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Abstract

Certain weak versions of the Shepherdson’s condition for open in-
duction in a discretely ordered ring are given, and their relationships
to each other and to the underlying group structure of the ring are
studied.

1 Introduction

This is a paper whose motivation comes from logic, whereas its results are
rather algebraic. This seems to be fairly common when dealing with dis-
cretely ordered rings (henceforth dors for short), a sort of structures often
interesting both to the logician and the algebraist.

The borderline between the logician’s and the algebraist’s territory seems
to be open induction. This is clearly a concept of logic but we do not need
to spell it out here. J.C. Shepherdson [1] found an equivalent algebraic
characterization (see below). This is the only known type of dor of interest
to the logician which possesses an algebraic characterization. Above them are
the dors satisfying stronger (i.e., involving quantifiers) schemes of induction;
below them are the dors satisfying no induction at all, but only algebraic
properties (e.g. euclidean dors).

The motivation behind this paper came from the question about the con-
ditions under which a discretely ordered group (dog for short) can be ex-
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panded to a dor, perhaps with extra properties, such as euclidean, or satisfy-
ing open induction. (Note that the analogous expandability problem for dors
satisfying something stronger than open induction, i.e., moderately strong
fragments of PA, has been solved long ago: A countable dog expands to a
dor of this kind iff it is recursively saturated). The question is addressed and
partially answered in [2]. In the course of this work certain natural weak-
enings of the above mentioned criterion of Shepherdson appeared to be of
independent interest. The interest comes from the fact that these weak con-
ditions are interwoven with the underlying non archimedean group structure
and an assigned field of reals.

Below we fix some definitions. N,Z,Q,R are the familiar structures. A
discretely ordered ring (dor for short) R = (R, +,×, <, 0, 1) is a commutative
ring with an ordering < such that 1 is the immediate successor of 0 and +,×
are both strictly monotonic with respect to <, i.e., x > y ⇒ x + z > y + z
and x > y & z > 0 ⇒ x× z > y × z.

Obviously we may assume that that for every dor R, Z is a subring of
R. We refer to the elements of Z as standard and to the elements of R\Z as
nonstandard.

The dor R is a said to be a Z-dor if for all x ∈ R and for all n > 1 there
exist exists y ∈ R and k ∈ N such that x = ny + k and k < n. (That is, if
euclidean division by standard divisors exists in R.)

R is said to be euclidean if

(∀x, y)(∃z)(∃u < y)(x = y × z + u). (1)

Clearly every euclidean dor is a Z-dor.
For every dor R, let R+ = {x ∈ R : x ≥ 0} be the positive part of

R. Obviously R+ is to R what N is to Z. Note that R is a Z-dor iff R+

satisfies all axioms of Peano arithmetic restricted to the language of addition
(the so-called Presburger arithmetic). R+ |= OI means that R+ satisfies
open induction, i.e. induction for formulas of the language of arithmetic
without quantifiers. Instead of giving the precise definition, we just state the
equivalent algebraic condition of J.C. Shepherdson. For any dor R let Rfr be
the field of fractions over R and Rrc be the real closure of R. Shepherdson’s
result says that R+ |= OI iff the following condition holds:

(S) (∀x ∈ Rrc)(∃a ∈ R)(|x− a| < 1). (2)
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Besides this highly nontrivial result the following easy characterization of
euclidean dors is also useful: R is euclidean iff

(F) (∀x ∈ Rfr)(∃a ∈ R)(|x− a| < 1). (3)

Conditions S and F above say that every element of the fields Rrc, Rfr

respectively has an integral part in R. Therefore clearly S⇒ F (over the rest

axioms for dors). Note that elements of Rfr will be denoted
x

y
rather than

x/y, because the latter notation is to be used below with another meaning.
Discretely ordered groups (dogs) are defined in the obvious way, and

every dor is a dog for +. Moreover R is a a Z-dor iff it is a Z-dog. A natural
problem is to find conditions for a Z-dog (under +) to be a reduct of a dor
(resp. satisfying S or F). A partial solution is given in [2].

Given a dor or dog H, it is often convenient to work in the divisible closure
of H, div(H).

2 Nearness relations in non-archimedean or-

dered structures

Given a dog G = (G, +, <, 0, 1) (actually weaker structures suffice also) con-
sider the following equivalence relations in G+:

x ≡ y := (∃n ∈ N)(x < y & y < nx) ∨ (y < x & x < ny).
x ≈ y := x ≡ y & |x− y| 6≡ x.
x ∼ y := x− y ∈ Z.

Let µ(x), δ(x) and [x] denote the equivalence classes of x under ≡, ≈ and
∼ respectively. Clearly for nonstandrad x, [x] ⊆ δ(x) ⊆ µ(x). However for
standard n, µ(n) = [n] = N, but δ(n) = {n}, since m ≈ n means |m−n| 6≡ m,
hence |m − n| = 0. All these equivalence classes are convex subsets of G+

and inherit the ordering of H. If x ≡ y, we say that x, y are of the same
magnitude and µ(x) is the magnitude class of x. If x ≈ y we say that x, y
are near to each other and δ(x) is the neighborhood of x. x ¿ y is another
notation for µ(x) < µ(y).

Most facts and notions concerning ≡ and ≈ can be found in Harnik [3].
Let
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M1(G) = G+/ ≡= {µ(x) : x ∈ G+},
and

M2(G) = G+/ ≈= {δ(x) : x ∈ G+, x À 1} ∨ {0}
be the sets of equivalence classes of G+ with respect to ≡ and ≈ respectively.

For any pair of elements x, y > 0 such that x ≡ y, x/y is the real number

x/y = sup{p ∈ Q+ : py < x}.
If x ¿ y we set x/y = 0. For any a ∈ G+, let

F (a) = {±x/a : x ∈ G+, µ(x) ≤ µ(a)},
and

F (G) = {±x/y : x, y ∈ G+, µ(x) ≤ µ(y)}.
For a dor R, F (R) has the obvious meaning.

Note. Throughout the paper the notation x/y is always used with the

above meaning. Ordinary fractions on the other hand are written
x

y
.

The letters µ, ν, λ range over magnitude classes. Denoting µ(0) by 0
and µ(1) by 1, M1(G) is always a totally ordered set with first and second
element 0, 1 respectively, and µ : G+ → M1(G) is a surjective mapping with
the following properties:

Lemma 2.1 i) µ(x) = 0 iff x = 0, and µ(n) = 1 iff n ∈ N.
ii) µ(px) = µ(x), for all p ∈ Q+.
iii) µ(|px + qy|) ≤ max{µ(x), µ(y)}.

If G has also a multiplication ×,
(iv) µ(x1) = µ(x2) and µ(y1) = µ(y2) ⇒ µ(x1 × y1) = µ(x2 × y2).
(v) µ(x) < µ(y) & z > 0 ⇒ µ(x× z) < µ(y × z).

By (iii) above, µ + ν = max{µ, ν}, hence + is trivial on M1(G) and we
ignore it. If G is a ring R, then, by (iv) and (v), × induces a multipli-
cation ∗ on M1(R)\{0}. For simplicity we keep writing M1(R) rather than
M1(R)\{0}. (M1(R), ∗, <, 1) is an infinite commutative ordered monoid with
unit 1. Below we spell out the precise definition.
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Definition 2.2 A totally ordered commutative monoid (henceforth ordered
monoid or just monoid) is a structure A = (A, ∗, <, 1) such that:

i) (A, ∗, 1) is a commutative monoid with identity 1,
ii) (A,<, 1) is a (totally) ordered set with least element 1, and
iii) for all x, y, z ∈ A, x < y ⇒ x ∗ z < y ∗ z.

The monoid A above is said to be euclidean if for all x, y ∈ A,
x < y ⇒ (∃z)(y = x ∗ z).

A is said to be radically closed if for every x ∈ A and n ∈ N,
n > 0 ⇒ (∃y)(yn = x).

Lemma 2.3 (Harnik [3]) For any x, y, z ∈ G+ such that x ≡ z, the following
hold:

(i) x/y = 1 iff x ≈ y.
(ii) x ≈ x′ and y ≈ y′ ⇒ x/y = x′/y′.
(iii) If x 6≈ y, then x < y ⇐⇒ x/z < y/z.
(iv) (x/y) · (y/z) = x/z.
(v) (px)/y = p(x/y) for every p ∈ Q+.
(vi) (x + y)/z = x/z + y/z.

If we are in a ring with multiplication ×, then moreover
(vii) (x/y) · (z/w) = (x× z)/(y × w).

Lemma 2.4 i) If R is a dor, then F (R) is a field.
ii) If R is euclidean, then for every nonstandard a > 0 , F (a) = F (R).

Proof. i) is immediate by (vii) of the previous lemma. ii) It suffices to
show that F (a) = F (b) for all b nonstandard, or that given x ≡ a and b there
is y ≡ b such that x/a = y/b. By the property, we can divide b× x by a and
find y and z < a such that b× x = a× y + z. Then b× x ≈ ay, and by the
preceding lemma, b× x/a× y = 1 or x/a = y/b. 2

By (i)-(iii) of 2.1, µ : G+ → M1(G) is a valuation of the group G in the
sense (essentially) of [4]. Namely it is the natural valuation, assigning to each
element its magnitude class. The following definition was originally found in
[3], but it can be quite general in terms of valuations (see [4] for the notion
of v-independent vectors, where v is a valuation).
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Definition 2.5 The elements x1, . . . , xn ∈ G+ are said to be strongly inde-
pendent (s.i. for short) if they are µ-independent, i.e., if for all p1, . . . , pn ∈ Q,
such that (p1, . . . , pn) 6= (0, . . . , 0),

µ(|p1x1 + · · ·+ pnxn| = max{µ(xi) : i ≤ n & pi 6= 0}.

Since by 2.1 (iii), we always have

µ(|p1x1 + · · ·+ pnxn| ≤ max{µ(xi) : i ≤ n},

it follows that x1, . . . , xn are not s.i. iff there are p1, . . . , pn, not all zero, such
that

µ(|p1x1 + · · ·+ pnxn| < max{µ(xi) : i ≤ n & pi 6= 0}.
Clearly if x1, . . . , xn are s.i., then they are linearly independent.

Lemma 2.6 (Harnik [3]) i) Let xi, . . . , xn be given. If µ(xi) 6= µ(xj) for all
i 6= j, then x1, . . . , xn are s.i.

ii) Let µ(x) = µ(x1) = · · · = µ(xn). Then x1, . . . , xn are s.i. iff the reals
x1/x, . . . , xn/x are linearly independent over the rationals.

Hence for x, x1, . . . , xn ∈ µ, x1, . . . , xn is a maximal s.i. subset of µ iff
x1/x, . . . , xn/x is a basis of F (x).

We turn now to M2(G). Let the letters δ, ε, ϑ range over neighborhoods.
Recall that we consider neighborhoods of nonstandard elements only, plus
the zero element.

Note that neighborhoods are contained in magnitude classes. For every
µ ∈ M1(G) let M2(µ) = {ε : ε ⊂ µ}. We write µ(ε) for the magnitude class
of ε, δ ≡ ε, if µ(δ) = µ(ε) and δ ¿ ε if µ(δ) < µ(ε). Also, by 2.3 (ii), for
every δ ≡ ε, and all x, x′ ∈ δ, y, y′ ∈ ε, x/y = x′/y′, so it makes sense to
write δ/ε for this common real number.

Here are some elementary properties of the ≈-classes. The verification is
left to the reader.

Lemma 2.7 i) x ≈ x′ and y ≈ y′ ⇒ (x + y) ≈ (x′ + y′). Hence we may
set δ(x) + δ(y) = δ(x + y). In particular, δ ¿ ε ⇒ δ + ε = ε.

ii) For every δ and every n > 0, n|x for some x ∈ δ, so it makes sense to
write pδ for every positive rational p, and (p + q)δ = pδ + qδ. Hence for all
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ε1, . . . , εn and all non-negative rationals p1, . . . , pn, p1ε+ · · ·+pnεn is defined
by setting,

p1δ(x1) + · · ·+ pnδ(xn) = δ(p1x1 + · · ·+ pnxn).

Moreover:

p1ε1 + · · ·+ pnεn =
∑{pkεk : µ(εk) is greatest}.

iii) If ε ≡ δ ≡ η and ε/δ = η/δ, then ε = η.
iv) ε/δ < 1 ⇐⇒ ε < δ.

If G is a ring with multiplication ×, moreover the following hold:
v) x ≈ x′ and y ≈ y′ ⇒ x× y ≈ x′× y′, hence we may set δ(x)¯ δ(y) =

δ(x× y).
vi) δ < ε & η > 0 ⇒ δ ¯ η < ε¯ η.

Thus (M2(G), +) is a semigroup (though not a strictly ordered one since
δ ¿ ε implies δ + ε = ε, hence in general, δ < ε ⇒ δ + η ≤ ε + η),
and also a (quasi)-vector space over Q. If in addition we start with a ring
R = (R, +,×), with some extra work employing bases (see [2]) we can show
that (M2(R), +,¯), where ¯ is the multiplication on M2(R) induced by ×,
is a semiring.

The semiring (M2(R), +,¯) is said to be euclidean if (∀ε ¿ δ)(∃η)(ε¯η =
δ) and radically closed if (∀ε 6= 0)(∀n > 0)(∃η)(ηn = ε). (Using the fact
that ε ¿ η ⇒ ε + η = η, we can easily see that this definition of the
euclidean property is equivalent to the standard one for this particular kind
of structure).

3 Strong bases

Recall from the introduction that for any dor (or dog) R, div(R) is the
divisible closure of R which is a linear Q-space, having thus linear bases from
R. Working now with strong independence rather than simple one, it is
natural to ask whether div(R) continues to have a basis consisted of strongly
independent elements. If R is countable, the answer is affirmative, and such
bases are indeed a very effective tool in the study of non-archimedean groups.

Definition 3.1 Let (H, +) be a divisible ordered structure. A linear basis B
of H over Q is said to be strong if B is a s.i. set.
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Lemma 3.2 Let (H, +, <) be a divisible ordered structure, a ∈ H+ and
{e1, . . . , ek} be a s.i. set of elements of H+. Then we can always find ek+1 ∈
H+ such that {e1, . . . , ek, ek+1} is s.i. and a ∈ 〈e1, . . . , ek, ek+1〉.

Proof. Let X = {e1, . . . , ek}. If X ∪ {a} is s.i. we just set ek+1 = a.
Otherwise there is a X0 ⊆ X, say X0 = {e1, . . . , ek0} and non-zero rationals
p, pi such that

c = |pa + p1e1 + · · ·+ pk0ek0| ¿ em, a, for all i ≤ k0. (4)

If c = 0, then a ∈ 〈e1, . . . , ek0〉, hence we are done.
Suppose c 6= 0. Let µ(X0) = max{µ(ei) : ei ∈ X0}. By the fact that X0

is s.i. and pi 6= 0, it follows that µ(|p1e1 + · · · + pk1ek1|) = µ(X0). Also if
µ(a) < µ(X0) or µ(a) > µ(X0), then either µ(c) = µ(X0) or µ(c) = µ(a),
contrary to (4). Therefore µ(a) = µ(X0), and µ(c) < µ(a) = µ(X0). Clearly
a ∈ 〈X ∪ {c}〉. Thus if X ∪ {c} is s.i., then it suffices to set ek+1 = c.

Suppose X ∪ {c} is not s.i. Then there is a subset X1 ⊆ X, say X1 =
{e1, . . . , ek1} and non-zero q, qi such that

c1 = |qc + q1e1 + · · ·+ qk1ek1| ¿ em, c, for all i ≤ k1. (5)

If c1 = 0, then c ∈ 〈X1〉, hence a ∈ 〈X〉. Otherwise let µ(X1) = max{µ(ei) :
ei ∈ X1}. Arguing as before we see that µ(c) = µ(X1) and µ(c1) < µ(c) and
c ∈ 〈X ∪ {c1}〉. Hence, since already a ∈ 〈X ∪ {c}〉, we get a ∈ 〈X ∪ {c1}〉.
If X ∪ {c1} is s.i., it suffices to set ek+1 = c1.

If X ∪ {c1} is not s.i., the process continues and we find c2, c3, . . . such
that X ∪ {ci} is not s.i., a ∈< X ∪ {ci} > and µ(ci+1) < µ(ci). We claim
that the process will terminate at some i, i.e., X∪{ci} will be s.i. Indeed, let
{µ1, . . . , µs} be the classes of the elements of X. Since µ(ci) 6= µ(cj), there
will be a ct such that µ(ct) /∈ {µ1, . . . , µs}. Then, clearly X ∪ {ct} is s.i. and
a ∈ 〈X ∪ {ct}〉. Setting ek+1 = ct we are done. This completes the proof. 2

Theorem 3.3 i) Every countable divisible structure (H, +) has a strong ba-
sis.

ii) For every countable dog G, div(G) has a strong basis B such that
B ⊆ G+.

Proof. i) Let a1, a2, . . . be an enumeration of H+. It suffices to construct
inductively a sequence (probably finite) e1, e2, . . . of s.i. elements of H+, such
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that for each n there is a k such that {a1, . . . , an} ⊆ 〈e1, . . . , ek〉. Suppose
that for a given n ∈ N we have found e1, . . . , ek such that {a1, . . . , an} ⊆
〈e1, . . . , ek〉. Then use 3.2 to extend {e1, . . . , ek} to a s.i. set {e1, . . . , ek, ek+1}
such that an+1 ∈ 〈e1, . . . , ek+1〉.

ii) By i) let B′ = {e′1, e′2, . . .} be a strong basis of div(G) such that B′ ⊂
div(G)+. If e′i =

ei

ni

, where ei ∈ G+ and ni > 0, it is easy to see that

B = {e1, e2, . . .} is also a strong basis of div(G). 2

Given a strong basis B of H, let for every µ ∈ M1(H)

Bµ = B ∩ µ and B¹µ = {e ∈ B : µ(e) ≤ µ}.

Proposition 3.4 i) If B is a strong basis, then every element of µ is a linear
combination of elements of B¹µ.

ii) If B is a strong basis, then for every µ, Bµ is a maximal s.i. subset of
µ.

Proof. i) Let x ∈ µ and x = p1e1 + · · · + pmem. It suffices to show that
ei ≤ µ. Assume the contrary and let, say, e1, . . . , es > µ. Then |x−ps+1es+1−
· · · − pmem| = |p1e1 + · · · + pses|. But the left hand side of this equation is
an element ≤ µ, hence 6≡ ej, for all j = 1, . . . , s, which contradicts the fact
that e1, . . . , es are s.i.

ii) Clearly Bµ is s.i. and assume it is not maximal. Then there is b ∈ µ\B
such that Bµ ∪ {b} is s.i. But since B¹µ produces the elements of µ, b is
written b =

∑
i piei + u, for ei ∈ Bµ, and µ(u) < µ, which contradicts the

strong independence of Bµ ∪ {b}. 2

4 Integral approximations of elements in fields

over dors

For a dor R it is important to know the proximity of its elements to those of
the fields Rfr and Rrc. The prototype of such nearness conditions is Shep-
herdson’s algebraic characterization of open induction S. S can equivalently
be stated as follows:

S∼: (∀x ∈ Rrc)(∃a ∈ R)(x ∼ a).
Replacing ∼ by ≈ and ≡ we get the weaker versions:
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S≈: (∀x ∈ Rrc)(x 6≡ 1 ⇒ (∃a ∈ R)(x ≈ a)).
S≡: (∀x ∈ Rrc)(∃a ∈ R)(x ≡ a).

Similarly the condition F for the euclidean property is equivalent to:
F∼: (∀x ∈ Rfr)(∃a ∈ R)(x ∼ a),

which leads to the weakenings:
F≈: (∀x ∈ Rfr)(x 6≡ 1 ⇒ (∃a ∈ R)(x ≈ a)).
F≡: (∀x ∈ Rfr)(∃a ∈ R)(x ≡ a).

Let us consider also nearness of roots of elements of R to elements of R:
R∼: (∀a ∈ R)(∀n > 0)(∃b ∈ R)(bn ∼ a).
R≈: (∀a ∈ R)(∀n > 0)(∃b ∈ R)(bn ≈ a).
R≡: (∀a ∈ R)(∀n > 0)(∃b ∈ R)(bn ≡ a).

Finally consider the principles:
U: (∀a À 1)(F (a) = F (R)).
RC: F (R) is real closed.

Note that properties U and RC refer essentially to the underlying ordering
and +, so they make sense also for groups.

The following implications are obvious:

euclidean ←→ F∼ −→ F≈ −→ F≡x
x

x
x

OI ←→ S∼ −→ S≈ −→ S≡y
y

y
R∼ −→ R≈ −→ R≡

Proposition 4.1 Let R = (R, +,×, <) be a dor, and let ∗,¯ be the multi-
plications induced by × on M1(R),M2(R) respectively. Then

i) F∼ ⇐⇒ R is euclidean and S∼ ⇐⇒ R |= OI.
ii) F≡ ⇐⇒ (M1(R), ∗, <, 1) is a euclidean monoid.
iii) R≡ ⇐⇒ (M1(R), ∗, <, 1) is a radically closed monoid.
iv) F≈ ⇐⇒ F≡ + U ⇐⇒ (M2(R), +,¯) is a euclidean semiring.
v) R≈ ⇐⇒ (M2(R), +,¯) is a radically closed semiring.
vi) R≡ + U + RC ⇒ R≈.
vii) F≡ + R≡ ⇐⇒ S≡.

Proof. (i) This is immediate from the definitions and Shepherdson’s re-
sult.
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ii) Let F≡ hold and µ < ν ∈ M1(R). Choosing a ∈ µ and b ∈ ν, we

have from F≡ that there is c ∈ R such that
b

a
≡ c. Then b ≡ ac, hence

µ ∗ µ(c) = ν. For the converse, let
b

a
∈ Rfr. If b ¿ a then

b

a
≡ 0. If b ≡ a,

then
b

a
≡ n for some n > 0. If b À a, then by the assumption there is λ such

that µ(a) ∗ λ = µ(b), hence
b

a
≡ c for every c ∈ λ.

iii) Similar to (ii).
iv) The equivalence F≈ ⇐⇒ (M2(R), +,¯) is a euclidean semiring,

follows immediately from the definition. We prove the other one. Suppose
F≈ holds. Then F≡ holds. Concerning U it suffices to show that given a ≡ b
and nonstandard c, there is x ≡ c such that a/b = x/c. Since a ≡ b and c is

nonstandard, clearly b ¿ ac. Then
ac

b
À 1 and by F≈, there is x ∈ R such

ac

b
≈ x, or bx ≈ ac. By 2.3, bx/ac = 1, or x/c = a/b.

Conversely suppose F≡ and , U hold true and let
b

a
À 1, in Rfr. Then

a ¿ b and by (ii) there is λ such that µ(a)∗λ = µ(b). Pick some u ∈ λ. Then
au ≡ b and by U, there is c ≡ u such that b/au = c/u, or b/au = ac/au, or

ac/b = 1 and equivalently
b

a
≈ c. Thus F≈ holds.

v) This is immediate from the definition of radically closed semiring.
vi) Let a ∈ R. By R≡ there is d ∈ R such that dn ≡ a. By RC,

(a/dn)1/n ∈ F (R), hence, by U, there is b such that (a/dn)1/n = b/d. Then
a/dn = bn/dn, or a ≈ bn. So R≈ holds true.

vii) One direction is obvious. We prove F≡+R≡ ⇒ S≡. Let F≡ and R≡
hold. Then by (ii), (iii) above M1(R) is euclidean and root closed. We have
to show that for every r ∈ Rrc, r > 0, there is a ∈ R such that a ≡ r. If
r ≡ 1 the claim is obvious. It suffices to show the claim for r À 1.

Let r À 1 and let f(r) = anr
n + · · ·+ a1r + a0 = 0 for some f(x) ∈ R[x].

If for all i 6= j, 0 ≤ i, j ≤ n, |air
i| 6≡ |ajr

j|, then clearly |f(r)| ≡ max{|air
i| :

i ≤ n}, contrary to the fact that f(r) = 0. Therefore there are i 6= j such
that |air

i| ≡ |ajr
j|. Hence if j < i, |air

i−j| ≡ |aj|. Since M1(R) is euclidean,
there is a b ∈ R such that |aj| ≡ |ai|b, whence |aj| ≡ |ai|b ≡ |ai|ri−j, or
b ≡ ri−j. Also by the fact that M1(R) is radically closed, there is a such that
ai−j ≡ b, from which we get ai−j ≡ ri−j, and finally a ≡ r. 2
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Given a nonstandard a ∈ R+, a polynomial f(x) ∈ F (a)[x] has the form

f(x) = (an/a)xn + (an−1/a)xn−1 + · · ·+ (a1/a)x + a0/a,

where for all i ≤ n, either |ai| ≡ a or |ai| ¿ a, i.e., ai/a = 0. For such an f ,
let f ∗ ∈ R[x] be the polynomial

f ∗(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0.

Lemma 4.2 i) For every f as above, if f ∗(r) = 0, then either r = 0, or

r > 0 and
1

l
< r < m, or r < 0 and −m < r < −1

l
for some standard

positive integers l, m.
ii) For every f ∈ F (a)[x] and every b ∈ R such that |b| ≡ a,

f(b/a) = 0 ⇐⇒ |f ∗( b

a
)| ¿ a.

Proof. i) Let f ∗(x) = anx
n + an−1x

n−1 + · · · + a1x + a0, with all ai 6= 0,
and |ai| ≡ |aj|. Suppose f ∗(r) = 0, r > 0 and assume on the contrary
that r > n for all n ∈ N. Thus i < j ⇒ ri ¿ rj, and since ai ≡ aj, it

follows that if |f ∗(r)| ≡ |anr
n| which is a contradiction. Similarly if r <

1

l

for all standard l, then
1

r
> l for all l, and

1

r
is a root of the polynomial

a0x
n + a1x

n−1 + · · · + an−1x + an, whose coefficients are also of the same
magnitude, so the same argument as before we reach a contradiction. The
case for r < 0 is similar.

ii) f(b/a) = 0 ⇐⇒
(an/a)(b/a)n + (an−1/a)(b/a)n−1 + · · ·+ (a1/a)(b/a) + a0/a = 0 ⇐⇒

(anbn + an−1b
n−1a + · · · a1ba

n−1 + a0a
n)/an+1 = 0 ⇐⇒

|anb
n + an−1b

n−1a + · · · a1ba
n−1 + a0a

n| ¿ an+1 ⇐⇒
|anb

n + an−1b
n−1a + · · · a1ba

n−1 + a0a
n|

an
¿ a ⇐⇒ |f ∗( b

a
)| ¿ a.

2

Harnik [3], p. 425, says that if G is recursively saturated, then it can
be shown that the field F (G) is real closed. This means that for every dor
R such that R |= IΣ0, F (R) is real closed. In fact the following stronger
implication holds.
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Lemma 4.3 S≈ ⇒ RC. A fortiori, if R |= OI then R satisfies RC, i.e.,
F (R) is real closed.

Proof. Note that S≈ ⇒ F≈ ⇒ U (by 4.1 (vi)), hence F (R) = F (a) for all
a À 1. We show that F (a) is real closed.

(a) Let x/a > 0. We have to show that there is y/a such that x/a =
(y/a)2. Clearly (xa)1/2 ∈ Rrc and (xa)1/2 À 1, hence by the assumption
there is y ∈ R such that (xa)1/2 ≈ y. We easily see that y is as required.

(b) Let f(x) ∈ F (a)[x] be of odd degree. f(x) is of the form

f(x) = (an/a)xn + · · ·+ (a1/a)x + a0/a.

Consider f ∗(x). This is of odd degree hence it has a root r ∈ Rrc. For

simplicity assume r > 0. By 4.2 (i),
1

l
< r < m for standard l, m. Let

r1 < r < r2 be the roots of f ∗ immediately before and after r. Take t ∈ R,
t À 1, such that t(r−r1), t(r2−r) > 1. By the size of r, tr ≡ t. Since tr À 1,
by S≈, there is s ∈ R such that tr ≈ s, say, tr = s + θ, θ ∈ Rrc, θ ¿ s ≡ t.
From these we get tr1 < tr− 1 = s+ θ− 1 < tr < s+ θ +1 = tr +1 < tr2, or

r1 <
s + θ − 1

t
< r <

s + θ + 1

t
< r2.

Since f ∗(r) = 0, either

f ∗(
s + θ − 1

t
) < 0 < f ∗(

s + θ − 1

t
),

or

f ∗(
s + θ − 1

t
) > 0 > f ∗(

s + θ + 1

t
).

In both cases

|f ∗(s + θ − 1

t
)| < |f ∗(s + θ + 1

t
)− f ∗(

s + θ − 1

t
)|.

Now it is easy to see that the right-hand side of the above inequality is ¿ a,

hence |f ∗(s + θ − 1

t
)| ¿ a, thus from 4.2, f((s + θ− 1)/t) = 0. Since θ ¿ t,

(s + θ − 1)/t = s/t and finally f(s/t) = 0, that is, f has a root in F (R). 2

Lemma 4.4 S≡ + U + RC ⇒ S≈.
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Proof. Suppose R is as stated and that there is an r À 1 in Rrc such that
for every a ∈ R, a 6≈ r. We shall reach a contradiction.

First, by S≡ there is an a ∈ R+ such that a ≡ r. Let µ = µR(a) and
let Bµ = {ei : i ∈ I} be a maximal set of strongly independent elements of
µ. We claim that Bµ ∪ {r} is strongly independent. Assume the contrary.
Then there are rationals p, p1, . . . , pk 6= 0 and ei1 , . . . , eik ∈ Bµ such that
|pr + p1ei1 + · · · + pkeik | ¿ r, hence pr ≈ |p1ei1 + · · · + pkeik |, from which
(using the fact that R is a Z-dor) it follows that r ≈ b for some b ∈ R,
which contradicts our assumption. Now the fact that Bµ is s.i. in µ and that
Bµ ∪ {r} is also s.i. is equivalent (see 2.6 (ii)) to the fact that {ei/a : i ∈ I}
is a basis of the vector space F (R), while {ei/a : i ∈ I} ∪ {r/a} is linearly
independent in F (R(r)), therefore r/a /∈ F (R).

Now since r ∈ Rrc, there is a polynomial f(x) = anxn + an−1x
n−1 +

· · · + a1x + a0 of R[x] such that f(r) = 0. As we have shown in 4.1, (vi),
there are i 6= j such that |air

i| ≡ |ajr
j|. Let us gather together all the

monomials of f(r) of maximum magnitude and let us assume without loss of
generality that they form the sum g(r) = akr

k + ak−1r
k−1 + · · · + a1r + a0.

Then |amrm| ≡ |a0|, for all m = 1, . . . , k, and clearly |g(r)| ¿ a0 (otherwise
|f(r)| ≡ |g(r)| ≡ |a0|, contradicting f(r) = 0). Equivalently we have

rk +
ak−1

ak

rk−1 + · · ·+ a1

ak

r +
a0

ak

¿ a0

ak

. (6)

Now S≡+U implies F≡+U which also implies F≈, hence for every i ≤ k − 1

there is a bi ∈ R such that
ai

ak

≈ bi (and bi ≡ rk−i ≡ ak−i). Replacing in (6)

each
ai

ak

by bi, an easy computation yields

rk + bk−1r
k−1 + · · ·+ b1r + b0 ¿ b0 and b0 ≡ rk ≡ ak. (7)

From (7) we get

(r/a)k + (bk−1/a)(r/a)k−1 + · · ·+ (b1/a
k−1)(r/a) + b0/a

k = 0,

or h(r/a) = 0, where h(x) = xk + (bk−1/a)xk−1 + · · · + (b1/a
k−1)x + b0/a

k.
But h(x) ∈ F (R)[x], and, by (c) of the hypotheses, F (R) is real closed,
hence r/a ∈ F (R), which contradicts our previous conclusion. This proves
the claim. 2
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Corollary 4.5 a)The following are equivalent (over the axioms of dor’s):
i) S≈
ii) S≡ + U + RC.
iii) F≡ + R≡ + U + RC.

Proof. Immediate from lemmas 4.1, 4.3, 4.4. 2

The main implications of 4.1 and 4.5 are summarized in the following
diagram:

F≡ + Uxy
F≈ −→ F≡x

x
S≡ + U + RC ←→ S≈ −→ S≡ ←→ F≡ + R≡y

y
R≈ −→ R≡x

R≡ + U + RC

We shall show below using counterexamples that no single arrow in the
above diagram can be reversed. First a lemma.

Lemma 4.6 Let R be a dor and let x, y ∈ R such that x ≡ y. Then
i) x/y is irrational iff x, y are s.i.
ii) x/y is non-algebraic if for every n > 0, the set {xiyn−i : 0 ≤ i ≤ n} is

s.i.

Proof. i) By definition x, y are not s.i. iff there is p ∈ Q such that
py + x ¿ y, or, in view of lemma 2.3, iff there is p such that (py + x)/y = 0,
or iff there is p such that x/y + p = 0, hence iff x/y ∈ Q.

ii) x/y is algebraic iff there is a polynomial f such that f(x/y) = 0, or
an(x/y)n + · · · + a1(x/y) + a0 = 0 for some ai ∈ Q, or anx

n + an−1x
n−1y +

· · ·+ a1xyn−1 + a0y
n ¿ yn, or {xiyn−i : 0 ≤ i ≤ n} is s.i. 2

Proposition 4.7 i) F≡ 6⇒ R≡, ii) R≡ 6⇒ F≡, iii) F≡ 6⇒ S≡, iv) R≡ 6⇒ S≡,
v) F≡ 6⇒ U, vi) F≡ 6⇒ F≈, vii) S≡ 6⇒ S≈, viii) R≡ 6⇒ R≈, ix) F≈ 6⇒ S≈, x)
R≈ 6⇒ R≡ + U + RC.
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Proof. i) Let R be a dor such that (M1(R), ∗, <, 1) is of the form
{1, µ, µ2, . . .}, where 1 < µ < µ2 < · · ·. There is an abundance of such
rings, e.g. that generated by Z ∪ {x}, i.e. R = Z[x], where x is construed as
an infinite (nonstandard) divisible element (i.e., n|x for all standard n > 0)
and 1 ¿ x ¿ x2 ¿ · · ·. Every such monoid is obviously euclidean. However
it cannot be radically closed since e.g. there is no ν such that ν2 = µ. More
generally it is shown in [5] that if (M1(R), ∗, <, 1) is radically closed, then its
order must be dense. It follows by proposition 4.1 (ii) and (iii), that in such
an R, F≡ holds, while R≡ is false. Therefore F≡ 6⇒ R≡.

ii) R≡ 6⇒ F≡: In [5] we gave a simple example of a radically closed monoid
which is not euclidean. Here we have to find an R such that (M1(R), ∗, <, 1)
is of this kind. Then R≡ 6⇒ F≡ will follow again by 4.1 (ii) and (iii). Let
R be the ring generated by Z ∪ {x1/n, y1/n : n > 0}, where x, y are infinite
divisible numbers such that for all n ∈ N, xn ¿ y. Every f(x, y) ∈ R
consists of monomials xayb, with a, b ∈ Q+. Since xn ¿ y, it follows easily
that xayb ¿ xcyd iff b < d, or b = d and a < c. For every f ∈ R, let
degy(f) be the greatest exponent of y in f , and let degx(f, y) be the greatest
exponent of x occurring in the monomials with degree degy(f). Then f ¿ g
iff degy(f) < defy(g), or degy(f) = defy(g) and degx(f, y) < defx(g, y).
Therefore f ≡ g iff degy(f) = defy(g) and degx(f, y) = defx(g, y). Thus
each class µ(f) can be identified to a monomial xayb. For any xayb and any
n > 0, the n-th root of xayb is xa/nyb/n, hence M1(R) is radically closed. On
the other hand, there is no monomial xayb such that (xayb)x ≡ y. Indeed
the latter requires a + 1 = 0 and b = 1, which is impossible since a, b ∈ Q+.
Thus M1(R) is not euclidean and the claim is proved.

iii) and iv) Since by 4.1 (vii), S≡ ⇔ F≡+R≡, it follows immediately from
(i) and (ii) above that F≡ 6⇒ S≡ and R≡ 6⇒ S≡.

v) Let R be a dor generated by Z ∪ {x, y}, where x, y are infinite divis-
ible elements such that x ≡ y and x, y are strongly independent. Then, by
the lemma 4.6 i), x/y is irrational and it is easy to see that F (x) = F (y) =
Q[x/y]. (Concerning the existence of x, y such that x/y is irrational, if H is a
recursively saturated dog, then F (H) contains all recursive positive reals. See
[3] for more details.) Since µ(x) = µ(y) = µ, clearly M1(R) = {1, µ, µ2, . . .},
therefore M1(R) is a euclidean monoid, i.e. R satisfies F≡. On the other
hand, x2, y2 ∈ µ2 and x2/y2 = (x/y)2, hence F (x2) = Q[(x/y)2]. Taking e.g.
x, y so that x/y =

√
2, the fields Q[x/y] and Q[(x/y)2] are distinct, hence U

is false in R. This proves F≡ 6⇒ U.
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vi) Since by 4.1 (iv), F≈ ⇔ F≡ + U, F≡ 6⇒ F≈ follows immediately from
(v).

vii) S≡ 6⇒ S≈: In view of the fact that S≈ ⇔ S≡ + U + RC and S≡ ⇔
F≡ + R≡, it suffices to show that F≡ + R≡ 6⇒ RC (or F≡ + R≡ 6⇒ U), i.e.,
to find R such that (M1(R), ∗, <, 1) is euclidean and radically closed but the
field F (a) for some a is not real closed.

Let R be the dor generated by Z∪ {x1/n, y1/m : m,n > 0}, where x, y are
as in the example of (v) above, i.e., x ≡ y and x, y are s.i. It is easy to see
that if µ = µ(x) = µ(y), M1(R) = {µm/n : m ≥ 0, n > 0}, with the obvious
ordering and multiplication, hence M1(R) is both euclidean and radically
closed. Then F (x) = Q[x/y] and this field is clearly not real closed. (In fact
neither U holds in R, since F (x1/2) = Q[(x/y)1/2] 6= F (x).)

viii) R≡ 6⇒ R≈: It suffices to show that if in the dor R of (vii) above
we take x/y to be non-algebraic, then R does not satisfy R≈. (Since there
are recursive non-algebraic reals, the existence of such x/y follows from the
analogous remark of clause (v).) Indeed in this case, for every n, (x/y)1/n is
also non-algebraic, so by lemma 4.6 (ii), for any k and any pairs of rationals
(ai, bi), i ≤ k, such that ai + bi=fixed,

{xa1yb1 , . . . , xakybk} is s.i. (8)

We claim that there is no u ∈ R such that u2 ≈ (x + y).
Assume the contrary and let u be such that u2 ≈ x + y. Since x + y ∈ µ,

u must belong to µ1/2. A (strong) basis of div(R) is formed by the elements
xk/nyl/n, hence u is written as a finite sum u =

∑
i pix

aiybi +w, where pi ∈ Q,
ai + bi = 1/2 and w < µ1/2. Therefore (

∑
i pix

aiybi + w)2 ≈ x + y, or

[
∑

i

(pix
aiybi)2 +

∑

ij

2pipjx
ai+ajybi+bj + z] ≈ x + y,

where z = w2 +
∑

i 2pix
aiybiw < µ. But then

|∑
i

(pix
aiybi)2 +

∑

ij

2pipjx
ai+ajybi+bj − x− y| = z ¿ x + y,

which means that the set {x, y, x2aiy2bi , xai+ajybi+bj : i, j} is not s.i. Since
2ai + 2bi = ai + aj + bi + bj = 1, this contradicts (8) and the claim is proved.
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ix) Consider the ring R = Z[x] of clause (i). This is euclidean, hence it
satisfies F≈. Moreover R satisfies U and F (R) = Q. Hence RC fails for R.
In view of the fact that S≈ ⇔ S≡ + U + RC, it follows that F≈ 6⇒ S≈

x) It suffices to show that R≈ 6⇒ RC. Let R be the dor generated by
Z∪{x1/n : n > 0}. It is easy to see that M2(R) is radically closed. Therefore
R≈ holds for R. Now F (R) = Q, hence RC fails. 2
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