

(1)
none.

Then G contains at least one isolated node a (see Figure 1).

G

a

A′

u
"!

#Ã

Figure 1

It follows that if A′ = A\{a} and G′ = 〈A′, E′〉, where E′ is the restriction
of E to A′, then G′ can be any graph with n−1 nodes (including those with
any number of isolated nodes). Therefore there are 2(

n−1
2 ) different graphs
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on A in which a is an isolated node. Letting a range over every node of A,
it follows that the total number of graphs in Sn(L) that satisfy φ

(1)
none, i.e.,

|Modn(φ(1)
none)|, is at most n2(n−1

2 ). Thus

|Modn(φ(1)
none)|

|Sn(L)| ≤ n2(n−1
2 )

2(n
2)

=
n2

(n−2)(n−1)
2

2
n(n−1)

2

=
n

2n−1
−→n 0,

so (27) is true.

(ii) µ(φ(1)
all ) = 0: We have φ

(1)
all := (∃x)(∀y)(xEy) and we must show that

|Modn(φ(1)
all )|

|Sn(L)| −→n 0. (28)

The argument is quite similar to that of the previous case. If G = 〈A,E〉 is
a graph with n nodes satisfying φ

(1)
all , there is a ∈ A which is adjacent to all

other nodes of G (see Figure 2).
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Figure 2

It means that if A′ = A\{a} and G′ = 〈A′, E′〉 is as before, then G′ can be
again of any possible form, so as before

|Modn(φ(1)
all )|

|Sn(L)| ≤ n

2n−1
−→n 0.

(iii) µ(φ(1)
one) = 0: We have φ

(1)
one := (∃x)(∃!y)(xEy) and we have to show

that
|Modn(φ(1)

one)|
|Sn(L)| −→n 0. (29)
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Let G = 〈A,E〉 be a graph, with |A| = n, satisfying φ
(1)
one. Pick an a ∈ A

witnessing φ
(1)
one. If again A′ = A\{a}, a is adjacent to a unique element

b ∈ A′ (see Figure 3), so there are n − 1 choices for the given a, to be
connected.

G

a

A′

b

u
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#Ã
`````̀ u

Figure 3

For each such choice the subgraph G′ = 〈A′, E′〉 can have any possible
form, so the number of graphs on A in which the specific a witnesses φ

(1)
one

is at most (n − 1) · 2(n−1
2 ). Letting again a range over A, it follows that

|Modn(φ(1)
one)| ≤ n(n− 1)2(n−1

2 ). So

|Modn(φ(1)
one)|

|Sn(L)| ≤ n(n− 1)2(n−1
2 )

2(n
2)

=
n(n− 1)

2n−1
.

Since clearly limn→∞
n(n−1)
2n−1 = 0, (29) is true. a

Note that properties φnone(x) and φall(x) can be shown to have typical
degree 0 also by a direct computation, without much effort, without the help
of Lemma 3.10. However such a direct proof for φone(x) seems infeasible,
because of the vast complexity of the required computations. Moreover
the method of proof for φone(x) used in the last Proposition can be easily
generalized in order to apply to the property “x is adjacent to exactly k
nodes”, for every k ≥ 1.

Proposition 6.2 For each k ≥ 1, let φk(x) be the property “x is adjacent
to exactly k nodes”. Then d(φk : typ) = 0.

Proof. By Lemma 3.10 (i), it suffices to show that µ(φ(1)
k ) = 0. We

argue as in the proof of 6.1 concerning φone(x). Given a graph G = 〈A,E〉
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with |A| = n which satisfies φ
(1)
k , let a ∈ A witness φ

(1)
k . Then a is adjacent

exactly to k elements of A\{a}. Since there are
(
n−1

k

)
k-element subsets of

A\{a}, there exist at most
(
n−1

k

)
2(n−1

2 ) graphs on A in which a witnesses

φ
(1)
k . Therefore |Modn(φ(1)

k )| ≤ n
(
n−1

k

)
2(n−1

2 ), and hence

µn(φ(1)
k ) =

|Modn(φ(1)
k )|

|Sn(L)| ≤ n
(
n−1

k

)
2(n−1

2 )

2(n
2)

=
n
(
n−1

k

)

2n−1
.

In
n(n−1

k )
2n−1 the nominator is a polynomial in n of degree k+1, so by l’ Hospital

rule
n(n−1

k )
2n−1 −→n 0. a

Corollary 6.3 All properties φnone(x), φall(x) and φk(x), for k ≥ 1, are
regular.

Proof. We showed in the proofs of Propositions 6.1 and 6.2 that for each
of the aforementioned properties φ(x), µ(φ(1)) = 0. This condition implies,
according to 3.10 (ii), that φ(x) is regular. a
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