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Abstract

We show that a countable totally and discretely ordered set with
first element inherently carries the structure of an ordered commuta-
tive euclidean monoid, provided its order type is of a certain kind. As
an application we specify the order types of all discretely ordered sets
which can be expanded to ordered commutative euclidean monoids.

1 Motivation and Introduction

The motivation behind this paper has been the problem of expanding a (com-
mutative) discretely ordered group (G, +, <, 0) to a (commutative) discretely
ordered ring R = (G, ·), possibly with extra properties that make it look more
and more like Z. This is a problem either of logic (model theory, see for ex-
ample [1], or of algebra (cf. [2]) or of both (cf. [3]), depending on the extra
properties the ring expansion is required to satisfy. If for instance we want
(the positive part of) (G, ·) to be a model of Peano arithmetic, then we are
clearly in the area of logic, but if we want (G, ·) to be, say, euclidean, the
problem is algebraic. While almost all logical expandability questions of the
preceding kind have been settled (at least for countable G) in a terms of
uniform model theoretic characterization (“recursive saturation”, [1]), the
corresponding algebraic ones seem to be subtler and harder. For most of
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them only necessary conditions are known. The present paper just deals
with one of those conditions.

Specifically, the problem of expanding G to a euclidean ring (G, ·), partly
reduces to the problem of expanding a discretely or densely ordered set
(A,<, 1) with least element 1 (the quotient of G under a certain equivalence
relation), to a commutative ordered euclidean monoid (A, ∗, <, 1), where 1 is
also the identity. Similarly in order for G to be expandable to a ring (G, ·)
satisfying open induction, (A,<, 1) must be densely ordered and expandable
to a monoid (A, ∗, <, 1) which is euclidean and radically closed. Thus we
come to the following definitions.

A totally ordered commutative monoid (henceforth ordered monoid or
just monoid) is a structure A = (A, ∗, <, 1) such that:

i) (A, ∗, 1) is a commutative monoid with identity 1,
ii) (A,<, 1) is a (totally) ordered set with least element 1, and
iii) for all x, y, z ∈ A, x < y ⇒ x ∗ z < y ∗ z.

The monoid A above is said to be euclidean if for all x, y ∈ A,
x < y ⇒ (∃z)(y = x ∗ z).

A is said to be radically closed if for every x ∈ A and n ∈ N, n > 0, there is
n > 0 ⇒ (∃y)(yn = x.

The monoid A = (A, ∗, <, 1) looks multiplicative, although this is inessen-
tial (one might think of ∗ as addition and 1 as zero). So if there is no danger
of confusion we write xn for x ∗ · · · ∗ x, n times.

Let us first characterize the property of a monoid to be euclidean. Given
the monoid (A, ∗, <, 1), let A be the group generated by A, i.e., A is the
symmetric extension of A obtained by adding an inverse x−1 for each x and
extending the operations on them. < also extends on A in the obvious way
and A becomes an ordered group. However the “positive part” A

+
= {x ∈

A : x ≥ 1} of A does not in general coincide with A. The euclidean property
guarantees exactly this fact. Namely:

Lemma 1.1 The monoid (A, ∗, <, 1) is euclidean iff A = A
+
.

Proof. Suppose A is euclidean. It suffices to show that A
+ ⊆ A. Let

x ∈ A
+
. Then clearly x has the form x = an1

1 ∗ · · · ∗ ans
s ∗ b−m1

1 ∗ · · · ∗ b−mt
t ,

where ai, bj ∈ A and ni,mj > 0. Since x ≥ 1, by the properties of the order,
an1

1 ∗ · · · ∗ ans
s ≥ bm1

1 ∗ · · · ∗ bmt
t . If a = an1

1 ∗ · · · ∗ ans
s and b = bm1

1 ∗ · · · ∗ bmt
t ,
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then a, b ∈ A and a ≥ b. By the euclidean property there is c ∈ A such that
a = b ∗ c. Thus x = a ∗ b−1 = c ∈ A.

For the converse, suppose A = A
+

and let a, b ∈ A such that a ≤ b. Then
b ∗ a−1 ≥ 1, i.e., b ∗ a−1 ∈ A

+
= A. Therefore if c = b ∗ a−1, then c ∈ A and

c ∗ a = b, hence A is euclidean. 2

The following example shows that a radically closed monoid need not be
euclidean.

Example. Let B = {m1/n : m,n ∈ N\{0}}. If ·, < are the multiplication
and ordering of the reals, then clearly (B, ·, <, 1) is a radically closed monoid.
However B is not euclidean. For instance 2 < 3 ∈ B but there is no x ∈ B
such that 3 = 2 · x.

Let us say that the ordered set (A,<, 1) expands if there exists a multi-
plication ∗ turning (A,<, 1) into a monoid (A, ∗, <, 1).

The questions we shall address here are the following: Given an ordered
set (A,<, 1), under what conditions is it (a) expandable, (b) expandable to
a euclidean monoid, (c) expandable to a radically closed monoid? Since the
only property that (A,<, 1) possesses is its order type, the above questions
clearly ask for the order type of A satisfying (a), (b) or (c) above.

Now if (A,<, 1) expands, then, clearly A is infinite, so the order type
of (A,<, 1) can be arbitrarily complicated and question (a) seems to be
intractable. On the other hand, we can see that the requirements of (b)
and (c) restrict drastically the type of the ordering of A. (A,<, 1) is said
to be discrete if every x 6= 1 has an immediate successor and an immediate
predecessor.

Lemma 1.2 i) If (A, <, 1) expands to a euclidean monoid, then (A,<, 1) is
either discrete or dense. If it is discrete, then for every ∗ expanding (A,<, 1),
the successor of every x ∈ A is a ∗ x, where a is the successor of 1.

ii) If (A,<, 1) expands to a radically closed monoid, then (A,<, 1) is
dense.

Proof. i) Suppose (A,<, 1) expands to a euclidean monoid (A, ∗, <, 1).
Then either A contains an immediate successor a of 1 or not. Assume the
first. Then for every x, x < a ∗ x. We claim that a ∗ x is the immediate
successor of x. Suppose not and let y such that a ≤ x < y < a ∗ x. By the
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euclidean property, there is z such that y = z ∗ x. Now z ∗ x < a ∗ x implies
z < a. But then z = 1, or y = x, a contradiction. Thus z ≥ a, whence
y = x ∗ z ≥ x ∗ a,

Assume now that there is no immediate successor of 1 and let x < y. Let
y = x ∗ z. Then z > 1 hence there is 1 < u < z. Then x < x ∗ u < x ∗ z = y,
that is we can always find an element strictly between x, y.

ii) Let A expand to a radically closed (A, ∗, <, 1). By the proof of (i) it
suffices to show that there is no immediate successor of 1. Let 1 < x. Then
there is y such that y2 = x. By the monotonicity of ∗, 1 < y < y2 = x, hence
there is no immediate successor of 1. 2

Let otp(A,<, 1) denote the order type of (A,<, 1). Let also ω, η, η0, ω be
the order types of the nonnegative integers, the rationals and the nonnegative
rationals, respectively. For countable A the following is a partial converse to
the preceding lemma.

Lemma 1.3 Let A be countable. Then
i) If otp(A, <, 1) = η0, then (A,<, 1) expands to a euclidean and radically

closed ordered monoid.
ii) If otp(A,<, 1) = ω, then (A,<, 1) expands to a euclidean monoid of

the form {1, a, a2 . . .}.

Proof. i) Suppose (A, <, 1) is dense. Let A be the set of real algebraic
numbers and let A1 = {x ∈ A : x ≥ 1}. Take any order-preserving bijection
f : A → A1 such that f(1) = 1 and define x ∗ y = z ⇐⇒ f(x) · f(y) = f(z)
(where · is of course the real multiplication). Then clearly (A, ∗, <, 1) is
euclidean and radically closed.

ii) Let otp(A,<) = ω. Assume 1 has the 0-th place in the ordering. Define
x ∗ y as follows: If x is the m-th element and y is the n-th element of A, let
x ∗ y = be the (m + n)-th element of A. Clearly if a is the successor of 1,
then the n-th element is an, that is A = {1, a, a2, . . .}, hence A is euclidean.
2

In view of 1.2 and 1.3, it remains to consider the case when (A,<, 1) is
countable discrete and nonstandard. We shall treat the problem in the next
section.
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2 Discrete nonstandard orderings

In this section we deal with countable discretely ordered sets with first ele-
ment. It will be shown that most of them carry a natural monoidal structure
generated by the ordering. It follows that a discretely ordered set (A,<, 1)
expands to a euclidean monoid iff it has one of certain concrete order types.
Although we finally focus on countable structures, most of the facts shown
below hold also for the uncountable. So unless otherwise stated, the sets A
considered below will be of any infinite cardinality.

Let ω∗ be the reverse order type of ω, hence otp(Z) = ω∗ + ω. (The
symbols +, · are used also for addition and multiplication of order types.)

Let (A,<, 1) be a discretely ordered set with least element 1. For every
x ∈ A and 0 < n ∈ N, x(n) denotes the n-th successor of x and x(−n) its n-th
predecessor (provided of course x ≥ 1(n)). We let also x(0) = x. x is said
to be nonstandard if x > 1(n) for every n. Thus for nonstandard x, x(k) is
defined for every k ∈ Z. Moreover for all x, y ∈ A,

x = y(k) ⇐⇒ y = x(−k), x(k) < x(l) ⇐⇒ x(−k) > x(−l). (1)

Let ∼ be the equivalence on A: x ∼ y if y = x(k) for some k ∈ Z. Define
inductively the nested sequence of equivalences ∼α, α ∈ On, on A, their
equivalence classes [x]α, and the sets Aα = A/ ∼α, as follows:

a) ∼0= equality.
b) If α is a limit ordinal and for all β < α, ∼β are defined, let ∼α=

∪β<α ∼β.
c) If ∼α is defined and (Aα, <) is an infinite discretely ordered set (where

< is the obvious ordering of the convex sets [x]α), then

x ∼α+1 y ⇐⇒ [x]α ∼ [y]α.

Otherwise ∼α+1 is not defined and the definition terminates.
Since [x]0 = {x}, we can identify [x]0 with x. Clearly for any limit α > 0,

[x]α = ∪{[x]β : β < α},

while for successor α + 1,

[x]α+1 = ∪{[y]α : [y]α ∼ [x]α} = ∪{[x](k)
α : k ∈ Z}, (2)
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(where [x](k)
α is the k-th successor of [x]α in the discrete (Aα, <). Thus β <

α ⇒ [x]β ⊂ [x]α, so for cardinality reasons the above definition will terminate
at some α. Since for limit α, ∼α is defined provided all ∼β are defined for
β < α, there will be a first α such that ∼α+1 is not defined. This will
happen because (Aα, <) is either finite or infinite but a non-discrete. Let
ρ = otp(Aα, <). In that case α is said to be the closure ordinal of A, and the
pair (α, ρ) is said to be the index of A, and write ind(A) = (α, ρ).

It is not hard to compute the order type of A in terms of its index (α, ρ).
Note first that (Aα, <) has always a least element [1]α, so ρ is a type of the
form ρ0 = 1 + ρ, where ρ is either finite or infinite non-discrete. Thus

A = [1]α ∪ (∪d∈D[d]α), (3)

where D is a choice set for the ∼α-classes of A, of order type ρ. So

otp(A) = otp([1]α, <) + otp([d]α, <) · ρ, (4)

provided (as we shall see) that for all d1, d2 ∈ D, ([d1]α, <) ∼= ([d2]α, <). We
shall prove this in a roundabout way which gives us much more information
about the discrete ordering and especially reveals its monoidal structure.
This is the main construction of the paper.

Types and type representations of elements. Let (A,<, 1) be discretely
ordered with closure ordinal α. Fix some x ∈ A and the class [x]α. Fix also
a choice function F which for every y ∈ [x]α, every β < α and every k ∈ Z
picks an element F (y, β, k) ∈ [y]

(k)
β , subject only to the condition that for all

y and β, F (y, β, 0) = y. Consider now finite sets (or even multisets) of pairs
of the form

{(β1, k1), · · · , (βm, km)},
where βi < α and ki ∈ Z. We shall refer to such sets as types. For every type
{(β1, k1), · · · , (βm, km)}, and for the fixed x, we shall define (with respect to
F ) an element

xk1···km
β1···βm

∈ [x]α.

Keeping x fixed, xk1···km
β1···βm

is the element represented by the type
{(β1, k1), · · · , (βm, km)}. Note that in the above notation βi and ki are just
sub- and superscripts. Soon however it will become clear that the integers ki

behave like real exponents.
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The definition of xk1···km
β1···βm

is by induction on the cardinality m of the type.
1) m = 1. For every type {(β, k)}, xk

β := F (x, β, k).
2) m = 2. For every type {(β, k), (γ, l)}, let

xkl
βγ :=





(xk
β)l

γ if β > γ,
(xl

γ)
k
β if β < γ,

xk+l
β if β = γ

3) In general define xk1···km
β1···βm

as follows: Let X = {(β1, k1), · · · , (βm, km)}
be a type of cardinality m > 1. For every β occurring in pairs of X let
X¹β = {(γ, k) ∈ X : γ = β} and X(β) = {k : (β, k) ∈ X}. Transform
X along the following two steps: (a) For every β occurring in pairs of X,
replace the subset X¹β of X with the pair (β, Σk∈X(β)k). (b) Delete from X
all pairs of the form (β, 0). Let Y = {(γ1, l1), . . . , (γn, ln)} be the resulting
type with γ1 > · · · > γn. Then let

xk1···km
β1···βm

:= (· · · ((xl1
γ1

)l2
γ2

)l3
γ3
· · ·)ln

γn
.

This completes the definition.
Let Γx be the set of elements xk1···km

β1···βm
constructed above. We shall refer

to Γx as a set of x-representations. Also the set X = {(β1, k1), · · · , (βm, km)}
is said to be the type of the element y = xk1···km

β1···βm
with respect to x and write

tpx(y) = {(β1, k1), · · · , (βm, km)}.

Note. In the above definition one could work as well with any class [x]β,
instead of [x]α (α=the closure ordinal). We considered [x]α simply because
of its maximality.

The following are immediate from the definition.

Lemma 2.1 i) For every permutation s of {1, . . . , m},

xk1···km
β1···βm

= x
ks(1)···ks(m)

βs(1)···βs(m)
.

ii)

xk1···kmkl
β1···βmγγ = x

k1···km(k+l)
β1···βmγ .

iii)
xk1···km0

β1···βmγ = xk1···km
β1···βm

.
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For x, y ∈ A such that x ∈ [y]α, let r(x, y) = least{β : y ∈ [x]β} be the
rank of x with respect to y. Clearly r(x, y) = 0 iff x = y and if x 6= y and
x ∈ [y]α, r(x, y) is a successor ordinal (since for a limit β, [y]β = ∪γ<β[y]γ).

The main fact concerning type representations of elements is the follow-
ing.

Proposition 2.2 Let α be the closure ordinal of A, let y ∈ A and let Γy be
a set of y-representations. Then for every x ∈ [y]α such that r(x, y) = β + 1,
there are unique ordinals β = β1 > · · · > βm 6= 0 and unique integers
k1, . . . , km 6= 0, such that x = yk1···km

β1···βm
. Moreover x < y iff k1 < 0.

In particular, for x ∈ [1]α and x 6= 1, there are unique sequences β1 >
· · · > βm 6= 0 and k1, . . . , km 6= 0, such that x = 1k1···km

β1···βm
, with k1 > 0.

Proof. Suppose x, y are as stated. Then x ∈ [y]β+1, i.e., [x]β+1 = [y]β+1,

or [x]β ∼ [y]β, or [x]β = [y]
(k1)
β for some unique k1 ∈ Z. If k1 = 0, then

[x]β = [y]β, that is, x ∈ [y]β, contrary to the fact that r(x, y) = β + 1.
Moreover k1 < 0 ⇐⇒ [x]β < [y]β therefore k1 < 0 ⇐⇒ x < y. Now

we employ the representation yk1
β . By definition, yk1

β = F (y, β, k1) ∈ [y]
(k1)
β ,

hence [yk1
β ]β = [y]

(k1)
β . Putting β1 = β we have

[x]β = [y]
(k1)
β1

= [yk1
β1

]β1 ,

or x ∈ [yk1
β1

]β1 .

If r(x, yk1
β1

) = 0, it means that x = yk1
β1

, and the claim is proved. Otherwise

r(x, yk1
β1

) = β2 + 1, with β2 + 1 ≤ β1, hence β2 < β1. Then, using the

representation yk1k2
β1β2

, there is k2 6= 0 such that

[x]β2 = [yk1
β1

]
(k2)
β2

= [yk1k2
β1β2

]β2 .

Continuing this process we find ordinals β = β1 < · · · < βi and non-
zero integers k1, . . . , ki such that x ∈ [yk1···ki

β1···βi
]βi

. Since we cannot have an
infinite regression of ordinals, the process will terminate at some step m,
which means that r(x, yk1···km

β1···βm
) = 0, i.e., x = yk1···km

β1···βm
.

The second claim follows immediately for y = 1. Since for every x 6= 1,
x > 1, it follows that if x = 1k1···km

β1···βm
, k1 must be positive. This completes the

proof. 2
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In clause 3 of the construction of representations we used a reduction of
the type X to the type Y . Let us call this reduction normalization and the re-
sulting Y the normal form of X. Namely a type X = {(β1, k1), · · · , (βm, km)}
is said to be normal if it satisfies the conditions:

a) βi = βj ⇒ ki = kj, and
b) ki 6= 0.

Then the normal form of X, denoted n(X), is the normal type obtained from
X by the normalization procedure described above. Given a representation
x = yk1···km

β1···βm
, let the normal type of x with respect to y be the normal form of

tpy(x), denoted ntpy(x), i.e.,

ntpy(x) = n(tpy(x)).

The preceding result says that every element of [y]α has a y-representation.
Moreover this representation is unique with respect to normal types (i.e.,
types like those employed in the last proposition). As an immediate corol-
lary of the preceding proposition we have that for any x1, x2 ∈ [y]α (y fixed),
ntpy(x1) = ntpy(x2) ⇒ x1 = x2. However much more can be said. In fact
the normal types of elements of [y]α determine completely their ordering.

Pairs (β, n) such that n > 0 are said to be positive. A positive normal
type is a normal type containing only positive pairs.

Let <1 be the lexicographic ordering of all positive pairs. Using <1, every
positive normal type can be identified with a decreasing sequence of positive
pairs, so let <2 be the lexicographic ordering of normal positive types.

Let NT be the set of normal types. Clearly every element of NT is of
the form

{(β1, n1), · · · , (βm, nm), (γ1,−l1), · · · , (γt,−lt)},
where ni, lj > 0. Define the ordering <3 of NT as follows:

{(β1, n1), · · · , (βm, nm), (γ1,−l1), · · · , (γt,−lt)} <3

{(δ1, p1), · · · , (δq, pq), (ε1,−r1), · · · , (εs,−rs)}
iff

{(β1, n1), · · · , (βm, nm), (ε1, r1), · · · , (εs, rs)} <2

{(δ1, p1), · · · , (δq, pq), (γ1, l1), · · · , (γt, lt)},
where in the last inequality the types are positive normal (after normalization
if needed).
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Proposition 2.3 For all x1 6= x2 ∈ [y]α,

x1 < x2 ⇐⇒ ntpy(x1) <3 ntpy(x2).

Proof. The proof is easy though tedious and details are left to the reader.
We just sketch the following two steps. For every x, β, γ, and m,n > 0,

i) xm
β < xn

γ ⇐⇒ (β, m) <1 (γ, n),
and

ii) x−m
β < x−n

γ ⇐⇒ xm
β > xn

γ .
(i): It suffices to show that (β, m) <1 (γ, n) ⇒ xm

β < xn
γ . Recall that

xm
β = F (x, β, m) ∈ [x]

(m)
β . Let (β, m) <1 (γ, n). Then either β < γ or β = γ

and m < n. Assume the first. Then xm
β ∈ [x]

(m)
β ⊂ [x]β+1 ⊆ [x]γ. Since

n > 0, [x]γ < [x](n)
γ , the last two sets are disjoint and xn

γ belongs to the last
one, so xm

β < xn
γ .

Let now β = γ and m < n. Again the claim follows from the fact that
[x]

(m)
β , [x](n)

γ are disjoint and [x]
(m)
β < [x](n)

γ .
ii): Immediate from the definition of xk

β and the fact that

[x]
(−m)
β < [x]

(−n)
β ⇐⇒ [x]

(m)
β > [x]

(n)
β .

2

Various corollaries follow from 2.2 and 2.3. A first is the specification of
the order type of every discretely ordered set (A,<, 1) of any cardinality.

Corollary 2.4 i) Let (A,<A, 1A), (B, <B, 1B) be any discretely ordered sets
with closure ordinals αA, αB respectively, and let αA ≤ αB. Then for any
β ≤ αA, ([1A]β, <A) ∼= ([1B]β, <B), and for every x ∈ A, y ∈ B such that
[x]β > [1A]β and [y]β > [1B]β, ([x]β, <A) ∼= ([y]β, <B).

ii) Also if [x]β > [1]β and we set [x+]β = {y ∈ [x]β : y ≥ x}, then
([x+]β) ∼= ([1]β, <).

iii) If ind(A) = (α, ρ0), where ρ0 = 1 + ρ, then

otp(A) = otp([1]α) + otp([x]α) · ρ,

for any [x]α > [1]α.
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Proof. i) Consider the sets of representations Γx and Γy respectively, and
for every z ∈ [x]β let h(z) ∈ [y]β be such that ntpx(z) = ntpy(h(z)). By 2.2,
h is a bijection, and by 2.3

z1 <A z2 ⇐⇒ ntpx(z1) <3 ntpx(x2) ⇐⇒

ntpy(h(z1)) <3 ntpy(h(z2)) ⇐⇒ h(z1) <B h(z2).

ii) Recall from 2.2 that z ∈ [x+]β iff ntpx(z) = {(β1, n1), . . .}, with n1 ≥
0, and these are also exactly the types of the elements of [1]β. Thus the
similarity is obtained in the obvious way.

iii) Immediate from (i) and (4). 2

By 2.4 (i), the order types of the sets [1]β and [x]β, are independent of
the x and the particular set A. So let us denote

ζβ := otp([x]β, <), and ζβ/2 := otp([1]β, <). (5)

The notation ζβ/2 is to suggest that, as follows from 2.3 (ii), [1]β is (the
right) half of the set [x]β, when [x]β > [1]β.

Now clearly for finite n as well as for successor ordinals β + n we have

ζn = (ω∗ + ω)n, and ζβ+n = (ω∗ + ω)n · ζβ,

where of course (ω∗ + ω)n is the order type of the set Zn ordered antilexico-
graphically. For limit β, however, ζβ are primitive order types, like η, λ (the
order type of the reals), etc. (The attempt to define ζβ as the order type
of Zβ does not work, since there is no antilexicographic ordering of this set,
except for finite β.) Thus by 2.4 (iii) we finally have the following expres-
sions for the order types of discretely order sets with least element (note that
ζ1/2 = ω):

Corollary 2.5 Let ind(A) = (α, ρ0), where ρ0 = 1 + ρ. Then

otp(A) = ζα/2 + ζα · ρ.

The type representation of the elements of any class [x]α obviously sug-
gests a monoidal (partial) operation defined as follows.
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We shall use the 1-representations 11
β, β < α, as “generators”. Let us

first rename them setting
cβ := 11

β.

We call cβ, β < α, generators of the set [1]β. Define the operation “◦”
between any finite number of such generators with integer exponents (when
this makes sense) and a particular x by setting

x ◦ ck1
β1
◦ · · · ◦ ckm

βm
:= xk1···km

β1···βm
. (6)

In view of this operation we can easily establish the following.

Proposition 2.6 Let (A,<, 1) be a discretely ordered set with ind(A) =
(α, ρ0), where ρ0 = 1+ρ. If ρ is the order type of a set carrying the structure
of a monoid (resp.euclidean monoid) (including the trivial one {1}), then
(A,<, 1) expands to a monoid (resp.euclidean monoid).

Proof. Since ind(A) = (α, ρ0), A is the disjoint union of the classes [x]α,
whose ordering is of type ρ. Choose an element d from each class, with d = 1
for the class [1]α, and form the set D. Then otp(D, 1, <) = ρ0, and by the
assumption, D may expand to a monoid (D, 1, •, <). Now for each x ∈ A,
there is a unique d ∈ D such that x ∈ [d]α, hence, by 2.2, x = dk1···km

β1···βm
, or, by

(6), x = d ◦ ck1
β1
◦ · · · ◦ ckm

βm
.

Define the operation ∗ on A as follows: If x = d1 ◦ ck1
β1
◦ · · · ◦ ckm

βm
and

y = d2 ◦ cl1
γ1
◦ · · · ◦ cln

γn
, let

x ∗ y := (d1 • d2) ◦ ck1
β1
◦ · · · ◦ ckm

βm
◦ cl1

γ1
◦ · · · ◦ cln

γn
.

It is easy to verify that (A, ∗, <, 1) is a monoid, and further, if D is
euclidean, then so is A. 2

We show the converse of proposition 2.6 for the euclidean case.

Lemma 2.7 Let A be a discrete euclidean monoid (of any cardinality) with
ind(A) = (α, ρ0). Then for every β ≤ α, Aβ has a euclidean expansion.
Consequently ρ0 = otp(Aα) is the order type of some euclidean monoid.
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Proof. We just transfer ∗ to Aβ setting [x]β ∗ [y]β = [x∗y]β. The euclidean
property of A is needed only to prove that this operation is well defined. E.g.
let β = 1, and let us write [x] instead of [x]1. Then, by lemma 1.2 (i), if a
is the successor of 1, the successor of every x ∈ A is a ∗ x, hence x ∼ y iff
x = ak ∗ y for some k ∈ Z. Thus if x1 ∼ x2 and y1 ∼ y2, then x1 = ak ∗ x2,
y1 = al ∗ y2, hence [x1 ∗ y1] = [ak ∗ x2 ∗ al ∗ y2] = [x2 ∗ y2 ∗ ak+l] = [x2 ∗ y2]. So
∗ is well defined. Then use induction on β. At limit β we just take unions.
Details are easy and left to the reader. 2

Note that without the euclidean property the shifting of ∗ to the classes is
not possible. For instance, let N be a model of PA. Then the monoid (N, ·, <
, 1) is non-euclidean, that is, 2x is not the successor of x. Here obviously
x1 ∼ x2 and y1 ∼ y2 does not imply [x1 · y1] = [x2 · y2].

Let us summarize the expandability conditions obtained above.

Corollary 2.8 Let (A,<, 1) be a countable ordered set. Then
i) A expands to a euclidean monoid iff otp(A) is one of the following: η0,

ω, ζα/2, ζα/2 + ζ0 · η.
ii) A expands to a radically closed monoid iff otp(A) = η0.

Proof. i) Suppose A expands to a euclidean monoid. Then, by lemma
1.2 (i), A is either dense or discrete. In the first case, since A is countable,
otp(A) = η0. In the second case either otp(A) = ω, or, A is nonstandard
with index (α, ρ0), where ρ0 = otp(Aα), is either 1, or a non-discrete order
type. But Aα, by 2.7, has a euclidean expansion, therefore it is dense, so in
the latter case ρ0 = η0. Thus either ρ0 = 1 or ρ0 = η0. By 2.5, in the first
case otp(A) = ζα/2, and in the second case otp(A) = ζα/2 + ζα · η. Thus the
possible order types of A are η0, ω, ζα/2, ζα/2 + ζ0 · η.

Conversely. If otp(A) = η0 or ω, then, by 1.3, A expands to a euclidean
monoid. If otp(A) = ζα/2, or ζα/2 + ζα · η, then ρ0 = 1 or η0, which are the
order types of the euclidean monoids {1} and Q1 = {x ∈ Q : x ≥ 1}. Hence
by 2.6, A expands to a euclidean monoid.

ii) By lemmas 1.2 and 1.3. 2

In view of lemma 1.1 and the fact that we may have + for ∗ and 0 for 1,
we get the following.
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Corollary 2.9 Let (A,<, 0) be a countable discretely ordered set with least
element 0. Then there is a discretely ordered group G such that A = G+, iff
otp(A) = ω, ζα/2, or ζα/2 + ζα · η.

Proof. By 1.1 and taking ∗ = +, there is a discretely ordered group G
such that A = G+, iff (A,<, 0) expands to a euclidean monoid (A, +, <, 0).
Thus the claim follows from 2.8. 2
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