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Abstract

We prove a combinatorial result for models of the 4-fragment of
the Simple Theory of Types (TST), TST4. The result says that if
A = 〈A0, A1, A2, A3〉 is a standard transitive and rich model of TST4,
then A satisfies the 〈0, 0, n〉-property, for all n ≥ 2. This property has
arisen in the context of the consistency problem of the theory New
Foundations (NF). The result is a weak form of the combinatorial
condition (existence of ω-extendible coherent triples) that was shown
in [5] to be equivalent to the consistency of NF. Such weak versions
were introduced in [6] in order to relax the intractability of the original
condition. The result strengthens one of the main theorems of [5,
Theorem 3.6], which is equivalent just to the 〈0, 0, 2〉-property.

1 Introduction

For more than 70 years the consistency of the set theory NF (New Founda-
tions)1 continues to be an open problem. After the work of Grishin [2], [3],

1This paper is not actually dealing with NF. It only deals with some combinatorial
properties of models of the related Simple Theory of Types (TST), so the reader is not
required to be familiar with NF. Nevertheless, for completeness of the presentation I have
included most relevant definitions and facts in section 2. For further background material
and proofs of the facts, the interested reader can consult [1].
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who showed that (a) the whole system NF is equivalent to its fragment NF4,
and (b) the fragment NF3 is consistent, it became clear that the consistency
of NF (that is, the consistency of NF4 relative to ZFC) can be reduced to
a hard combinatorial problem. The specific combinatorics involved is rather
peculiar and known techniques, such as Ramsey type theorems and partition
calculus, do not seem to be helpful. Specifically, it concerns finite partitions,
and the corresponding finite Boolean algebras, over three layers of infinite
sets, each of which is (or approximates) the collection of all subsets of the
previous one, the layers being roughly of the form A, P(A) and P2(A), for
A infinite. Given finite partitions u, v, w of A, P(A) and P2(A), respec-
tively, the triple 〈u, v, w〉 is said to be coherent, if the corresponding Boolean
algebras Bool(u), Bool(v), Bool(w) are isomorphic in a very strong way:
There are bijections f : Bool(u) → Bool(v) and g : Bool(v) → Bool(w),
such that (a) f , g are ⊆-isomorphisms (i.e., usual Boolean isomorphisms),
(b) f , g preserve the reduced cardinality of the sets (defined below), i.e.,
‖f(X)‖ = ‖X‖ and ‖g(Y )‖ = ‖Y ‖, and (c) f, g are ∈-isomorphisms, i.e.,
X ∈ Y ⇔ f(X) ∈ g(Y ), for all X ∈ Bool(u) and Y ∈ Bool(v). The latter
condition means that Bool(u) distributes over the sets of Bool(v), exactly
as Bool(v) distributes over the corresponding sets of Bool(w). It is not hard
to prove existence of coherent triples. The difficulty begins when we want to
extend existing coherent triples to finer ones by adding arbitrary new sets,
or simply to complete a single given partition into a coherent triple.

In order to explain briefly the motivation and give the perspective for
the result of the present paper, let me say that this is part of ongoing work
initiated with [5] and aiming to prove the consistency of NF by forcing.
The importance of the extendibility property for coherent triples lies in the
fact that if extendible triples exist over a model of TST4, then they can be
used as forcing conditions in order to obtain a model of the fragment NF4

of NF, and hence a model of NF itself, since it is known that the latter
is equivalent to NF4. This is because a model of NF4 is (generated by) a
model A = 〈A0, A1, A2, A3〉 of TST4 (the fragment of TST, the Simple theory
of Types, consisting of four levels), plus a “type-shifting automorphism”

for A, i.e., a pair of bijections A1
f1−→ A2

f2−→ A3 which preserve both ⊆
and ∈. Our plan is, starting with a countable model M of ZFC and an
“appropriate” model A = 〈A0, A1, A2, A3〉 of TST4, to generically add a

type-shifting automorphism A1
f1−→ A2

f2−→ A3 for A in M [G], forcing with a
set of extendible coherent triples. If this can be done, then A together with
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the pair 〈f1, f2〉, gives rise to a model of NF4 in M [G], and hence to a model
of NF (see the Remarks 1.1 below).

In [5] we showed that the consistency of NF is equivalent to a certain
strong extendibility condition (called ω-extendibility) concerning coherent
triples. At the same time, this particular formulation revealed the extraor-
dinary complexity and hardness of the problem.

In view of the intractability of the existence of ω-extendible pairs, we con-
sidered in [6] considerably weaker properties, called “augmentability proper-
ties”. Of those again the simplest ones are the so-called 〈n, 0, 0〉-, 〈0, n, 0〉-
and 〈0, 0, n〉-properties, for n ≥ 2 (we define them below). The first two
of them are relatively easy to prove, for all n ≥ 2, and were established
in [6]. On the other hand, the property 〈0, 0, n〉 is tougher. The proof of
〈0, 0, 2〉-property is actually the main result of [5] (lemma 3.5 and theorem
3.6) (under an equivalent formulation in terms of 1-extendibility). Also in
[6, lemma 17], it was shown that the 〈0, 0, n〉-property holds for n-partitions
containing a single infinite set. So what remained open was the 〈0, 0, n〉-
property for n > 2 and for n-partitions containing at least two infinite sets.
This is stated and discussed in [6] as the main open question. The aim of the
present paper is to settle this problem. We prove that the 〈0, 0, n〉-property
indeed holds true in every rich model of TST4, for all n-partitions and for
every n ≥ 2.

Remarks 1.1 Before closing this introduction, and in view of the above
mentioned plan to extend generically a model M of ZFC containing a model
A of TST4 to a model M [G] so that A becomes in M [G] essentially a model
of NF, the following remarks are in order:

(1) It is not known exactly what the appropriate kind of model A of TST4

is that one could hopefully try to turn to a model of NF. We know that A
should not satisfy the axiom of choice (AC), in particular A should not be a
full model A = 〈A,P(A),P2(A),P3(A)〉 in the sense of M . This is because
if A |= AC in M , then also A |= AC in the generic extension M [G], so if
we assume that M [G] contains a type-shifting automorphism 〈f1, f2〉 for A,
then 〈A, f1, f2〉 essentially satisfies NF+AC, which is a contradiction, since it
is well-known that NF ` ¬AC. This means that the initial model A should
be in some sense “symmetric”.

(2) On the other hand a property that is needed for elementary construc-
tions inside A, is the “splitting property” (SP): “Every infinite set splits into
two infinite subsets”. We call a model A of TST4 satisfying SP rich. This
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property is also naturally defined for Boolean algebras of sets. Equivalently,
a model A = 〈A0, A1, A2, A3〉 is rich if all the algebras Ai, for i > 0, are rich.
The models of TST4 involved in the proof of the result of this paper are rich.
As far as we know there is no indication that SP cannot hold for models of
NF.

2 Preliminaries

Throughout our metatheory will be ZFC. ∈ will denote the membership
relation of the ground world. The next subsection 2.1 contains definitions
and facts concerning the theories TST and NF. The reader who does not
want to bother with them may skip it and proceed to 2.2, with the proviso
that throughout the rest of the paper, he will replace the term “rich model
of TST4” with “full model of TST4”, i.e., with a structure of the form A =
〈A,P(A),P2(A),P3(A)〉.

2.1 Standard material

The language LTST of the Theory of Simple Types (TST) has a binary pred-
icate symbol ε and typed variables xi

j, for all i, j ∈ N. The superscript
i indicates the type. As usual, instead of subscripts we may use different
letters, yj, zk etc. The atomic formulas of LTST are xiεyi+1 and xi = yi.
The other formulas are built from the atomic formulas using connectives
and quantifiers as usual. The axioms of TST are the following schemes of
comprehension and extensionality:

(Co) (∃xi+1)(∀yi)(yiεxi+1 ⇔ φ(yi)), for every φ(yi) ∈ LTST possibly
with extra free variables.

(Ex) (∀xi)(xiεyi+1 ⇔ xiεzi+1) ⇒ yi+1 = zi+1.

A model of TST is a sequence A = 〈A0, A1, . . . , R〉, where each Ai in-
terprets the variables of type i, and R ⊆ ⋃

i(Ai × Ai+1) is a binary relation
that interprets ε. The model A is standard transitive (s.t.) if for every
i ≥ 0, Ai+1 ⊆ P(Ai) and R =∈ ¹

⋃
i(Ai × Ai+1). Without serious loss of

generality (see [5]) we may restrict ourselves to standard transitive models.
In that case we drop R and write simply A = 〈A0, A1, . . .〉. If for every
i ≥ 0 Ai+1 = P(Ai), i.e., A = 〈A,P(A),P2(A) . . .〉, for some infinite set A,
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the model A is said to be full, sometimes denoted 〈〈A〉〉. Henceforth every
model of TST will be standard transitive.

For n > 0, a formula φ of LTST is an n-formula, if every variable of φ is
of type < n. Let TSTn be the subtheory of TST whose axioms are those of
TST restricted to n-formulas. A (standard transitive) model of TSTn is an
n-sequence A = 〈A0, A1, . . . , An−1〉 such that Ai+1 ⊆ P(Ai). In particular
below we shall be confined to TST4 and its models A = 〈A0, A1, A2, A3〉.2 In
particular a full model of TST4 has the form A = 〈A,P(A),P2(A),P3(A)〉
(which in [6] is called also a staircase).

If A = 〈A0, A1, A2, A3〉 is a model of TST4, the sets Ai, 0 ≤ i ≤ 3, are
the levels of the model. The elements of the bottom level A0 are treated as
“atoms” or urelements, i.e., as having no set structure. The elements of the
other levels are ordinary sets and for i ≥ 0, Ai+1 is a Boolean subalgebra of
P(Ai).

Given a model A = 〈A0, A1, A2, A3〉 of TST4, a type-shifting automor-
phism for A is a triple of bijections

A0
f0−→ A1

f1−→ A2
f2−→ A3

which preserve ∈, i.e., for all a ∈ A0, x ∈ A1, y ∈ A2,

a ∈ x ⇔ f0(a) ∈ f1(x), and x ∈ y ⇔ f1(x) ∈ f2(y).

This is equivalent to say that there is a pair of bijections

A1
f1−→ A2

f2−→ A3

which preserve both ⊆ and ∈, i.e.,

x1 ⊆ x2 ⇔ f1(x1) ⊆ f1(x2), y1 ⊆ y2 ⇔ f2(y1) ⊆ f2(y2), x ∈ y ⇔ f1(x) ∈ f2(y).

More generally, if A = 〈A0, A1, . . .〉 is a model of TST, a type shifting auto-
morphism is an ∈-preserving sequence of bijections

A0
f0−→ A1

f1−→ A2
f2−→ A3

f3−→ · · ·
The language LNF of NF consists of the predicate ε and untyped variables

x, y, . . .. The atomic formulas of LNF are xεy and x = y. A formula of LNF

2This is because the theory NF, which is closely connected with TST, is equivalent to
its subtheory NF4.

5



is called stratified if it results from a formula of LTST if we erase all type su-
perscripts from its variables. The axioms of NF are stratified comprehension
and extensionality:

(StCo) (∃x)(∀y)(yεx ⇔ φ(y)), for every stratified φ(y) ∈ LNF, possibly
with extra free variables.

(Ex) (∀x)(xεy ⇔ xεz) ⇒ y = z.

A model of NF is of the form 〈K,E〉, where E ⊆ K2 is a binary relation
on K interpreting ε.

Basic Fact. There is a model of NF iff there is a model of TST with a
type shifting-automorphism. Specifically (cf. [4]):

(1) If A = 〈A0, A1, . . .〉 is a s.t. model of TST with a type- shifting
automorphism 〈f0, f1, . . .〉 and we define the relation E on A0 by

aEb ⇔ a ∈ f0(b),

then the structure KA = 〈A0, E〉 is a model of NF.
(2) If 〈K,E〉 is a model of NF, let An = K × {n}, for every n ∈ ω. Let

also R ⊆ ⋃
n(An × An+1) be the relation defined by

〈a, n〉R〈b, n + 1〉 ⇔ aEb.

If we set AK = 〈A0, A1 . . .〉, then AK is a model of TST and the bijections
fn : An → An+1, defined by f(〈a, n〉) = 〈a, n + 1〉 form a type-shifting
automorphism for AK . [AK is in general a nonstandard model, but using
the level collapsing of [5], we can turn it into an (almost isomorphic) standard
transitive model of TST.]

We often conflate the structures K and AK . Also, given 〈K, E〉, we refer
to the TST structure AK as the model of TST underlying K.

2.2 Material needed for the present result

Definition 2.1 A Boolean algebra of sets B is said to be rich if for every
infinite set X ∈ B there are infinite sets X1, X2 ∈ B such that X1 ∪X2 ∈ X
and X1 ∩ X2 = ∅. A model A = 〈A0, A1, A2, A3〉 is said to be rich if every
Ai, i > 0, is a rich Boolean algebra.
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Clearly every full model, or every model of TST4 satisfying the axiom of
choice, is rich but not the other way around. The property of richness will
be essential for the proof of the main result of this paper.

Given A = 〈A0, A1, A2, A3〉, we shall be mainly concerned with finite
partitions of the sets Ai, i ≤ 2 the sets of which belong to the next level
Ai+1. Specifically we are interested in a certain strong similarity relation
between such partitions, with respect (a) to the Boolean structure and (b) to
the cardinality of the corresponding elements. Since the actual cardinalities
of Ai may be different (for example when A is full), we shall employ the
notion of reduced cardinality, that is, we shall distinguish only between sets
which are finite with cardinalities m 6= n, and between finite and infinite ones.
All infinite sets have the same reduced cardinality. We denote the reduced
cardinality of a set X by ‖X‖. If X is finite, then we set ‖X‖ = |X| = n.
If X is infinite we set ‖X‖ = ∞. For every positive integer n we shall use
throughout the notation

[n] = {1, . . . , n}.
Definition 2.2 Let A be a set and let n ≥ 2. An n-partition of A, is an
n-tuple u = 〈x1, . . . , xn〉 of subsets of A, such that (a) xi /∈ {∅, A}, for all
i ∈ [n], (b) xi ∩ xj = ∅ for i 6= j and (c)

⋃n
i=1 xi = A. n is the length of u.3

It is important to stress that partitions are treated here as ordered tuples
rather than just sets. If u = 〈x1, . . . , xn〉 is an n-partition of A it seems more
appropriate to denote the i-th element of the partition u by xu

i , rather than
just xi. In this notation

u = 〈xu
1 , . . . , x

u
n〉.

However, if there is no danger of confusion, we can keep writing xi instead
of xu

i .

Definition 2.3 Let A = 〈A0, A1, A2, A3〉 be a model of TST4. For every
i ≤ 2, PartA(Ai) denotes the set of all finite partitions u of Ai such that
xu

i ∈ Ai+1 for every i ≤ n where n is the length of u. If there is no danger of
confusion we write Part(Ai) instead of PartA(Ai).

Sometimes, given a model A as above, we refer just to “partitions of Ai”,
while we always mean elements of PartA(Ai).

3In section 3 below we shall need to refer also to the trivial partition {∅, A} of a set A.
This partition will be denoted simply by ∅.
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Definition 2.4 Let A, B be infinite sets, and let u = 〈x1, . . . , xn〉, v =
〈y1, . . . , ym〉 be finite partitions of A,B respectively. We say that u and v are
similar and write u ∼ v, if (a) m = n, and (b) ‖xi‖ = ‖yi‖ for every i ∈ [n].

Every finite partition u on a set A generates a finite non-trivial Boolean
algebra, denoted by Bool(u), whose atoms are the elements of u. Boolean
algebras, in contrast to partitions, are treated as sets, rather than tuples.
Conversely, let B be a non-trivial finite Boolean algebra on A. B has a
set of atoms, denoted by Atom(B). If |Atom(B)| = n, then for every 1-1
enumeration u : [n] → Atom(B), u is an n-partition of A and Bool(u) = B.

Definition 2.5 Two non-trivial finite Boolean algebras B1,B2 on the sets
A1, A2 respectively are said to be similar, notation B1 ∼ B2, if there are
similar partitions u ∼ v such that B1 = Bool(u) and B2 = Bool(v). That is,
Bool(u) ∼ Bool(v) ⇐⇒ u ∼ v.

If B = Bool(u) and u = 〈x1, . . . , xn〉, then each X ∈ B is uniquely written
as the union of some elements of u, namely there is a unique I ⊆ [n] such
that X =

⋃
i∈I xi. Throughout we shall use the convenient notation Xu

I to
denote this set

⋃
i∈I xi, i.e., let

Xu
I =

⋃
i∈I

xi =
⋃
i∈I

xu
i .

In this notation the letter X (as well as x) plays the role of a bound variable,
so we could replace it, say, by Y and write Y u

I instead of Xu
I . This will be

done below when we refer to distinct partitions u, v and the corresponding
algebras Bool(u), Bool(v).

Note that for any i ∈ [n], Xu
{i} = xu

i , i.e., the notation Xu
I consistently

extends the notation xu
i adopted above. Also Xu

[n] = A and Xu
∅ = ∅. Thus

for every n-partition u

Bool(u) = {Xu
I : I ∈ P([n])}. (1)

Lemma 2.6 Let B1,B2 be finite non-trivial Boolean algebras. B1 ∼ B2 iff
there is a Boolean isomorphism f : B1 → B2 such that ‖f(X)‖ = ‖X‖
for every X ∈ B1. This isomorphism has the form f(Xu

I ) = Y v
I , where

B1 = Bool(u), B2 = Bool(v).
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Proof. Let B1 ∼ B2. Then B1 = Bool(u), B2 = (v) and u ∼ v for some
partitions u, v. Let u = 〈x1, . . . , xn〉, v = 〈y1, . . . , yn〉. Then ‖xi‖ = ‖yi‖ for
all i ∈ [n]. Define f : B1 → B2 by setting f(Xu

I ) = Y v
I for all I ∈ P([n]).

This in particular yields f(xu
i ) = f(Xu

{i}) = Y v
{i} = yv

i , for every i ∈ [n].

Clearly for all I, J ∈ P([n]),

Xu
I ⊆ Xu

J ⇔ I ⊆ J ⇔ Y v
I ⊆ Y v

J ,

thus f preserves ⊆ and hence it is a Boolean isomorphism. Also, ‖xi‖ = ‖yi‖
immediately implies ‖Xu

I ‖ = ‖Y v
I ‖ for every I ∈ P([n]), therefore ‖f(X)‖ =

‖X‖ for every X ∈ B1.
Conversely, let f : B1 → B2 be an isomorphism such that ‖f(X)‖ =

‖X‖ for every X ∈ B1. Let Atom(B1) be the set of atoms of B1 and let
u = 〈x1, . . . , xn〉 be an enumeration of Atom(B1). Since f sends atoms to
atoms, if yi = f(xi), then v = 〈y1, . . . , yn〉 is an enumeration of Atom(B2).
By assumption ‖yi‖ = ‖f(xi)‖ = ‖xi‖, i.e., u ∼ v. Thus B2 = Bool(v) and
B1 ∼ B2. Moreover, f(Xu

I ) = Y v
I . a

When u ∼ v, we refer to the isomorphism f : Bool(u) → Bool(v) such
that f(Xu

I ) = Y v
I as the canonical isomorphism.

Before going on let us fix the following notational conventions that facil-
itate reading.

Notational conventions: Given a model A = 〈A0, A1, A2, A3〉 of TST4,
the letters

X, x, x1, etc, range over elements of A1 (hence subsets of A0),
Y, y, y1, etc, range over elements of A2 (hence subsets of A1),
Z, z, z1, etc, range over elements of A3 (hence subsets of A2).
a, b, c, etc, range over elements of A0.
The letters u, u1, u

′, etc, range over finite partitions of A0, i.e., elements of
PartA(A0). Since its elements belong to A1, u has the form u = 〈x1, . . . , xn〉.

The letters v, v1, v
′, etc, range over elements PartA(A1).. Since its ele-

ments belong to A2, v has the form v = 〈y1, . . . , yn〉.
The letters w, w1, w

′, etc, range over elements of PartA(A2). Since its
elements belong to A3, w has the form w = 〈z1, . . . , zn〉.

In particular, Xu
I denote sets of the Boolean algebra Bool(u), Y v

I denote
sets of the Boolean algebra Bool(v), Zw

I denote sets of the Boolean algebra
Bool(w).
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Definition 2.7 Let A = 〈A0, A1, A2, A3〉 be a model of TST4, and let u, v, w
be n-partitions of A0, A1, A2, respectively, for n ≥ 2. The triple 〈u, v, w〉 is
said to be coherent, notation coh(u, v, w), if:

(a) u ∼ v ∼ w (hence Bool(u) ∼ Bool(v) ∼ Bool(w)), and
(b) The canonical isomorphisms f : Xu

I 7→ Y v
I and g : Y v

I 7→ Zw
I between

Bool(u), Bool(v) and Bool(v), Bool(w) are also ∈-preserving, i.e.,

(∀I, J ⊆ [n])(Xu
I ∈ Y v

J ⇐⇒ Y v
I ∈ Zw

J ). (2)

Lemma 2.8 Given n-partitions u = 〈x1, . . . , xn〉, v = 〈y1, . . . , yn〉, w =
〈z1, . . . , zn〉, such that u ∼ v ∼ w, 〈u, v, w〉 is coherent iff:

(∀I ⊆ [n])(∀i ∈ [n])(Xu
I ∈ yv

i ⇐⇒ Y v
I ∈ zw

i ). (3)

Proof. It suffices to show that condition (2) is equivalent to (3). Clearly
(2) implies (3). For the converse, suppose (3) holds and let Xu

I ∈ Y v
J . Since

Y v
J =

⋃
i∈J yv

i and yv
i are disjoint, there is a unique i0 ∈ J such that Xu

I ∈ yv
i0
.

By (3), Y v
I ∈ zw

i0
. Hence Y v

I ∈ Zw
J , since Zw

J =
⋃

i∈J zw
i . Thus Xu

I ∈ Y v
J ⇒

Y v
I ∈ Zw

J . The other direction is shown similarly. Therefore (3) implies (2).
a

Example. Given a model A = 〈A0, A1, A2, A3〉, let u = 〈x1, x2〉 be a
2-partition of A0 with x1 = {a}, and x2 = A0 − {a}, for some a ∈ A0. Let
v = 〈y1, y2〉 be a 2-partition of A1 with y1 = {x}, and y2 = A1 − {x}, for
some x ∈ A1. Let w = 〈z1, z2〉 be a 2-partition of A2 with z1 = {y}, and
z2 = A2 − {y}, for some y ∈ A2.

Clearly u ∼ v ∼ w. In order for 〈u, v, w〉 to be coherent, the following
must be the case:

(a) ∅ ∈ yi ⇔ ∅ ∈ zi. (In particular x = ∅ ⇔ y = ∅.)
(b) A0 ∈ yi ⇔ A1 ∈ zi. (In particular x = A0 ⇔ y = A1.)
(c) x1 ∈ yi ⇔ y1 ∈ zi. (In particular x = {a} ⇔ y = {x}.)
(c) x2 ∈ yi ⇔ y2 ∈ zi. (In particular x = A0 − {a} ⇔ y = A1 − {x}.)

3 Extendibility

Let us fix a model A = 〈A0, A1, A2, A3〉 of TST4. The main combinatorial
problem about coherent triples over A is their extendibility. That is, given
a coherent triple 〈u, v, w〉 over A0, A1, A2, and a set x ∈ A1, or y ∈ A2, or
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z ∈ A3, to find a coherent triple 〈u′, v′, w′〉, such that u′, v′, w′ extend (i.e.,
refine) u, v, w, respectively, and accommodate also x, y or z.

First some terminology and notation. Given two finite partitions u1, u2,
say of A0, we say that u2 refines u1, and write u1 v u2, if every set of u2 is a
subset of a set of u1. If u1 is an n-partition, u2 is an m-partition and u1 v u2,
then clearly n ≤ m. However here we are interested not in refinements of
isolated partitions, but in refinements of triples 〈u, v, w〉. Despite of this, for
the needs of the present paper, one might just use the “extension relation”
v defined by:

〈u, v, w〉 v 〈u′, v′, w′〉 := u v u′ ∧ v v v′ ∧ w v w′.

Nevertheless, in view of the discussion in section 1, according to which ex-
tendible coherent triples are intended to be used as forcing conditions, a
more refined notion of extension is needed, which we cite here for reasons of
precision, as well as for future reference.

Let u1 v u2, where u1 is an n partition and u2 is an m partition, for
n < m. Then each element Xu1

I of Bool(u1) coincides with an element Xu2
J

of the larger algebra Bool(u2). So there is a unique injection

eu1
u2

: P([n]) → P([m])

that defines the sets of Bool(u1) in terms of the atoms of Bool(u2). Namely,
for every I ∈ P([n]),

Xu1
I = Xu2

e
u1
u2

(I)
.

We call eu1
u2

the extension mapping between u1 and u2. We drop the indices
from e when there is no danger of confusion. The following properties of
extension mappings are easy to check.

Lemma 3.1 Let u1 v u2, where u1 is an n-partition and u2 is an m-
partition. Then the extension mapping e = eu1

u2
has the following properties:

(a) If for every i ∈ [n] we write e(i) = e({i}), then the sets {e(i) : i ∈ [n]}
form a partition of [m].

(b) For every I, J ∈ P([n]), I ⊆ J ⇔ e(I) ⊆ e(J). In particular, for
every I ∈ P([n]), e(I) =

⋃{e(i) : i ∈ I}.
(c) If u v u1 v u2, then eu

u2
= eu

u1
◦ eu1

u2
.

In view of (b) of the preceding lemma, it suffices to define the extension
mapping e on the singleton elements of P([n]), or equivalently, “identifying”

11



{i} ∈ P([n]) with i ∈ [n], it suffices to define e : [n] → P([m]) so that
xu1

i = Xu2

e(i), and then extend it to the whole P([n]) by setting e(I) =
⋃{e(i) :

i ∈ I}.
Given u1 v u2 and v1 v v2 such that u1 ∼ v1 and u2 ∼ v2, under what

conditions is eu1
u2

= ev1
v2

? Recall from Lemma 2.6 of the preceding section
that u ∼ v iff the Boolean algebras Bool(u), Bool(v) are isomorphic via the
canonical isomorphism f : Bool(u) → Bool(v) such that f(Xu

I ) = Y v
I .

Lemma 3.2 Let u1, v1, u2, v2 be partitions such that u1 ∼ v1, u2 ∼ v2 u1 v
u2, and v1 v v2. Then eu1

u2
= ev1

v2
iff the canonical isomorphism between

Bool(u2) and Bool(v2) extends the canonical isomorphism between Bool(u1)
and Bool(v1).

Proof. Let f : Bool(u2) → Bool(v2) be the canonical isomorphism, i.e.,
f(Xu2

I ) = Y v2
I . Let e1 = eu1

u2
and e2 = ev1

v2
. Then f extends the canonical

isomorphism between Bool(u1) and Bool(v1) iff for each Xu1
I ∈ Bool(u1),

f(Xu1
I ) = Y v1

I , or equivalently f(Xu2

e1(I)) = Y v2

e2(I). But f(Xu2

e1(I)) = Y v2

e1(I),

hence Y v2

e1(I) = Y v2

e2(I), for every I. This holds iff e1(I) = e2(I) for every I, i.e.,
iff e1 = e2. a

The right notion of extension for triples of (similar) partitions is given
in the following definition (as is customary in forcing, we write p ≤ q for “p
extends q” rather than q ≤ p):

Definition 3.3 Let 〈u1, v1, w1〉 and 〈u2, v2, w2〉 be triples such that u1 ∼
v1 ∼ w1, u2 ∼ v2 ∼ w2, u1 v u2, v1 v v2 and w1 v w2. We say
that 〈u2, v2, w2〉 extends 〈u1, v1, w1〉 and write 〈u2, v2, w2〉 ≤ 〈u1, v1, w1〉 if
the canonical isomorphisms f2 : Bool(u2) → Bool(v2) and g2 : Bool(v2) →
Bool(w2) extend the corresponding canonical isomorphisms f1 : Bool(u1) →
Bool(v1) and g1 : Bool(v1) → Bool(w1), i.e., if f1 = f2¹Bool(u1) and
g1 = g2¹Bool(v1).

Lemma 3.4 Let 〈u1, v1, w1〉 and 〈u2, v2, w2〉 be triples such that u1 ∼ v1 ∼
w1, u2 ∼ v2 ∼ w2, u1 v u2, v1 v v2 and w1 v w2. Then:

(i) 〈u2, v2, w2〉 ≤ 〈u1, v1, w1〉 iff eu1
u2

= ev1
v2

= ew1
w2

.
(ii) If 〈u2, v2, w2〉 ≤ 〈u1, v1, w1〉 and coh(u2, v2, w2), then coh(u1, v1, w1).

Proof. (i) Let 〈u2, v2, w2〉 ≤ 〈u1, v1, w1〉. By definition 3.3, the canonical
isomorphisms between Bool(u2), Bool(v2) and Bool(v2), Bool(w2) extend the
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canonical isomorphisms between Bool(u1), Bool(v1) and Bool(v1), Bool(w1),
respectively. But, by Lemma 3.2, this holds iff eu1

u2
= ev1

v2
and ev1

v2
= ew1

w2
.

(ii) Let f1, g1 be the canonical isomorphisms between Bool(u1), Bool(v1)
and Bool(v1), Bool(w1), respectively, and let f2, g2 be the canonical isomor-
phisms between Bool(u2), Bool(v2) and Bool(v2), Bool(w2), respectively. By
coh(u2, v2, w2), the pair f2, g2 is ∈-preserving. By 〈u2, v2, w2〉 ≤ 〈u1, v1, w1〉,
f1, g1 are the restrictions of f2, g2 to Bool(u1) and Bool(v1), respectively,
hence the pair f1, g1 is also ∈-preserving. Therefore coh(u1, v1, w1). a

Trivially, as follows from Lemma 3.4, 〈u2, v2, w2〉 ≤ 〈u1, v1, w1〉 implies
〈u1, v1, w1〉 v 〈u2, v2, w2〉. Although in this paper the role of ≤ is not crucial
(since we actually seek coherent extensions of the triple 〈∅, ∅, ∅〉 of trivial
partitions), our definitions of this section concerning extendibility are given
with respect to ≤ rather than v.

Let a coherent triple 〈u, v, w〉 over A = 〈A0, A1, A2, A3〉 be given. A
natural extendibility requirement for 〈u, v, w〉 is the following: Given a set
x ∈ A1, we wish to find a coherent triple 〈u′, v′, w′〉 such that 〈u′, v′, w′〉 ≤
〈u, v, w〉 and x ∈ Bool(u′). In such a case we say that the triple 〈u′, v′, w′〉
accommodates x. Analogously, given 〈u, v, w〉 and y ∈ A2, we wish to find a
coherent 〈u′, v′, w′〉 such that 〈u′, v′, w′〉 ≤ 〈u, v, w〉 and y ∈ Bool(v′), thus
accommodating y. And finally, given 〈u, v, w〉 and z ∈ A3, we wish to find
a coherent 〈u′, v′, w′〉 such that 〈u′, v′, w′〉 ≤ 〈u, v, w〉 and z ∈ Bool(w′),
thus accommodating z. It follows that the extendibility requirement for the
triple 〈u, v, w〉 splits into three particular cases (in [5] we refer to them as
A1- A2 and A3-extendibility respectively), which makes the formulation of
the property a little bit cumbersome. In order to treat them all in a unified
and concise way, let t range over A1 ∪ A2 ∪ A3, and let 〈u, v, w〉 be a triple.
Then the extendibility condition amounts to the existence of a coherent triple
〈u′, v′, w′〉 such that 〈u′, v′, w′〉 ≤ 〈u, v, w〉 and t ∈ Bool(u′) ∪ Bool(v′) ∪
Bool(w′).

Definition 3.5 Let 〈u, v, w〉 be a coherent triple over A. We say that
〈u, v, w〉 is 1-extendible, or just extendible, if for every t ∈ A1 ∪ A2 ∪ A3,
there is a coherent triple 〈u′, v′, w′〉 such that 〈u′, v′, w′〉 ≤ 〈u, v, w〉 and
t ∈ Bool(u′) ∪Bool(v′) ∪Bool(w′). Inductively:

〈u, v, w〉 is (n + 1)-extendible, if for every t ∈ A1 ∪ A2 ∪ A3, there is a
triple 〈u′, v′, w′〉 such that 〈u′, v′, w′〉 ≤ 〈u, v, w〉, 〈u′, v′, w′〉 is n-extendible,
and t ∈ Bool(u′) ∪Bool(v′) ∪Bool(w′).
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〈u, v, w〉 is said to be ω-extendible if it is n extendible for all n ≥ 1.

When dealing with extensions of coherent triples, one can start with the
triple of trivial partitions, denoted for simplicity, 〈∅, ∅, ∅〉 (or equivalently the
trivial Boolean algebras {∅, A0}, {∅, A1}, {∅, A2}). It was proved in [5]) that
(a) NF is consistent iff for every n, there is a model of TST 〈A0, A1, A2, A3〉
in which 〈∅, ∅, ∅〉 is n-extendible. (b) In any rich model of TST which is,
roughly, an elementary submodel of a full model, 〈∅, ∅, ∅〉 is 1-extendible
(Th. 3.6).

The property of n-extendibility, for n > 1, is actually very hard to prove
even for the trivial triple 〈∅, ∅, ∅〉, mainly because it involves iterated ex-
tendibility. For that reason we considered in [6] some weaker extendibility
properties. A natural such weakening is “augmentability”, defined below.

Definition 3.6 Let 〈u, v, w〉 be a coherent triple over A0, A1, A2, and let
n1, n2, n3 ≥ 2. We say that 〈u, v, w〉 is 〈n1, n2, n3〉-augmentable if for every
n1-partition u1 of A0, every n2-partition v1 of A1 and every n3-partition w1

of A2, there is a coherent triple 〈u′, v′, w′〉 such that 〈u′, v′, w′〉 ≤ 〈u, v, w〉
and u1 v u′, v1 v v′ and w1 v w′.

It is easy to check that n-extendible triples, for sufficiently large n, are
〈n1, n2, n3〉-augmentable (cf. [6]). Even so, however, the general 〈n1, n2, n3〉-
augmentability property is messy. We shall be confined only to the case
where 〈n1, n2, n3〉 is 〈n, 0, 0〉, 〈0, n, 0〉, and 〈0, 0, n〉, and the extendible triple
is 〈∅, ∅, ∅〉.
Definition 3.7 We say that the model A satisfies the 〈n, 0, 0〉-, 〈0, n, 0〉-,
or 〈0, 0, n〉-property, if the triple 〈∅, ∅, ∅〉 is 〈n, 0, 0〉-augmentable, 〈0, n, 0〉-
augmentable, or 〈0, 0, n〉-augmentable, respectively. Specifically:

(a) The 〈n, 0, 0〉-property holds in A, if for every n-partition u of A0,
there are n-partitions v, w of A1, A2 respectively such that coh(u, v, w).

(b) The 〈0, n, 0〉-property holds in A, if for every n-partition v of A1,
there are n-partitions u,w of A0, A2 respectively such that coh(u, v, w).

(c) The 〈0, 0, n〉-property holds in A, if for every n-partition w of A2,
there are n-partitions u, v of A0, A1 respectively such that coh(u, v, w).

The first two of the above properties are rather easy and were proved in
[6, Cor. 14] to hold in rich models. Also 〈0, 0, 2〉-augmentability is equivalent
to A3-extendibility of 〈∅, ∅, ∅〉 and that was one of the main results of [5] (Th.
3.6). So what was left of this group of tractable extendibility conditions was
the 〈0, 0, n〉-property for n ≥ 3.
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4 Simplifying partitions. Simple partitions

Let u = 〈x1, . . . , xn〉 be an n-partition of an infinite set A, with n ≥ 2. Then,
for each i ∈ [n], ‖xi‖ ∈ N∗ ∪ {∞}, where N∗ = {1, 2, . . .}, and for at least
one i, ‖xi‖ = ∞. Let us call the n-tuple 〈‖x1‖, . . . , ‖xn‖〉, the signature
of u, in symbols sign(u). Obviously, for any two n-partitions u, v, u ∼ v
iff sign(u) = sign(v). Of course the simpler the signature of a partition,
the easier to handle it. Already in [6] it was observed that when one is
interested in “asymptotic” results, e.g. whether the 〈0, 0, n〉-property holds
for arbitrarily large n, one can restrict one’s attention to “simple” partitions,
that is, partitions whose sets are either infinite or singletons. This is because
every finite partition u of an infinite set has a simple refinement u′ w u (by
dismantling every finite set of u into its singletons).

Definition 4.1 A finite partition u = 〈x1, . . . , xn〉 of an infinite set A is said
to be simple if for each i ∈ [n], ‖xi‖ = 1 or ∞.

If u is a simple n-partition, then n1 of its sets, with 1 ≤ n1 ≤ n, are
infinite, and the rest n2 = n− n1 are singletons. Without loss of generality,
whenever a simple partition is given in the form of a tuple u = 〈x1, . . . , xn〉,
we assume that the first n1 of the xi’s are the infinite ones and the rest n2

are the singletons. In such a case, the signature of u has the form

sign(u) = 〈∞, . . . ,∞︸ ︷︷ ︸
n1

, 1, . . . , 1︸ ︷︷ ︸
n2

〉,

so it is reasonable to simplify it by writing

sign(u) = 〈n1, n2〉.
The simplest of all cases is when sign(u) = 〈n, 0〉, that is, when all sets of u
are infinite. Such a partition u is called uniform.

In [6] (proposition 4.5 and lemma 5.6) it is shown that restricting our-
selves to simple partitions occasions no loss of generality. Namely it is shown
that ω- extendibility and ω-augmentability of simple partitions, imply ω- ex-
tendibility and ω-augmentability in general. In our case we are interested
just in the following:

Lemma 4.2 Suppose that for all n ≥ 2, the 〈0, 0, n〉-property holds in the
model A = 〈A0, A1, A2, A3〉, for all simple n-partitions. Then it holds for all
n-partitions.
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Proof. Let w be an n-partition of A2 of arbitrary signature. We have
to find partitions u, v on A0, A1, respectively, such that coh(u, v, w). Let
w′ w w be the refinement of w consisting of the infinite sets of w and the
singletons of elements belonging to the finite sets of w. w′ is a simple m-
partition for some m ≥ n. By assumption there are simple partitions u′, v′

of A0, A1, respectively such that coh(u′, v′, w′), i.e., there are f : Bool(u′) →
Bool(v′) and g : Bool(v′) → Bool(w′) which are ∈- and ⊆ isomorphisms.
Since w v w′, Bool(w) ⊆ Bool(w′). Then the reverse image g−1′′Bool(w)
is a Boolean subalgebra of Bool(v′) generated by a partition v v v′, i.e.,
g−1′′Bool(w) = Bool(v), and v ∼ w. Similarly f−1′′Bool(v) is a Boolean
subalgebra of Bool(u′) generated by a partition u v u′, i.e., f−1′′Bool(v) =
Bool(u), and u ∼ v. Finally coh(u, v, w) since the restrictions of f, g to
Bool(u) and Bool(v) respectively are ∈-isomorphisms. a

In view of lemma 4.2, henceforth we can deal with simple partitions only.
The known partial results about the 〈0, 0, n〉-property are the following:

• The 〈0, 0, 2〉-property is true for all 2-partitions ([5, Lemma 3.5]).
• The 〈0, 0, n〉-property is true for all simple partitions of signature 〈1, n−

1〉, i.e., containing a single infinite set ([6, Lemma 17]).
Thus it remains to show that the 〈0, 0, n〉-property holds for any simple

partition of signature 〈n1, n2〉, where n1 ≥ 2 and n2 ≥ 0. This will be proved
in the next section.

5 The result

Theorem 5.1 Let A = 〈A0, A1, A2, A3〉 be a rich model (with infinite
A0). Let w be a partition of A2 of signature 〈n1, n2〉, where n1 ≥ 2 and
n2 ≥ 0. Then there are partitions u, v of A0 and A1, respectively, such that
coh(u, v, w).

A few words about the proof. First, the reader who still feels uncomfort-
able with general rich models of TST may think that the model A we are
working in is full, i.e., of the form 〈A,P(A),P2(A),P3(A)〉. This is an object
familiar to everyone, and nothing differs in the proof after this replacement.
Now the heart of the proof of 〈0, 0, 2〉-property in [5] is the following: If we
assume that the 〈0, 0, 2〉-property is false, then we are led through a rather
long and unpredictable series of logical combinations to the conclusion that
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for every 2-partition u of A0 and every 2-partition v of A1 the elements of
Bool(u) must be distributed over the sets of v in just two prescribed ways.
This already sounds unnatural, and it remains to show the existence of u and
v such that Bool(u) is not distributed over v in any of these ways (which is
rather easy). For a long time we have been attempting to prove the 〈0, 0, n〉-
property along the pattern of the 〈0, 0, 2〉-proof. These attempts were leading
to a tremendous increase of complexity and finally to failure. The present
proof emerged only when the specific line of thought used in n = 2 was aban-
doned. The idea is the following: Given w we need to find u, v such that the
elements of Bool(u) distribute over the sets of v exactly as the elements of
Bool(v) distribute over the sets of w. Schematically, given w we have to find
u, v such that v

u
= w

v
. This is actually possible because there are only finitely

many distribution patterns, while there is a vast variety of partitions of an
infinite set.

The rest of this section will be devoted to the proof of 5.1. Fix a rich
model A = 〈A0, A1, A2, A3〉 of TST4. For every 〈n1, n2〉, with n1 ≥ 2 and
n2 ≥ 0, let

U〈n1,n2〉 = {u : u ∈ PartA(A0) ∧ sign(u) = 〈n1, n2〉},

V〈n1,n2〉 = {v : v ∈ PartA(A1) ∧ sign(v) = 〈n1, n2〉},
W〈n1,n2〉 = {w : w ∈ PartA(A2) ∧ sign(w) = 〈n1, n2〉}.

Clearly for all u ∈ U〈n1,n2〉, v ∈ V〈n1,n2〉, and w ∈ W〈n1,n2〉, u ∼ v ∼ w. So, in
view of lemma 2.8, what we have to prove is

(∀w ∈ W〈n1,n2〉(∃u ∈ U〈n1,n2〉)(∃v ∈ V〈n1,n2〉)(∀I ∈ P([n]))(∀i ∈ [n])

(Xu
I ∈ yv

i ⇔ Y v
I ∈ zw

i ). (4)

Fix n1 ≥ 2, n2 ≥ 0, n = n1 + n2, and a w0 ∈ W〈n1,n2〉. That is,

w0 = 〈z1, . . . , zn1 , zn1+1, . . . , zn〉,

where all zi for i ∈ [n1] are infinite, while all zi for i ∈ [n]−[n1] are singletons.
In view of (4), it suffices to prove

(∃u ∈ U〈n1,n2〉)(∃v ∈ V〈n1,n2〉)(∀I ∈ P([n]))(∀i ∈ [n])

(Xu
I ∈ yv

i ⇔ Y v
I ∈ zw0

i ). (5)
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Now, with a minor adjustment, we may assume that in (5) I ranges over sets
6= ∅ and [n] only. This is because the sets Xu

∅ = ∅ and Xu
[n] = A0 are constant

for every u, and when w0 is given the location of ∅ and A1 among the sets of
w0 is also given. So we can confine ourselves to those v ∈ V〈n1,n2〉 for which

∀i(∅ ∈ yv
i ⇔ ∅ ∈ zw0

i ) ∧ ∀i(A0 ∈ yv
i ⇔ A1 ∈ zw0

i ). (6)

For example, if ∅ ∈ zw0
1 and A1 ∈ zw0

3 , we need only consider those v ∼ u for
which ∅ ∈ yv

1 and A0 ∈ yv
3 . Given w0 and v we express the fact that they

satisfy (6) by saying that v and w0 satisfy the same initial conditions. Thus,
henceforth, we shall deal with the set

V∗〈n1,n2〉 = {v ∈ V〈n1,n2〉 : v satisfies (6)},

instead of V〈n1,n2〉, and with

P∗([n]) = P([n])− {∅, [n]},

instead of P([n]). In view of V∗〈n1,n2〉 and P∗([n]), (5) is written:

(∃u ∈ U〈n1,n2〉)(∃v ∈ V∗〈n1,n2〉)(∀I ∈ P∗([n]))(∀i ∈ [n])

(Xu
I ∈ yv

i ⇔ Y v
I ∈ zw0

i ). (7)

Given u ∈ U〈n1,n2〉 and v ∈ V〈n1,n2〉, the distribution function of Bool(u) over
Bool(v) is the function Dv

u : P∗([n]) → [n] defined by

Dv
u(I) = i ⇔ Xu

I ∈ yv
i ,

for all I ∈ P∗([n]). Similarly, given v ∈ U〈n1,n2〉 and w ∈ W〈n1,n2〉, the
distribution function of Bool(v) over Bool(w) is the function Dw

v : P∗([n]) →
[n] defined by

Dw
v (I) = i ⇔ Y v

I ∈ zw
i ,

for all I ∈ P∗([n]). Note that for a given signature 〈n1, n2〉, the distribution
functions of Bool(u) over Bool(v), or of Bool(v) over Bool(w), are finitely
many, namely n2n−2. Using distribution functions and initial conditions, the
sentence

(∀I ∈ P∗([n]))(∀i ∈ [n])(Xu
I ∈ yv

i ⇔ Y v
I ∈ zw0

i )

becomes
(∀I ∈ P∗([n]))(Dv

u(I) = Dw0
v (I)),
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i.e.,
Dv

u = Dw0
v .

So finally, (7) is equivalent to

(∃u ∈ U〈n1,n2〉)(∃v ∈ V∗〈n1,n2〉)(D
v
u = Dw0

v ). (8)

So in order to prove 5.1, it suffices to prove (8). To illustrate the idea we shall
first prove (8) for uniform w0 only (i.e., all of its sets are infinite), namely
for w0 such that sign(w0) = 〈n, 0〉. Then we shall slightly modify the proof
in order to work in the general case.

Lemma 5.2 For every n ≥ 2, there is a v ∈ V∗〈n,0〉 with the following prop-
erty:

(†) For every function D : P∗([n]) → [n], there is a u ∈ U〈n,0〉 such that
Dv

u = D.

Proof. Consider all distribution functions D : P∗([n]) → [n] and enu-
merate them in the form Dl, 1 ≤ l ≤ n2n−2. Using the fact that A is rich,
we can pick for each l a partition ul ∈ U〈n,0〉 of A0 so that all Bool(ul), for
1 ≤ l ≤ n2n−2, are almost disjoint, i.e., Bool(ul)∩Bool(um) = {A0, ∅} for all
l 6= m. This is clearly possible since the sets Bool(ul) are finite. In order for
v to satisfy (†), it suffices that for each l, Dv

ul
= Dl, or equivalently, for each

I and l, Xul
I ∈ yv

Dl(I). We set for every i ∈ [n],

Ki = {Xul
I : Dl(I) = i, 1 ≤ l ≤ n2n−2, I ∈ P∗([n])}.

Now Xul
I 6= Xum

J for all l 6= m and I, J ∈ P∗([n]), because Bool(ul) ∩
Bool(um) = {A0, ∅}. Also Xul

I 6= Xul
J for any l and any I 6= J . Therefore

the sets Ki, i ∈ [n], are all disjoint (some of them may be empty). Hence
we can obviously extend Ki to form a partition v of A1 consisting of infinite
sets, i.e., such that Ki ⊆ yv

i for all i ∈ [n]. Moreover, since all sets of v are
infinite, obviously we can arrange that v satisfies the same initial conditions
as w0, i.e., that v satisfies (6). Thus v ∈ V∗〈n,0〉. For every I ∈ P∗([n]) and

every 1 ≤ l ≤ n2n−2, we have

Dl(I) = i ⇔ Xul
I ∈ Ki ⇔ Xul

I ∈ yv
i ⇔ Dv

ul
(I) = i.

Therefore Dl = Dv
ul

, and hence v satisfies (†). This completes the proof of
the lemma. a
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Corollary 5.3 If sign(w0) = 〈n, 0〉, then theorem 5.1 holds for w0.

Proof. Given w0 ∈ W〈n,0〉, pick by the previous lemma a v ∈ V∗〈n,0〉
satisfying property (†). Let D = Dw0

v . By (†) there is a u ∈ U〈n,0〉 such that
Dv

u = D = Dw0
v . This means that

(∃u ∈ U〈n,0〉)(∃v ∈ V∗〈n,0〉)(D
v
u = Dw0

v ),

i.e., (8) is true. a

The fact that the partitions u, v, w0 are uniform is of key importance for
the proof of lemma 5.2, as we do not need to care about the size of each
Ki that must be included in yv

i . Actually 5.2 fails in general for partitions
containing singletons. To see that, suppose sign(w0) = 〈n1, n2〉 with n2 6= 0.
Let v ∈ V∗〈n1,n2〉 satisfying property (†) and let i ∈ [n] − [n1]. Then yv

i

must be a singleton. Let D1, D2 : P∗([n]) → [n] be functions such that
D1(I) = D2(J) = i, for some I, J ∈ P∗([n]) such that I ⊆ [n] − [n1],
while J ⊆ [n1]. By (†), there are u1, u2 ∈ U〈n1,n2〉 such that D1 = Dv

u1
and

D2 = Dv
u2

. Then Dv
u1

(I) = Dv
u2

(J) = i, and consequently, {Xu1
I , Xu2

J } ⊆ yv
i .

But I ⊆ [n]− [n1] implies that Xu1
I is finite, while J ⊆ [n1] implies that Xu2

J

is infinite. Therefore Xu1
I 6= Xu2

J , and hence |yv
i | > 1, a contradiction.

In fact the existence of singletons, or, more precisely, the fact that the
functions D throw sets into singletons, is the only reason for which lemma 5.2
fails in general. So in order to cope with the general case, a simple solution is
to consider distribution functions which just do not throw sets into singletons
at all. Namely, given a signature 〈n1, n2〉 as above, with n = n1 + n2, let us
say that D : P∗([n]) → [n] is restricted if rng(D) ⊆ [n1]. Since n1 ≥ 2, such
functions are by no means trivial. Then we have the following variant of 5.2.

Lemma 5.4 Let sign(w0) = 〈n1, n2〉. Then there is a v ∈ V∗〈n1,n2〉 with the
following properties:

(††) For every restricted function D : P∗([n]) → [n1], there is a u ∈
U〈n1,n2〉 such that Dv

u = D.
(†††) Dw0

v is restricted.

Proof. The proof is similar to that of 5.4. The number of all restricted
functions D : P∗([n]) → [n1] is n2n−2

1 . So take an enumeration Dl, 1 ≤ l ≤
n2n−2

1 of all of them. Using again the richness of A, we pick for each l a
partition ul ∈ U〈n1,n2〉 of A0 so that all Bool(ul), for 1 ≤ l ≤ n2n−2

1 , are
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almost disjoint, i.e., Bool(ul) ∩ Bool(um) = {A0, ∅} for all l 6= m. Set again
for i ∈ [n1],

Ki = {Xul
I : Dl(I) = i, 1 ≤ l ≤ n2n−2

1 , I ∈ P∗([n])}.

v will be defined so that for the infinite sets yv
i , i ∈ [n1], Ki ⊆ yv

i . Next we
consider the initial conditions of v. If A1 or ∅ belongs to a singleton zw0

i , for
i ∈ [n] − [n1], then A0 or ∅ must be in the singleton yv

i . This is the only
condition posed on the singletons of v. Otherwise the rest of the singletons
yv

j , j ∈ [n] − [n1], are defined arbitrarily. Thus (††) is fulfilled. Finally, in
order to conform with (†††), we only need to arrange that Bool(v)−{A1, ∅}
does not meet any of the singletons zw0

n1+1, . . . , z
w0
n . This is fairly easy. For

instance, if it happens that zw0
k = {Y v

I } for some choice of the sets of v,
we can slightly modify it, by moving appropriately one or more elements
from Y v

I to another set, thus getting another partition v′ ∈ V∗〈n1,n2〉 satisfying

(††) and so that Y v′
I no longer belongs to zw0

k . Any v defined by the above
prescriptions satisfies (††) and (†††). This completes the proof of the lemma.
a

Proof of Theorem 5.1. Let w0 ∈ W〈n1,n2〉 be given. By lemma 5.4 there
is a v ∈ V∗〈n1,n2〉 satisfying (††) and (†††). Let D = Dw0

v . By (†††) D is

restricted. Hence by (††) there is u ∈ U〈n1,n2〉 such that D = Dw0
v = Dv

u.
Thus (8) holds true. This completes the proof of theorem 5.1. a

Concluding Remarks. How does the settlement of the 〈0, 0, n〉-
property affect NF consistency? If the 〈0, 0, n〉-property were disproved for
an arbitrary rich model A of TST4, that would mean that there is no NF
model whose “underlying” TST model is rich. This is because if NF plus the
splitting property (SP) (see Remark 1.1) is consistent, and 〈K,E〉 is a model
of this theory, then the TST4 model AK resulting from K (see section 2.1)
is rich and has a type-shifting automorphism 〈f1, f2〉. The finite pieces of
〈f1, f2〉 are ω-extendible coherent pairs, a property much stronger than the
〈0, 0, n〉-property, a contradiction.

Now that the question was settled in the affirmative, we can only say that
the forcing program described in the Introduction, is a little more likely to
be successful. We say “a little” because the 〈0, 0, n〉-property is much weaker
than ω-extendibility. On the other hand, the methods employed in the proof
of the former may be instructive in our attempts to tackle the full problem.
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Yet the question remains: What is the kind of models of TST that would
be likely to make the forcing program work? That has been partly answered
in Remark 1.1 (1). Working with just rich models, having no other features,
the program does not seem to have a chance to work, because the same
method would then reasonably work also for models of TST satisfying AC,
which we know is false. Models of TST with some kind of symmetry are
probably needed. The exact type of symmetry is not yet known. Perhaps
it will be understood if we analyze in depth the models of TST that result
from models of NF.

Acknowledgement. I would like to thank the referee for some thought-
ful remarks that helped me put the result into the right perspective.
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