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Abstract

We consider a cumulative hierarchy of multisets over some set of
urelements, equipped with additive union ] and a transform relation
¤, and investigate the Horn fragments of Intuitionistic Linear Logic
(ILL) that are interpretable in it. The operator ! is defined in an
asymptotic way which causes some deviations from the linear-theoretic
behavior. Soundness, completeness and partial completeness results
are proved for the various fragments. Certain processes of multisets
suggest rules for the multiplicatives not compatible with full ILL. One
such rule added to the Horn fragment makes the system sound and
complete with respect to “coherent processes”.

1 Introduction.

All familiar logics except the linear one (classical, intuitionistic, modal, rele-
vant, etc.), share a remarkable common feature: Conjunction and disjunction
are idempotent operations. An explanation of this fact can be found in their
semantics. Each one of these logics possesses a set-theoretic semantics, where
∧ is interpreted as ∩ and ∨ as ∪. Thus the identities φ ∧ φ = φ ∨ φ = φ are
syntactic counterparts of the extensional identities A∩A = A∪A = A. It is
reasonable to consider the last identities as more primitive than the first ones,
since we usually identify a predicate φ with its extension Aφ = {a : φ(a)}.
So the question why φ ∨ φ = φ is reduced to the question why A ∪ A = A.
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For reasons hidden in the early history of set theory, a set came to mean a
collection of types of objects rather than of concrete tokens of them. Accord-
ing to this view what matters with respect to elementhood is just the kind of
an object x, not the concrete copies of it. Hence any series of copies x, x, . . .
can be suppresed to a single representative. Idempotence of ∪ follows then
immediately: A ∪ A contains precisely the same types of objects as A.

Under this interpretation of formulas as extensions, a logic Λ contains
exactly the syntactic rules of a calculus of extensions forming a certain kind
of structure S. We express this by saying that Λ is the logic of S. E.g.
classical logic is the logic of boolean fields of sets (i.e., boolean algebras
of sets), intuitionistic logic is the logic of pseudo-boolean fields (like the
structure of open sets of a topological space), modal logic is the logic of
topological boolean fields (that is, boolean fields equipped with a further
interior operator), and so on.

Our concern in this paper is what the effect on logic will be if we shift
from ordinary sets to multisets, i.e. collections which account not only for
types but also for tokens of objects. The demand for such collections becomes
more and more urgent in applications where copies of various data, stand-
ing as resources of processes, have an existence of their own and cannot be
suppressed to a single one. For instance, if data is money spent, then clearly
the collections {$1} and {$1, $1} do not coincide, and ordinary union has to
be replaced by additive union {$1} ] {$1} = {$1, $1} that captures resource
preservation. Additive union is the only operation we consider here. Idem-
potent ∪ and ∩ can also be defined but are of minor importance. Since ] is
not idempotent, this constitutes the first basic departure from the ordinary-
set paradigm. Multisets differ also from ordinary sets in that, for any given
one X, the collection of submultisets of X is not closed under ]. For in-
stance X ]X 6⊆ X. Therefore no X can stand for a greatest multiset, and
consequently no sensible notion of complement exists. In order to interpret
implication we introduce a “transform relation” x ¤ y, which roughly means
that using precisely the elements of x we can construct y. The question we
address is this: What logic arises if ] stands for conjunction and ¤ stands
for implication?

J.-Y. Girard has developed in [3] linear logic (LL), the multiplicative frag-
ment of which has since stood as the major paradigm for resource sensitive
logical procedures. LL possesses also a set-theoretic semantics, but ∪ and
∩ interpret only its “additive” part, which roughly coincides with classical
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logic. For the interpretation of the “multiplicative” part (which is the real
novelty), one has to employ tensor-like products, while ! is interpreted as a
topological interior. The logic of multisets is shown to be almost identical
to the relevant fragments of linear logic, namely the {⊗,−◦}- and ⊗,−◦, !}-
fragments. Some deviations, especially concerning the rules of !, shed in our
view some further light on the meaning of this operator. Thus the passage
from ordinary sets to multisets causes an essential simplification of seman-
tics since, for these fragments, we can dispense with tensor products and
topological closures.

The connection between the behavior of multisets and the multiplicative
fragment of LL can be briefly explained as follows. Transformations of mul-
tisets, in contrast to those of ordinary sets, obey the conservation principle:
The resources of the input and the output of the transformation are equal.
Obviously this is a semantical principle. The syntactic (logical) counterpart
of this principle is non-contraction+non-weakening, which, as is well-known,
constitutes the heart of the multiplicative fragment of LL. Non-contraction
can be stated as A 6` A⊗A, that is, nothing can be born from nothing. Non-
weakening states that (A ⊗ B) 6` A, that is, nothing can perish to nothing.
Thus interpreting ⊗ as multiset union ] and −◦ as multiset transform, ¤,
provides a natural model for the multiplicatives.

The paper is organized as follows: In section 2 we define the cumula-
tive hierarchy of multisets over a set of urelements and prove some basic
facts about it. In section 3 we introduce the transform relation ¤, staged
processes and sequents of multisets and examine the rules that these se-
quents satisfy. In section 4 we introduce the Horn fragment (HF) of linear
logic and prove its soundness and completeness with respect to staged se-
quents. In section 5 a weaker kind of process and sequent is studied, the
coherent ones. These sequents satisfy an additional rule, the cancellation
rule C⊗. If CHF=HF+C⊗, then we show that CHF is sound and complete
with respect to coherent sequents. In section 6 generalized multisets, pro-
cesses and sequents containing the operator ! are introduced. The truth of
these sequents is reduced asymptotically to the truth of ordinary sequents
(staged or coherent) by means of a ∀∃ definition. Here however the con-
traction rule for !-sequents fails. But the system !-HF is sound if we restrict
ourselves to a certain subclass of !-multisets having a good normal form.
Also !-HF is complete with respect to a subclass of !-staged sequents called
regular. Analogous soundness and completeness results hold for the system
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!-CHF=!-HF+C⊗ with respect to !-coherent processes.

2 Multisets.

The interest in multisets (except from marginal hints found in older books)
has started to emerge rather recently (after 1960) and the literature is not
very extensive. Except for a few papers that undertake to found them rig-
orously, like [1], the rest deal mainly with applications. Especially in the
last twenty years there is a remarkable growth of applications of multisets
in various areas of computer science. D. Knuth already makes considerable
use of them in [6]. [1] contains a good brief survey and bibliography of main
contributions to the subject up to 1989. It also contains an axiomatic foun-
dation. However this is not really necessary in order to treat them rigorously.
The framework of classical set theory ZF suffices and it is in this that we
work below. Other survey articles of the multiset literature are [2] and [7].

Throughout by “set” we shall always mean an ordinary set of ZF. Capital
letters A,X, Y, . . . will range over sets, while small letters x, y, z, . . . will range
over multisets. Formally the notion is sufficiently captured if we take a
multiset over X to be a mapping x : X → N , where N is the set of non-
negative integers.

Definition 2.1 A multiset over a set X is a function x : X → N . The set
d(x) = {y : x(y) 6= 0} is the domain of x, or the set of its types. x(y) is the
multiplicity of y in x. We write y ∈ x if x(y) 6= 0, i.e., if y ∈ d(x). x is finite
if d(x) is finite.

We use square brackets when we write explicitly the elements of x, namely
we write x = [y1, y1, . . . , y2, y2, . . .], or x = [yn1

1 , yn2
2 , . . .], where ni is the

multiplicity of yi. The empty multiset is denoted again by ∅.
(Although the elements of a multiset can be whatever, even sets, we

denote them by small letters too. In fact, throughout this paper the elements
of multisets will be multisets or urelements.)

M.I. Kanovich in [4] and [5] seems to have been the first to realize that for
simple fragments of LL the tensor product is no more than additive union.
Definition 2.2 of [4] goes as follows:
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“Taking into account the associativity and commutativity laws, we use a
natural isomorphism between non-empty finite multisets of positive literals
and simple (tensor) products. A multiset {p1, p2, . . . , pk} is represented by
the simple product (p1 ⊗ p2 ⊗ · · · ⊗ pk), and vice versa. For simple products
X, Y representing multisets L,M respectively,

(a) (X ⊗ Y ) represents the union of L and M ;
(b) if L ⊆ M we will say that the simple product X is contained in the

simple product Y , and will write X ⊆ Y ;
(c) we write X ∼= Y to indicate that X ⊆ Y and Y ⊆ X.”

For every set X let M(X) and FM(X) be the set of multisets and finite
multisets, respectively, over X. The operators M , FM , like the powerset
operator are monotone and send sets to sets. For every nonempty set of
urelements A we define a hierarchy U(A) of finite multisets as follows:

U0(A) = A, Un+1(A) = Un(A) ∪ (FM(Un(A))\{∅}), U(A) =
⋃

n≥0

Un(A).

We exclude ∅ from our hierarchy because it is a “null” object for our purposes
and its presence adds only unecessary complication.

The letters a, b, c, . . . range over elements of A. Clearly Un(A) ⊆ Un+1(A)
for each n ≥ 0. U(A) is the analog of the cumulative hierarchy of hereditarily
finite sets built on the set of urelements A.

For any X ⊆ U(A), U(X) is defined similarly. In particular we write U(x)
instead of U(d(x)). For urelements a, we can conventionally put d(a) = ∅.
Clearly, if x /∈ A, then x ∈ FM(d(x)) and for every Y ⊂ d(x), x /∈ FM(Y ).
Given X and x ∈ U(X), the rank of x with respect to X, denoted rankX(x),
is the least n ∈ N such that x ∈ Un(X). Obviously, rankX(x) = 0 iff x ∈ X.
If X = A, we drop the subscript, i.e., rank(x) = rankA(x). Also we write
ranky(x) instead of rankd(y)(x).

U(A) is equipped with additive union ] defined by

(x ] y)(z) := x(z) + y(z),

and inclusion

x ⊆ y := (∀z)(x(z) ≤ y(z)).
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Clearly
x ⊆ y & y ⊆ x ⇒ x = y.

Also for x ⊆ y, y − x is defined by

(y − x)(z) := y(z)− x(z).

x ] y is generalized to ]x, for any x, by putting

(]x)(z) =
∑

y∈d(x)

x(y) · y(z).

Thus x ] y = ][x, y] and ][x] = x.
Given x and any positive integer n, nx denotes the union of n copies of

x, i.e.,
nx = x ] · · · ] x︸ ︷︷ ︸

n times

= ][xn].

Given x and a mapping f : d(x) → Y into another set Y , the substitution
of elements y of x by f(y) of Y which respects multiplicities, creates a new
multiset denoted by f [x]. This is defined as follows:

Definition 2.2 Let x ∈ U(A). Every mapping f : X ⊇ d(x) → Y is called
a substitution. The image of x under f , is the multiset f [x] such that:

(a) d(f [x]) = f(d(x)), and
(b) (f [x])(y) =

∑{x(z) : f(z) = y}.
For convenience instead of f [x] we write

[f(y) : y ∈ x].

Definition 2.3 For every X ⊆ U(A) and every x ∈ U(X), the function
suppX : U(X) → FM(X) is defined by induction on rankX(x) as follows:

(a) suppX(x) = [x] if x ∈ X.
(b) suppX(x) = ]suppX [x] = ][suppX(y) : y ∈ x].
suppX(x) is said to be the support of x over X. In particular, we write

supp(x) instead of suppA(x), and suppy(x) instead of suppd(y)(x).

In words, suppX(x) is the multiset of elements of X involved in the con-
struction of x. The following is easy.

Lemma 2.4 For every x, (a) supx(x) = x, (b) suppx([x]) = x and (c)
supp[x](x) = [x].
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3 Transforms and processes of multisets.

We fix a set of urelements A and the hierarchy U(A) built on A. rank(x)
refers always to this hierarchy.

Lemma 3.1 (a) rankx(y) = 0 iff y ∈ d(x), and rankx(y) = 1 iff d(y) ⊆
d(x).

(b) For every x ∈ U(y), rank(x) = rank(y) + ranky(x)− 1.
(c) If x ∈ U(y), then rank(y) ≤ rank(x) unless x ∈ d(y).
(d) If x ∈ U(y) and y ∈ U(x), then either x ∈ y, or y ∈ x or d(x) = d(y).

Proof. (a) is obvious. (b) Let x ∈ U(y) and let rank(y) = n and
ranky(x) = k. Then

y ∈ Un(A)\Un−1(A) and x ∈ Uk(d(y))\Uk−1(d(y)).

By the last two relations we get

d(y) ⊆ Un−1(A) and d(x) ⊆ Uk−1(d(y)),

whence
d(x) ⊆ Uk+n−2(A),

hence x ∈ Uk+n−1(A). Thus rank(x) ≤ k +n−1. From the fact that k, n are
the least elements for which the above hold, we get that rank(x) = k+n−1.

(c) By (b), rank(y) ≤ rank(x), unless ranky(x) = 0, i.e., by (a), x ∈ d(y).
(d) Let x ∈ U(y) and y ∈ U(x). By (b), rank(x) = ranky(x)+rank(y)−1,

and rank(y) = rankx(y) + rank(x) − 1. The last two equations yield
rankx(y) + ranky(x) = 2. Then either rankx(y) = ranky(x) = 1, or
rankx(y) = 0 and ranky(x) = 2, or ranky(x) = 0 and rankx(y) = 2. In
the first case, by (a), d(x) = d(y) and in the other cases y ∈ d(x) and
x ∈ d(y) respectively. But these are equivalent to y ∈ x and x ∈ y. 2

Lemma 3.2 (a) If X ⊆ Y and x ∈ U(X), then suppX(x) = suppY (x). In
particular, if d(x) ⊆ d(y), then suppy(x) = x.

(b) suppX is additive, i.e., suppX(x] y) = suppX(x)] suppX(y). Conse-
quently, for every x such that x,]x ∈ U(X), suppX(x) = suppX(]x).

(c) If y ∈ U(x) and z ∈ U(y), then z ∈ U(x) and

suppx(z) = suppx(suppy(z)).
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Proof. (a) Immediate from the definitions.
(b) The first claim is also immediate from the definitions. Now let x,]x ∈

U(X) and x = [u1, . . . , un]. Then

suppX(x) = ][suppX(u) : u ∈ z] = suppX(u1) ] · · · ] suppX(un) =

suppX(u1 ] · · · ] un) = suppX(]x).

(c) By induction on rankx(z). Suppose it holds for suppx(u), where u ∈ z,
and let z = [u1, . . . , un]. Then

suppx(z) = suppx(u1) ] · · · ] suppx(un),

or, by the induction hypothesis,

suppx(z) = suppx(suppy(u1)) ] · · · ] suppx(suppy(un)) =

suppx([suppy(u1), . . . , suppy(un)]).

By (b), the latter is equal to

suppx(][suppy(u1), . . . , suppy(un)]) = suppx(suppy(z)). 2

We come now to the main definition of this section.

Definition 3.3 The transform relation is a binary relation ¤ on U(A) de-
fined as follows: (x, y) ∈ ¤ if

(a) y ∈ U(x), and
(b) suppx(y) = x.
We write x ¤ y instead of (x, y) ∈ ¤ and say that y is a transform of x.

In words, x ¤ y holds if y belongs to the universe built on the types of x
and contains exactly the resources of x.

Comment. The transform relation is intended to capture material change
subject to the conservation principle: The ultimate resources of the input
and the output are equal. Chemical reactions, for example, are of this kind.
For instance, the reaction

H2SO4 + 2NaOH → Na2SO4 + 2H2O
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can be written as the multiset transform

[[H2, S, O4], [Na,O,H]2] ¤ [[Na2, S, O4], [H2, O]2],

where H, S, Na, O are urelements.

Lemma 3.4 (a) ¤ is reflexive and transitive.
(b) If x ¤ y and y ¤ x, then either x = y, or x = [y] or y = [x].
(c) If x ¤ y, then supp(x) = supp(y).

Proof. (a) Clearly, x ∈ FM(d(x)) ⊆ U1(d(x)), and, by 3.2(a) suppx(x) =
x, hence x ¤ x. To check transitivity, let x ¤ y and y ¤ z. Then

(i) y ∈ U(x), z ∈ U(y) and
(ii) suppx(y) = x and suppy(z) = y.
By (i) and 3.2(c), z ∈ U(x). By (ii) and 3.2(c),

suppx(z) = suppx(suppy(z)) = suppx(y) = x.

Thus x ¤ z.
(b) Let x ¤ y and y ¤ x. Then y ∈ U(x) and x ∈ U(y). By 3.1(d), either

d(x) = d(y), or x ∈ y or y ∈ x. In the first case, by 3.2(a), suppx(y) = y,
whereas by x ¤ y, suppx(y) = x. Hence x = y. Suppose that x ∈ y, i.e.,
y = [· · ·x · · ·]. Then

suppx(y) = ][· · · suppx(x) · · ·] ⊆ x.

Since by the hypothesis, suppx(y) = x, and for every z ∈ y, suppx(z) 6= ∅, it
follows that y = [x]. Similarly if y ∈ x we find x = [y].

(c) Recall that supp(x) = suppA(x). Let x ¤ y. By 3.2(c), supp(y) =
suppA(y) = suppA(suppx(y)). Since by the hypothesis suppx(y) = x, we find

supp(y) = suppA(y) = suppA(x) = supp(x). 2

Suppose now we are given a multiset x, representing some initial re-
sources, and a transform y ¤ z such that y ⊆ x. Putting these together
we may interpret the pair (x, (y ¤ z)) as a process which transforms the
part y of x into z yielding thus outcome (x − y) ] z. This can be general-
ized to a finite multiset [x1, . . . , xn] of initial resources and a finite multiset
[y1¤z1, . . . , yk¤zk] of transforms. However, since the resources of [x1, . . . , xn]
can be represented by those of the multiset x = x1 ] · · · ] xn, we can always
consider the initial resources as consisting of a single multiset.
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Lemma 3.5 (a) Let y1 ∈ U(x1) and y2 ∈ U(x2). Then

suppx1]x2(y1 ] y2) = suppx1(y1) ] suppx2(y2).

(b) If x1 ¤ y1, . . . , xn ¤ yn, then (x1 ] · · · ] xn) ¤ (y1 ] · · · ] yn).

Proof. (a) follows immediately from 3.2(a),(b).
(b) It suffices to see it for n = 2. Let x1¤y1 and x2¤y2. Then y1 ∈ U(x1),

y2 ∈ U(x2), suppx1(y1) = x1 and suppx2(y2) = x2. Then, clearly (y1 ] y2) ∈
U(x1 ] x2) and, by (a),

suppx1]x2(y1 ] y2) = suppx1(y1) ] suppx2(y2) = x1 ] x2.

Hence (x1 ] x2) ¤ (y1 ] y2). 2

Definition 3.6 A process is a tuple

P = (x1, . . . , xn, σ1, . . . , σm),

where xi ∈ U(A) and σj are finite multisets of pairs (y, z), with y, z ∈ U(A),
such that y ¤ z. Juxtaposition of multisets within a process is assumed
to be equivalent to their additive union ], so the above process is written
equivalently as

P = (x1 ] · · · ] xn, σ1 ] · · · ] σm).

Therefore every process can be written in the form P = (x, σ). We write
also

σ = [y1 ¤ z1, y2 ¤ z2, . . .]

instead of σ = [(y1, z1), (y2, z2), . . .] (although, strictly speaking, yi ¤ zi are
not objects of the universe U(A)).

Definition 3.7 A process P = (x, σ) is said to be staged if there is an
enumeration of σ, σ = [y1 ¤ z1, . . . , yn ¤ zn], such that for every i < n,

yi+1 ⊆ x ] z1 ] · · · ] zi − y1 ] · · · ] yi.

Putting
P (0) = x and P (i + 1) = P (i) ] zi+1 − yi+1,
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for i < n, the above condition is written also

yi+1 ⊆ P (i + 1).

The sequence P (0), . . . , P (n) is called a stage sequence of P . We say that P
yields w and write

P ` w or x, σ ` w,

if for some stage sequence P (i), i ≤ n, P (n) = w. In this case P (n) is called
the output of P and we denote it out(P ), i.e.,

out(P ) = P (n) = w.

Also given P = (x, σ) and a transform u ¤ w, we write

P ` (u ¤ w) or x, σ ` (u ¤ w),

if (x ] u, σ) is a staged process and

x ] u, σ ` w.

If P is staged, the stage sequence P (i), i ≤ n, need not be unique. How-
ever, the output out(P ) is independent of the particular stage sequence. To
see this, let us put for a multiset σ of transforms,

in[σ] = [y : (y ¤ z) ∈ σ],

out[σ] = [z : (y ¤ z) ∈ σ],

and
in(σ) = ]in[σ], and out(σ) = ]out[σ].

The input of P = (x, σ) is the multiset

in(P ) = x ] out(σ).

Lemma 3.8 (a) Let P = (x, σ) be a staged process. Then for every stage
sequence P (i), i ≤ n,

out(P ) = in(P )− in(σ) = x ] out(σ)− in(σ).

(b) If x, σ ` w, then suppx(w) = x.
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Proof. (a) By the definition of P (n),

out(P ) = P (n) = x ] z1 ] · · · ] zn − y1 ] · · · ] yn = x ] out(σ)− in(σ).

(b) By (a), x, σ ` w implies w = x ] out(σ)− in(σ). Hence

suppx(w) = suppx(x) ] suppx(out(σ))− suppx(in(σ)).

But for every (y ¤ z) ∈ σ, suppy(z) = y, and by lemma 3.2(c),

suppx(z) = suppx(suppy(z)) = suppx(y),

hence suppx(out(σ)) = suppx(in(σ)). Since suppx(x) = x, the first equation
yields suppx(w) = x. 2

The expressions P ` w, P ` (u ¤ w) are called sequents and are denoted
by s, s1, s2 etc. We say that the sequent s = (P ` w) is true if P is staged
and yields w. Finally an expression of the form

s′

s
, or

s1 s2

s

is said to be a rule. The rules s′
s
, s1 s2

s
are true, if the truth of s′ (resp.

s1, s2) implies the truth of s.

Theorem 3.9 The following rules hold in U(A):

Ax :
x ` x

, Cut] :
x1, σ1 ` w w, x2, σ2 ` u

x1, x2, σ1, σ2 ` u
,

L] :
x, y, z, σ ` w

x, y ] z, σ ` w
, R] :

x1, σ1 ` w x2, σ2 ` u

x1, x2, σ1, σ2 ` w ] u
,

L. :
x1, σ1 ` w u, x2, σ2 ` v w ¤ u

x1, x2, σ1, σ2, (w ¤ u) ` v
, R. :

x, y, σ ` w y ¤ w

x, σ ` (y ¤ w)
.

(In the rules L. and R. the additional requirements w ¤ u and y ¤ w mean
that the latter are true transforms.)
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Proof. Ax: Here σ = ∅, and the process (x, ∅) is trivially staged with
out(P ) = P (0) = x. Hence x ` x holds.

Cut]: Suppose x1, σ1 ` w and w, x2, σ2 ` u are staged and hold in U(A).
Let

σ1 = [y1 ¤ z1, . . . , yn ¤ zn], σ2 = [s1 ¤ t1, . . . , sm ¤ tm]

be appropriate enumerations of σ1, σ2 producing the stage sequences P1(i), i ≤
n, and P2(j), j ≤ m be for P1, P2 respectively, such that P1(0) = x1, P1(n) =
w, P2(0) = x2 ] w and P2(m) = u. Consider the sequence P (k), k ≤ n + m,
defined as follows:

P (0) = x1 ] x2,
......................
P (n) = P1(n) ] x2 = w ] x2 ] u = P2(0),
P (n + 1) = P2(1),
....................
P (n + m) = P2(m) = u.

Clearly, P (k), k ≤ n + m, is a stage sequence for the process x1, x2, σ1, σ2

with output u.
L]: This follows immediately by the convention that juxtaposition of

multisets is equivalent to their union.
R]: Similar to the verification of the cut rule.
L.: Let P1(i), i ≤ n, and P2(j), j ≤ m, be stage sequences for (x1, σ1)

and (u, x2, σ2) respectively, with P1(0) = x1, P1(n) = w, P2(0) = u ] x2,
P2(m) = v. Define the sequence P (k), k ≤ n + m + 1, such that:

P (0) = x1 ] x2,
......................
P (n) = P1(n) ] x2 = w ] x2,
P (n + 1) = P (n) ] u− w = x2 ] u = P2(0),
P (n + 2) = P2(1),
........................
P (n + m + 1) = P2(m) = v.

Then P (k), k ≤ n + m + 1 is a stage sequence for (x1, x2, σ1, σ2, w ¤ u), with
output v.

R.: Immediate by the the definition of P ` (y ¤ w). 2
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4 The Horn fragment of Linear Logic

We assume the reader’s familiarity with the fundamentals of Linear Logic
(LL) and Intuitionistic Linear Logic (ILL) (see e.g. [3] or [8]). In particular
we are dealing here with the Horn fragment of ILL, first studied in [4] and
[5]. The language of the fragment consists of atomic formulas p1, p2, . . . and
the connectives ⊗ (multiplicative conjunction) and −◦ (linear implication).
Following the terminology of [4] we call simple products formulas of the form
p1 ⊗ · · · ⊗ pn and we denote them by the letters X, Y, Z, W,U possibly with
subscripts. If X1, . . . , Xm are simple products, clearly so is X1 ⊗ · · · ⊗ Xm.
We write also nX = X ⊗ · · · ⊗X︸ ︷︷ ︸

n

. A simple implication is a formula of the

form X−◦Y , where X,Y are simple products. The only formulas used in the
Horn fragment will be simple products and simple implications, so we can
drop the adjective “simple” from now on. The letter Σ range over multisets
of implications.

A Horn sequent of ILL is an expression of the form

X1, . . . , Xn, Σ ` Y, or X1, . . . , Xn, Σ ` (Y −◦Z).

The letters S, S1, S2 range over Horn sequents.
Recall the following rules of the {⊗,−◦}-fragment of ILL (adapted for

Horn sequents).

Ax :
X ` X

, Cut :
X1, Σ1 ` W W,X2, Σ2 ` U

X1, X2, Σ1, Σ2 ` U
,

L⊗ :
X, Y, Z, Σ ` W

X, Y ⊗ Z, Σ ` W
, R⊗ :

X1, Σ1 ` W X2, Σ2 ` U

X1, X2, Σ1, Σ2 ` W ⊗ U
,

L−◦ :
X1, Σ1 ` W U,X2, Σ2 ` V

X1, X2, Σ1, Σ2, (W −◦U) ` V
, R−◦ :

X, Y, Σ ` W

X, Σ ` (Y −◦W )
.

By the Horn fragment of ILL, or HF for short, we mean the set of Horn
sequents provable by the above rules.

An interpretation of HF in (U(A),],¤,`), or just (U(A),`), is any map-
ping ∗ : {p1, p2, . . .} → U(A) which extends to products, implications and
Horn sequents as follows:
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(a) If X = p1 ⊗ · · · ⊗ pn, then X∗ = [p∗1, . . . , p
∗
n].

(b) If X = X1 ⊗ · · · ⊗Xm, then X∗ = X∗
1 ] · · · ]X∗

m.
(c) (X −◦Y )∗ = (X∗ ¤ Y ∗).
(d) If Σ = [X1 − ◦Y1, . . . , Xn − ◦Yn], then Σ∗ = [(X1 − ◦Y1)

∗, . . . ,
(Xn −◦Yn)∗].

(e) If S = (X, Σ ` Y ) is a Horn sequent, then S∗ = (X∗, Σ∗ ` Y ∗).
Clearly, X∗ are multisets x ∈ U(A). However, since for an implication

X −◦Y and an arbitrary ∗, X∗ ¤ Y ∗ need not be a true transform, it is
necessary, for a given sequent X, Σ ` W , to restrict ∗ so that all implications
of Σ are mapped to true transforms. Also the interpetation of some rules
require some extra restrictions on ∗, in order for the succedent S, S∗ have
a genuine process. For instance, the interpretation of the rules L−◦ and R−◦
requires that ∗ is such that W ∗ ¤ U∗ and Y ∗ ¤ W ∗ be also true transforms.
Thus we give the following:

Definition 4.1 Let S = (X, Σ ` W ) be a sequent. An interpretation of S is
any mapping ∗ such that for all (Y −◦Z) ∈ Σ, (Y ∗¤Z∗) are true transforms.

Given slso a rule R, an interpretation of R is any mapping ∗ which turns
all implications occurring in R into true transforms.

Lemma 4.2 For every sequent S = (X, Σ ` W ) provable in HF and for
every interpretation ∗, (X∗, Σ∗) is a staged process.

Proof. By induction on the steps of the proof of S. It suffices to observe
that whenever a rule R of HF is applied and the sequent(s) over the line are
have staged processes, then so does the sequent under the line. The details
are left to the reader. 2

Theorem 4.3 (Soundness) Given any set of urelements A, the structure
(U(A),`) is a model for HF, i.e., for every sequent S provable in HF, and
for any interpretation S∗ of S, S∗ holds in (U(A),`).

Proof. Clearly, if R is a rule of HF, each interpretation R∗ is one of the
rules of 3.9, e.g., Cut∗ is Cut], (L⊗)∗ is L], (L−◦)∗ is L. etc., therefore, by
3.9 all these rules hold in (U(A),`). Now if S is a Horn sequent provable in
HF, it is easy to see that S∗ holds in (U(A),`) by an easy induction on the
number of steps used in the proof of S. 2
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Lemma 4.4 Let X be a product, Σ be a multiset of implications, and ∗ be
an interpretation. If (X∗, Σ∗) is a staged process, then there is a product W
such that X∗, Σ∗ ` W ∗.

Proof. By induction on |Σ| = n. For |Σ| = 0 the claim is obvious.
Suppose it holds for |Σ| < n and let |Σ| = n and (X∗, Σ∗) be staged process,
with a stage sequence P (i), i ≤ n, produced by an enumeration of Σ = [Y1−
◦Z1, . . . , Yn−◦Zn]. Then the process (X∗, Σ∗−[Y ∗

n ¤Z∗
n]) is also staged hence,

by the induction hypothesis, there is a product U such that P (n− 1) = U∗.
Then P (n) = P (n− 1) ] Z∗

n − Y ∗
n = U∗ ] Z∗

n − Y ∗
n = (U ⊗ Zn − Yn)∗, where

U ⊗ Zn − Yn is the product whose literals are those of U plus those of Zn

minus those of Yn. Putting W = U ⊗ Zn − Yn, we are done. 2

Theorem 4.5 (Completeness) Let S be a Horn sequent such that S∗ holds
in (U(A),`) for every interpretation ∗. Then S is provable in HF.

Proof. Let S = (X, Σ ` W ). By induction on the cardinality |Σ| = n of
Σ, i.e., the number of implications used in the antecedent of S.

(a) Let |Σ| = 0, i.e., Σ = ∅. Then S = (X ` W ) and S∗ = (X∗ ` W ∗)
holds in U(A) for every ∗. By definition 3.7, X∗ = W ∗ for every ∗. It follows
that X = W , otherwise, clearly, we could find an interpretation ∗ such that
X∗ 6= W ∗. Hence X ` W is provable.

(b) Suppose the claim holds for all S = (X, Σ ` W ) such that |Σ| < n,
and let S = (X, Σ ` W ) be such that |Σ| = n and S∗ holds in (U(A),`). By
definition 3.7, the process (X∗, Σ∗) is staged, i.e., there is an enumeration of
Σ,

Σ = [Y ∗
1 ¤ Z∗

1 , . . . , Y
∗
n ¤ Z∗

n]

and a stage sequence P (i), i ≤ n, where

P (0) = X∗ and P (i + 1) = P (i) ] Z∗
i − Y ∗

i ,

Also P (n) = W ∗ is the output of P . Let P ′ = (X∗, Σ∗−[Y ∗
n ¤Z∗

n]). Clearly P ′

is a staged process with stage sequence P (i), i ≤ n− 1. By lemma 4.4, there
is a product U such that P (n− 1) = U∗. Now by the induction hypothesis,

X, Σ− [Yn −◦Zn] ` U and U, (Yn −◦Zn) ` W.

Using the cut rule of HF we get X, Σ ` W . 2
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5 Coherent processes.

We saw in section 3 that if P = (x, σ) is a staged process, then

in(σ) ⊆ x ] out(σ) and out(P ) = x ] out(σ)− in(σ),

in which case we write P ` out(P ). Can these last relations be used as
alternative definitions of the staged sequence and the yielding relation `?
The answer is No. However they provide weaker notions of process and
yielding.

Definition 5.1 A process P = (x, σ) is said to be coherent if

in(σ) ⊆ x ] out(σ).

In this case we set out(P ) = x] out(σ)− in(σ) and say that P weakly yields
out(P ). We denote this by

P |∼ out(P ).

Also for a process (x, σ) and a transform y ¤ w, we write

x, σ |∼ (y ¤ w),

if (x ] y, σ) is coherent and x ] y, σ |∼ w .

Expressions of the form P |∼ w or P |∼ (u ¤ w) are called again sequents.
It is easy to see that the multiset σ of transforms in a coherent process

P = (x, σ) can always be a singleton.

Lemma 5.2 Let P = (x, σ) be a coherent process, and σ = [y1 ¤z1, . . . , yn ¤

zn]. If
y = y1 ] · · · ] yn and z = z1 ] · · · ] zn,

then y ¤ z is a transform and x, σ |∼ w iff x, (y ¤ z) |∼ w .

Proof. That y¤z is a transform follows from lemma 3.5(b). On the other
hand, since y = in(σ) and z = out(σ),

w = x ] out(σ)− in(σ) = x ] z − y. 2

Interpretations of HF in (U(A), |∼) are defined exactly as before, except
that we now replace ` by |∼ .
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Theorem 5.3 (Soundness) The rules Ax, Cut, L], R], L., R. hold in
(U(A), |∼) .

Proof. Ax is obvious.
Cut: Let x1, σ1 |∼ w and w, x2, σ2 |∼ u hold. Then, by definition 5.1,

w = x1 ] out(σ1)− in(σ1),

and
u = w ] x2 ] out(σ2)− in(σ2).

Substituting w from the first equation in the second, we get

u = x1 ] x2 ] out(σ1) ] out(σ2)− in(σ1) ] in(σ2).

The last equation says precisely that x1, x2, σ1, σ2 |∼ u holds true.
L]: This follows immediately by the convention that juxtaposition means

union.
R]: Let x1, σ1 |∼ w and x2, σ2 |∼ u hold. Then

x1 ] out(σ1)− in(σ1) = w

and
x2 ] out(σ2)− in(σ2) = u.

Adding the corresponding sides of these equations we get

x1 ] x2 ] out(σ1) ] out(σ2)− in(σ1) ] in(σ2) = w ] u,

which means that x1, x2, σ1, σ2 |∼ w ] u holds.
L.: Let x1, σ1 |∼ w and u, x2, σ2 |∼ v hold, i.e.,

w = x1 ] out(σ1)− in(σ1) (1)

and
v = u ] x2 ] out(σ2)− in(σ2). (2)

Let P be the process of the sequence under the line. Then clearly,

in(P ) = x1 ] x2 ] u ] out(σ1) ] out(σ2)
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and
out(P ) = in(P )− in(σ1) ] in(σ2) ] w.

Thus is suffices to prove that

x1 ] x2 ] u ] out(σ1) ] out(σ2)− in(σ1) ] in(σ2) ] w = v.

Now by adding the corresponding members of (1) and (2)we get

v ] w = x1 ] x2 ] u ] out(σ1) ] out(σ2)− in(σ1) ] in(σ2),

whence

v = x1 ] x2 ] u ] out(σ1) ] out(σ2)− in(σ1) ] in(σ2) ] w.

R.: It follows by the definition of P |∼ y ¤ w . 2

However completeness of HF fails with respect to interpretations in
(U(A), |∼) .

Theorem 5.4 There are sequents X, Σ ` W unprovable in HF but such that
X∗, Σ∗ |∼ W ∗ hold in (U(A), |∼) .

Proof. Consider the sequent

S = (X, (X ⊗ U)−◦(Y ⊗ U) ` Y ).

Since there is no rule of allowing the elimination of ⊗ from the antecedent of
a sequent, S is unprovable (in fact it is unprovable in the full ILL). On the
other hand its interpretation

S∗ = (x, (x ] u) ¤ (y ] u) |∼ y)

holds since the process P = (x, (x ] u) ¤ (y ] u)) is coherent and out(P ) =
x ] y ] u− x ] u = y. 2

Since every coherent process P can be of the form (x, y¤z), with y ⊆ x]z,
the situation is fairly simple. If, in particular, y ¤ x, then P is staged. Since
y ⊆ x ] z, for every u, y(u) ≤ x(u) + z(u). Suppose P is not staged.
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Then there is a u such that y(u) > x(u), and if y(u) − x(u) = k, then
x(u) + k ≤ x(u) + z(u), hence z(u) ≥ k. If u is an atom, then, clearly,
z(u) = k, since the elements of z are produced by simpler elements of y
through y ¤ z, and u has no simple constituents. Therefore all atoms of
y− (y ∩ x) pass unchanged to z and do not affect the output w. If, however,
u is not an atom, then it may be both absorbed into more complex objects,
as well as be constructed by simpler elements along the same process, leading
thus to circular phenomena like the one of the following example.

Example 5.1 Let P = (x, σ) be the process with x = [a, b, c, d, e, f ], and
σ consisting of the transforms

y1 = [[a, b], c, d, e] ¤ z1 = [[[a, b], e], [c, d]]

and
y2 = [[c, d], a, b, f ] ¤ z2 = [[[c, d], f ], [a, b]].

Clearly P is coherent with out(P ) = [[[a, b], e], [[c, d], f ]]. However, t1 =
[[a, b]], t2 = [[c, d]] and t1 6⊆ z1, t2 6⊆ z2.

Instead of absolute atoms, we can refer to minimal elements with respect
to a specific process P . Namely, given P = (x, y ¤ z), an element u of x ] z
is minimal with respect to P , if there is no v ⊆ y such that v ¤ [u]. If u is
not minimal, we denote supp(u) the multiset of minimal elements forming u.
The following gives some information on the behavior of coherent processes.

Lemma 5.5 Let u ∈ in(P ) such that x(u) = 0. Then either u is minimal
and y(u) = z(u), or supp(u) ⊆ x.

Proof. Suppose x(u) = 0 and u is minimal. By the discussion above,
y(u) ≤ 0 + z(u) = z(u), hence y(u) = z(u). Suppose now u is not minimal.
For simplicity, assume u = [a, b], where a, b are minimal, and z(u) = 1.
Without loss of generality we may assume that there are no other objects in
z having constituents a, b, in particular z(a) = z(b) = 0. Then, since [a, b] is
not minimal, [a, b] ⊆ y, i.e. y(a) = y(b) = 1 and there is no other object in
y (except a, b) having constituents a, b. In particular, y([a, b]) = 0. Suppose
[a, b] 6⊆ x. This means x(a) = 0 or x(b) = 0. Assume the former. Thus
x(a) = 0 and y(a) = 1. But then, from the fact that y(a) ≤ z(a), we get that
z(a) = 1, which is a contradiction. Similarly if we assume that x(b) = 0. 2
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We have seen that the logic of staged processes is the subsystem HF of
LL. What is the logic of coherent processes? It is HF augmented with the
following ⊗-cancellation rule:

C⊗ :
X ⊗ Z, Σ ` Y ⊗ Z

X, Σ,` Y
.

(Note that C⊗ is not a rule of LL). Let us put

CHF = HF + C⊗.

Lemma 5.6 If x, σ, (y ¤ z) |∼ w , then x ] z, σ |∼ w ] y .

Proof. By definition x, σ, (y ¤ z) |∼ w iff

x ] z ] out(σ)− y ] in(σ) = w,

or, equivalently,
x ] z ] out(σ)− in(σ) = w ] y,

which says that x ] z, σ |∼ w ] y . 2

Theorem 5.7 (Soundness and Completeness) CHF is sound and complete
with respect to (U(A), |∼).

Proof. We have seen in theorem 5.3 that the rules of HF hold in (U(A), |∼) .
The interpretation of C⊗ is, clearly, the ]-cancellation rule

C] :
x ] z, σ |∼ y ] z

x, σ |∼ y,

which is easy to verify. Therefore soundness holds.
To prove completeness, let X, Σ ` W be a sequent, such that X∗, Σ∗ |∼ W ∗

holds for every ∗. We have to show that X, Σ ` W is provable in the CHF.
By induction on |Σ|. Suppose the claim holds for |Σ| < n and let |Σ| = n,
and X∗, Σ∗ |∼ W ∗ . Let (Y −◦Z) ∈ Σ, and let Σ1 = Σ− [(Y −◦Z)]. Then

X∗, Σ∗
1, Y

∗ ¤ Z∗ |∼ W ∗.

By lemma 5.6,
X∗ ] Z∗, Σ∗

1 |∼ W ∗ ] Y ∗.
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By the induction hypothesis (since |Σ1| < n),

X ⊗ Z, Σ1 ` W ⊗ Y.

The last sequent combined with W ⊗ Y, (Y −◦Z) ` W ⊗ Z and the cut rule
yields

X ⊗ Z, Σ1, (Y −◦Z) ` W ⊗ Z,

or
X ⊗ Z, Σ ` W ⊗ Z.

Now by the last sequent and the rule C⊗, we get X, Σ ` W , and completeness
is proved. 2

6 Asymptotic behavior of processes. Stor-

age.

Recall that given a multiset x and n ∈ N , nx denotes the union of n copies
of x. We introduce now the operator ! and for every x the formal entity !x.
Intuitively, !x denotes the union of an indefinite number of copies of x. We
call !x a generalized multiset, or a !-multiset. In fact !x’s are abbreviations of
“limit” objects, whose behavior is defined in terms of their standard approx-
imations. Their meaning will become clear by definition 6.4 below. Thus
!x’s do not extend properly the domain U(A). However, for the clarity of
exposition, we add these fictitious objects to those of U(A), extending the
latter to the universe U !(A).

Definition 6.1 U !(A) is the smallest class such that:
(a) U(A) ⊆ U !(A),
(b) x ∈ U !(A) ⇒ !x ∈ U !(A), and
(c) x, y ∈ U !(A) ⇒ x ] y ∈ U !(A).

A !-transform is an expression y ¤ z, with y, z ∈ U !(A), or !(y ¤ z). σ ranges
over multisets of !-transforms. For any σ, let !σ = [!t : t ∈ σ]. Therefore if
σ is a set of !-transforms, so is !σ. A !-process is a pair (x, σ) with x, σ as
before and a !-sequent an expression of the form P ` w.

The !-multisets x, and the !-transforms y¤z are going to be approximated
by ordinary multisets and ordinary transforms.
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Definition 6.2 Let E be a string of !-multisets and/or !-transforms, and let
(1, . . . , m) be an enumeration of all occurrences of ! inside E. Then for every

m-tuple of integers ~k = (k1, . . . , km), !~kE denotes the string resulting from
E, if we replace the i-th occurrence !x or !(y ¤ z)) in E by kix and ki(y ¤ z),

respectively. !~kE is said to be the ~k-approximation of E.

It is clear that the ~k-approximation of E is a string of ordinary multi-
sets and transforms with the only exception that it may contain expressions
of the form ki(y ¤ z), with y, z being ordinary multisets (coming from the
approximation of objects !(y ¤ z)), whose meaning has not yet been fixed.
Now for simple multisets y, z, n(y ¤ z) will be identical to the multiset of
transforms n[y ¤z]. In order, however, for the latter to be treated as a single
transform we shall identify it with ny ¤ nz.

Definition 6.3 For any simple multisets and any n we set n(y ¤ z) :=
(ny ¤ nz).

Example 6.1. (a) Let E be the process

!(!x1 ] x2]!x3), ((!x1]!x4)¤!(!x3)),

where x1, x2, x3, x4 are simple multisets, and let ~k = (2, 1, 3, 0, 1, 2, 4). Then
!~kE is the string

2(x1 ] x2 ] 3x3), ((0x1 ] x4) ¤ 2(4x3)),

which, after the computations, becomes

2x1 ] 2x2 ] 6x3, (x4 ¤ 8x3).

(b) Let t =!((!y1]!y2)¤!(z1]!z2)) and let ~k = (3, 1, 4, 2, 3). Then

!~kt = 3[(y1 ] 4y2) ¤ 2(z1 ] 3z2)] = 3[(y1 ] 4y2) ¤ (2z1 ] 6z2)].

Before defining the truth of !-sequents, recall that although for all formu-
las X, Y , X −◦Y makes sense, its interpretation X∗ ¤ Y ∗ makes sense only
when (X∗, Y ∗) ∈ ¤. This is why before defining P ` w we first defined the
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notion x ¤ y. Similarly, in order to define the truth of a !-sequent P ` w, we
must first define what x¤ y means when x, y are !-multisets. If, for instance,
x, y, z are simple multisets, then the sequent

!x]!y, ((!x]!y)¤!z) `!z,

being of the form u, (u ¤ w) ` w, should be true. Intuitively this means that
given any number of copies of z, say k, we can control the resources !x and
the resources of the transform in to order to produce kz. That is, there must
be m,n, p, q, s such that

mx ] ny, ((px ] qy) ¤ sz) ` kz. (3)

The last is an ordinary sequent and its truth implies that k = s, hence

(∀k)(∃p, q)(((px ] qy) ¤ kz) is a true transform).

If this is the case then (and only then), obviously, we can find p, q and m = p,
n = q, such that (3) holds. This leads to the folowing definition.

Definition 6.4 (a) Let y, z be !-multisets. We say that y ¤ z is true if

(∀~n)(∃~m)((!~my) ¤ (!~nz)) is true).

(b) Let x, σ ` w be a !-sequent. We say that x, σ ` w is true if
(i) every (y ¤ z) ∈ σ is true, and

(ii) (∀~n)(∃~m,~l)(!~mx, !~l σ `!~nw).
Similarly we write P |∼ w if

(∀~n)(∃~m)(!~mP |∼!~nw).

Also P ` (u ¤ w) if P, u ` w. The expressions P ` w, P ` (u ¤ w) are
called !-staged sequents while P |∼ w and P |∼ (u ¤ w) are called !-coherent
sequents. (Note that we do not allow sequents of the form P `!(u ¤ w) or
P |∼!(u ¤ w) .)

We extend now HF by adding the operator !. !-Horn formulas are defined
in the obvious way, that is, instead of simple products we have now !-products
defined inductively as follows:
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(a) Every simple product is a !-product, and
(b) if X,Y are !-products then so are !X and X ⊗ Y .
Also if X,Y are !-products, then X −◦Y is a !-implication. Σ ranges

over multisets of !-implications. Below the letters V, U,W range over either
!- products or !-implications.

A !-process is a pair P = (X, Σ). For any process P = (X, Σ), let

!P = (!X, !Σ),

where !Σ = [!U : U ∈ Σ].
Let !-HF be the system consisting of the rules of HF augmented with the

following rules for !:

W :
P ` W

P, !V ` W
(weakening) C :

P, !V, !V ` W

P, !V ` W
(contraction)

D :
P, V ` W

P, !V ` W
(dereliction) S :

!P ` W

!P `!W
(storage).

The ∗-interpretation of Horn formulas by multisets defined in section 5
can be extended over !-Horn formulas into (U !(A),`) or (U !(A), |∼) in the
obvious way, namely (!V )∗ =!(V ∗), V being a product or an implication. We
first prove the following.

Theorem 6.5 (Weak Soundness) All rules of !-HF except contraction hold
in (U !(A),`), as well as in (U !(A), |∼) .

Proof. We work with ` of definition 6.4, the case of |∼ being similar.
Throughout ∗ is an arbitrary interpretation of Horn formulas into multisets.

Cut: Suppose X∗
1 , Σ

∗
1 ` W ∗ and W ∗, X∗

2 , Σ
∗
2 ` U∗ hold. Let ~k be a tuple

assigned to the occurrences of ! in U∗. Then by the second of the above
assumptions, there are ~p, ~q, ~r such that

!~pW
∗, !~qX∗

2 , !~rΣ
∗
2 `!~kU

∗.

Also by the first assumption there are ~m,~n such that

!~mX∗
1 , !~nΣ∗

1 `!~pW
∗.
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By Cut] for simple sequents, the last two sequents imply that

!~mX∗
1 , !~qX

∗
2 , !~nΣ∗

1, !~rΣ
∗
2 `!~kU

∗.

Therefore

(∀~k)(∃~m, ~q, ~n, ~n,~r)(!~mX∗
1 , !~qX

∗
2 , !~nΣ∗

1, !~rΣ
∗
2 `!~kU

∗).

This shows that X∗
1 , X

∗
2 , Σ

∗
1, Σ

∗
2 ` U∗.

L⊗, R⊗ are verified quite easily. Also R−◦ is obvious from the definition
of P ` y ¤ z.

L−◦: Here besides X∗
1 , Σ

∗
1 ` W ∗ and U∗, X∗

2 , Σ
∗
2 ` V ∗, we must assume

that W ∗ ¤ U∗ is a true transform, that is

(∀~n)(∃~m)((!~mW ∗) ¤ (!~nU
∗) is a true transform). (4)

Now given ~k, there are, by the second assumption, ~p, ~q, ~r such that

!~pU
∗, !~qX∗

2 , !~rΣ
∗
2 `!~kV

∗. (5)

By (4), there is an ~s such that

(!~sW
∗) ¤ (!~pU

∗) is true. (6)

By the first assumption and for the specific ~s of (6), there are ~m,~n such that

!~mX∗
1 , !~nΣ∗

1 `!~sW
∗. (7)

By (5), (6), (7) and L−◦ for simple sequents we have

!~mX∗
1 , !~qX

∗
2 , (!~sW

∗) ¤ (!~pU
∗), !~nΣ∗

1, !~rΣ
∗
2 `!~kV

∗.

Since for every ~k we can find ~m, ~q, ~s, ~p, ~n, ~r such that the above holds, this
means that

X∗
1 , X∗

2 , (W
∗ ¤ U∗), Σ∗

1, Σ
∗
2 ` V ∗.

The rule W holds trivially if we replace the outermost occurence ! in !V
by !0. Similarly D holds if we replace the outermost occurrence ! in !V by
!1. Finally concerning the rule S, suppose !P ∗ ` W ∗ holds. We have to show
that given l, ~m there are k, ~n such that

k(!~nP
∗) ` l(!~mW ∗).
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By the assumption, for the given ~m there are k1, ~n1 such that

k1(!~n1P
∗) `!~mW ∗.

Hence it suffices to take ~n = ~n1 and k = lk1. 2

This theorem seems to be able to follow also from the Approximation
Theorem of A.Troelstra [8], pp. 46-47, but there is a critical difference in the
way Troelstra defines the approximations !nX of !X from that used above.
Afterall, if that theorem could be applied here, we would have also soundness
for contraction.

The failure of contraction is easily seen by the following.

Lemma 6.6 (a) !x 6`!x]!x. (b) !(x]!y) 6`!x]!y.

Proof. (a) Let u, v be disjoint multisets and let x = u]!v. Suppose
!x `!x]!x. Then we should have

(∀k, l,m, n)(∃p, q)(p(u ] qv) = k(u ] lv) ]m(u ] nv).

Since u, v are disjoint, clearly, pu = (k + m)u and pqv = (kl + mn)v, or
p = k + m and pq = kl + mn, or (k + m)q = kl + mn. Consequently, for all
k, l, m, n, k + m should divide kl + mn, which is absurd.

(b) Let x, y be disjoint multisets. Then !(x]!y) 6`!x]!y. Indeed, otherwise
we should have

(∀m,n)(∃k, l)(k(x ] ly) = mx ] ny),

whence k = m and kl = n, or ml = n. That is for all m,n there should be
an l such that ml = n, which is false. E.g. for m = 2, n = 1 there is no such
l. 2

Given x, y we write x `a y if x ` y and y ` x. (Notice that if x, y are
simple multisets, then x ` y iff x = y). In contrast to the preceding negative
result, we have the following.

Lemma 6.7 For any !-multisets x, y, z the following hold:
(a) !!x `a!x.
(b) !(!x]!y) `a!x]!y, and in general

!(!x1 ] · · · ]!xn) `a!x1 ] · · · ]!xn.
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Proof. We check that (a), (b) are true according to definition 6.4.
(a) !!x `!x: x may contain also a string of !’s, so the exact formulation of

this fact amounts to the formula

(∀m,~n)(∃p, q, ~r)(pq(!~rx) = m(!~nx)).

This is obviously true provided we take p = 1, q = m, ~r = ~n.
!x `!!x: This is equivalent to the fact

(∀m, l, ~n)(∃p, ~r)(p(!~rx) = ml(!~nx)).

Again it suffices to take p = ml and ~r = ~n.
(b) !(!x]!y) `!x]!y: This is equivalent to

(∀k, l, ~m,~n)(∃p, q, r, ~s,~t)(p(q(!~s x) ] r(!~t , y)) = (k(!~mx) ] l(!~ny))).

Thus it suffices to take p = 1, q = k, r = l, ~s = ~m and ~t = ~n.
!x]!y `!(!x]!y): This is equivalent to

(∀p, q, r, ~s,~t)(∃k, l, ~m,~n)(p(q(!~s x) ] r(!~t y)) = (k(!~mx) ] l(!~ny))).

It suffices to have k~m = pq~s and l~n = pr~t (where if ~m = (m1, . . . , mr),
k~m = (km1, . . . , kmr)), so we put k = pq, l = pr, ~m = ~s and ~n = ~t. 2

Corollary 6.8 !-HF−{C} holds in (U !(A),`).

Now we can easily see that the failure of contraction occurs when x is
a mixture of simple multisets and !-multisets. If we restrict ourselves to !-
multisets all of whose factors are !-bound, then the sequents of lemma 6.6
holds and things go smoothly. So let us give some definitions. These defini-
tions refer both to !-multisets and to !-products.

Definition 6.9 A !-multiset x (resp. a !-product X) is said to be normal if
it does not contain factors of the form !!u and !(!u1 ] · · · ]!un) (resp. !!U ,
!(!U1 ⊗ · · ·⊗!Un).

Note that the analog of equivalence (b) of 6.7, namely the sequent

!X⊗!Y `!(!X⊗!Y ) (8)

is provable in !-HF. By lemma 6.7 and (8), we get immediately that
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Lemma 6.10 (a) Every !-multiset x can be normalized, i.e., there is a nor-
mal x∗ such that x `a x∗.

(b) Every !-product X can be normalized in !-HF, i.e., there is a normal
X∗ such that X ` X∗ and X∗ ` X are provable in !-HF.

It is easy to see that we can replace every x of a sequent by its normal-
ization without disturbing the truth of the sequent. Namely,

Definition 6.11 A !-multiset x (resp. a !-product X) is said to be full if
its normal form is !x1 ] · · · ]!xn, where xi are simple multisets (resp. !X1 ⊗
· · ·⊗!Xn with Xi simple products). Equivalently, x is full if does not contain
factors y not bound by !.

Lemma 6.12 (a) For any full x, y
(i) !(x ] y) `a x ] y, and
(ii) x ] x `a x.

(b) For any full X,Y ,
(i) !(X ⊗ Y ) ` X ⊗ Y and X ⊗ Y `!(X ⊗ Y ) are provable in !-HF.
(ii) X ⊗X ` X and X ` X ⊗X are provable in !-HF.

Proof. (a) (i) follows from 6.7(b). For (ii) it suffices to show that

!x1 ] · · · ]!xn ` (!x1 ] · · · ]!xn) ] (!x1 ] · · · ]!xn),

for xi simple multisets, which is easily verified by definition 6.4.
(b) By using rule A. 2

Theorem 6.13 (Soundness of !-HF for full sequents) For every full sequent
S provable in !-HF, S∗ is true in (U !(A),`) for all ∗.

Proof. By corollary 6.8, all rules but contraction hold under ∗. By the
previous lemma contraction holds also for full sequents. 2

If we want to obtain some partial completeness result we must restrict
even further the kind of transforms allowed. Transforms of type y ¤ z, where
y, z are full, are not appropriate, since they yield true sequents but in general
unprovable in !-HF.
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Example 6.2. For instance if x, y, z, w are simple multisets, from the
truth of x, (y ¤ z) ` w we easily derive the truth of !x, (!y¤!z) `!w, while
from X, (Y −◦Z) ` W we cannot derive !X, !Y −◦!Z `!W . What we can
derive is just !X, !(Y −◦Z) `!W .

Definition 6.14 A !-sequent x, σ ` w (resp. X, Σ ` W ) is said to be regular
if x,w are full and all the elements of σ (resp. Σ) are of the form !(y ¤ z)
(resp. !(Y −◦Z)), where y, z (resp. Y, Z) are simple multisets (resp. simple
products). Equivalently, in regular sequents σ =!τ , where τ is a multiset of
simple transforms.

Theorem 6.15 (Completeness of !-HF for regular sequents) Let X, Σ ` W
be a regular sequent such that X∗, Σ∗ ` W ∗ is true for every ∗ in (U !(A),`).
Then X, Σ ` W is provable in !-HF.

Proof. Since we work in !-HF, we assume X, W to be normal. So it
suffices to prove that the sequent is provable in the !-HF. Let for simplicity
X =!X1⊗!X2 and W =!W1⊗!W2, where X1, X2,W1,W2 are simple products.
Let Σ =!T , where T is a set of simple implications. Then !X∗

1]!X∗
2 , !T

∗ `
!W ∗

1]!W ∗
2 is true. By 6.4,

(∀k1, k2)(∃m1,m2, ~n)(m1X
∗
1 ]m2X

∗
2 , !~nT

∗ ` k1W
∗
1 ] k2W

∗
2 ).

For (k1, k2) = (1, 0), (0, 1), we find m1,m2, ~n and p1, p2, ~q respectively, such
that

m1X
∗
1 ]m2X

∗
2 , !~nT

∗ ` W ∗
1 ,

and
p1X

∗
1 ] p2X

∗
2 , !~qT

∗ ` W ∗
2 .

By the completeness of HF with respect to (U(A),`) (theorem 4.4), the
last relations imply that

m1X1 ⊗m2X2, !~nT ` W1, (9)

and
p1X1 ⊗ p2X2, !~qT ` W2 (10)

are provable in HF. So it suffices to show that from (9) we can get

!X1⊗!X2, !T `!W1, (11)
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and from (10) we can get

!X1⊗!X2, !T `!W2, (12)

But since !T = [!(Y1 −◦Z1), . . . , !(Yr −◦Zr)], clearly

!~nT = [n1(Y1 −◦Z1), . . . , nr(Yr −◦Zr)],

hence (9) immediately implies (11), by weakening, contraction and storage,
and (10) implies (12). 2

Concerning now the logic of (U !(A), |∼) , it is easy to see that the cancel-
lation rule C⊗ does not hold in this structure. For example, the derivation

!x]!z `!y]!z

!x `!y

is false in general. We can keep however this rule for !-free formulas. So let

!− CHF =!− HF + (C⊗ for !-free formulas).

Theorem 6.16 (a) All rules of !-CHF are true in (U !(A), |∼) .
(b) If S is a regular full sequent such that S∗ is true in (U !(A), |∼) for

every ∗, then S is provable in !-CHF.

Proof. (a) Precisely as theorem 6.13.
(b) Similar again to theorem 6.15. Simply we now need the rule C⊗ to

infer from
m1X

∗
1 ]m2X

∗
2 , !~nΣ∗ |∼ W ∗

i

that
m1X1 ⊗m2X2, !~nΣ ` Wi

is provable in !-CHF. 2

As an epilogue let us summarize the main results of sections 3-6. We have
two main kinds of processes within multisets: The staged and the coherent
ones. To these there correspond the logical systems HF (Horn fragment)
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and CHF (=HF +C⊗). After introducing the operator !, we have !-staged
processes and !-coherent processes. To these there correspond the logical
systems !-HF and !-CHF (=!-HF+C⊗ for !-free formulas) respectively. Then

1) HF is a sound and complete axiomatization of staged processes.
2) CHF is a sound and complete axiomatization of coherent processes.
3) !-HF is sound with respect to !-staged processes. And it is complete if

we restrict ourselves to regular full sequents.
4) !-CHF is sound with respect to !-coherent processes. And it is complete

if we restrict ourselves to regular full sequents.

References

[1] W.D. Blizard, Multiset Theory, Notre Dame J. Formal Logic, 30 (1989),
36-66.

[2] W.D. Blizard, The development of multiset theory, Modern Logic, 1
(1991), 319-352.

[3] J.-Y. Girard, Linear Logic, Theor. Comp. Sci., 50 (1987), 1-102.

[4] M.I. Kanovich, Linear logic as a logic of computations, Annals of Pure
and Appl. Logic, 67 (1994), 183-212.

[5] M.I. Kanovich, Petri nets, Linear Logic and vector games, Annals of
Pure and Appl. Logic, 75 (1995), 107-135.

[6] D. Knuth, The Art of Computer Programming, Addison-Wesley, Read-
ing, Massachusetts, 1973, 1983.

[7] D. Sign, A note on “The development of multiset theory”, Modern Logic
4 (1994), 405-406.

[8] A. Troelstra, Lectures on Linear Logic, CSLI Lecture Notes No 29, Cen-
ter for the Study of Language and Information, Stanford University,
1992.

32


