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Abstract

We formulate C. Freiling’s axioms of symmetry for general second-order
structures with respect to a certain ideal of small sets contained in them
and find several equivalent formulations of the principles. Then we focus on
particular models, namely saturated and recursively saturated ones, and show
that they are symmetric with respect to appropriate classes of small sets when
their second-order part consists of definable sets. Some asymmetric models
are also exhibited as well as partial asymmetric ones constructed by forcing.

1 Introduction

C. Freiling [1] has proposed certain axioms for the continuum of the real numbers
intended to express the symmetric behavior of small subsets, like the countable ones,
sets of cardinality less than the continuum, or sets of measure zero. For each such
class we have corresponding symmetry axiom(s). Typical is the following axiom
(concerning countable subsets):

(Aℵ0) (∀f : R→ Rℵ0)(∃x, y)(x /∈ f(y) & y /∈ f(x)), (1)

where Rℵ0 is the set of countable sets of reals. The intuition behind this principle is
the following: Suppose we assign to each real number x a countable set of reals f(x)
(e.g. the rational multiples of x). Then if we throw two darts at R, landing at x, y
respectively, then the second dart will miss (with probability 1) the set f(x). Then,
by symmetry (“the real line does not know which dart is thrown first or second”),
the first dart should also miss f(y).

The nice thing is that Aℵ0 is equivalent to ¬CH over ZFC, the proof being
short and elementary. Using n darts and generalizing Aℵ0 to An

ℵ0
one can prove in

ZFC that An
ℵ0

⇐⇒ 2ℵ0 ≥ ℵn. Later G. Weitkamp [7] showed that ZFC proves
Aℵ0(Σ

1
1), i.e., Aℵ0 with f being Σ1

1 (analytic), as well as that Aℵ0(Σ
1
2) and Aℵ0(Π

1
1)

are equivalent.
The collection of countable sets, Count, provides here a notion of smallness (with

respect to R). Other such notions (in the context of classical set theory) are the
finite sets (Fin), the sets of cardinality < 2ℵ0 , the zero measure sets (Null), and the
meagre sets (Meagre). Some of them give rise to analogous principles. For example
A<2ℵ0 ⇒ ¬AC, while, over ZFC+2ℵ0 = ℵ2, Anull is equivalent to the existence of a
nonmeasurable set of cardinality less than 2ℵ0 plus R is not equal to the ℵ1-union
of null sets. In nonstandard models of arithmetic a natural notion of smallness is
provided by the class of thin sets Thin= {X : (∃x)(X ⊆ {(x)n : n ∈ N})}, where N
represents the initial segment of standard natural numbers.
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In this paper we formulate dart axioms in a very general setting and prove some
simple facts clarifying their symmetric content. Then we apply them to saturated
and recursively saturated models. The paper is organized as follows. In section 2 we
formulate general axioms of symmetry for a second-order structure and prove certain
equivalents of them. In section 3 we concentrate on saturated models and sets with
small cardinality and show they are strongly symmetric with respect to the universe
of infinitary-definable sets. In section 4 we consider countable recursively saturated
models of PA and we take the small sets to be the thin sets, i.e., the subsets of coded
sequences of length N (the standard segment). These models too are shown to be
symmetric in the universe of infinitary-definable subsets. In section 5 we exhibit
some asymmetric models (with respect to the preceding notion of smallness), either
definably asymmetric, or asymmetric in a generic extension of a definable universe.
In section 6 we show that the hierarchy of axioms An

thin is of strictly increasing
strength, by constructing generic models satisfying ¬An+1

thin+An
thin, for every n.

2 Symmetry axioms in a general setting.

Let M be an infinite first-order structure, and let M be a class of subsets of M ,
closed under some comprehension principle. (For example M is the set of definable
subsets of M , with respect to some notion of definability.) We assume that the set
N of nonnegative integers, together with their usual operations, belongs to M. The
fact that a set X has n elements is uniformly definable in N and is denoted |X| = n.
We set Mn = {X ⊂ M : |X| = n} and Mfin =

⋃
n∈NMn.

A notion of smallness is a definable class Small ⊂ M with the following prop-
erties: (i) Small is closed under finite unions and subsets, (ii) M /∈ Small) and (iii)
N ∈ Small .

Then, clearly, Mfin ⊆ Small . If X ∈ Small and |X| 6= n for all n ∈ N,
we write |X| = ∞. Finally, putting M∞ = {X ∈ Small : |X| = ∞}, we have
Small = Mfin ∪M∞.

Henceforth all objects, referred to by lower-case letters x, y, a, b, . . ., are elements
of M , and all sets, referred to by capital letters X,Y,A, . . ., are elements of M. Also
truth of formulas refers to the model (M, M). Letters m,n, i, j, . . . range over N.
Dart axioms in this setting are the principles An

small, n = 2, 3, . . . ,∞ defined below:

An
small (∀F : Mn−1 → Small)(∃X ∈ Mn)(∀x ∈ X)(x /∈ F (X\{x})).

In particular we write Asmall instead of A2
small. This latter axiom can be written

Asmall (∀F : M → Small)(∃x, y : x 6= y)(x /∈ F (y) & y /∈ F (x)),
while

A∞small (∀F : Small → Small)(∃X ∈ M∞)(∀x ∈ X)(x /∈ F (X\{x}).

Note that An
small are Π1

1-formulas, so if Small ⊂ M ⊆ N and (M, N) |= An
small,

then (M, M) |= An
small. Therefore we are seeking families M as large as possible

satisfying the preceding axioms, though it is natural to confine ourselves to families
of definable sets, with respect to some class of formulas.

We shall first reformulate slightly the above axioms replacing functions by rela-
tions. This simple change will proves useful in grasping their symmetric content.

Definition 2.1 Let n ∈ N, n ≥ 2. By an n-ary relation we shall understand any
relation R ⊆ M × Mn−1. R is said to be ∞-ary if M ⊆ M × M∞. The n-ary
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(∞-ary) relation R is said to be total if for any X ∈ Mn (resp. X ∈ M∞), there is
a x ∈ X such that R(x,X\{x}). The relation R (either n-ary or ∞-ary) is said to
be asymmetric (with respect to Small), if for every X, {x : R(x,X)} ∈ Small .

Given an n-ary relation R we put for brevity

RX = {x : R(x,X)}.
Note that if R is binary, identifying M with M1, we may assume that R ⊆ M ×M .
R is total iff for every x 6= y xRy or yRx, and is asymmetric iff for all y, Ry ∈ Small .
The following gives a simple characterization of the dart axioms:

Proposition 2.2 For n ∈ N ∪ {∞}, n ≥ 2,

An
small ⇐⇒ there is no n-ary total asymmetric (t.a.) relation.

Proof. Suppose ¬An
small holds and F be a function satisfying it. For every

x ∈ M and every X ∈ Mn−1 let R(x,X) := x ∈ F (X). Then R is n-ary and
RX = F (X) ∈ Small , hence R is asymmetric. Let |X| = n. By ¬An

small, there is
x ∈ X such that x ∈ F (X\{x}), hence R(x, X\{x}). Therefore R is total.

Conversely, if R is n-ary, total and asymmetric, putting F (X) = RX if |X| =
n− 1 and F (X) ∈ Small arbitrary, F satisfies ¬An

small. 2

Concerning the relative strength of An
small, we have the following:

Lemma 2.3 For every n ∈ N, n ≥ 2, An+1
small ⇒ An

small.

Proof. Suppose ¬An
small holds and let R be an n-ary t.a. relation. Define the

(n + 1)-ary relation S by putting, for any X ∈ Mn, SX =
⋃{RY : Y ⊂ X & Y ∈

Mn−1}. Clearly SX ∈ Small , hence S is asymmetric. To show that it is total, let
X ∈ Mn+1 and let Y ⊂ X, Y ∈ Mn. By the totality of R, there is x ∈ Y such
that x ∈ RY \{x}. Since Y \{x} ⊂ X\{x}, it follows that x ∈ SX\{x}. Hence S
(n + 1)− ary t.a. and An+1

small fails. 2

One may guess that A∞small ⇒An
small holds also. However for this implication,

as well as for improving the characterizations for Asmall, we need a further closure
condition for Small. This condition resembles the σ-ideal closure property and for
the case of the ideal Mℵ0 it is identical to that. The condition says that the union
of a small family of small sets is small. We denote it SC(Small) and say that Small
is self-closed:

SC(Small): (∀X ∈ Small)(∀F : X → Small)((∪F ′′X) ∈ Small).

For example SC(Fin) is true, SC(Count) holds if we assume the countable axiom
of choice (CAC), SC(< 2ℵ0) holds iff 2ℵ0 is a regular cardinal, while SC(Null) and
SC(Meagre) are false. For example if C is the Cantor set, F : C → R is a bijection,
and G : R 3 x 7→ {x} ∈ Null , then C ∈ Null , GF maps C ∈ Null into Null
but ∪GF ′′C = R. In this paper we shall deal only with ideals satisfying SC. The
following contains some consequences of SC(Small).

Lemma 2.4 Let SC(Small) hold. Then
(i) Small is closed under subsets.
(ii) For every function F with dom(F ) ∈Small, rang(F ) ∈Small.
(iii) If X ∈Small and Xfin is the set of finite subsets of X (codable in a certain

way in M), then Xfin ∈Small.
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Proof. (i) Let X ∈ Small and Y ⊆ X, Y 6= ∅. Choose x0 ∈ Y and let F (x) = {x}
if x ∈ Y , and F (x) = {x0} if x /∈ Y . Clearly ∪F ′′X = Y , hence Y is small.

(ii) range(F ) =
⋃{{F (x)} : x ∈ dom(F )}, and since each {F (x)} is small, the

claim is immediate by SC(Small).
(iii) To show that Xfin ∈ Small observe that Xfin =

⋃
n Xn, where Xn is

the set of subsets of X of cardinality ≤ n. So it suffices to show that each Xn is
small. By induction on n. Clearly X1 is small and let Xn ∈ Small . For every
x ∈ X let Fx : Xn → Small be the function such that Fx(Y ) = Y ∪ {x}. Then
Xn+1 =

⋃{range(Fx) : x ∈ X}. By the hypothesis and (ii), each range(Fx) is
small and hence, by SC(Small), Xn+1 is small. 2

First let us give the supplement of lemma 2.3.

Lemma 2.5 If SC(Small), then for every n ≥ 2, A∞small ⇒ An
small.

Proof. The proof is similar to that of 2.3. Suppose ¬An
small and let R be a t.a.

n-ary relation. Define again the ∞-ary relation S by putting, for X ∈ M∞:
SX =

⋃{RY : Y ∈ Mn−1 & Y ⊂ X}.
Since, by 2.4 (iii), the set of finite subsets of X is small, by SC(Small), SX ∈ Small ,
hence S is asymmetric. That S is total is proved as in 2.3. 2

In presence of SC(Small) we can give also better characterizations of Asmall. A
binary relation which is reflexive and transitive is said to be a preordering.

Theorem 2.6 If SC(Small), the following are equivalent:
(i) Asmall.
(ii) There is no binary t.a. relation of M .
(iii) There is no t.a. preordering of M .

If in addition M contains a total (=linear) ordering of M , the preceding clauses are
equivalent also to the following:

(iv) There is no t.a. ordering of M .

Proof. The equivalence of (i), (ii) follows from 2.2, while (ii)⇒(iii) and (iii)⇒(iv)
are trivial.

(iii)⇒(ii). Suppose there is a binary t.a. relation R. It suffices to extend it
to an asymmetric preordering R. Let R= be the reflexive closure of R and let R
be the transitive closure of R=. Obviously R is reflexive, transitive and total. It
remains to prove that all initial segments of R are small. Let a ∈ M . We have to
show that A = {x : xRa} is small. For every x ∈ M , we write d(x, a) = n ∈ N, if
there is a sequence of least length n such that xR=x1, x1R

=x2, . . . , xnR=a, and let
An = {x : xRa, d(x, a) = n}. Then, clearly,

A0 = Ra ∪ {a},
An+1 =

⋃{Rx ∪ {x} : x ∈ An},
A =

⋃
n∈NAn.

Every An is small. By induction on n. This is true for A0 because R is asym-
metric, and suppose An is small. Now An+1 is a union of a small set of small sets,
hence by the assumption of self-closure about Small, the claim follows. Finally by
the same principle, and since N is small, A is small.

(iv)⇒(iii). Let R be a total asymmetric preordering, and suppose < is total
(proper) ordering of M . Define the relation <0 as follows:

x <0 y iff xRy &¬(yRx) or xRy & yRx & x < y.
It is easy to see that <0 is a (proper) total ordering. Now for every x, clearly,
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{y : y <0 x} ⊆ Rx. Since the last set is small, so is also {y : y <0 x}. This shows
that <0 is asymmetric, and this completes the proof. 2

Remark. It is important to stress here that whenever M |= ¬Asmall, its asym-
metry isn’t due just to the total preordering (or ordering) R, but to the fact that R
is asymmetric. Because in this case, each point x ∈ M divides M into two very un-
equal parts determined by x, a small initial segment and a nonsmall final segment.
If the ordering is not asymmetric, no asymmetry arises. For example the natural
ordering of reals produces no asymmetry (with respect to any notion of smallness).
Even if R is a wellordering, we do not have necessarily an asymmetric situation in
the above sense. It depends upon its initial segments. E.g. if R is a wellordering
of R of type ω1, then R is an asymmetric relation with respect to Count, but if
it is a wellordering of type > ω1, then we have uncountable initial segments and
asymmetry fails.

Recalling that CAC implies SC(Count), “2ℵ0 is regular”’ implies SC(< 2ℵ0), and
that R contains a natural total ordering, we have the following immediate corollary.

Corollary 2.7 (i) In ZF+CAC, Aℵ0 holds iff there is no total ordering of the reals
all initial segments of which are countable.

(ii) In ZF+“2ℵ0 is regular”, A<2ℵ0 holds iff there is no total ordering of the
reals all initial segments of which have cardinality less than the continuum.

3 Saturation and symmetry

In this section we shall prove that the various forms of saturation imply symmetry
with respect to certain sorts of small sets.

Let L be a countable language and κ, λ be infinite cardinals. As usual Lκλ

(L∞λ) is the set of formulas of L in the construction of which we allow < κ (resp.
any number of) conjunctions, and < λ quantifiers and free variables. Given an
L-structure M , Defκλ(M), Def∞λ(M) are the classes of subsets of M definable by
Lκλ and L∞λ formulas respectively. We shall prove the following:

Theorem 3.1 Let M be a κ-saturated L-structure, where ω ≤ κ ≤ |M | and κ
regular.

(i) If κ > ω and Small = {X ⊆ M : |X| < κ}, then (M,Def∞κ(M)) |= A∞small.
(ii) If κ = ω and Small = Mfin, then (M, Def∞ω(M)) |= An

small, for every
n ∈ N.

First we recall some notions from model theory (see e.g. [3]). Let M be an L-
structure. For every formula φ(v, ~u) of L and every tuple of parameters ~a ∈ M , let
φM (v,~a) denote the extension of φ(v,~a) in M , i.e. the set {x : M |= φ(x,~a)}. Let
A ⊆ M . An element x ∈ M is said to be algebraic over A in M, if there is a formula
φ(v, ~u) of L and a tuple ~a ∈ A such that x ∈ φM (v,~a) and φM (v,~a) is finite. x is
said to be definable over A if for some φ and some ~a ∈ A, φM (v,~a) = {x}. The set
aclM (A) = {x : x is algebraic over A} is the algebraic closure of A in M . The type
of x with respect to A is denoted tp(x; A) and tpM (x;A) is the set of elements of
M indiscernible from x with respect to A. Aut(M) is the group of automorphisms
of M .

Lemma 3.2 Let M be κ-saturated. Then:
(i) For every x, y ∈ M and A, with |A| < κ,

y ∈ tpM (x; A) ⇔ (∃f ∈ Aut(M))(f¹A = id &f(x) = y).
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(ii) For every x ∈ M and A ⊆ M with |A| < κ,

x /∈ alcM (A) ⇒ |tpM (x;A)| ≥ κ.

Proof. (i) is a standard consequence of κ-saturation.
(ii) Let x /∈ alcM (A). Then, clearly, for every φ ∈ L and ~a ∈ A, if x ∈ φM (v,~a),

then φM (v,~a) is infinite. Assume that |tpM (x; A)| < κ, and let tpM (x;A) = B =
{yα : α < λ}, λ < κ. Consider the type:

p(v) = {φ(v,~a) ⇔ φ(x,~a) : φ ∈ L,~a ∈ A} ∪ {v 6= yα : α < λ}.

This is a type over A∪B, where |A∪B| < κ and by the fact that every φM (v,~a) is
infinite, we easily see that it is consistent. Hence it is satisfiable in M . But if p(y),
then y ∈ tpM (x; A) and y /∈ B = tpM (x; A), a contradiction. 2

Lemma 3.3 For every A ⊂ M and |A| < κ, there is an infinite C, |C| < κ such
that (∀c ∈ C)(c /∈ alcM (A ∪ C\{c})).

Proof. Call a set C having the property stated above independent over A. We
shall construct C as a sequence {c1, c2 . . .} such that for every n ∈ N, {c1, . . . , cn}
is independent over A. Then clearly C will be independent over A. C is defined
inductively as follows: Choose c1 /∈ alcM (A) (this is possible since, clearly, for
|A| < κ, |alcM (A)| < κ, while by κ-saturation, |M | ≥ κ). Then {c1} is independent
over A. Suppose c1, . . . cn has been chosen to be independent overA. Consider the
type:

p(v) = {¬φ(v,~a, c1, . . . , cn) : φM (v,~a, c1 . . . , cn) is finite,~a ∈ A}∪
{φ(~a, c1, . . . ci−1, v, ci+1, . . . , cn) → ¬φ(~a, c1, . . . ci−1, ci, ci+1, . . . , cn) :

φM (~a, c1, . . . ci−1, v, ci+1, . . . , cn) is finite,~a ∈ A, i ≤ n}.
p(v) is a type on the parameters A ∪ {c1, . . . , cn} whose cardinality is < κ. Clearly
if y satisfies p(v), then {c1, . . . , cn, y} is independent over A. So it suffices to show
that p(v) is finitely satisfiable in M . Assume the contrary. Then there are φi,
~ai ∈ A, for i ≤ n, and ψj , ~bj ∈ A, ~cj for j ≤ m, where ~cj is a tuple of elements of
{c1, . . . , cn} of length ≤ n − 1, such that φM

i (v,~ai, c1 . . . , cn), ψM
j (~bj ,~cj , v), for all

i ≤ n, j ≤ m, are finite, and

(∀v)(
∧

i≤n

¬φi(v,~ai, c1, . . . , cn) ⇒
∨

j≤m

(ψj(~bj ,~cj , v) & ψj(~bj , c1, . . . , cn)),

holds in M . But the lefthand formula of the above implication defines a co-finite
set in M , while the righthand one defines a finite set. This is a contradiction that
completes the proof. 2

Proof of theorem 3.1. We prove (i), the proof of (ii) being similar. Suppose
now that (M, Def∞κ(M)) |= ¬A∞small, and let R be an ∞-ary t.a. relation on M ,
definable in L∞κ by a formula Φ whose set of parameters is A, with |A| < κ. By
lemma 3.3 there is an infinite set C, with |C| < κ, independent over A. Hence
C ∈ Small and by lemma 3.2(ii), |tpM (c;A ∪ C\{c})| ≥ κ for all c ∈ C. Since R is
total, for some c ∈ C, c ∈ RC\{c}. By lemma 3.2(i), for every c′ ∈ tpM (c;A∪C\{c}),
there is an automorphism f of M such that f¹A ∪ C\{c} = id and f(c) = c′. But
such an f clearly fixes both R and C\{c}, hence tpM (c; A ∪ C\{c}) ⊆ RC\{c}).
Since |tpM (c; A ∪C\{c})| ≥ κ, while RC\{c} is small, i.e. of cardinality < κ, this is
a contradiction. 2
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4 Recursive saturation and symmetry.

For κ = ω, the preceding result is not satisfactory first because Mfin is a rather
trivial notion of smallness and second because quite few theories have countable ω-
saturated models. Rich theories with uncountably many types, as for example Peano
Arithmetic (PA), lack such models. For such theories, the much weaker notion of
countable recursively saturated models, or crs models for short, (which always exist)
is a good substitute. For the rest of this section L will be the language of PA and
M will be a crs model of PA. Every such model is nonstandard and the reader is
referred to [4] for background information.
N denotes the standard part of M . The letters m,n, k, . . . range over elements of

N. Capital letters X,Y, Z range over subsets of M . A natural class of small subsets
of M consists of the so called “thin” sets defined below. In M we possess devices for
coding definable bounded sets, finite sequences, N-sequences, n-ary relations etc.
The precise definition of coding does not matter. Specifically,

(x)y = z means: z is the y-th element of the sequence coded by x.
len(x) is the length of the sequence coded by x.
〈x0, . . . , xa〉 = y if len(y) = a + 1 and (y)i = xi for i ≤ a.
X(x) = {y : 〈x, y〉 ∈ X}.
Dx = {y : (x)y = 1}. Dx is said to be the set coded by y. We often write y ∈ x

instead of y ∈ Dx.
x̂ = {(x)n : n ∈ N}. x̂ is said to be a coded sequence.

Definition 4.1 A set X is said to be thin if X ⊆ x̂ for some x. Thin denotes the
set of all thin sets.

Obviously Thin is closed under subsets. Closure under unions is also easily
checked. Given x̂, ŷ we find z such that ẑ = x̂ ∪ ŷ by putting (z)2a = (x)a and
(z)2a+1 = (y)a for every a. We shall prove the following:

Theorem 4.2 For every crs model M, (M, Def∞ω(M)) |= A∞thin.

Working in models of PA (having definable Skolem functions), for every X ⊆ M ,
we consider (instead of aclM (X)), the Skolem hull of X, in M denoted K(M ; X).
That is

K(M ; X) = {t(~x) : ~x ∈ X & t is a definable Skolem term of L} ≺ M.

If M is crs, it is a standard fact that for every finite X, K(M ;X) is a coded sequence,
hence a thin set (cf. e.g. [4]).

Lemma 4.3 Let M be crs. For every n ∈ N, there is a set X such that |X| = n
and for every x ∈ X, x /∈ K(M ;X\{x}). We call such a set independent. More
generally, for any a /∈ K(M ; ∅), and for any n there is a set X, |X| = n, such that
X ∪ {a} is independent.

Proof. We prove the first claim the other being similar. By induction on n. For
n = 1 the claim holds trivially, and suppose it holds for n ≥ 2. Let X = {x1, . . . , xn}
be an independent set of cardinality n. We shall extend it to an independent set
of cardinality n + 1. Let ~x be the n-tuple of x1, . . . , xn and for every i = 1, . . . , n,
let ~xi be the (n − 1)-tuple of X\{xi}. Let Tn be the set of Skolem terms t(~v) in
n-variables. Consider the following type

p(v) = {v 6= t(~x) : t ∈ Tn} ∪ {x1 6= t(v, ~x1) : t ∈ Tn} ∪ · · ·

∪{xn 6= t(v, ~xn) : t ∈ Tn}.

7



Clearly p(v) is recursive and if x realizes p(v), then the set {x1, . . . , xn, x} is inde-
pendent. So it suffices to show that p(v) is finitely realizable in M . Assume the
contrary. Then there are terms tij , i = 0, 1 . . . n, j ≤ ki such that

M |= (∀v)


 ∨

j≤k0

(v = t0j(~x)) ∨
∨

j≤k1

(x1 = t1j(v, ~x1)) ∨ · · · ∨
∨

j≤kn

(xn = t(v, ~xn))


 .

But then taken an m ∈ N such that m 6= t0j(~x) for all j = 1, . . . k0, we
should have xi = tlr(m,~xi) for some l ≥ 1 and some r ≤ kl. This says that
xi ∈ K(M ; X\{xi}), which is a contradiction. 2

Lemma 4.4 Let M be crs. There is an infinite independent coded sequence x̂ ⊆ M .

Proof. Let Tn be the set of Skolem terms in n variables and for every n + 1 and
m ≤ n let ~vnm denote the n-tuple ((v)1, . . . , (v)m−1, (v)m+1, . . . , (v)n+1). Let p(v)
be the type

⋃

m≤n

{(v)m 6= t(~vnm) : t ∈ Tn}.

Clearly p(v) is recursive. Suppose c realizes p(v). We claim that ĉ is independent.
If not, there would be an m such that (c)m ∈ K(M ; ĉ\{(c)m}). Hence there is an
initial segment X = {(c)1, . . . , (c)n}, n > m, such that (c)m ∈ K(M ;X\{(c)m}).
Hence (c)m = t(~vmn) for some t, which contradicts the fact that c realizes p(v). It
suffices to show the consistency of p(v). In the opposite case there should be terms
t1, . . . , tk, ti ∈ Tmi , and indices ji < mi such that

M |= (∀v) [(v)i1 = t1(~vi1m1) ∨ · · · ∨ (v)ik
= tk(~vikmk

)] .

If r = max{m1, . . . , mk}, the preceding formula implies that for every x ∈ M ,
the set {(x)1, . . . , (x)r} is not independent. But this obviously contradicts lemma
4.3. This completes the proof. 2

Lemma 4.5 Let M be crs, ĉ be a coded sequence, x ∈ M and tp(x; ĉ) be the type
of x with parameters from ĉ. If tpM (x; ĉ) is the corresponding set of elements of M
realizing tp(x; ĉ), then:

(a) tpM (x, ĉ) = {x} iff x ∈ K(M ; ĉ). Moreover if x /∈ K(M ; ĉ), then tpM (x; ĉ)
includes an infinite coded set.

(b) If for all f ∈ Aut(M), f¹ĉ = id implies f(x) = x, then x ∈ K(M ; ĉ).

Proof. (a) Let Fn be the set of all formulas with n free variables. The type
tp(x; ĉ) is written

tp(x; ĉ)) =
⋃
n

{φ(v, (c)1, . . . , (c)n−1) : φ ∈ Fn & M |= φ(x, (c)1, . . . , (c)n−1)}.

It is recursive and, clearly, tpM (x; ĉ) 6= {x} iff tp(x; ĉ)∪{v 6= x} is (finitely) realizable
and clearly the latter holds iff x /∈ K(M ; ĉ).

Now if x /∈ K(M ; ĉ), the type

q(v) = {v ⊂ φ : φ ∈ tp(x; ĉ)} ∪ {|v| > n : n ∈ N}

is also recursive and realizable, so if y realizes q(v), y ⊆ tpM (x, ĉ) and |y| > N.
(b) Let x /∈ K(M ; ĉ). It suffices to show that there is an f ∈ Aut(M) such that

f¹ĉ = id and f(x) 6= x. By (a) there is y 6= x, y ∈ tpM (x, ĉ). Clearly, the mapping

8



f0 such that f0((c)n) = (c)n for all n ∈ N and f0(x) = y is a partial isomorphism.
Now by an easy back and forth, using recursive saturation, we can extend f0 to an
automorphism f . Thus f¹ĉ = id and f(x) 6= x. 2

Proof of theorem 4.2. Assume the contrary, hence there is an ∞-ary t.a. rela-
tion R ∈ Def∞ω(M). We assume for simplicity that R is Lω1ω-definable without
parameters, the other case being similar.

Claim. For every x, ĉ, R(x, ĉ) ⇒ x ∈ K(M ; ĉ).
Proof of the claim. For every f ∈ Aut(M), f¹ĉ = id implies f ′′Rĉ = Rĉ.

Therefore for every x ∈ Rĉ, tpM (x; ĉ) ⊆ Rĉ. Suppose x /∈ K(M ; ĉ). It follows from
lemma 4.5 that there is an infinite y ⊆ tpM (x; ĉ) ⊆ Rĉ. But this contradicts the
fact that Rĉ is thin.

Now, for every infinite thin X there is x ∈ X such that x ∈ RX\{x}. In par-
ticular, for every c, there is a x ∈ ĉ such that x ∈ Rĉ\{x}. Hence by the previous
claim, for every c, there is an x ∈ ĉ such that x ∈ K(M ; ĉ\{x}). This means that
no coded sequence is an independent set, but this contradicts lemma 4.4. 2

Theorem 4.2 seems to reinforce the results of [5] and the conjecture expressed
there that for a crs M , Defω1ω(M) does not contain any object whose construction
makes substantial use of a wellordering of M .

Concerning now the principle SC(Thin), recall that it says that for every X and
c, if X((c)n) is thin for all n, then

⋃
n X((c)n) is thin. This is written as follows:

SC(Thin) For every X, c,

(∀n)(∃x)(X((c)n) ⊆ x̂) ⇒ (∃x)(∀n)(X((c)n) ⊆ x̂).

We see that SC(Thin) takes the form of a weak saturation axiom in the sense
e.g. of [2].

Lemma 4.6 If M is crs, SC(Thin) holds in (M, Def∞ω(M)).

Proof. Let X ∈ Def∞ω(M) and c be such that X((c)n) is thin for all n. If
a is the parameter occurring in the definition of X, for every f fixing a and c
f ′′X((c)n) = X((c)n). Since the latter are thin, we conclude by the argument used
already previously that f is the identity on these sets, hence X((c)n) ⊆ K(M ; a, c).
Therefore

⋃
n X((c)n) ⊆ K(M ; a, c). Since the last set is a coded sequence, we are

done. 2

In view of the preceding lemma and the general result 2.6 we get immediately:

Corollary 4.7 If M is crs, there is no L∞ω-definable asymmetric preordering of
M .

5 Some asymmetry results.

When talking of symmetry or asymmetry of a model M , we always refer to a
universe M of subsets of M . And obviously these notions are most natural when
M consists of definable subsets. Because in this case the symmetry or asymmetry
is an inherent feature of the structure, i.e., based on what can be defined inside it.
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For instance the standard model N of PA is inherently asymmetric, since its natural
ordering is a wellordering.

On the other hand, asymmetric objects can be added externally by forcing.
Given any countable nonstandard M |=PA, it is easy to construct by forcing a
total ordering ¹ of M whose all initial segments are thin, essentially in the way
described in [6], §2. Let (M,N) be M expanded by the unary predicate N. Observe
that Thin ⊆ Defωω(M,N). Let us write Def(K) instead of Defωω(K).

Theorem 5.1 Let M be countable nonstandard. There is a generic extension
(M, Def(M,N)[G]) of (M, Def(M,N)) such that (M, Def(M,N)[G]) |= ¬Athin.

Proof (Sketch). Let K ∈ Def(M,N) be a code of all coded sequences of M
i.e., K = {〈x, y〉 : y ∈ x̂}, hence K(x) = x̂ for every x ∈ dom(K). Let WO(V ) be
the predicate “V is a wellordering”, and put P = {p ∈ dom(K) : Def(M,N) |=
WO(K(p))}, and H = K¹P . P is roughly the set of forcing conditions ordered by:

p ≤ q ⇐⇒ H(p) extends H(q).

Since M is countable there is a generic G ⊂ P and putting ¹=
⋃{H(p) : p ∈ G} we

easily see (details can be found in [6] theorem 2.5) that
(M, Def(M,N)[G]) |= WO(¹). Of course ¹ need not be a real wellordering, but it
is certainly a total ordering of M with thin initial segments, hence
(M, Def(M,N)[G]) |= ¬Athin according to 2.6. 2

Concerning inherently asymmetric models of PA the trivial example is, as men-
tioned above, the standard model N, whose natural ordering is asymmetric with
respect to Fin (hence also with respect to Thin). For nonstandard models, it is un-
known to us if we can improve theorem 4.2 by weakening the condition of recursive
saturation. For example the following questions are open:

Are all (countable) homogeneous models, or models with |Aut(M)| > ℵ0 sym-
metric?

Are all models with |Aut(M)| ≤ ℵ0 nonsymmetric?
Concerning the last question we can answer it in the affirmative for a particular

kind of models with countably many automorphisms, namely the simple ones.
Let M |= PA be countable nonstandard. A simple submodel of M is any model

of the form K(M ; a) for some a ∈ M . Let ∆1
1(K) be the set of ∆1

1-definable subsets
of K. Since N is not recursively saturated, N ∈ ∆1

1(K).

Theorem 5.2 Let K = K(M ; a) denote a simple submodel of a nonstandard model
M . Then (K, ∆1

1(K)) |= ¬Athin.

Proof. Let T be the set of (Gödel-numbers of) all L-definable Skolem terms.
Then K = {t(a) : t ∈ T}. Let Tn = T ∩ Σn, where Σn is the set of Σn-formulas of
L. For every x ∈ K, let rank(x) = least{n : (∃t ∈ Tn)(t(a) = x)}, and for x, y ∈ K
let xRy iff rank(x) ≤ rank(y). Clearly R is a total preordering. To see that R is
asymmetric, i.e., for each x ∈ K, Rx ∈ Thin, take some x ∈ K with rank(x) = n.
Since Σm ⊂ Σn for m < n, Rx = {t(a) : t ∈ Tn}. Now it is well-known that every
nonstandard model has a definable Σn-satisfaction class. Since Tn is a coded set of
Σn-formulas, it follows easily that Rx is a coded sequence.

Now concerning the complexity of R, observe that using a ∆1
1-definable satis-

faction class for K, and the fact that N is ∆1
1-definable, we get that R ∈ ∆1

1(K).
2
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6 Models of partial symmetry.

By partial symmetry we mean the situation where a model satisfies An
small for some

n ≥ 2 but not An+1
small. In this section we use forcing to construct a model (M, M),

satisfying An
thin and ¬An+1

thin for any fixed n. This shows that each An+1
thin is strictly

stronger than An
thin. We start with a crs M |=PA and a countable family M ⊆ P (M)

satisfying some comprehension principle and containing N. (E.g. the ramified
hierarchy RA(M) or the class of analytically definable sets are such families. Note
that these M are subfamilies of Def∞ω(M), hence they satisfy A∞thin.)

Let p be a function p : Mn → M . This induces a function p′ : Mn → Thin, by
putting p′(X) = ˆp(X). Henceforth we identify p and p′. From now on we fix an
independent set A = {a1, . . . , an} of cardinality n. The set P of forcing conditions
consists of all finite functions p : Mn → M with the following properties:

(i) If X ∈ Mn+1 and {X\{x} : x ∈ X} ⊆ dom(p), then there is a x ∈ X such
that x ∈ ˆp(X\{x}).

(ii) p is closed under all partial isomorphisms (p.i.) e : Field(p) → Field(p),
compatible with p. Namely, if e : Field(p) → Field(p) is a p.i. such that e′′p is a
function, then e′′p = p.

(iii) Suppose X ∈ dom(p), and X ⊆ K(M ; A), then p(X) /∈ A.
Let P be ordered as usual by reverse inclusion p ≤ q := p ⊇ q. Condition

(i) guarantees that if G is a generic subset of P and F = ∪G, then F is a total
function from Mn to Thin such that for every X ∈ Mn+1 there is a x ∈ X such
that x ∈ F (X\{x}). Therefore:

Lemma 6.1 If P is the preceding set of forcing conditions and G is a generic subset
of P , then (M, M[G]) |= ¬An+1

thin.

Lemma 6.2 Let G be a P -generic set and let p ∈ G. If e is a partial isomorphism
such that e′′p = p, then e can be extended to an automorphism f of M such that
f ′′G = G.

Proof. By a back and forth argument. Let a1, a2, . . . be an enumeration of M ,
and let an /∈ dom(e) = Field(p). Let

D = {q : q ≤ p & an ∈ Field(q) & (∃d)(d ⊇ e & d′′q = q)}.
It is easy to see that D is dense in P . Hence there is a q ∈ G ∩ D. This shows
that for each n there is a qn ∈ G extending p and a dn extending e such that
an ∈ dom(dn)∩rang(dn) and d′′nqn = qn. Let f = ∪ndn. Then f is an automorphism
and and we claim that f ′′G = G. Assume the contrary. Then for some q, f(q) /∈ G.
But there is qn ≤ q and since f(q) = {f(x) : x ∈ q} and f¹qn = dn, we have:
f(q) ⊆ f(qn) = f ′′qn = d′′nqn = qn, a contradiction. Therefore f fixes G. 2

Lemma 6.3 Let M be a crs model and let a, b, c ∈ M such that tp(a) = tp(b). The
following are equivalent:

(i) (∀f ∈ Aut(M))(f(a) = b ⇒ f(c) = c).
(ii) There is a term t such that t(a) = t(b) = c.

Proof. (ii) ⇒ (i) is obvious. Assume (ii) is false. We find f such that f(a) = b
and f(c) 6= c. Consider the type:

p(v) = {φ(a, c) ⇔ φ(b, v) : φ ∈ L} ∪ {v 6= c}.
Since p(v) is recursive and every d satisfying p(v) proves the claim, it suffices to
show that p(v) is consistent. Assume it is not. Then for some φ ∈ L,

M |= φ(a, c) & (∀v)(v 6= c ⇒ ¬φ(b, v)). (2)
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Let d = min{v : M |= φ(a, v)}. For every h such that h(a) = b, h(d) =
min{v : M |= φ(b, v)}. But by (2) the only element satisfying φ(b, v) is c. Therefore
h(d) = c. On the other hand d ∈ K(M ; a), hence d = t(a) for some term t. Hence
h(d) = c = t(h(a)) = t(b), i.e., c = t(b). Now c is the unique element satisfying
φ(b, v), hence d = h−1(c) is the unique element satisfying φ(a, v). But by assumption
φ(a, c) holds, hence c = d. Thus c = t(b) = d = t(a). 2

Lemma 6.4 Let A = {a1, . . . , an} be an independent set. Let Ai = A\{ai}. If G
is P -generic, for every i and for every b ∈ tpM (ai; Ai), there is an automorphism
f such that f¹Ai = id, f(ai) = b and f ′′G = G.

Proof. For every i and b as above consider the set

Di,b = {q : (∃p.i. e)(e′′q = q & e¹Ai = id & e(ai) = b)}.

It is not difficult to show that Di,b is dense in P . Let p ∈ P . Now ai /∈ K(M ;Ai),
hence there is always an elementary e fixing Ai and sending ai to b. The only case
in which we would not be able to extend p to a an element q ∈ Di,b would be that
in which for some X ∈ dom(p), p(X) = ai and every automorphism f fixing Ai and
sending ai to b, fixes X pointwise. In that case, if e′′q = q, e¹Ai = id and e(ai) = b,
then e(X) = X, hence q(X) = b. But in this case q would be incompatible with p.
We claim that this case is impossible because of the condition (iii) imposed on the
forcing conditions.

Indeed let X be such that for every f ∈ Aut(M), f¹Ai = id and f(ai) = b ⇒
f¹X = id. Equivalently, for every f such that f(〈Ai, ai〉) = 〈Ai, b〉 (Ai is considered
here as a single element via coding), f¹X = id. By lemma 6.3, for every x ∈ X,
there is a term t such that t(〈Ai, ai〉) = t(〈Ai, b〉) = x. But then X ⊆ K(M ; A).
By (iii), p(X) /∈ A, i.e. we cannot have p(X) = ai. This shows that p is always
extendible to an element of Di,b.

Therefore there is a q ∈ Di,b ∩ G. If e is the corresponding isomorphism, this
fixes q. By lemma 6.2, this can be extended to an automorphism f fixing G with
the same other properties, hence the claim is proved. 2

For X ⊆ M , let Aut(M){X} be the set of automorphisms fixing X setwise.
Let G be a P -generic set and let (M, M[G]) be the corresponding extension. Let
S = {X ⊆ M : Aut(M){G} ⊆ Aut(M){X}}.

Theorem 6.5 (M, S) |= ¬An+1
thin + An

thin.

Proof. Clearly G ∈ S hence the latter contains an (n + 1)- ary t.a. relation.
Suppose S contains also an n-ary t.a. relation R. Let A be an independent set with
|A| = n. Then there is ai ∈ A such that ai ∈ RAi . Let b ∈ tpM (ai;Ai). By lemma
6.4 there is an automorphism f of M such that f ′′G = G, f¹Ai = id and f(ai) = b.
But then f ′′R = R by the definition of S. It follows that f(ai) ∈ (f ′′R)f ′′Ai , or
b ∈ RAi . Therefore tpM (ai; Ai) ⊆ RAi . But tpM (ai;Ai) is not thin, a contradiction.
2
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