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Abstract

Let L be a countable first-order language and M = (M, . . .) be an L-structure.
“Definable set” means a subset of M which is L-definable in M with parameters.
A set X ⊆ M is said to be immune if it is infinite and does not contain any infinite
definable subset. X is said to be partially immune if for some definable A, A ∩X

is immune. X is said to be totally non-immune if for every definable A, A∩X and
A∩(M\X) are not immune. Clearly every definable set is totally non-immune. Here
we ask whether the converse is true and prove that it is false for every countable
structure M whose class of definable sets satisfies a mild condition. We investigate
further the possibility of an alternative construction of totally non-immune non-
definable sets with the help of a subclass of immune sets, the class of cohesive sets,
as well as with the help of a generalization of definable sets, the semi-definable ones
(the latter being naturally defined in models of arithmetic). Finally connections are
found between totally non-immune sets and generic classes in nonstandard models
of arithmetic.
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1 Immunity and partial immunity

This paper arose from an attempt to approximate the class of definable sets
(initially of the structure (ω, +, ·, S, 0) and later of any countable first-order
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structure) by eliminating some important aspects of non-definability to the
greatest possible extent. Specifically, at the opposite side of definable sets
lie the “immune” sets. We adopt the term “immune” from computability
theory, where it means a set X ⊂ ω that does not contain any r.e. subset.
Here we use the term with “definable” in place of “r.e.”. Namely, given a
first-order structureM = (M, . . .), a set X ⊂ M is said to be immune (inM)
if it is infinite and does not contain any infinite subset definable in M with
parameters. So an immune set has zero definable content. On the other hand
there exist some natural degrees of immunity, that is, natural intermediate
properties between non-immunity and definability. For example, if X is
immune and A is an infinite definable set such that A ∩X = ∅, then X ∪A
is neither immune nor definable. Rather it is something between, it has
the property that we call “partial immunity”. In general, X is partially
immune if there is a definable A such that A ∩ X is immune. An even
weaker property is what could be called “very partial immunity” (although
the term will not be used below, to avoid terminological inflation). X is very
partially immune if either X or its complement M\X is partially immune.
We feel that these two intermediate properties, partial immunity and very
partial immunity, seem to exhaust the reasonable weak degrees of immunity.
(Of course any suggestions for even finer and weaker kinds of immunity are
welcome.) Thus we call a set X totally non-immune (t.n.i.) if neither X nor
M\X is partially immune.

There are also other significant properties that cause non-definability.
Such are cohesiveness and genericity, but both of them are stronger than
immunity. That is, every cohesive or generic set is immune. So it is obviously
more likely to reach definable sets by “killing” immunity (and its weaker
degrees) rather than killing cohesiveness or/and genericity.

Thus, intuitively, total non-immunity is pretty close to definability. But
how close indeed? Strictly speaking, is it identical to definability? The main
result of the paper is that the answer is no. Namely we show (Theorem
2.1 below) that almost every countable structure contains t.n.i. sets which
are non-definable. Such sets are constructed as generic subsets sets of a
suitable partially ordered set. In particular this is true for all expansions
M = (ω,+, ·, S, 0, . . .) of the standard model of Peano Arithmetic (PA).

In section 3 we try to find alternative constructions of totally non-
immune sets by means of the class of cohesive sets mentioned above, which
is also a notion adapted from computable sets, and which has an interest
in its own. The goal is not fully obtained. We only show that the comple-
ment of a cohesive is not partially immune, a property weaker than total
non-immunity.
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In the last section we focus on models of PA. There one can define a natu-
ral notion of semi-definability, with the purpose to reach t.n.i. sets through a
different route. What is shown however is that there exist semi-definable sets
with any degree of immunity, depending on the set’s “support”, but semi-
definability itself does not provide an alternative method for constructing
t.n.i. non-definable sets. In a different vein, we examine the relationship of
t.n.i. sets with another approximation of definable sets occurring in some
nonstandard models, discovered and used long ago, the so called “classes”
studied in a series of papers like [3], [5], [6]. Not all non-standard models
of PA contain proper (i.e., non-definable) classes. That is, in some cases the
classes “collapse” to just the definable sets. We show however that whenever
they exist (in which case they are constructed as generic classes), they are
t.n.i. sets.

For the rest of the paper and unless otherwise stated, L is a fixed count-
able first-order language and M = (M, . . .) is a countable L-structure. By
“set” we always mean a subset of M . “Definable set” means a set L-definable
in M with parameters. Let us first fix some notation.

• Capital letters X, Y , Z, with subscripts, will denote arbitrary subsets
of M .

• Capital letters A, B, C, with subscripts, will denote definable subsets
of M .

• Lowercase letters a, b, c, with subscripts, will denote elements of M .

Definition 1.1 A set X ⊆ M is said to be immune if it is infinite and does
not contain any infinite definable subset of M . X is said to be partially
immune if for some definable A, A∩X is immune. X is totally non-immune
(t.n.i. in brief) if neither X nor M\X is partially immune.

Let Def , IM , PIM , TNI be the classes of definable, immune, partially
immune and t.n.i. subsets of M , respectively. Sometimes we denote by
Def∞ the class of infinite definable sets. The following relations follow
immediately from the definitions:

(1) X ∈ TNI ⇔ X /∈ PIM ∧ (M\X) /∈ PIM ,
(2) IM ⊆ PIM ,
(3) Def ⊆ TNI.
Immune sets lie at the antipodes of definable sets, as they have zero

definable content. Also any infinite subset of an immune set is immune. Yet
the following holds:

Proposition 1.2 Every infinite set splits into two immune subsets.
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Proof. Let X ⊆ M be infinite and let K = {A ∈ Def∞ : A ⊆ X}. If
K = ∅, then X is immune so if X1, X2 form an arbitrary partition of X
into infinite sets, X1, X2 are immune. Let K 6= ∅. Then K is infinite and
let K = {An : n ∈ ω} be an enumeration of K. We construct inductively
sequences (an)n∈ω, (bn)n∈ω of elements of X such that for every n:

(a) an, bn ∈ An,
(b) {a1, . . . , an} ∩ {b1, . . . , bn} = ∅.
Since each An is infinite and An ⊆ X, this construction can be carried

out for every n. Pick X1, X2 ⊆ X such that {an : n ∈ ω} ⊆ X1, {bn : n ∈
ω} ⊆ X2, and X1 ∩ X2 = ∅. Without loss of generality we may assume
X1 ∪ X2 = X (otherwise we extend each one of them properly in order to
form a partition of X). The only definable sets that could be contained in
X1, X2 are those of K. But for every An ∈ K, An ∩ X1 6= ∅, so An 6⊆ X2,
and An ∩X2 6= ∅, so An 6⊆ X1. It follows that X1, X2 are immune. a

Concerning the question whether the inclusion IM ⊆ PIM is proper,
we have the following:

Proposition 1.3 If Def contains at least one infinite and co-infinite set,
then IM  PIM .

Proof. Pick such an infinite and co-infinite A ∈ Def . By the previous
proposition A splits into two immune sets X1, X2. Set Y = X1 ∪ (M\A).
Then Y ∈ PIM\IM . Indeed, Y /∈ IM since it contains the infinite definable
M\A. On the other hand Y ∩A = X1 ∈ IM , so Y ∈ PIM . a

Next we come to the question whether the inclusion Def ⊆ TNI is
proper. One can find easy and natural examples of sets X ∈ TNI\Def
in structures with simple classes of definable sets, specifically certain o-
minimal ones. (A totally ordered structure M = (M,<, . . .) is o-minimal if
every X ∈ Def(M) is a finite union of open intervals, with end-points in
M , and singletons of M , see e.g. [1, p. 31].)

Example 1. In (Q, <) or in (R, <) consider two infinite sequences of
points (an)n∈ω, (bn)n∈ω such that

a1 < b1 < a2 < b2 < · · · < an < bn < · · · .

Let X =
⋃∞

n=1(an, bn). Then Q\X = (−∞, a1] ∪
⋃∞

n=1[bn, an+1]. Clearly
both X and Q\X are non-definable in (Q, <). But for every interval A (thus
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for every definable A), if A ∩ X is infinite, then it contains some interval,
and similarly for A ∩ (Q\X). Therefore X ∈ TNI\Def .

Example 2. Let ρ be an irrational, and let (−∞, ρ), (ρ,∞) denote
the corresponding intervals of (Q, <), i.e., (−∞, ρ) ∩ Q, and (ρ,∞) ∩ Q,
respectively. Then (−∞, ρ) and (ρ,∞) are non-definable in (Q, <). Let
{a1, a2, . . .} ⊂ Q be a strictly increasing sequence converging to ρ and let
X = {a1, a2, . . .} ∪ (ρ,∞). It is easy to see that X ∈ TNI\Def . Indeed,
X /∈ Def and it is not hard to see that X /∈ PIM , i.e., for every A ∈ Def ,
if A ∩X is infinite, then it includes some interval. (Notice that {a1, a2, . . .}
is immune, but since (−∞, ρ) is not definable in (Q, <), there is no way
to separate {a1, a2, . . .} alone from X by a definable set.) Also Q\X =
(−∞, a1)∪ (

⋃∞
n=1(an, an+1)) is clearly not partially immune. Therefore X ∈

TNI.
This example shows further that the class TNI is not in general closed

under intersections (while, as follows from the definitions, is closed under
complements). Indeed, let {b1, b2, . . .} ⊂ Q be a strictly decreasing sequence
converging to the above irrational ρ and let Y = (−∞, ρ)∪ {b1, b2, . . .}. For
the same reasons as before Y ∈ TNI\Def . Now X ∩ Y = {a1, a2, . . .} ∪
{b1, b2, . . .}. But the latter is immune so X ∩ Y /∈ TNI.

The relationship between definable and immune sets reminds roughly the
relationship between open and nowhere dense sets. Indeed, if we think of
definable sets as “open”, then we should think of immune sets as “nowhere
dense”, since they have zero definable content, i.e., zero open interior.
Specifically, given any structure M = (M, . . .), the elements of Def∞ (infi-
nite definable subsets of M) can be seen as producing the basis of a pseudo-
topology on M . It is not a real topology because Def∞ is not closed under
intersections. However it is convenient to use this term as a terminological
convention and give the following.

Definition 1.4 A set X ⊆ M is said to be open if X =
⋃

S for some
S ⊆ Def∞. X is clopen if both X and M\X are open.

This is a reasonable generalization of definable sets. Let OP , CLO be
the classes of open and clopen subsets of M , respectively. Obviously

Def ⊆ CLO ⊆ OP.

It is easy to see that non-immunity is identical to openness.
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Proposition 1.5 Let X ⊂ M be infinite. Then X ∈ OP iff X /∈ IM .

Proof. Obviously every open set is non-immune. Conversely, let X be
infinite and non-immune. Then there is A ∈ Def∞ such that A ⊆ X. Let
S = {B ∈ Def∞ : B ⊆ X}. It suffices to show that X =

⋃
S. Clearly⋃

S ⊆ X. On the other hand, if a ∈ X then A ∪ {a} ∈ S, so X =
⋃

S. a

Corollary 1.6 (i) TNI ⊆ CLO.
(ii) TNI  CLO even in some o-minimal structures.

Proof. (i) If X ∈ TNI, then X /∈ IM and (M\X) /∈ IM . Thus, by 1.5,
X ∈ OP and (M\X) ∈ OP .

(ii) Consider Example 2 above, but with R in place of Q, i.e., let X =
{a1, a2, . . .} ∪ (ρ,∞), with ρ = limn an. Both X and R\X are not immune,
thus open, so X ∈ CLO. But now X is partially immune, because (−∞, ρ) ∈
Def and (−∞, ρ) ∩X = {a1, a2, . . .} is immune. Therefore X /∈ TNI. a

In section 4.1 we shall return to a particular subclass of clopen sets,
the semi-definable sets, which are naturally defined in models of arithmetic.
Meanwhile we examine the existence of t.n.i. sets in general structures.

2 Existence of non-definable t.n.i. sets in general
structures

Apart from the preceding examples with o-minimal structures, it is by no
means clear what happens in structures with complicated classes of definable
sets, like models of arithmetic or expansions of them. Below we show that
indeed Def  TNI in all structures satisfying a mild condition. Namely we
show that Def  TNI holds in any structure M satisfying the condition:

(*) Every infinite definable set splits into two infinite definable subsets.

(Equivalently, (*) says that the Boolean algebra of definable sets, modulo
the ideal of finite ones, is atomless. In more technical model-theoretic terms,
this is equivalent to say that no infinite definable subset is strongly minimal,
or that the Morley rank of every infinite definable set is not ordinal-valued
(see [1, pp. 240–244]).)

We shall construct X ∈ TNI\Def as a generic subset of a partially
ordered set.

Given the set Def overM, let P be the set consisting of pairs p = (p0, p1)
such that:
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(i) p0, p1 ∈ Def∞,
(ii) p0 ∩ p1 = ∅,
(iii) M\(p0 ∪ p1) is infinite.

We order P by the relation p ≤ q := (p0 ⊇ q0) & (p1 ⊇ q1). Thus P ⊆
Def ×Def . Let S be a transitive set (in ZFC) which contains the structure
M, together with the sets Def , P and ω, and rich enough so that the
predicate “v is infinite” is absolutely defined in (S,∈). That is, for every
x ∈ S, x is infinite iff there is in S an injection f : ω → x. Let

S = (S,∈,M, Def,P)

be the structure (S,∈) augmented with M , Def , P construed as unary pred-
icates, and let L2 = {∈,M(·), Def(·),P(·)} be the language of the structure
S, in which M , Def , P are treated as unary predicate symbols (sorts). Let:

• D = the set of all dense subsets of P which are definable in S by
formulas of L2 with parameters from M ∪Def ∪ P.

Since L and M are countable, Def∪M∪P is countable too, and thus so is
D. Therefore there is a D-generic G ⊂ P in the usual sense, i.e., G is closed
upward, any two elements of G are compatible and G ∩ D 6= ∅ for every
D ∈ D. Fix such a G and let G0 =

⋃{p0 : p ∈ G} and G1 =
⋃{p1 : p ∈ G}.

The following is the main result of the paper.

Theorem 2.1 Let M be a structure that satisfies condition (*) above, and
let G be a D-generic subset of P. Then:

(i) G0 ∩G1 = ∅ and G0 ∪G1 = M .
(ii) G0 6∈ Def . Hence also G1 6∈ Def .
(iii) G0, G1 /∈ PIM , thus G0, G1 ∈ TNI.
(iv) Therefore Def  TNI.

Proof. (i) We show G0 ∩G1 = ∅. Assume the contrary. Then there are
p, q ∈ G such that p0 ∩ q1 6= ∅. Since p, q ∈ G, p, q are compatible, i.e.,
there is r ∈ G such that r ≤ p, q. Hence r0 ⊇ p0 and r1 ⊇ q1. Therefore
r0 ∩ r1 6= ∅, which contradicts the definition of conditions above. Next we
show that G0 ∪G1 = M . For each a ∈ M let

Da = {p ∈ P : a ∈ p0 ∨ a ∈ p1}.
Clearly each Da is definable in S and dense in P. Indeed let q ∈ P. If a ∈ q0

or a ∈ q1 we are done. If a /∈ q0 ∪ q1, it suffices to set p0 = q0 ∪ {a} and
p1 = q1, or p0 = q0 and p1 = q1 ∪ {a}. In both cases the pair p = (p0, q0)
is in Da and extends q. Thus for each a ∈ M , Da ∈ D, so G ∩Da 6= ∅. It
follows that there is p ∈ G such that a ∈ p0 ∪ p1, therefore a ∈ G0 ∪G1.
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(ii) To show that G0 6∈ Def , we have to show that A 6= G0 for every
infinite and co-infinite set A ∈ Def . Fix such an A. It suffices to prove
that for some p ∈ G, either p0 6⊆ A or p1 6⊆ M\A. For in such a case
either G0 6⊆ A or G1 6⊆ M\A, so in either case A 6= G0, since G0, G1 form
a partition of M , according to (i) above. For every infinite and co-infinite
A ∈ Def set

DA = {p ∈ P : p0 6⊆ A ∨ p1 6⊆ M\A}.
DA is again definable in S. So it suffices to show that DA is dense in P. In
such a case DA ∈ D and thus G ∩DA 6= ∅, as required.

Indeed, let q = (q0, q1) ∈ P. If q ∈ DA we are done. Suppose q /∈ DA.
Then q0 ⊆ A and q1 ⊆ M\A. However either q0  A or q1  M\A. Because
otherwise q0 = M\q1 which contradicts the definition of the conditions in
P (property (iii) above). Suppose q0  A. Then pick an element a ∈ A\q0

and set p1 = q1 ∪ {a} and p0 = q0. Then clearly p = (p0, p1) ∈ P, p ≤ q and
p ∈ DA, because p1 6⊆ M\A. Similarly if q1  M\A, pick a ∈ M\(A ∪ q1)
and set p0 = q0 ∪ {a} and p1 = q1. Then p ≤ q and p ∈ DA because p0 6⊆ A.

(iii) Finally we show that G0 and G1 are not partially immune. We show
it first for G0. Fix an A ∈ Def such that A ∩G0 is infinite. Since for every
p ∈ P, p0, p1 are definable, and for every p ∈ G, A ∩ p0 ⊂ A ∩G0, it suffices
to show that for some p ∈ G, A ∩ p0 is infinite. Consider the set

EA = {p ∈ P : A ∩ p0 is infinite, or A\p1 is finite}.

We claim that for this particular A, EA is dense in P. Indeed, let q =
(q0, q1) ∈ P. If A ∩ q0 is infinite or A\q1 is finite, then q ∈ P and we
are done. Assume A ∩ q0 is finite and A\q1 is infinite. Since A ∩ q0 is
finite, A\(q0 ∪ q1) is infinite too. Here is the point where we need condition
(*). A\(q0 ∪ q1) is infinite definable, so using (*) we split it into two infinite
definable parts B0, B1 and we set p0 = q0∪B0 and p1 = q1. Then p0∩p1 = ∅
and B1 ⊆ M\(p0 ∪ p1). Thus p = (p0, p1) ∈ P since B1 is infinite. Also
B0 ⊆ A ∩ p0 and B0 infinite, therefore p ∈ EA and p ≤ q. So EA is dense.
Now clearly EA ∈ D, therefore G ∩ EA 6= ∅. Let p ∈ G ∩ EA. Then A ∩ p0

is infinite, or A\p1 is finite. But A\p1 cannot be finite because p1 ⊆ G1

and A ∩G0 = A\G1 ⊂ A\p1. Thus, since by assumption A ∩G0 is infinite,
so is A\p1. It follows that A ∩ p0 is infinite. That is, A ∩ p0 is an infinite
definable set contained in A∩G0. Therefore A∩G0 is not immune. A similar
argument which interchanges the roles of p0 and p1 in the definition of EA

shows that A ∩G1 is not immune.
(iv) It follows from (i)-(iii) above that G0, G1 ∈ TNI\Def . a
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Corollary 2.2 Let L be a language that extends the language of Peano
Arithmetic and let A = (ω, . . .) be an L-structure over ω. Then in A,
Def  TNI.

Proof. Clearly A satisfies condition (*), so the claim follows from Theo-
rem 2.1. a

Let us refer to sets G0 or G1 of theorem 2.1 as generic t.n.i-sets. A
further property of these sets is given below.

Lemma 2.3 Let G0 be a generic t.n.i. set and A ∈ Def∞ such that A ⊂
G0. Then there is p ∈ G such that A ⊆ p0.

Proof. Given any A ∈ Def∞, let

ΓA = {p ∈ P : A ⊆ p0 ∨A ∩ p1 6= ∅}.
ΓA is dense in P. Indeed let q /∈ ΓA. Then A 6⊆ p0 and A ∩ p1 = ∅. Pick
a ∈ A\p0 and set p0 = q0 and p1 = q1 ∪ {a}. Then p ≤ q and p ∈ ΓA since
A ∩ p1 6= ∅. Moreover ΓA ∈ D. Now let A ∈ Def∞ and A ⊂ G0. Take
p ∈ G ∩ ΓA. Since A ⊂ G0, A ∩ p1 = ∅, so A ⊆ p0. a

The question is: Is it possible to find examples of non-definable t.n.i.
sets without the use of generics? To investigate this question, we consider in
the next section an interesting subclass of immune sets, the class of cohesive
sets (defined modulo Def).1 We shall show that if X ⊆ M is cohesive, then
M\X /∈ PIM . So if both X and M\X were cohesive, then X ∈ TNI\Def .
However for no X can both X and M\X be cohesive. So cohesiveness only
partially answers the above question.

3 Cohesiveness and partial cohesiveness

Just like immune sets, cohesive sets too originate in computability theory
(see [4, p. 72]). Originally, a set X ⊆ ω is said to be cohesive if it is infinite
and for every r.e. set A, either A∩X or (ω\A)∩X is finite. Here we replace
r.e. sets with L-definable ones. We remind that we still refer to a countable
language L and a countable L-structure M = (M, . . .).

1If we restrict ourselves to the structure (ω, +, ·, S, 0), or expansions of it, another
interesting class of non-definable sets occurs, besides cohesive sets, namely generic sets
(defined modulo Def). Every generic subset of ω is also immune in the sense of this paper.
However generics require a rather special treatment, as elements of the Cantor space 2ω,
so we will not deal with them here.
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Definition 3.1 A set X ⊆ M is said to be cohesive, if it is infinite and for
every infinite A ∈ Def , either A ∩X or (M\A) ∩X is finite. X is partially
cohesive if there exists A ∈ Def such that A ∩X is cohesive. X is totally
non-cohesive if neither X nor M\X is partially cohesive.

We denote by CO, PC and TNC the classes of cohesive, partially cohesive
and totally non-cohesive subsets of M , respectively.

As an immediate consequence of the definition, if X is cohesive then
all infinite subsets of X are cohesive. This fact, together with the non-
effectiveness of the proof of existence of cohesive sets, implies that the latter
sets are fairly far from the definable ones.

Simple examples of cohesive sets are easily available again in o-minimal
structures. Namely, either in (Q, <) or in (R, <) every unbounded set of
the form X = {a1 < a2 < · · ·} is cohesive (and not just immune as we
said in the previous section). Indeed, let A be a definable set in either of
these structures. Since A is the union of only finitely many intervals, it is
clear that A ∩X is infinite if and only if A contains an interval of the form
(b,∞). Moreover in this case (b,∞) contains almost all elements of X (that
is, except finitely many), which belong to (Q\A)∩X. Thus for any definable
A, either A ∩X or (Q\A) ∩X is finite.

However, existence of cohesive sets in general countable structures can
be shown by imitating the standard proof of Dekker and Myhill for the
existence of cohesive subsets of ω (modulo r.e. sets) (see [4, Prop. III.4.16]).

Proposition 3.2 CO 6= ∅.

Proof. Def is countable so let (An)n∈ω be an enumeration of its elements.
M in general is not linearly ordered. Nevertheless this is not a problem. We
can just use an external ω-ordering < of M , e.g. write M = {c0 < c1 < · · ·}.
Then one can follow essentially the proof of Dekker and Myhill with the
sets An in place of Wn and with < in place of the ordering of integers.
For the reader’s convenience I shall sketch the proof here. We construct
a cohesive set X as the intersection

⋂
m Xm of a nested family of infinite

sets Xm = {am
0 < am

1 < · · ·}, where Xm+1 ⊆ Xm. That is, each sequence
{am+1

0 < am+1
1 < · · ·} is a subsequence of {am

0 < am
1 < · · ·}. We construct

the sets Xm by induction on m as follows:
1) X0 = M , i.e., a0

n = cn.
2) Suppose Xm = {am

0 < am
1 < · · ·} is defined and is infinite. We set

Ym = Xm ∩Am if Xm ∩Am is infinite, and Ym = Xm ∩ (M\Am) otherwise.
Thus in any case Ym is infinite and is contained either in the definable set
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Am or in its complement. Then we define the elements {am+1
0 < am+1

1 < · · ·}
of Xm+1 by induction on n as follows.

• am+1
n = am

n , if n ≤ m,
• am+1

n+1 = the <-smallest element of Ym greater than am+1
n , if n > m.

It follows that almost all elements of Xm+1, i.e., except possibly the
finitely many elements am+1

n , for n ≤ m, are in Ym, and therefore almost
all elements of Xm+1 are either in Am or in M\Am. A fortiori, for every
m, almost all elements of X =

⋂
m Xm are either in Am or in M\Am. That

is, for every m, either Am ∩ X or (M\Am) ∩ X is finite. Moreover, for
each n, the sequence (am

n )m∈ω becomes eventually stable. So for each n,
an = max{am

n : m ∈ ω} exists and is the n-th element of X. Therefore X is
cohesive. a

As P. Odifreddi points out in [4, p. 289], the proof of (the r.e. analogue
of) 3.2 is highly noneffective, first because we ask whether the sets Ym are
infinite, and second because we ask membership questions about Ym. In the
case of r.e. subsets of ω, an “effectivization” of the preceding proof leads to
maximal r.e. sets (modulo finite sets), and these are exactly the r.e. sets
whose complement is cohesive ([4, p. 290]). However such sets do not seem
to make sense for cohesiveness as defined here. (See also Remark 3.9 (ii)
below.)

Let A ∈ Def and X ⊆ A. Let us say that X is cohesive relative to A,
notation X ∈ CO(A), if for every B ∈ Def such that B ⊆ A, either X ∩B
or X ∩ (A\B) is finite. In fact every relative cohesive set is cohesive. The
proof of the following is easy and left to the reader.

Lemma 3.3 For every A ∈ Def∞ and every X ⊆ A,

X ∈ CO(A) ⇔ X ∈ CO.

Corollary 3.4 For every A ∈ Def∞ there is X ⊆ A such that X ∈ CO.

Proof. Let A ∈ Def∞. Taking an enumeration (Bn)n∈ω of all definable
subsets of A and an ω-ordering of A we can relativize the construction of
Proposition 3.2 in A to obtain a set X ∈ CO(A). But by Lemma 3.3,
X ∈ CO. a

Proposition 3.5 (i) CO ⊆ IM .
(ii) PCO ⊆ PIM .
(iii) TNI ⊆ TNC.
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Proof. (i) Let X /∈ IM . If X is finite then X /∈ CO. Let X be infinite.
Then there is an infinite definable A ⊆ X. If X\A is finite, then X ∈ Def ,
so X /∈ CO too. If X\A is infinite, then A splits X into two infinite parts,
so again X /∈ CO.

(ii) Let X ∈ PCO. Then there is A ∈ Def such that A ∩X ∈ CO. By
(i), A ∩X ∈ IM , so X ∈ PIM .

(iii) Let X ∈ TNI. Then X /∈ PIM and (M\X) /∈ PIM . Thus
X /∈ PCO and (M\X) /∈ PCO. Therefore X ∈ TNC. a

That all the inclusions of the previous proposition are proper will be a
consequence of the next theorem.

Theorem 3.6 Let M satisfy condition (*). Then IM ∩ TNC 6= ∅.

Proof. We shall construct X ⊆ M such that X ∈ IM ∩ TNC. Def is
countable so let (An)n∈ω be an enumeration of all infinite elements of Def .
Then X ∈ IM ∩ TNC iff it satisfies the properties:

(a) An 6⊆ X, for every n ∈ ω.
(b) X ∩An /∈ CO and (M\X) ∩An /∈ CO, for every n ∈ ω.
In order to cope with (b) let us pick for every n a splitting of An into

two infinite subsets A0
n, A1

n ∈ Def . Then it suffices that the following sub-
conditions hold:

(b1) X ∩A0
n is infinite,

(b2) X ∩A1
n is infinite,

(b3) (An\X) ∩A0
n is infinite,

(b4) (An\X) ∩A1
n is infinite.

Clearly condition (a) guarantees that X ∈ IM . Conditions (b1) and (b2)
will guarantee that X∩An /∈ CO for all n, while (b3) and (b4) will guarantee
that (M\X) ∩ An /∈ CO for all n. Therefore (b1)-(b4) together guarantee
that X ∈ TNC. Also either of the conditions (b3) and (b4) entails property
(a) above (since if An ⊆ X, then An\X = ∅). So it suffices to construct
X so that the conditions (b1)-(b4) are met. We define inductively and
simultaneously sequences (an

0 )n∈ω, (an
1 )n∈ω, (bn

0 )n∈ω (bn
1 )n∈ω, such that:

(i) a0
n, b0

n ∈ A0
n,

(ii) a1
n, b1

n ∈ A1
n,

(iii) ({a0
0, . . . , a

0
n} ∪ {a1

0, . . . , a
1
n}) ∩ ({b0

0, . . . , b
0
n} ∪ {b1

0, . . . , b
1
n}) = ∅.

Suppose the sequences have been defined up to n so that (i)-(iii) are true
and let K be the totality of the points chosen so far. K is finite. Since
A0

n+1, A1
n+1 are infinite we pick a0

n+1 6= b0
n+1 ∈ A0

n+1\K, and a1
n+1 6= b1

n+1 ∈
A1

n+1\(K ∪{a0
n+1, b

0
n+1}). Then clearly (i)-(iii) hold for the sequences up to

12



n + 1. Let X = {a0
n : n ≥ 0} ∪ {a1

n : n ≥ 0}. Then X ∩ ({b0
n : n ≥ 0} ∪ {b1

n :
n ≥ 0}) = ∅, so conditions (b1)-(b4) hold true and X ∈ IM ∩ TNC. a

The properties of immunity, cohesiveness and definability are not affected
by finite changes of sets. To be precise, given sets X, Y let X ⊆′ Y denote
the fact that X\Y is finite, and X =′ Y the fact that X ⊆′ Y and X ⊆′ Y .
Then for sets X, Y such that X =′ Y , we have trivially: (a) X is definable
iff Y is so, (b) X is immune (partially immune) iff Y is so, (c) X is cohesive
(partially cohesive) iff Y is so. In contrast to Proposition 1.2 the following
holds.

Proposition 3.7 (i) No A ∈ Def∞ splits into an immune and a cohesive
set. (A fortiori, A doesn’t split into two cohesive sets.)

(ii) Stronger, no A ∈ Def∞ splits into an immune and a partially cohe-
sive set. (A fortiori, A doesn’t split into a cohesive and a partially cohesive
set.)

(iii) No A ∈ Def∞ splits into a cohesive and a partially immune set.

Proof. (i) Let A ∈ Def∞, and let A = X1 ∪X2 be a partition of A such
that X1 ∈ IM and X2 ∈ CO. Let A1, A2 be a partition of A into two infinite
definable sets. Then either X2 ∩ A1 or X2 ∩ A2 is finite. If X2 ∩ A1 = u is
finite, then (A1\u) ⊆ X1. If X2 ∩A2 is finite, then (A2\u) ⊆ X1. But A1\u
and A2\u are infinite definable sets contrary to the assumption that X1 is
immune.

(ii) Let now A ∈ Def∞, and let A = X1 ∪X2 be a partition of A such
that X1 ∈ IM and X2 ∈ PCO. Then there is an infinite B ∈ Def such that
X2∩B is cohesive. Then A∩B = (X1∩B)∪ (X2∩B), and A∩B is infinite
since X2 ∩ B is so. If X1 ∩ B were finite, then A ∩ B =′ X2 ∩ B, which
is impossible since one of them is definable and the other cohesive. Thus
X1 ∩ B is infinite, so it is immune since X1 is so. But then the definable
A∩B splits into an immune set X1 ∩B and a cohesive set X2 ∩B, contrary
to (i) above.

(iii) Let A ∈ Def and let X ⊆ A be cohesive. Let also A\X ∈ PIM , i.e.,
there is a B ∈ Def such that B ⊆ A and (A\X) ∩ B is immune. Suppose
A\B is finite. Then B =′ A, therefore (A\X) ∩ B =′ (A\X) ∩ A = A\X.
It follows that A\X ∈ IM , thus A splits into a cohesive and an immune
set which contradicts clause (i) above. Therefore B and A\B are both
infinite. Then X ∈ CO implies that either X ∩ B or X ∩ (A\B) is finite.
In the first case B ⊆′ (A\X), so (A\X) ∩ B =′ B, a contradiction since
(A\X) ∩ B ∈ IM . In the second case (A\B) ⊆′ (A\X), thus X ⊆′ B.
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Therefore B =′ X ∪ ((A\X) ∩ B). But X is cohesive while (A\X) ∩ B is
immune and they partition the definable B, contrary again to (i) above. a

In contrast to Proposition 3.7 above, we have the following:

Proposition 3.8 If M satisfies (*), then every A ∈ Def∞ splits into two
partially cohesive sets.

Proof. (iv) Let A ∈ Def∞. By (*) there is a partition of A into A1, A2 ∈
Def∞. By Corollary 3.4, there are X1, X2 ∈ CO such that X1 ⊂ A1 and
X2 ⊂ A2. Set X = X1 ∪ (A2\X2) and Y = X2 ∪ (A1\X1). Then X, Y form
a partition of A, and X ∩A1 = X1 and Y ∩A2 = X2 are both cohesive, thus
X,Y ∈ PCO. a
Remarks 3.9 (i) By 3.7 (iii), for every X ⊆ M ,

X ∈ CO ⇒ (M\X) /∈ PIM. (1)

However, since by 3.7 (i), X and M\X cannot both be cohesive, we cannot
use this fact to obtain non-definable sets such that X,M\X /∈ PIM , i.e.,
X ∈ TNI\Def .

(ii) Immediately after the proof of Proposition 3.2 we mentioned the
well-known fact that if X ⊆ ω is r.e. and ω\X is cohesive, then X is a
maximal r.e. set (modulo finite sets). There is no analogous fact in our case.
Namely, if X is non-partially immune and M\X is cohesive, it doesn’t follow
that X is a maximal non-definable and non-partially immune (modulo finite
sets). Indeed, let us split the cohesive M\X into two infinite and co-infinite
subsets Y1, Y2. Then both Y1, Y2 are cohesive too. Hence according to (i)
above, M\Y1 is non-partially immune, non-definable and X = M\(Y1∪Y2) ⊂
M\Y1. Also, since Y2 is infinite, X 6=′ (M\Y1). Therefore X in not maximal
with respect to the properties in question.

(iii) The implication (1) is best possible, in the sense that it does not
hold if we replace cohesive with partial cohesive. Thats is, the implication

X ∈ PCO ⇒ M\X /∈ PIM

is false. Indeed, by 3.8 pick X ⊂ M such that both X and M\X are partially
cohesive. Then by 3.5 (ii), X ∈ PCO and M\X ∈ PIM .

4 The case of models of Arithmetic

In this section we focus on models of PA, standard or nonstandard in the
first subsection and exclusively nonstandard in the second one.
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4.1 Semi-definable sets

In section 1 we saw that the infinite definable sets give rise to a pseudo-
topology of open sets, where the latter coincide with the non-immune sets.
In models of arithmetic this can be taken a bit further because of the special
property of a model M |= PA to code infinite partitions of M . Throughout
this section M is a countable model of PA, standard or nonstandard. When
M is non-standard, the natural analogue of “finite subset” is “M-finite”,
or “definable and bounded”. This is the reason that in most cases below we
use “bounded” rather than “finite”.

Definition 4.1 Let M be a model of PA and A ⊆ M be definable. A
family P = {Pa : a ∈ A} of subsets of M is a uniformly definable partition,
or a udp for short, if it is disjoint and there is a formula ψ(v0, v1,~c), with
parameters, such that for each a ∈ A, Pa = {b ∈ M : M |= ψ(a, b,~c)} and
Pa is unbounded.

Clearly if P is a udp, then
⋃

P is an infinite definable set and P is a
partition of

⋃
P . Most often

⋃
P = M , i.e., P is a partition of the entire

M , but not necessarily.
A standard example of a udp is the family R = {Ra : a ∈ M}, where

Ra = {J(a, b) : b ∈ M},

and J : M×M → M is the usual pairing bijection that codes pairs by single
elements, defined by J(a, b) = (a+b)(a+b+1)

2 + a. Clearly there are countably
many udp’s.

Lemma 4.2 For every unbounded definable A ⊆ M there is a udp P such
that A =

⋃
P .

Proof. If A is unbounded, there is a definable bijection f : M → A. If R
is the standard udp of M mentioned above, and we set f [Ra] = Pf(a), then
P = {Pb : b ∈ A} is a udp such that

⋃
P = A. a

Definition 4.3 A X ⊆ M is said to be semi-definable, if there is a udp
P = {Pa : a ∈ A} of M , where A is an unbounded definable set and I ⊂ A,
such that X =

⋃
i∈I Pi. I is said to be the support of X with respect to P .

For simplicity, and without any serious loss of generality, henceforth we
assume that the index set A of every udp P = {Pa : a ∈ A} is identical to
the entire M .
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Clearly if X is semi-definable with respect to a udp P and with support
I, then (M\X) ∈ SDef with support M\I. So it is straightforward that
SDef ⊆ CLO. We shall show that the inclusion is proper. First we need
the following definition.

Definition 4.4 Given A ∈ Def∞ and a udp of M P = {Pa : a ∈ M}, we
say that P is A-coarse, if for every a ∈ M , Pa\A is infinite.

Lemma 4.5 Let A ∈ Def∞ and let A ⊆ X such that X ∈ SDef\Def .
Then there is an A-coarse udp Q such that X =

⋃
j∈J Qj for some J ⊆ M .

Proof. Let A ⊆ X and X ∈ SDef\Def . Then there is a udp P = {Pa :
a ∈ M} such that X =

⋃
i∈I Pi for some I. Since X /∈ Def , I /∈ Def . Let

K = {a ∈ M : Pa\A is bounded}.
K is definable and K ⊆ I because for every i ∈ K, Pi ∩ A 6= ∅. Moreover
K $ I because I is not definable. If K were cofinite, then so would be I,
so I would be definable which is false. Thus M\I and M\K are infinite.
Let B =

⋃
i∈K Pi. B is definable. Suppose first that B\A is unbounded.

Then we set Q0 = B =
⋃

i∈K Pi and let Qa, a ∈ M , be a re-enumeration of
Pa, for a ∈ M\K, so that Q forms a udp of M (which is coarser than P ).
Then clearly Qa\A is unbounded for every a, so Q is A-coarse. Moreover
there is a J such that X =

⋃
j∈J Qj . Suppose next that B\A is bounded.

Then we pick an i0 ∈ I\K and set Q0 = Pi0 ∪B. Since Pi0\A is unbounded,
so is Q0\A. Further it suffices to let Qa, a > 0, be a re-enumeration of
Qa for a ∈ M\K ∪ {i0}. Again Q is A-coarse, and there is J such that
X =

⋃
j∈J Qj . a

Proposition 4.6 SDef  CLO.

Proof. As we already mentioned above it is straightforward that SDef ⊆
CLO. We construct a X ∈ CLO\SDef . Pick A, B ∈ Def∞ such that
A∩B = ∅ and M\(A∪B) is infinite. Let (Pn)n∈ω be an enumeration of all
A-coarse uniform partitions of M . Each such partition contains countably
many sets so let R = {Γn : n ∈ ω} be an enumeration of

⋃
n Pn, i.e., of

the set {Pn
a : a ∈ M,n ∈ ω}. For all n, Γn\A is infinite. We define by

ω-induction a sequence (an)n∈ω of elements of M such that an ∈ Γn\A, as
follows: Suppose k0, . . . , kn have been defined. Since Γn+1\A is infinite, so
is Γn+1\(A ∪ {k0, . . . , kn}), so we can pick kn+1 ∈ Γn+1\(A ∪ {k0, . . . , kn}).
Set

X = A ∪ (M\(B ∪ {kn : n ∈ ω})).
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We claim that X ∈ CLO\SDef . That X ∈ CLO follows from the fact that
A ⊆ X and B ⊆ M\X, Thus by 1.5, X and M\X are open. On the other
hand assume X ∈ SDef . Since A ⊆ X, by Lemma 4.5 there is a A-coarse
uniform partition P = {Pa : a ∈ M} such that X =

⋃
i∈I Pi. Then P = Pm

for some m, i.e., Pi = Γji for some ji. Thus kji ∈ Γji ⊆ X, which contradicts
the definition of X. a

The reason for considering semi-definable sets was to examine their prob-
able relationship with t.n.i. sets. Namely, whether we can give examples of
t.n.i sets in the form of semi-definable ones. In the next proposition we see
that if X =

⋃
i∈I Pi is a semi-definable set with support I, then each one of

the sought properties for X is reflected to its support I and vice-versa.

Proposition 4.7 Let X ∈ SDef and let I be the support of X with respect
to some udp P , i.e., X =

⋃
i∈I Pi. Then:

(i) X ∈ IM iff I ∈ IM .
(ii) X ∈ PIM iff I ∈ PIM .
(iii) X ∈ TNI iff I ∈ TNI.

Proof. Let X, P, I be as stated above, and X =
⋃

i∈I Pi. Note that
(iii) follows immediately from (ii). Because X ∈ TNI iff X /∈ PIM and
(M\X) /∈ PIM , so by (ii) (noting that I is the support of X iff M\I is the
support of M\X), I /∈ PIM and M\I /∈ PIM , i.e., iff I /∈ TNI. Further (i)
is a special case of (ii). Namely, it is the case of (ii) where in the intersections
A ∩ X or A ∩ I, for arbitrary A ∈ Def , we take A = M . So it suffices to
prove (ii).

“⇒”: Assume X ∈ PIM . Then there is A ∈ Def such that X ∩ A =⋃
i∈I(Pi ∩ A) ∈ IM . It follows by immunity that |Pi ∩ A| < ω for every

i ∈ I. Let W = {a ∈ M : Pa ∩ A 6= ∅}. Clearly W is infinite and definable,
so there is a definable choice function f for the sets Pi ∩ A, for i ∈ W , i.e.,
f(i) ∈ Pi∩A for every i ∈ W . Also W ∩ I is infinite, otherwise X ∩A would
be finite. Moreover for every i ∈ W ∩ I, f(i) ∈ X ∩A, so f [W ∩ I] ⊆ X ∩A.
Since X ∩A ∈ IM , it follows that f [W ∩ I] ∈ IM too, so W ∩ I ∈ IM since
f is a definable injection. Since W is definable, I ∈ PIM .

“⇐”: Assume I ∈ PIM . Let A ∈ Def such that A ∩ I ∈ IM . Using
induction insideM we can find a definable choice function for the udp family
P . Then clearly f [A∩ I] = f [A]∩ f [I] = f [A]∩X, since I is the support of
X. Also f [A ∩ I] is immune since A ∩ I is so and f is a definable injection.
Thus f [A] ∩X is immune. Since f [A] is definable, X ∈ PIM . a

17



It follows from Proposition 4.7 that in trying to construct t.n.i. sets in
the form of semi-definable ones, one falls into the regression “X is t.n.i. iff
its support is t.n.i.”, that one can hardly see how it could be broken. The
net outcome of 4.7 is that having already at hand t.n.i. sets (as well as sets
from the other classes), one can construct semi-definable t.n.i. sets.

Corollary 4.8 Let M |= PA. Then the class SDef meets each one of the
classes IM , PIM , TNI and their complements.

Proof. Pick a udp P = {Pa : a ∈ M} of M . Then picking I ∈ IM , or
I ∈ PIM , or I ∈ TNI\Def , or I in the complement of any of preceding
classes, and setting X =

⋃
i∈I Pi, it follows from Proposition 4.7 that X ∈

SDef and also X ∈ IM , or X ∈ PIM , or X ∈ TNI, etc, respectively. a

4.2 Nonstandard models and generic classes

In this section we restrict ourselves to countable nonstandard models of PA.
The reason is that in such models particular examples of non-definable t.n.i.
sets have been constructed and used by J. Schmerl [5], M. Kaufmann [3],
and others, under the name “class” and “generic class”.

Recall that if M |= PA is a nonstandard model, then a set X ⊂ M is
M -finite if it is definable and bounded. There is a definable enumeration
Ca, a ∈ M , of all these sets, in the sense that there is a formula φ(x, y)
such that for every a ∈ M (or for some unbounded definable K ⊂ M),
Ca = {b ∈ M : M |= φ(a, b)}. A set X ⊂ M is said to be a class if it is
not M -finite and for every M -finite Ca, X ∩ Ca is again M -finite. Clearly,
in order for an unbounded X to be a class, it suffices that X ∩ [0, c] is M -
finite for every c ∈ M . Obviously every unbounded definable set is a class.
Moreover, there exist models of PA in which every class is a definable set.
Such models are called “rather classless” and [3], [6] deal mainly with the
proof of their existence under various conditions.

Some non-definable classes however may have trivial character when the
model M has countable cofinality, i.e., when there exists a sequence (cn)n∈ω

cofinal in M . Such a set X = {cn : n ≥ 0} is clearly non-definable, while
for every M -finite Ca, Ca ∩X is ω-finite, thus also M -finite. Therefore it is
a class, but one that is remote from definable sets: Actually X is immune.
Similarly if we take the set Ca ∪X, for some M -finite Ca. Actually Ca ∪X
is partially immune.

In order to get classes which are t.n.i sets we have to appeal to generic
classes defined below. Given a bounded set X and an arbitrary Y ⊆ M , let
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X 4 Y denote the fact that X is an initial segment Y , with respect to the
natural ordering of M . In M we consider the partial ordering £ defined as
follows: a£ b iff Ca 4 Cb. A definable A ⊆ M is dense in (M, £) if for every
a ∈ M there is a b ∈ A such that a £ b. Below by “dense” we shall always
mean “dense in (M, £)”.

Definition 4.9 (Schmerl [5]) Let M |= PA be nonstandard. A set X ⊂ M
is said to be a generic class if for every definable dense A ⊂ M , there is
a ∈ A such that Ca ≺ X.

For countable M the existence of generic classes is shown as usual, due
to the fact that there are only countably many definable dense subsets of
(M, £). (Actually Schmerl shows in [5] a much stronger result: If M has
countable cofinality then there exists a class X of generic classes such that
|X | = |M |.)

Lemma 4.10 ([5]) If X ⊂ M is a generic class, then X is non-definable
and for every M -finite Ca, X ∩ Ca is M -finite. Moreover X contains for
every c ∈ M an initial segment of internal cardinality > c.2

Proof. Let A = {a ∈ M : Ca 6≺ X}. A is dense in (M, £). If X were
definable, A would be definable too, so A would meet X in the sense that for
some a ∈ A, Ca ≺ X, a contradiction. To show that X is a class, it suffices
to show that for every c ∈ M , X ∩ [0, c] is definable. For every M -finite Ca,
let |Ca| denote the internal cardinality of Ca. Given c ∈ M let

Bc = {a ∈ M : |Ca| > c}.

Clearly Bc is definable and dense, so there is a ∈ Bc such that Ca ≺ X. Since
|Ca| > c it follows that X ∩ [0, c] = Ca ∩ [0, c], thus X ∩ [0, c] is definable.
The fact that Ca ≺ X and |Ca| > c proves also other claim. a

Given any definable unbounded set A ⊂ M , the above partial order £

relativizes to A in the obvious way. Namely let A∗ be the set of codes of the
bounded subsets of A, i.e., A∗ = {a : Ca ⊂ A}. Then we work as before with
(A∗,£) rather than (M, £). A set X ⊆ A is a generic class relative to A,
or A-generic, if definition 4.9 applies to X with A in place of M . Obviously
M -generic classes coincide with generic classes.

2For a bounded definable set Ca ⊂ M , the internal cardinality of Ca is the unique
b ∈ M for which there is a definable bijection f : Ca → [0, b− 1]. Then we write |Ca| = b.
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Lemma 4.11 If A ⊂ M is a definable unbounded set and X ⊂ M is a
generic class, then A ∩X is an A-generic class.

Proof. (Sketch) First it can be easily seen that if D is a dense subset of
(M, £) and we set DA = {b ∈ A∗ : (∃a ∈ D)(Cb = A ∩ Ca)}, then DA is a
dense subset of (A∗,£). Moreover, every dense subset of (A∗, £) is of this
form. Thus to show that A∩X is A-generic it suffices to show that for every
dense DA of (A∗, £), there is a b ∈ DA such that Cb ≺ A ∩ X. But given
a D which is dense in (M, £), there is a ∈ D such that Ca ≺ X. Therefore
A ∩ Ca ≺ A ∩X. So if Cb = A ∩ Ca, then Cb ≺ A ∩X and b ∈ DA. a

Let GCL(M), or just GCL, be the family of all generic classes of M .

Proposition 4.12 Let M |= PA be a nonstandard model containing generic
classes, i.e., GCL 6= ∅. Then GCL ⊆ TNI.

Proof. Let X ∈ GCL. It is easy to see that (M\X) ∈ GCL, so it
suffices to show that X /∈ PIM , i.e., for every A ∈ Def∞, if A is infinite
then A ∩X contains a B ∈ Def∞. Let A ∈ Def∞ and A ∩X be infinite.
If A is bounded, then A∩X is definable, since X is a class, so we are done.
Let A be unbounded. Then by Lemma 4.11, A∩X is A-generic. According
to the second claim of Lemma 4.10, A ∩ X contains, for every c ∈ M , an
initial segment of internal cardinality > c. Thus in any case A∩X contains
an infinite definable set. Hence X /∈ PIM . a

A most interesting fact is that Schmerl shows the existence of generic
classes not just in countable models of PA, but also in models with count-
able cofinality (using simultaneously external induction along ω and internal
induction along M). In view of Proposition 4.12, this means that every such
model contains also t.n.i. non-definable sets. Thus:

Corollary 4.13 If M is a model of PA with countable cofinality, then
TNI\Def 6= ∅.

By 4.12 above, in every nonstandard model of PA with generic classes
GCL ⊆ TNI. However the following is open.

Question 4.14 Is GCL  TNI in every nonstandard model containing
generic classes?
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Concerning the distinction between bounded and unbounded definable
sets in models of PA, we can see that the construction of section 2 and
theorem 2.1 can be slightly modified in order to involve bounded sets only.
Specifically, let Pb be the poset defined just like P in section 2, except that
for every p = (p0, p1) ∈ Pb, p0, p1 are infinite bounded definable subsets of M
(rather than arbitrary infinite definable sets), such that p0 ∩ p1 = ∅. Then
condition (iii) of the definition of P is automatically satisfied. Let D be
again the (adapted) set of L2-definable dense subsets of Pb. Then by some
obvious adjustments of the proof of Theorem 2.1 we can show the following:

Theorem 4.15 Let M be a countable nonstandard model of PA. If G is a
D-generic subset of Pb, then G0 and G1 are non-definable t.n.i. subsets of
M .

5 Concluding remarks and possibilities for future
work

The referee expressed certain concerns about the restricted list of references
of this paper, that is, about its not being related to other current research,
although some of the notions involved, like immunity and cohesiveness, have
been a subject of considerable research in the last few decades. This is indeed
the case and is due to the fact that the existing literature on immunity
and cohesiveness concerns exclusively the investigation of these notions as
standard notions of computability theory, while here they are used with a
different meaning, as notions of definability theory. So both the departure
point as well as the aim and tools for studying them are different in the
two areas. To give an example, in computability theory immune sets were
originally related to simple sets, while the latter were connected with the
solution of Post’s problem. A set X ⊂ ω is simple if it is r.e. and ω\X is
immune, i.e., has no r.e. subset. However, in definability theory there is no
analogue of simple set (that is, a corresponding notion resulting from the
replacement of r.e. with definable), since the complement of a definable set is
definable, so it cannot be immune. Hence the whole literature around simple
sets in computability does not make any sense in the area of definability.

As I said in the introduction, the aim of this paper was to approximate
the class of definable sets of a first-order structure from outside, i.e., from
the area of undefinable sets, by eliminating aspects and degrees of the latter
along a number of steps. In doing so the aim of approximating the definable
sets was inevitably coupled with the “dual” aim of isolating notions of “ran-
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domness” for subsets of a structure, where randomness is now construed not
as a property at the antipodes of computable sets but as a property at the
antipodes of definable sets. So the various notions of immunity dealt with in
this paper are notions of randomness. Actually, while working on the paper,
my hope was that by eliminating all reasonable forms of such randomness
(=immunity) one would reach the definable sets. In other words I expected
that a totally non-immune set should be definable. The proof that this is
not the case came rather as a surprise.

A similar idea on the relationship between immunity and randomness is
explicitly stated in [2], although the latter is a paper on computability, so
it treats immunity in its classical meaning. More precisely, [2] deals with
bi-immunity: A set X ⊂ ω is bi-immune if both X and ω\X are immune.
The authors believe that Martin-Löf randomness (or 1-randomness) is the
“correct” implementation of intuitive randomness. But they consider also
weaker notions. As they say (p. 977):

We shall also consider notions which have some of the spirit of
randomness but are too weak to be considered true notions of
randomness.

Such weak notions are Kurtz-randomness and bi-immunity. Concerning the
latter:

This can be thought of as a very weak kind of randomness since it
says that it is impossible to correctly predict for infinitely many
n whether or not n belongs to X.

Bi-immunity is immediately carried over to definability. Fixing a structure
M = (M, . . .), let us say that X ⊂ M is bi-immune if neither X nor M\X
contain any infinite definable set. Obviously X is bi-immune iff its comple-
ment is so. Bi-immune sets exist in abundance. For example, by Proposition
1.2, every set splits in a pair of bi-immune sets. Let BIM denote the class
of bi-immune subsets of M . Recall also that IM and CO denote the classes
of immune and cohesive subsets of M , respectively.

Fact 5.1 (i) BIM  IM .
(ii) If X ∈ BIM , then for every infinite definable A, A ∩X is infinite.
(iii) Therefore BIM ∩ CO = ∅.

Proof. (i) Obviously BIM ⊆ IM . On the other hand, if A is an infinite
and co-infinite definable subset of M , clearly we can find an immune X ⊂ A.
Then X ∈ IM\BIM .
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(ii) Let A be infinite and definable. If A ∩X were finite, then A minus
a finite part would be contained in M\X, contrary to the fact that M\X is
immune.

(iii) Let X ∈ BIM . Pick an infinite and co-infinite definable A. Then
by (ii), A ∩X and (M\A) ∩X are infinite. So X is not cohesive. a

Recall that by 3.5 and 3.6 also CO  IM . Thus the classes BIM and
CO are proper and disjoint subclasses of IM , offering (mutually incom-
patible) notions of randomness stronger than that of IM . There are still
further notions of randomness stronger than immunity. In footnote 1 above
we already mentioned one: genericity (defined modulo the class of definable
sets). In addition, for the particular structure (ω, +, ·, S, 0), hyperimmunity
(modulo definability), the analogue of the corresponding notion from com-
putability, also makes sense: X ⊂ M is called hyperimmune if there is no
definable f : ω → ω such that pX(n) ≤ f(n) for almost all n ∈ ω (i.e.,
except finitely many), where pX(n) is the n-th element of X in its natural
ordering.

Concerning future research, I would see roughly two directions: One
towards isolating and studying strong notions of randomness/immunity, like
genericity and hyperimmunity in the above sense. And an opposite direction,
towards finding weak such notions, namely even weaker than total non-
immunity, i.e., finding natural classes of sets X such that Def  X  TNI.
This is actually a generalization of Question 4.14 already asked above, i.e.,
whether GCL  TNI in nonstandard models containing generic classes,
where GCL is the class of generic classes.
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