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Preface

An increasing number of colleges and universities are offering undergradu-
ate courses in discrete dynamical systems. This growth is due in part to the
proliferation of inexpensive and powerful computers, which have provided
access to the interesting and complex phenomena that are at the heart of
dynamics. A second reason for introducing dynamics into the undergradu-
ate curriculum is that it serves as a bridge from concrete, often algorithmic,
calculus courses to the more abstract concepts of analysis and topology.

Discrete dynamical systems are essentially iterated functions, and if
there is one thing computers do well, it is iteration. It is now possible
for anyone with access to a personal computer to generate beautiful images
the roots of which lie in discrete dynamical systems. The mathematics
behind the pictures is beautiful in its own right and is the subject of this
text. Every effort has been made to exploit this opportunity to illustrate
the beauty and power of mathematics in an interesting and engaging way.
This work is first and foremost a mathematics book. Individuals who read
it and do the exercises will gain not only an understanding of dynamical
systems, but an increased understanding of the related areas in analysis as
well.

Rationale for the new edition. After completing the first edition of
this text, I thought that I had said what I wanted to say about dynamics
and didn’t expect to substantially revise my work. However, shortly after
publishing the text, my students convinced me that there was no compelling
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reason to treat symbolic dynamics and metric spaces before introducing
the concept of chaos. Further, one can study the dynamics of Newton’s
method and complex dynamics without ever studying symbolic dynamics
or introducing metric spaces. Since metric spaces and symbolic dynamics,
played a central role in the first edition beginning in Chapter 9, I set out
to rewrite the core of the text. This edition is the result of my efforts.

The major changes are to introduce the notion of chaos for real functions
in Chapter 8 and postpone the introduction of metric spaces and symbolic
dynamics until the optional Chapter 11. These changes have necessitated
the complete rewriting of Chapters 8, 9, 10, and 11. Additional changes
include the rewriting of the proof of the special case of Sarkovskii’s theorem
in Chapter 5. I believe the new proof is much easier to follow. Some new
exercises have been added, and many of the more difficult exercises have
had hints added to make them more accessible to the typical undergrad-
uate. Lemma 2.10 has been added in Chapter 2 and used in subsequent
chapters to greatly simplify some of the proofs and exercises. Finally, the
Mathematica® code in the appendix has been optimized.

How to use this book. This text is suitable for a one-semester course
on discrete dynamical systems. It is based on notes from undergraduate
courses that I have taught over the last few years. The material is intended
for use by undergraduate students with a year or more of college calculus
behind them. Students in my courses have come from numerous disciplines;
most have been majors in other disciplines who are taking mathematics
courses because they have a general interest in the subject. Concepts from
calculus are reviewed as necessary. In particular, Chapters 2 and 3 are
devoted to a review of functions and the properties of the real numbers. My
students have found the material in these chapters to be extremely useful
as background for the subsequent chapters. Other concepts are reviewed
or introduced in later chapters.

The interdependence of Chapters 1 to 9 is fairly deep, and these should
be covered sequentially. Students with a good background in real analysis
can skip Chapters 2 and 3. On the other hand, students with only a year
of calculus and little or no experience reading and writing mathematical
proofs are especially encouraged to read these chapters and do the exercises.
They are intended to provide the mathematical sophistication necessary to
handle the remaining portions of the book. Readers interested in moving
through the material quickly may wish to treat Chapters 5 and 7 lightly;
only an understanding of the terminology is necessary for subsequent chap-
ters. Chapters 10, 11, 12, 13, and 14 can be done in virtually any order,
though there are a few interdependencies. In particular: the doubling map
defined in Exercise 11.14 is used in Example 12.1 and Example 14.15; the
topology of the complex plane is defined in terms of a metric space, so read-
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ers who skip Chapter 11 will need to fill in a small amount of background,
though that isn’t hard; Section 14.5 has Chapter 12 as a prerequisite; and
the first three sections of Chapter 14 are prerequisites for Chapter 15.

Since the heart of any good mathematics textbook is the exercises, I have
provided a liberal quantity of interesting ones. The exercises range from
computational to those requiring a proof. A large number of the exercises
involving the theory can, at the instructor’s discretion, be answered with
descriptive paragraphs or drawings rather than formal proofs. Some of the
exercises are assumed later in the text. These are marked by a black dot (e)
and should not be skipped. Particularly difficult exercises are marked by a
star (x) or, in some cases, a double star (*x).

All students are encouraged to tackle the star problems. Trying to solve
them deepens one’s understanding of the material, even if the particular
exercise is never completed. Indeed, there are one or two for which I do
not have a complete solution, but they are very interesting (and fun) to
work on.

In some cases, it is nearly impossible to complete an exercise without
assistance from a computer. Mathematica or a similar package is an excel-
lent resource for doing most of them. The relevant Mathematica code is
provided in the Appendix. Electronic versions of the code may be obtained
by contacting the author directly. (The author’s addresses are found on the
copyright page and at the end of the Preface.) It is also very easy to write
simple programs that will assist with the exercises. Details and sources of
more information are provided in the references and the Appendix.

Acknowledgments. Numerous individuals have assisted in the devel-
opment of this text. First and foremost, I would like to thank my students,
whose interest and enthusiastic responses encouraged me to write it all
down. I am particularly grateful to Crista Coles, Joe Cary, and James
Gill, who worked most of the exercises in the first 10 chapters and pro-
vided invaluable feedback on the wording and presentation. I would also
like to thank Ron Gruca, whose probing and incessant questions caused me
to rethink some of the assumptions made in the first edition and brought
about this version. Ron has provided yet more evidence that we learn at
least as much from our students as they learn from us.

Mark Snavely and his students at Carthage College used a preliminary
version of the text and provided additional suggestions and encourage-
ment. The idea for the chapter on bifurcations was entirely Mark’s. Later
refinements in this chapter were suggested by Roger Kraft. All errors and
misrepresentations were added by the author. Roger Kraft and George Day
deserve special recognition for their careful reading and correction of the
entire manuscript for the first edition. Thanks are due to Ron Harrell and
Jim Sandefur for reading the first edition carefully and providing a list of
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suggestions for improvement. Subrahmanya Natarajan, David Pinchbeck,
Mark Snavely, and Mark’s students at Carthage College discovered minor
errors in the first printing of this edition, which have now been corrected.
Finally, I would like to express my gratitude for the support of my friends,
family, and especially my wife, without which this work would not be pos-
sible.

The graphics in this book were created on a NeXT computer using
Mathematica® and the draw program, which comes bundled with the NeXT
operating system. Typesetting was accomplished using AMS-IATEX and
the AMSFonts.

Readers of this text are encouraged to contact me with their com-
ments, suggestions, and questions. I would be very happy to hear what
you think I did well and what I could do better. My e-mail address is
rholmgre@allegheny.edu and a full mailing address is found on the copy-
right page.

Richard A. Holmgren
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Introduction

A discrete dynamical system can be characterized as a function that is com-
posed with itself over and over again. For example, consider the function
f(z) = —z3. If we compose f with itself, then we get

Fz) = (fo f)(a) = —(=2%)® = °.

Iterating the process we get

@)= (fofof)z)=(fof)(z) =—(2%)® = 2%,
fi @) =(fofofof)z)=(fof*)(z)=—(-2")° =",

()= (fo " Hx) = (-1)"z*" where n is a natural number.

We would like to answer the question, “Given a real number z, what is
lim f™(z)?” More generally, we ask, “What properties does the sequence
n—oo

z, f(z),f*(z), f3(z), ... have?” By the notation f"(z), we mean f
composed with itself n—1 times, not the nth power of f or the nth derivative
of f. We call the behavior of points under iteration of the function the
dynamics of the function.

Let us visualize these questions another way. Suppose that each of us
lives someplace on the real line and that our address is given by the real
number on which our apartment is set. For example, my address might
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be 2. Each year the government has decreed that I must move to a new
apartment whose address can be found by cubing my present address and
then finding the additive inverse. That is, [ apply the function f(z) = —z3
to my present address to find my new address. So, since I am currently
residing at 2, next year I will be living at f(2) = —~2% = —8. The year after
I will be living at f(—8) = f2(2) = —(—8)3 = 512, and after n years I will
be living at f™(2) = (—=1)"2%". Even if I live to be a very old man, it is
clear that I will never live in the same place twice. In fact, each year the
absolute value of my address will become larger, and I will move from one
side of zero to the other.

Hence, if we start at the point 2, then f™(2) grows without bound in
absolute value and oscillates from one side of 0 to the other. What happens
if we start someplace else? Suppose that we begin at the point % Then
the next year we will be at f (%) = —é. The following year we will be at
f(=3%) = F3(3) = 513, and after n years we will be at f™(3) = (=1)"(3)%".
So each year we will move from one side of 0 to the other, but over time
the move will not be very far.

In general, our address after n years will be f*(z¢) = (—=1)"(z0)%",
where zg is our first address. If |zg| > 1, we see that

lim |f"(z0)] = lim |zo*" = oo.
n—soo n—oo

In absolute value, f™(z) will increase without bound and the factor (—1)"
will cause f™(z¢) to oscillate from one side of 0 to the other. On the other
hand, if 0 < |zg| < 1, then nlingo f"(zo) = 0. So while f™(xz¢) will still move
from one side of 0 to the other, its value will approach 0 as n gets larger. In
terms of choosing apartments, an apartment whose address is less than 1 in
absolute value would be preferable to an apartment whose address is larger
than 1 since, as time passes, we won’t have to move so far each year.

It remains to see what happens to —1, 0, and 1. Note that f(—-1) =1
and f(1) = —1. Hence, —1 and 1 form a periodic cycle. Thus, if we were
living at 1 and could work out a deal with the person living at —1, then
we could probably leave some of our belongings at each address since we’d
be back every other year, a luxury indeed. Of course, if we lived at 0, then
we’d not have to move at all, since 0 is fixed by f: a stable and perhaps
boring existence.

To recap, a discrete dynamical system consists of a function and its
iterates. Given a dynamical system, we would like to know where each
each point goes as we iterate the function and what route it takes to get
there. We have seen a number of possibilities: points that head off towards
infinity, others that get close to 0, a pair of points that oscillate back and
forth periodically, and a point that doesn’t go anywhere at all. As we
continue our investigations, the list of possibilities will grow.
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Before we go on however, it is useful to look more closely at the moti-
vation behind the study of discrete dynamical systems. In the preceding
whimsical example, we used the function f(z) = —z* to determine the lo-
cation of our next apartment. By iterating the function, we were able to
find out where we would be in any future year. Functions and their iterates
can be used to model more practical problems as well.

ExAMPLE 1.1.

Suppose that we wish to create a mathematical model describing the size
of a population of rabbits living in the open fields behind my house. Sup-
pose also that empirical evidence suggests that a small initial population
will increase by approximately 10% each year. Let’s assume that we start
with zy rabbits and denote the population in the nth year by z,. We wish
to determine how many rabbits there will be in n years, or equivalently, we
wish to determine the value of z,,.

Clearly,

) =x9+ .1z = 1.1x¢

T2 =X + .1.’L‘1 = 11.’L‘1

Ti+1 =I5 + .1.’L‘i = 11.’El

Thus, z;+1 = p(z;) where p(z) = 1.1z. So,

z; = p(xo)
z3 = p(z1) = (p o p)(0) = p* (o)
z3 = p(z2) = (p o p*)(z0) = p*(z0)

T =" (%o).

Therefore, the population of rabbits after n years is determined by ap-
plying the function p(x) = 1.1z to o n times. A simple calculation shows
that p™(z) = (1.1)"z. Thus, if we start with more than one rabbit, the
population grows and keeps growing forever. For example, an initial pop-
ulation of 8 rabbits swells to a population of (1.1)!°8, which is about 21
rabbits in 10 years. Looking further into the future, we see that according
to this model, the same 8 rabbits swell to a population of approximately 54
in 20 years, 939 in 50 years, and 110,245 in 100 years. Given the small size
of the field behind my house, this last estimate is clearly too large. While
the dynamics of this model are easy to understand--each iterate grows
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by 10% over the previous iterate-—the model’s long-term predictive power
is limited since it predicts that the population continues to grow without
bound. [J

In general, models that iterate a function of the form p(z) = rz are
called exponential models. As we demonstrated, exponential models have
limited predictive power in population problems since as time passes the
predicted population becomes so large that it is no longer realistic. A more
sophisticated model for population, which takes into account the limits on
growth, uses the logistic function, h(z) = rz(1 — z).

Models using the logistic function assume there is an absolute limit on
the size of the population and designate the actual size of the population
as a fraction of the limit. Hence, the size of any population is denoted by a
number in the interval [0, 1]. For example, .25 indicates that the population
is 25% of the limit population. If zy is the population in the first time
period, then the population in the next time period is h(zg) = rzo(l — zo).
The factor (1 — z) distinguishes models using the logistic function from
exponential models. As z approaches 1, this factor approaches 0. Thus,
as z becomes larger the population grows at a slower rate. If z is large
enough, then the population declines. In the following example, we apply
this model to the problem studied in Example 1.1.

ExampLE 1.2.

Let’s reconsider the rabbits in the field behind my house and suppose
we have determined that the limit population is 1000. That is, when there
are 1000 rabbits, then they are so crowded and they so overburden the
ecosystem that it is no longer able to support rabbits and the population
dies out. Now consider the equation h(z) = 1.112z(1 — z). Recall that in

this model a population of 100 is represented as 11—&% or .1 and a population
of 1000 is represented as 1233 or 1. Clearly, h(1) =0 so the model does

predict that if the population reaches 1000 rabbits, then the entire colony
dies out. Note also that h(.9) = .1 so that in one year the model predicts
that a large initial population of 900 rabbits plummets to 100.

Now, as in Example 1.1, let’s assume that we start with 8 rabbits, that
is, zo = .008. Applying h(z) we find that

7 = h(.008) = .009
Ty = h?(.008) =~ .01
z3 = h*(.008) =~ .011
x4 = h*(.008) ~ .012.
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As the number of iterates increases, we find that

T19 = h19(.008) ~ .02
Tg0 = h?°(.008) ~ .043
T100 = h'9°(.008) =~ .101.

Thus, the population still grows by approximately 10% each year when
the size of the population is small, but the rate of growth slows as the
population gets larger. In the exercises, the reader is asked to experiment
with other initial populations over time and to describe the dynamics of
the population size as predicted by this model. [J

We will see in the following chapters that in general the dynamics of
the logistic function are much harder to understand than the dynamics of
exponential models. In fact, much of this book is devoted to understanding
the dynamics of this function.

1.1. Phase Portraits

Phase portraits are frequently used to graphically represent the dynamics
of a system. A phase portrait consists of a diagram representing possible
beginning positions in the system and arrows that indicate the change in
these positions under iteration of the function. It is best understood by
looking at a few examples.

ExAMPLE 1.3.

Let f(z) = 2. The dynamical system we are considering consists of the
domain of f and the function itself. The domain is the set of real numbers,
which we represent by a line. Note that 0 and 1 are fixed, that is, f(0) =0
and f(1) = 1. We indicate this in our phase portrait by dots at 0 and 1.
We notice that if 0 < z < 1, then f"(z) tends towards 0 as n becomes
larger, and if z > 1, then f™(x) tends towards infinity as n becomes larger.
To represent this, we draw an arrow from 1 towards 0 and another arrow
from 1 towards positive infinity. Now what happens if z is less than 0?7 The
point —1 becomes fixed at 1 since f(—1) = 1. This implies f*(—1) =1 for
all n larger than or equal to 1. This is shown by the arrow from —1 to 1.
Points that lie between —1 and 0 are mapped into the interval (0,1) and
then they move towards 0 under iteration of the function. Similarly, points
which are to the left of —1 are mapped to the right of 1 and then move
towards infinity under iteration of the map. We represent this by arrows
from the negative portion of the line to the positive portion. All of this
information is encoded in the phase portrait shown in Figure 1.1. [
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FIGURE 1.1. The phase portrait of f(z) = z2.

A

\ 4

FIGURE 1.2. The phase portrait of f(z) = —z3.

ExaMmPLE 1.4.

Consider the function f(z) = —z3. We recall from our earlier discussion
that 0 is fixed and the point 1 goes to —1 and then returns to 1 on the second
iteration. Points that are greater than 1 in absolute value oscillate from
one side of zero to the other under iteration of f and grow ever larger in
absolute value. Points that are less than 1 in absolute value oscillate from
one side of zero to the other under iteration of f and grow ever smaller
in absolute value. All of this is encoded in the phase portrait shown in
Figure 1.2. O

The reader is given an opportunity to explore and develop more phase
portraits in the exercises.
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Exercise Set 1

1.1

1.2

1.3

14

1.5

Suppose h(z) = rz(l — z).

a) Let 7 = 2 and calculate A™(.25) for n = 0,1,2,3, and 4 and
n = 101, 102, 103, 104. Can you determine lim, o, h™(.25)?

b) Let 7 = 2 and calculate h™(.2345) for n = 0,1,2,3, and 4 and
n = 101, 102, 103, 104. Can you determine lim,_, ., h"™(.2345)7

c) Let » = 3.1 and calculate h"(.25) for n = 0,1,2,3, and 4 and
n = 101, 102, 103, 104. Can you determine lim,,_,, h"(.25)7?

d) Let » = 3.1 and calculate A"(.2345) for n = 0,1,2,3, and 4 and
n = 101, 102, 103, 104. Can you determine lim,,_, -, h"(.2345)7

e) Let r = 4 and calculate A"(.25) for n = 0,1,2,3, and 4 and
n = 101, 102, 103, 104. Can you determine lim,, ., h"(.25)7

f) Let »r = 4 and calculate h™(.2345) for n = 0,1,2,3, and 4 and
n = 101, 102, 103, 104. Can you determine lim,, ., h"™(.2345)7

Describe Newton’s method for approximating the zeros of a func-
tion as a dynamical system. (You should be able to find Newton’s
method in your calculus textbook.) What is the significance of
limy, 0 f™(z) in this case?

Draw the phase portraits for the following functions:
a) f(z) =z'/?
b) g(x) = 2arctanx

d) C(z) = cos(z)

Explore the logistic model developed in Example 1.2 by experi-
menting with a variety of initial populations. Explain why it only
makes sense to choose initial populations between 0 and 1000. De-
scribe the expected growth of the population for a variety of initial
populations. Represent the behavior of the population using a
phase portrait.

On page 4, we were introduced to the logistic function as a model
for population growth. Recall that the logistic function is defined
as h(z) = rz(1 — z). We stated that if z is large enough, then
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the population declines. Suppose r = 2.5. Find a point zg in [0, 1]
so that h(z) < z if and only if zo < . What happens to the
size of the population over time if the initial population density
is £o? What if the initial density is a little larger than z¢? a little
smaller? Answer the same questions for r = 3.4 and r = 1.

AN INVESTIGATION: Let h(z) = rz(1 — z). Investigate the chang-
ing behavior of the finite sequence A°°°(.1), R51(.1), ..., A%35(.1)
as r varies from 3 to 3.6. You might begin by looking at the r
values 3, 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6. Between which values
do you see a qualitative change in behavior? If you see a change
between r = 3.4 and » = 3.5, then look at the behavior at the mid-
point » = 3.45. Continue to focus on smaller and smaller intervals
around changes in behavior. You should find that a change in the
r value as small as .005 can be significant. Describe these changes
and the places they occur to the best of your ability.

AN INVESTIGATION: If you have been using a computer to inves-
tigate the behavior of a function under iteration, then you should
be aware that the program you are using rounds off to a fixed
number of significant digits after each iteration. You might also
have wondered whether or not this rounding affected the outcome
of your investigations. Write a short program in which the num-
ber of significant digits used in calculations can be chosen by the
user. Such a program for Mathematica can be found in the ap-
pendix. Investigate the behavior of points in [0, 1] under iteration
of h(z) = rz(1 — x) when the computations are done with a preci-
sion of 8 significant digits and again when they are done with 99
significant digits using various values of r between 3 and 4. (A good
place to start is to consider what happens when r = 3, r = 3.5, and
r = 4.) Does the number of significant digits matter? For which
values of 77
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A Quick Look at Functions

Before we begin our discussion of dynamics, it is necessary to review a few
definitions. We review the terms function, one-to-one, onto, continuous,
and inverse function in this chapter. A good, working knowledge of these
terms is fundamental to understanding the material in subsequent chapters.
We also introduce homeomorphisms, which will be important in Chapter 9,
and complete the chapter by reviewing the Intermediate Value Theorem.

DEFINITION 2.1. A function is a rule that assigns each element of one
set to a unique element of a second set. The first set is called the domain
of the function, and the second set is called the codomain. The set of
elements in the codomain that have an element of the domain assigned to
them is called the range of the function. We use the notation f: D — C
to indicate a function f with domain D and codomain C. The notation
f: D — D indicates that the domain and codomain of the function are the
same set.

We often refer to functions as maps or mappings. Note that a function
isn’t necessarily a map from one set of real numbers to another. While func-
tions of the real numbers are certainly important, they are by no means
the only examples. There are many important functions that are not func-
tions of the real numbers; we will be introduced to one such function in
Chapter 11 when we study symbolic dynamics. When we wish to refer to
the set of real numbers we use the symbol R. Thus, the notation g: R - R
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indicates a function g whose domain and codomain are both the set of real
numbers.

If f: D— C and A C D, then f(A) is defined to be the subset of C
containing all the elements of the form f(a) where a is in A. That is,

f(A) = {cin C | there is a in A satisfying f(a) = c}.

The set f(A) is often called the image of A under f. Notice that if
f:D — C, then f(D) is the range of f. If B C C, then f~*(B) is called
the inverse image or preimage of B and consists of all elements of D whose
image is contained in B. That is,

fYB)={zin D| f(z) is in B}.

ExXAMPLE 2.2
Let f : R — R be defined by f(z) = 2. Then

f((=1,2)) = 0,4] and £~((1,4]) = [~2,~1) U (1,2).
Note that
SN, 4]) = [1,4], but f7H(f([1,4]) = [-4, -1 U [L,4].

Note also that the use of the notation f~! does not necessarily imply that
f is an invertible function. O

DEFINITION 2.3. A function is one-to-one if there is exactly one element
of its domain assigned to each element of its range.

PROPOSITION 2.4. The function f is one-to one if and only if the state-
ment f(z) = f(y) implies that T = y.

The “f and only if” in this proposition means that the two statements,
“f : D — C is one-to-one” and “f(z) = f(y) implies = y” are equivalent.
In other words, if one of the statements is true, then the other is true;
if one of the statements is false, then the other is false. The proof of
Proposition 2.4 is not hard and is left as an exercise.

Proposition 2.4 provides an easy way to test whether or not a function
is one-to-one. For example, consider the function f:R — R defined by
f(z) = 2. Clearly, f is not one-to-one since f(1) = 1 = f(—~1). On the
other hand, the function g : [0, 00) — R defined by g(z) = z? is one-to-one
since if g(z) = g(y), then z? == y, z > 0, and y > 0 imply = = y. Note that
even though the functions f and g have the same rule, they have different
domains and, hence, different properties.

A graphical test for determining whether functions of the real numbers
are one-to-one is the horizontal line test. A function is one-to-one if and
only if every horizontal line crosses the graph of the function at most once.
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FIGURE 2.1. The graphs of f(z) = 2 and p(zx) = z'/3.

By looking at the graphs of f(z) = z? and p(z) = z'/3, we see that f is
not one-to-one and p is. The graphs of f and p are shown in Figure 2.1.
In the exercises, we ask the reader to explain why the horizontal line test
works.

DEFINITION 2.5. A function is onto if each element of the codomain has
at least one element of the domain assigned to it. In other words, a function
is onto if the range equals the codomain.

When determining whether or not a function is onto we must know what
the codomain is. For example, the function f : R — R defined by f(z) = €*
is not onto. There is no point in the domain that is mapped to any number
in the interval (—o00,0]. On the other hand, the function g : R — (0, c0)
defined by g(z) = €* is onto. Of course, every function can be made into
an onto function by restricting its codomain to its range.

What can we say about the graph of an onto function whose domain and
codomain are subsets of the real numbers? If we consider the codomain as
a subset of the y-axis, then it is clear that every horizontal line that passes
through an element of the codomain must also pass through the graph of
an onto function. This geometric description is useful when we are trying
to construct examples of functions with specific properties.

EXAMPLE 2.6.

Construct an example of a function f : [1,3] — [2, 4] that is onto but not
one-to-one.

Let us first determine what properties the graph of f must have. Since
all the values of f must lie in the codomain, the graph lies between the
lines y = 2 and y = 4. As the domain of f is (1, 3|, a vertical line intersects
the graph if and only if it passes through a point on the z-axis between
and including 1 and 3. So the graph of the function lies in the box with
corners (1,2), (1,4), (3,4), and (3,2), as shown in Figure 2.2.
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FIGURE 2.2. The graph of a function, f:[1,3] — [2,4],
which is onto, but not one-to-one.

Since f is onto, we know that every horizontal line that passes through
the codomain (thought of as a subset of the y-axis) must intersect the graph
of the function. Also, since f is not one-to-one there must be at least one
horizontal line through the codomain that strikes the graph two or more
times. Obviously, there are many graphs that satisfy these criteria. One
example is shown in Figure 2.2. O

While it is often sufficient to think of continuous functions as functions
whose graphs are unbroken lines, it is essential to have a more precise
definition. In particular, if a function’s domain or codomain is not an
interval of the real line, then the graph of the function is not always so easy
to draw and not always informative when it can be drawn. For example, if
Z is the set of integers, then the function f :Z — Z defined by f(z) = 2z
is continuous, but its graph is a set of discrete points.

DEFINITION 2.7. Let f : D — C and xg be a point in D. Then f is con-
tinuous at xo if for every positive number €, there exists a positive number
6 such that

ifz isin D and |xzg — z| < 8, then |f(zo) — f(z)| < e.

A function is continuous if it is continuous at each point of its domain.
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FIGURE 2.3. An illustration of continuity at the point zg.

To understand this definition, it is helpful to think of |z — y| as the
distance from z to y. Then |z — y| < € simply means that the distance
from z to y on the real line is smaller than e. When contemplating the
definition of continuity, visualize zg and f(z¢) as points in the domain and
codomain of f, as shown in Figure 2.3. Now draw a circle around f(zg)
with a radius of € and its center at f(zo). If f is continuous at zg, then we
can draw a circle around zo whose radius § is so small that whenever z is
in the circle around zp and in the domain of f, then f(z) is in the circle
around f(zp). Note that z is in the circle of radius § around z; if and only
if |z — zo| < 6. That is, z is in the circle of radius § around z; if and only
if the distance from z to zg is less than 6. Similarly, f(z) is in the circle
around f(zo) of radius € if and only if |f(z) — f(z)| < e.

EXAMPLE 2.8.

Let Z be the set of integers. We use the definition to show that the
function f : Z — Z defined by f(z) = 2z is continuous.

Suppose a is any integer and € is any number greater than 0. We must
find a number § that is greater than 0 and such that |f(z) — f(a)| < €
whenever z is an integer satisfying |z — a| < 6. Let’s try 6 = % If z is an
integer and |z —a| < -é—, then z must equal a. Hence, |f(z) — f(a)! is equal
to 0, which is less than €. [

Finding a ¢ for the given € in Example 2.8 was straightforward. However,
when demonstrating continuity at a point, it is not always as easy to find
an appropriate 6. We consider a more complicated case in Example 2.9.
The Triangle Inequality is used to analyze this example.

The Triangle Inequality needn’t be mysterious. As most of us realize, it
is further to go from New York to Chicago by way of Los Angeles than by
traveling directly; this is not surprising. Essentially, the Triangle Inequality
tells us that the distance from point a to point b is less than or equal to
the distance from a to point ¢ plus the distance from ¢ to b. Recalling that
the value |a — b| represents the distance from point a to point b, we can
express the Triangle Inequality mathematically by

la —b] <la—c|l+|c—b (2.1)
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where a, b, and c represent real numbers. If weleta =z +candb=c—y
in formula (2.1), then we get

lz+y| < |z + |yl

This is the form of the Triangle Inequality that is most useful to us; we
use it in virtually every chapter of this text. The reader is well advised to
take the time to prove it and learn how to use it. Exercise 2.8 at the end
of this chapter provides hints for proving the inequality and practice using
it. Our first use of the Triangle Inequality is in the following example.

EXAMPLE 2.9.

Show that the function g(z) = z? is continuous on the real numbers.

Let a be any real number. We must show that g is continuous at a.
We consider the case where a is not 0. Let € be any positive real number.
We must find a positive number § such that whenever z is a real number
satisfying |z — a| < &, then |g(z) — g(a)| = |z? — a®| < e. To accomplish
this, we choose 6 so that § < |al, § < |3—5a|, and § > 0. This is possible since
both ¢ and |a| are positive numbers. If |z — a| < 6, then using the Triangle
Inequality, we find that

|z] = |z —a+a| < |z —a|l+]a| <|a| + 0.
It follows that if | — a| < 6, then

l9(z) = 9(a)] = |2 — a®| = |z — allz + af

< 6|z + al

< 6(/z| + lal)

< 6(lal + 6 + |a})
< 6|3q|

Hence, |g(x) — g(a)| < € when |z — a| < § as desired. Thus, g is continuous
at each nonzero real number. Note that the Triangle Inequality was used
twice in the preceding sequence of inequalities: once in going from the
second line to the third and a second time in going from the third line to
the fourth. We leave the proof that g is continuous at 0 as an exercise. [

Note that in proving that g was continuous at a in the previous example,
our choice of § depended on the value of both a and e. The dependence of §
on both the point in question and e is the rule rather than the exception.

The lemma that follows provides another way of describing continuity.
Essentially, this lemma states that f(z) is continuous at the number p if and
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only if for every interval containing f(p) there is an interval containing p
whose image is contained in the first interval.

LEmMMA 2.10. The function f(z) is continuous at p if and only if for
each ¢ and d satisfying ¢ < f(p) < d, there is 6 > 0 such that if z is in the
domain of f and z isin (p — 6,p+6), thenc < f(z) < d.

PROOF. We begin by assuming that f(z) is continuous at p and that
¢ < f(p) < d. We must find § > 0 so that if z is in (p — 6,p + 6) and f(z)
is defined, then ¢ < f(z) < d.

Choose € to be the smaller of d ~ f(p) and f(p) — ¢. Since f(z) is
continuous at p, there is § > 0 such that if [z—p| < §, then |f(z)— f(p)| < €.
But |z —p| < § is equivalent to -6 <z -p<dorp—86 <z <p+6é.
The latter statement is true if and only if z is in (p — 6, p + §). Similarly,
|f(z) — f(p)] < € is equivalent to

flp) —e<f(z) < flp)+e (2.2)
Since f(p) —c > e and € < d — f(p), inequality (2.2) implies

f(p) = (F(p) — ¢) < f(z) < f(p) + (d - f(p))

or

c< f(z) < d.

It follows that if z is in (p — 6, p + §), then ¢ < f(z) < d.

Now assume that for any ¢ and d satisfying ¢ < f(p) < d, we can find
§ > 0 such that if z is in (p — §,p + §), then ¢ < f(z) < d. We must show
that f(z) is continuous at p. That is, for any € > 0 there is § > 0 so that
if |z — p| < 6, then |f(z) — f(p)| < e. By arguments similar to the ones
used in the preceding paragraph, this is equivalent to showing that there
is 6 > 0 so that if z isin (p—6,p+6), then f(p) —e < f(z) < f(p) —¢, and
this follows immediately from our assumption. The reader is encouraged
to fill out the details of this half of the proof. [

The astute reader may have noticed that our definition of continuity
only makes sense if the notion of a distance is defined on the sets D and C.
Given our current knowledge, this means that D and C must be subsets of
the real numbers. When we look at metric spaces in Chapter 11, we will
extend the definition of continuity to functions whose domain and codomain
may be more general sets.

The Intermediate Value Theorem, which we introduce next, is a useful
property of continuous functions. An application of the Intermediate Value
Theorem is demonstrated in Exercise 2.18. Further applications are found
in subsequent chapters.
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THEOREM 2.11. THE INTERMEDIATE VALUE THEOREM. Let f be a
continuous function defined on the interval [a,b]. If p is a number between
f(a) and f(b), then there exists c in [a,b] such that f(c) = p. That s, if
f(a) < p < f(b) or f(b) < p < f(a), then there is ¢ in [a,b] such that
fle) =p.

A proof of the Intermediate Value Theorem can be found in introductory
analysis textbooks such as those listed in the references. We note that the
condition that f be continuous is necessary. We demonstrate this in the
following example.

EXAMPLE 2.12.

Let £ [0,2] — R be defined by f(z) = { forz <1
3, forz>1

and f(2) = 3. Even though 2 is between f(0) and f(2) there is no number ¢

in [0, 3] such that f(c) = 2. This does not contradict the Intermediate Value

Theorem since f(z) is not continuous at 1. (The reader may wish to verify

that f is indeed not continuous at 1.) O

. Then f(0) =1

DEFINITION 2.13. Let f: D — C be a function with range f(D). The
function g : f(D) — D is an inverse of f if (go f)(z) =z for allz in D.
If f has an inverse, then it is usually denoted f~1, and we say that f is
invertible.

The following proposition is well-known; its proof is left as an exercise.

PROPOSITION 2.14. A function is invertible if and only if it is one-to-
one.

DEFINITION 2.15. If a function is one-to-one, onto, and continuous, and
its inverse is continuous, then the function is a homeomorphism. In this
case, we say the domain and codomain are homeomorphic to one another.

Homeomorphisms play an important role in mathematics in general and
in dynamical systems in particular. When two mathematical spaces or
structures are homeomorphic they are, in some sense, the same. Math-
ematically, we describe this by saying that they have the same topolog-
ical properties. The intervals [1,2] and [3,5] are homeomorphic since
g:[1,2] — [3,5] defined by g(z) = 2z + 1 is a homeomorphism. (The
reader should check that g is in fact one-to-one, onto, continuous, and has
a continuous inverse.) However, the intervals [1,2] and (3,5) are not home-
omorphic. That is, there is no function f : [1,2] — (3,5) that is one-to-one,
onto, continuous, and has a continuous inverse. This is demonstrated in Ex-
ercise 2.18. In Chapter 3, we will see that the topologies of [1,2] and (3,5)
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are different as well. Specifically, [1,2] contains all of its limit points while
(3,5) does not.

Note that in all of the examples in this book, if a function is one-to-one,
onto, and continuous, then it is a homeomorphism. This is not true in
general. There are functions that are one-to-one, onto, and continuous but
that are not homeomorphisms. The interested reader may consult General
Topology by S. Willard or a similar reference for further details.

Exercise Set 2

2.1

2.2

2.3

2.4

2.5

Let f(x) = 2% and S(z) = sinz.
a) Find £([0,1]).

b) Find f~1(f([0,1])) and f(f~%([0,1])). Why aren’t these two
sets the same?

¢) Find S([0, §]) and S~1(S([0, 5]))-
Let g: R — Z be the step function defined such that g(z) is the

largest integer less than or equal to z. (Z denotes the set of inte-
gers.) Calculate g([2,10.1]) and g7*({2,4}).

a) Let A be a subset of the domain of the function f. Prove
F~Y(f(A)) D A and show by example that it may happen that
F7Hf(A) # A

b) Let B be a subset of the codomain of the function f. Determine
which of the following must be true and show that your answer is
correct:

fUB)>B,  f(FTUB)CB,  f(f(B) =B

Suppose f : [-1,1] — [—1,1] is defined so that f(z) =
a) Find the range of f.
b) Find the range of fo f.

1
§IE.
¢) Find the range of f” for all natural numbers n.

a) Find a function f:[0,2] — [2,4] so that f is one-to-one and
continuous but not onto.
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b) Find a function f : [0,2] — [2,4] so that f is onto and continuous
but not one-to-one.

c) Find a function f : [0,2] — [2,4] so that f is one-to-one and onto
but not continuous.

d) Find a function f : [0,2] — [2,4] so that f is a homeomorphism.
That is, f is one-to-one, onto, continuous, and has a continuous
inverse.

Prove Proposition 2.4.

Prove that a function of the real numbers is one-to-one if and only
if every horizontal line intersects the graph of the function at most
once.

THE TRIANGLE INEQUALITY.

a) Let a and b be real numbers. Prove that |a +b| < |a| + |b]. You
may use the fact that —|a| < a < |a| and —|b| < b < || or you may
wish to show that |a + b|? < (|a| + |b])>.

b) Use part (a) to prove that [z —y| < |z — 2| + |2z — ¥l

c) Prove [z — y| < |z| + |yl.

d) Prove |z| > |z —y| — |yl

e) Prove |z| — [y| < |z —yl.

a) Justify each of the steps in the second displayed inequality of
Example 2.9.

b) Prove that g(z) = z? is continuous at 0.

Assume that for any ¢ and d satisfying ¢ < f(p) < d we can find
§ > 0 such that if z is in (p — 6,p + 6) and f(z) is defined, then
¢ < f(z) < d. Show that f(z) is continuous at p. Note that this is

the second half of the proof of Lemma 2.10. A sketch of the proof
is provided immediately following the statement of the lemma.

Prove Proposition 2.14.

Show that f(z) = 2 is continuous.
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-1 f <0
a) Show that f(z) = ore is continuous.
1 forxz >0
-1 f <
b) Show that f(z) = orz <0 is not continuous.
1 forz >0
Show that every function whose domain is the integers and whose

codomain is the real numbers is continuous.

a) Show that all nonconstant linear functions are continuous.
Note: A nonconstant linear function has the form f(z) = ma+b
where m # 0.

b) Show that all nonconstant linear functions have continuous
inverses.

¢) Show that all nonconstant linear functions are homeomorphisms.

Let f:[a,b] > R be a continuous function. Suppose f(a)=c,
f(b) = d, and ¢ < d. Prove that f([a,b]) D [c,d].

Hint: Use the Intermediate Value Theorem to show that every
number between ¢ and d has something mapped to it by f.

Prove that if a and b are real numbers satisfying a < b, then the
interval [a, b] is homeomorphic to [0, 1].
Hint: Find a linear function f : [a,b] — [0, 1].

a) Let f:[1,2] — (3,5) be one-to-one and continuous. Show that
f is not onto.

Hint: First show that f is strictly increasing or strictly decreas-
ing by using the Intermediate Value Theorem.

Note: This exercise implies that [1,2] and (3,5) are not homeo-
morphic.

b) Let g : (0,1) — [1, 3] be onto and continuous. Show that g is
not one-to-one.

Hint: First show there is zg in (0, 1) such that g(zo) = 3. What
is the nature of g near zp? You may wish to use the Intermediate
Value Theorem as well.

Note: This exercise implies that (0,1) and [1,3] are not homeo-
morphic.
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c) Let a, b, ¢, and d be real numbers satisfying a < b and ¢ < d.
Prove that the intervals (a,b) and [c, d] are not homeomorphic.

Let f: D — Candg: C — E. Prove that the following statements
are true:

a) If f and ¢ are onto, then g o f is onto.

b) If f and g are one-to-one, then go f is one-to-one.

¢) If f and g are continuous, then g o f is continuous.

d) If f and g are homeomorphisms, then go f is a homeomorphism.

Let f: D — C and g : D — C be continuous functions. Prove that
f+ g and f — g are continuous functions.

Prove or disprove: If f: R — R is one-to-one, onto, and continu-
ous, then f is a homeomorphism. (Prove or disprove means that
you should either prove the statement or find an example of a func-
tion, f: R — R, that is one-to-one, onto, and continuous but not
a homeomorphism.)
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The Topology of the
Real Numbers

The topology of a mathematical space is its structure or the characteristics
it exhibits. In calculus, we were introduced to a few topological ideas, and
we will need a few more in our study of dynamics.

One of the fundamental questions of dynamics concerns the properties
of the sequence z, f(z), f2(z), f3(x),.... To discuss these properties
intelligently we need to understand convergence, accumulation points, open
sets, closed sets, and dense subsets. In this section, we will limit our
discussion to subsets of the real numbers; we will revisit the definitions
when we introduce metric spaces in Chapter 11.

DEFINITION 3.1. Suppose U is a subset of the real numbers. Then U is
open if for each x in U there is a positive number € so that |x — y| < ¢
implies y s in U.

As with the definition of continuity, it is useful to think of the € in this
definition as a distance. Picture U as a subset of the real line as shown in
Figure 3.1, and let z be a point in U. If U is open, then we can find an
¢ > 0 such that when we draw a circle around z with radius ¢, all the real
numbers contained in the circle are contained in U. This disk with radius €
and center z is usually called an e-neighborhood or simply a neighborhood
of z.

DEFINITION 3.2. Let € > 0. The set N.(z) = {y inR | |z —y| < €} is
an e-neighborhood of . To stmplify our terminology, we will drop the €
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<«

FIGURE 3.1. An open set.

and call N.(z) a neighborhood of * when it will not cause confusion.

We can think of a neighborhood of z as all the points that “live nearby” z.
Note that |z — y| < € if and only if ¥ is in the open interval (z — €,z + €).
Consequently, N.(z) = (z — ¢,z + €), and we can visualize neighborhoods
of z as open intervals centered at x.

The following two propositions follow from a careful examination of the
definitions of open sets and neighborhoods and should be proven by the
reader.

PropPOSITION 3.3. The set U is open if and only if for each x in U there
is a neighborhood of = that is completely contained in U.

PROPOSITION 3.4. Every neighborhood of a real number is an open set.

In the following example, we use the definition of open to demonstrate
that “open intervals” are indeed open and to show that not every set need
be open.

ExXAMPLE 3.5.

a) The interval (a,b) is open. To see this, let z be a point in (a,b). To
show that (a, b) is open, we must find € > 0 so that |y — z| < € implies y is
in (a,b). Suppose that € is the smaller of |z —a| and |z —b|. In other words,
suppose that € is the distance from z to the nearest endpoint of (a,b).
Since a < x < b, € is positive. If |z — y| < ¢, then

|z —y| <e<|z—al
Since x > a, this implies
—rt+a<zr-—-y<x-—a.
Solving this for y, we find that
a<y<2z—-a.

Hence, a < y. To complete the proof that y is in (a,b), we need to show
that y < b. The proof is similar to the preceding one. The details are left
as an exercise.
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b) The set of rational numbers is not an open set. This follows from the
fact that if z is a rational number, then no matter how small we choose the
positive number € to be, there is some irrational number whose distance
from z is less than . We prove this formally in the exercises. [

It is important to notice the difference in the way we use ¢ in the def-
initions of continuity and open sets. When demonstrating that a set is
open, we find a positive ¢ that works for each z. On the other hand, in
the case of continuity at a point, we must find an appropriate § for every
positive e. However, the two concepts are related, as we demonstrate with
the following theorem.

THEOREM 3.6. The function f: R — R is continuous if and only if the
preimage of every open set is open. In other words, f is continuous if and
only if for each open set U in R the set f~*(U) is open.

Again, the proof of this theorem is not difficult, and interested readers
are encouraged to prove it. Some individuals may find Lemma 2.10 useful
when completing the proof.

Since there are open sets in mathematics, it’s not surprising that there
are closed sets as well. To define closed sets, we use the concepts of con-
vergent sequences and accumulation points.

DEFINITION 3.7. Let x,,z2,23,... be a sequence of real numbers. The
sequence converges to x if for each € > 0, there exists N such that if k > N,
then |zt —xi| < €. The sequence grows without bound or converges to infinity
if for each M there exists N such that if k > N, then zx > M.

Once again, we can treat € as a distance. If the sequence 1, z2, 3, ...
converges to x, then when k is large, xi is close to z, that is, |zy — z| < €.
Notice that to demonstrate that a sequence converges we must be able to
find an N that works for each e. The N may change as € changes; it is not
sufficient to find an N that works for one particular e.

ExAMPLE 3.8.

a) The sequence z; = .9, o = .99, 3 = .999,... converges to 1.
To see this, let ¢ > 0. Choose an integer N such that l—oly < €. Then
|1 — x| = r < v <eforall k> N as desired.

b) The sequence 1 = 1, 290 =2, z3 =1, £4 =2, 25 = 1,... does not
converge to any real number. To demonstrate this, it is sufficient to find a

single € so that for every NV and every real number z we can find £ > N

such that |zy — z| > €. Set € = % and let x be any real number. We claim
that if 2y is such that Jzy — x| < 1, then |zy41 — 2] > 1. To see this,
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suppose that zy = 1; it has to be either 1 or 2. Then zy4+; = 2 and by
the Triangle Inequality,

ltNg1 — x| = |2~ z]
=[1-(z-1)|
3
> —-lz—1 -,
21— fe—1]> 3
1

A similar result holds when zn = 2. Hence, when € = 7, there does not
exist an z and N such that |z —z| <eforallk > N. O

Another frequently encountered topological concept is that of an accu-
mulation point.

DEFINITION 3.9. Let S be a subset of the real numbers. Then the real
number z is an accumulation point (or a limit point) of S if every neigh-
borhood of  contains an element of S that is not x.

Loosely speaking, a number is an accumulation point of a set if we can
find points of the set that are as close to the number as we want. Note that
a number need not be in a set to be an accumulation point of it. This will
be demonstrated in Example 3.11b. The following proposition gives us two
alternative definitions of accumulation point and is an easy consequence of
the preceding definitions.

PROPOSITION 3.10. Let S be a set. Then the following statements are
equivalent.

a) The point = is an accumulation point of the set S. That is, every
neighborhood of T contains at least one element of S that is not x.

b) For each € > 0 there ezists y in S such that 0 < |z — y| < e.

c) There is a sequence of points, all different from z and contained
in S, that converges to x.

The reader should prove the equivalence of the three statements in
Proposition 3.10. Once this is done, we can use any one of the statements
to prove assertions about accumulation points.

EXAMPLE 3.11.

a) The point 0 is an accumulation point of (0,1]. This follows from the

fact that if € is any positive number, then either 1 < € or § is an element

of (0,1]. In the first case, 1 is in (0,1] and 0 < |0 — 1| < €. In the second
case, § is in (0,1] and 0 < |0 — §| < e. Thus 0 is an accumulation point
of (0,1) by part (b) of Proposition 3.10.
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b) The irrational number z = .123456789101112131415... is an accu-
mulation point of the set of rational numbers. To prove this, we define a
sequence of rational numbers by

T =.1
T2 = .12
z3 =.123
T4 = .1234

It is easy to prove that this sequence converges to z. (The reader is asked
to show this in the exercises; a similar proof is sketched in Example 3.8a.)
Thus, by part (c¢) of Proposition 3.10, z is an accumulation point of the
rational numbers. [

DEFINITION 3.12. A set is closed if it contains all of its accumulation
points.

EXAMPLE 3.13.

a) The interval I = [2,4] is closed. We prove this by showing that if =
is not in I, then z is not an accumulation point of I. This implies that if
z is an accumulation point of I, then z is in I.

Assume z is not in /. Now either x < 2 orz > 4. If £ < 2, then
2 — z is a positive number and the neighborhood of z with radius 2 — z
is (£ —(2—1z),z+ (2—1x)) or (2z — 2,2). Since this neighborhood doesn’t
contain any point of [2,4], z is not an accumulation point of [2,4]. A
similar argument will show that if y > 4, then ¥y is not an accumulation
point of [2,4]. Consequently, [2,4] must contain its accumulation points.

b) The set of rational numbers is not closed since we demonstrated a
sequence of rational numbers that converged to an irrational number in
Example 3.11b. O

We have seen that the rational numbers are neither open nor closed in
the real numbers, so it is not true that all sets must be either open or
closed. In the exercises, we ask the reader to show that the interval [1,2)
is neither open nor closed.

If A is a set of real numbers, then the complement of A is the set of
all numbers not contained in A. For example, the complement of [1,2)
is (--00,1)U[2,00). Often we can discover properties of a set by examining
its complement. The following proposition employs this technique.
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PROPOSITION 3.14. A set is open if and only if its complement is closed.

PROOF. Let A be a subset of the real numbers and let B be the com-
plement of A. We begin by showing that if A is open, then B is closed.

Suppose that A is open. If z is an accumulation point of B, then ev-
ery neighborhood of z contains an element of B. Consequently, there is
no neighborhood of z that is completely contained in A. As A is open,
Proposition 3.3 implies that z is not in A. It follows that z is in B and
so B contains all of its accumulation points. Hence, if A is open, then B is
closed.

It remains to show that B is open when A is closed.

Suppose that A is closed. Let z be a real number such that for all € > 0
there exists y in A satisfying |z — y| < e. Then z must be in A, and it
follows that B is open. Why? O

A number of observations follow from Proposition 3.14. For example,
we now know the set of irrational numbers is neither open nor closed. This
is a consequence of Proposition 3.14 and our earlier observation that the
set of rational numbers is neither open nor closed. Additional implications
of Proposition 3.14 appear in the exercises and later in the text.

We occasionally find it useful to speak of a collection of sets such as
{A1, Az, A3, ...}, which we denote as {A,}. We denote the union of this
collection, A;UA>UA3U. .., as | J A, and the intersection of this collection,
AiNAyNAsN..., as (A, The following proposition outlines a few of
the properties of collections of open and closed sets.

PROPOSITION 3.15. Let {A,} be a collection of open sets. Then |J A, is
open. If the collection contains only a finite number of sets, then [ A, is
open.

Let {Bn} be a collection of closed sets. Then (B, is closed. If the
collection contains only a finite number of sets, then |J By is closed.

It is important to note that the intersection of an infinite number of
open sets might not be open. Likewise, the union of an infinite number
of closed sets might not be closed. For example, if we define the infinite
collection of open sets {A,} by A, = (=1, 1), then M A, = {0}, which is
not open! Similarly, if we define the infinite collection of closed sets { B, }
by B, = [~1 + %,1 — 1], then the union |J B, is equal to (—1,1), an
open set. This illustrates that the distinction between infinite and finite
collections is not made lightly. A proof of Proposition 3.15 can be worked
out by the reader or found in W. Rudin’s text, Principles of Mathematical
Analysts.

The last topological concept we introduce in this chapter is the concept
of a dense subset.
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DEFINITION 3.16. Let A be a subset of B. Then A is dense in B if every
point in B is an accumulation point of A, a point of A, or both.

We can think of a dense subset of B as having parts in every nook and
cranny of B. Another way of defining a dense subset is to say that A is
dense in B if every circle centered at a point of B contains a point of A,
no matter how small the radius of the circle. This idea is made precise in
part (b) of the following proposition.

PROPOSITION 3.17. Let A be a subset of B. Then, the following state-
ments are equivalent:

a) A is dense in B.

b) For each point x in B and each € > 0, there exists y in A such that
lz —y| <e.

c) For every point z in B, there exists a sequence of points contained
in A that converges to x.

The proof of this proposition is not hard and is left as an exercise.

ExaMPLE 3.18.

The rationals are dense in R. To demonstrate this, it suffices to show
that every irrational number is an accumulation point of the rationals.

Let t = % x .f1tat3ts... be an irrational number expressed in decimal
notation. Define a sequence of rational numbers by

T, = **.1
To = * *x .t1tg
T3 = ** .t1tol3

Tgq4 = *x % .t1t2t3t4

It is easy to prove that this sequence converges to t; see Example 3.8a for
a similar proof. Hence, the rationals are dense in the real numbers. [

It is interesting to note that the irrational numbers are also dense in the
real numbers. This demonstrates that even though a set is large enough
to be dense, it doesn’t necessarily have to be so large that there isn’t
enough room left over for other large (that is, dense) sets. In fact, we can
find an infinite collection of subsets of the real numbers, each of which
is dense in the real numbers, such that no two of the sets have a point
in common. Next time you are waiting patiently in a doctor’s office or for
a lecture to end, you might try to do just that.
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Exercise Set 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

x3.8

3.9

3.10

Show that |z — y| < € if and only if y is in the open interval
(x—e€,z+¢€). Thus, the e-neighborhood of z or N(z) is the interval
(z — e,z +¢€).

Prove that the interval (a,b) is open. (Note that most of the proof
is contained in Example 3.5.)

Prove that the interval [a,b] is closed.
Show that the interval [1,2) is neither open nor closed.
Prove that the rationals are not an open set.

Indicate whether the following sets are open, closed, neither open
nor closed, or both open and closed. Justify your answer.

a) [-1,0)uU (0,1]

b) (—-1,0]uU[0,1)

c) (-1,0]n[0,1)

d) The set of natural numbers, {1,2,3,...}

o0

-11
e) gl(—nﬂ m
H N
n
n=1
Prove Propositions 3.3, 3.4, and 3.10.

Prove Theorem 3.6.
Hint: Use Lemma 2.10.

Explain the second half of the proof of Proposition 3.14.

Prove that the sequence z,z,z,... converges to .
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3.11 Let x = .123456789101112... and define a sequence by

zy =.1
To = .12
xg = .123
T4 =.1234

Show that the sequence converges to z.
Hint: Consider Example 3.8a.

3.12 Prove that R is both open and closed. Use Proposition 3.14 to
show the empty set @) is both open and closed. Are there any other
subsets of R that are both open and closed?

3.13 Show that the set {3, 3,3, %,...,0} is closed.

3.14 Let A be a closed and dense subset of B. Prove that A = B.

3.15 Show that the set of irrational numbers is dense in R.

*3.16 Prove Proposition 3.15.

3.17 Prove Proposition 3.17.
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Periodic Points
and Stable Sets

We are now ready to examine the dynamics of discrete systems. We begin
by defining and categorizing the simplest types of behavior. In most of
what follows, we will assume that the range of the function in question is
a subset of the domain. Exceptions to this practice will be noted.

DEFINITION 4.1. If f is a function and f(c) = ¢, then c is a fized point
of f.

A function of the real numbers has a fixed point at ¢ if and only if the
point (c,c) is on its graph. Thus, a function has a fixed point at ¢ if and
only if its graph intersects the line y = z at the point (¢, c).

Fixed points are important in dynamics. In Chapter 1, we observed
that the function f(z) = ~z2 has a fixed point at 0 that attracts all of the
points in the interval (—1,1) to it under iteration of the function. We will
see that in many dynamical systems fixed points play a similar role.

The following theorem will help us to locate fixed points.

THEOREM 4.2. Let I = [a,b] be a closed interval and f:I — I be a
continuous function. Then f has a fized point in I.

PRrROOF. Let I = [a,b] and f:I - I be continuous. If f(a) = a or
f(b) = b, then either a or b is fixed and we are done. Suppose f(a) # a
and f(b) #b. Let g(z) = f(x) —z. Since g(z) is the difference of
continuous functions, it is a continuous function. As f(a) # a and f(a) is
in [a,b], f(a) > a. Likewise, f(b) < b. Hence, g(a) = f(a) —a > 0 and
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FIGURE 4.1. An illustration of the situation in Theo-
rem 4.2. Recall that f has a fixed point at ¢ if and only if
the graph of f intersects the line y = x at c. We see that
such an intersection is required by the conditions on f.

g(b) = f(b)—b < 0. Since g is continuous, the Intermediate Value Theorem
implies that there is ¢ in [a, b] such that g(c) = 0. But g(c) = f(¢) —c=0
so that f(c) = ¢, and we are done. Figure 4.1 illustrates this proof. O

EXAMPLE 4.3.

The function f(z) = 1 — z? has a fixed point in the interval [0,1].

To see this, we might note that f is a continuous function and the range
of f over [0, 1] is contained in [0, 1]. Thus, by Theorem 4.2, f has a fixed
point in [0, 1].

Alternatively, we look at the graph of f shown in Figure 4.2 and note
that it crosses the line y = z in the interval [0,1]. Hence, f has a fixed
point in [0, 1].

Finally, we can find the fixed point algebraically by solving the equation
f(z) = z or 1 — 22 = z. By doing so, we find that the fixed points of f are

at —1 - Y% and —1 + ¥5. Note that =1 + ¥ isin [0,1]. O

In Theorem 4.2, we proved that if the image of a closed interval under a
continuous map is contained in the interval, then the map has a fixed point
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(¢, f(€)) X4 fixed point
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FIGURE 4.2. The graph of f(z) =1 — 22

in the interval. In Theorem 4.4, we will show that there is a fixed point in
the interval when the containment is reversed.

THEOREM 4.4. Let I be a closed interval and f : I — R be a continuous
function. If f(I) D I, then f has a fized point in I.

PROOF. Let I = {a,b]. Since f(I) D I there are c and d in I such that
f(e)=aand f(d) =b. Ifc=aord = b, we are done. If not, thena < c < b
and a < d < b. If we define g(z) = f(z) — z, then g(c) = f(c) — ¢ < 0 since
f(c) = a and a < ¢. Likewise, g(d) = f(d) — d > 0. Since g(c) < 0 and
g(d) > 0, and g is continuous, the Intermediate Value Theorem implies that
there is e between c and d (and hence in I) satisfying g(e) = 0 and f(e) =,
which complete the proof. The reader is encouraged to draw a figure that
illustrates this argument. [

We noted earlier that the function f(z) = —~z°® examined in Chapter 1
has a fixed point at 0. The behavior of the points 1 and —1 under iteration
of f is also worth noting. Recall, f maps 1 to —1 and —1 back to 1. Con-
sequently, we call 1 and —1 periodic points and the set {—1,1} a periodic
orbit.

DEFINITION 4.5. Let f be a function. The point x is a periodic point
of f with period k if f¥(z) = x. In other words, a point is a periodic point
of f with period k if it is a fized point of f*. The periodic point x has
prime period ko if f*(z) = = and f*(x) # = whenever 0 < n < ky. That
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18, a periodic point has prime period ko if it returns to its starting place for
the first time after ezactly ko iterations of f.

The set of all iterates of the point x is called the orbit of z, and if ©
is a periodic point, then it and its iterates are called a periodic orbit or a
periodic cycle.

To illustrate Definition 4.5, we again consider f(z) = —z%. The points
1 and —1 form a periodic orbit with prime period 2. The set of points
with period 2 is {—1,1,0}, while the set of points with prime period 2
is {—1,1}. The only fixed point of f is 0. The orbit of 0 is {0} and the
orbit of 2 is {2, 23,29 —227 . . }.

A function may have many fixed or periodic points. The function
f(z) = z fixes every point, while every point except 0 is a periodic point
with prime period 2 for g(z) = —z. Later, we shall see that, for some
values of r, the function h(z) = rz(1 — z) has a periodic point with each
prime period.

Two other types of points are eventually fixed points and eventually
periodic points. For example, the function h(z) = 4z(1l — z) has a fixed
point at 0. The point 1 is not fixed, but h(1) = 0, so after one iteration
1is fixed at 0. Also, h(3) = 1 and h%(}) = 0 so after two iterations 3 is
fixed at 0. In the exercises, we ask the reader to find two points that are
fixed at 0 after exactly three iterations of h. Given sufficient patience, it is
possible to find points that are fixed by h after any number of iterations.

Before we look at an example of a point that is eventually periodic but
not eventually fixed, we introduce a precise definition of these terms.

DEFINITION 4.6. Let f be a function. The point z is an eventually fized
point of f if there exists N such that f"*(z) = f*(z) whenever n > N.
The point = is eventually periodic with period k if there exists N such that
frtE(z) = f*(z) whenever n > N.

EXAMPLE 4.7.
Let g(z) = |z — 1. Then 0 and 1 form a periodic cycle and f(2) = 1, so
2 is eventually periodic. In fact, every integer is eventually periodic. [

The function f(x) = —z* has a fixed point at 0 and a periodic cycle
consisting of 1 and —1. Examination reveals that there are no eventually
periodic points that are not periodic. How should we characterize the rest
of the points? For example, if we start at % and iterate with f, then
we get the sequence, %, «2%, 73, —2—%, .... So % is not periodic and
never reaches 0, though it does get closer and closer to it. That is, f"(%)
converges to 0 as n goes to oco. We say % is forward asymptotic to 0.
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DEFINITION 4.8. Let f be a function and p be a periodic point of f with
period k. Then x is forward asymptotic to p if the sequence z, f*(z),
25 (z), f3*(x), ... converges to p. In other words, lim, _, f**(z) = p.
The stable set of p, denoted by W*(p), consists of all points that are forward
asymptotic to p.

If the sequence |z|, |f(z)|, |f%(z)|, |f3(z)|, ... grows without bound,
then x is forward asymptotic to infinity. The stable set of infinity, denoted
by W#(00), consists of all points that are forward asymptotic to infinity.

Notice that when we are searching for points in the stable set of a point
with prime period k, we must consider the sequence

z, (), (), 1*(), ...,
not the sequence

z, f(z), f2(z), f3(z), ... .

EXAMPLE 4.9.

a) Let f(z) = —z3. Then the stable set of 0 consists of all points
in the interval (—1,1), the stable set of infinity consists of all points in
the intervals (—oo,—1) and (1, 00), the stable set of —1 contains only the
point —1, and the stable set of 1 contains only the point 1. Symbolically,
we write W*#(0) = (—1,1), W*(o0) = (—o0, —1) U (1,00), W*(-1) = {-1},
and W#*(1) = {1}. Notice that it doesn’t make sense to discuss the stable
set of any other points since f has no other periodic points.

b) In Example 4.7, we examined the function g(z) = |z — 1|. Returning
to that example, we see W*(0) is the set of all even integers and W*(1)is
the set of all odd integers. [J

In the preceding example, we tacitly assumed that if a point is in the
stable set of one periodic point, then it cannot be in the stable set of a
different periodic point. This idea is important, and we prove it in the
following theorem.

THEOREM 4.10. The stable sets of distinct periodic points do not inter-

sect. In other words, if py and py are periodic points and p, # po, then
We(p1) NWe(py) = 0.

PROOF. Let f(x) be a function with periodic points p; and p2 of period
k1 and ko, respectively. We’'ll show that if We(p;) N W*(p2) # 0, then
b1 = p2-

Let z be in W#(p1) N W?3(p2). Then for each € > 0 there exist N; and
N, such that n > N; implies |p; — f™*'(z)| < £ and n > N, implies
lpa — fr*2(z)| < 5. If M is the larger of Ny and N, then n > M implies
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both |p1 — f™1(z)| < § and [p2 — f™*2(z)| < . Utilizing the Triangle

Inequality, we find that when n > M, then

Ipy — po| = Ip1 — f¥ %2 (2) + fM**2(z) — py
< |p1 — [k ()| 4 | fRDR2 () — py|

<€ n €
—+ - =¢.

2 2

Since we have shown that the distance between p; and p, is less than ¢ for
each € > 0, it must be that p; = p,. O

Now that we have defined periodic points, eventually periodic points,
and stable sets, we are able to classify most points in a simple dynamical
system. In our first example, f(z) = —z3, we have three types of points:
the fixed point 0, the periodic points 1 and —1, and points in the stable
sets of 0 or co. As we continue our investigations, we shall find that not all
systems are quite so easy to characterize. We will need new tools and ideas
to classify the dynamics of even a simple function like h(z) = 42(1 — ).
One of the simplest tools we have at our disposal is graphical analysis.

4.1. Graphical Analysis

As the name implies, graphical analysis uses the graph of a function to
analyze its dynamics. It is best understood by studying a few examples.

EXAMPLE 4.11.

We begin our examination of the dynamics of the function f(z) = z3 by
graphing f and the line y = z on the same set of coordinate axes as in Fig-
ure 4.3. We then try to determine the itinerary of the point a that lies in the
interval (0,1). Rather than follow the movement of the point on the z-axis,
we keep track of its whereabouts on the line y = z. It starts at a (or, if you
prefer, at the point (a,a)). From that point, we travel vertically until we
strike the graph of f. Since we moved vertically, the = value of the point of
intersection must be a and the y value must be f(a). We now travel hori-
zontally back to the line y = z to arrive at the point f(a) (or (f(a), f(a))).
Repeating the process, we travel vertically to the graph of f to arrive at the
point (f(a), f?(a)) and then horizontally back to f%(a) on the y = z line.
Continuing, we see that f™(a) approaches 0 as n goes to infinity. After try-
ing more points in the interval (0, 1), we conclude that every point in (0, 1)
will approach 0 under iteration of f(x) = x3. Further examination suggests
that W3(0) = (—1,1) and W?3(o0) = (—o00,—1) U (1,00). The points —1,
0, and 1 are fixed points of f. [
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FIGURE 4.3. Graphical analysis of the orbit of the point a
under iteration of f(z) = z3.

3, £4 y=s
A £o@
(@, fa) FHa) 4@
5
a
- -045 0.5
@ 05 NS
(Fa). f3a)
i@ < P
- (F4@).f5@)
F3@a)

FIGURE 4.4. Graphical analysis of the orbit of a under
iteration of g(z) = —z!/3.
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EXAMPLE 4.12.

We now consider the function g(z) = —z'/°. The graph of g and the
line y = z are shown in Figure 4.4 on the previous page. We start with
a point a which is near 0 and in the interval (0,1). Note that as n grows,
the value of ¢g"(a) approaches 1 in absolute value and oscillates from one
side of 0 to the other. Note also that —1 and 1 form a periodic cycle with
prime period 2. Further, g"(a) is always positive when n is even. Thus, we
conclude that a is in W*(1).

Further analysis suggests that W*(1) = (0,00), W*(—1) = (—00,0), 0 is
fixed, and W¥(c0) = 0. [

1/3

The reader is asked to develop additional examples of graphical analysis
in the exercises.

Exercise Set 4

4.1 Let g(z) = |z —1]|. Find all fixed points and eventually fixed points
of g. How many periodic points does g have? What are they? How
many eventually periodic points does g have? What are they?

4.2 From Exercise 4.1 we know that 1 is fixed by g(z) = |z — 1|.
Find W*(3).

4.3 Find two points in [0, 1] that are eventually fixed at 0 after exactly
three iterations of h(z) = 4z(1 — ).

4.4 a) Can a function have a point that is eventually fixed after exactly
two iterations if it has no points that are eventually fixed after
exactly one iteration? If so, give an example; if not, explain why.

b) Suppose n is a natural number. Can a function have a point
that is eventually fixed after exactly n + 1 iterations if it has no
points that are eventually fixed after exactly n iterations? If so,
give an example; if not, explain why.

4.5 Show that all periodic points of h(z) = 3.2z(1 — z) lie in the
interval [0, 1].

4.6 In the text we stated that f(z) = —z3 has no eventually fixed
points (page 34). Explain why this is true.
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For each of the following functions, find all periodic points and
describe the stable sets of each. You may wish to use graphical
analysis.

a) g(z) = 5
b) E(z) = e — 1
c)plr) =222

d) r(z) = —% arctan

Let p be a fixed point of the function f(z) with prime period k.

a) Show that f(p), f2(p), ..., f*~1(p) are also periodic points of f
with prime period k.

b) Prove that W*(f(p)) = £(W*(p).)

Find a function f : [0,1] — [0, 1] with no fixed points and draw its
graph.

Find a continuous function f:[0,1] — [0,1] with exactly three
fixed points and draw its graph.

Find a continuous function f:(1,3) — (1, 3) that doesn’t have a
fixed point. Explain why this doesn’t contradict Theorem 4.2.

Draw a figure that illustrates the proof of Theorem 4.4. Use your
figure to explain the proof.

A function f has a fixed point at ¢ if (¢, ¢) is on the graph of f.
Suppose (a,b) is on the graph of f and a is a period 2 point of f.
What other point must be on the graph of f? Can you generalize
this to a period n orbit?

Find a continuous function of the real numbers that has a periodic
point of period 3 and indicate the periodic point.

* What other periodic points does the function have?

Hint: Choose the periodic orbit first. Use the fact that (a.b)
is on the graph of f if and only if f(a) = b and find a continuous
function whose graph goes through the appropriate points.
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Sarkovskii’s Theorem

Consider the function p(z) = —3z2+ Sz +1. It is easy to see that p(0) = 1,
p(1) = 2, and p(2) = 0. So {0,1,2} is an orbit with period three. It is
reasonable to ask how many other periodic points p(z) has and what prime
periods are represented. These questions are answered, at least in part, by
the following remarkable theorem:

THEOREM 5.1. If a continuous function of the real numbers has a pe-
riodic point with prime period three, then it has a periodic point of each
prime period. That is, for each natural number n there is a periodic point
with prime period n.

PROOF. Let {a,b,c} be a period three orbit of the continuous function f.
Without loss of generality, we assume a < b < ¢. There are two cases:
fla) = bor f(a) = c. We suppose f(a) = b. This implies f(b) = ¢ and
f(c) = a. The proof of the case f(a) = c is similar.

Let Iy = [a,b] and I; = [b,c]. The Intermediate Value Theorem im-
plies that f(lo) D I, f(I1) D I, and f(I;) D Iy. (See Exercise 2.16.)
Since f(I;) D I, Theorem 4.4 implies that f has a fixed point in I, that
is, f has a periodic point with prime period 1.

Now let n be a natural number larger than 1. We want to show that
f has a periodic point with prime period n. Since a has prime period 3,
the case n = 3 is done and we may assume that n # 3. To find an appro-
priate periodic point for n, we use a nested sequence of closed intervals,
L = Ay DAL DAy D--- D A,, with the following properties:
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(1) Ao =1,

(2) f(Ak) = Ak—l fOI‘ k = 1,2,...,71* 2
(3) fE(Ap) =1, for k=1,2,...,n— 2
(4) f*HAno) =Io

(5) fn(An) =1

We proceed by first showing that the existence of such a sequence of sets
implies that there is a point in A, with prime period n. We then show
that such a sequence exists.

Since A, C I, property (5) and Theorem 4.4 imply that f™ has a fixed
point in A,. Of course, this is equivalent to saying that f has a periodic
point p with period n in A,. We use the other four properties to show that
p has prime period n.

Let p be a periodic point in A, with period n. Since A, is in I;, we
know that p is in [} = [b,c]. We also note that property (3) implies that
the points f(p), f2(p), ..., f* %(p) are in I; = [b,c| and property (4)
implies that f*~1(p) is in Iy = [a,b]. We now show that p is not b or ¢
by contradiction. Suppose that p = ¢. Then f(p) = a, which is not in I;.
Since f™~!(p) is the only iterate of the first n iterates of p that isn’t in Iy,
it must be that n = 2. But this contradicts the fact that the prime period
of c is three, and so p # ¢. To see that p # b, we note that if p = b, then
n = 3 since f?(p) = a, which is not in I, and the only iterate of the first
n iterates of p that is not in I; is f™ 1(p). Since we have assumed that
n # 3, we conclude that p # b. The preceding arguments demonstrate that
p is not b or ¢ and so p must be in the open interval (b, c).

Since f*~1(p) is in Iy = [a,d], which is disjoint from (b,c), f*!(p) is
not equal to p and so p can’t have prime period n — 1. If the prime period
of p were less than » — 1, then property (3) and the fact that p is not b
or ¢ would imply that the orbit of p is contained entirely in (b, ¢), and this
would contradict property (4). So, p must have prime period n. Therefore,
if a sequence of closed sets with the required properties exists for n, then
there is a point p with prime period n.

To complete the proof of this theorem, we demonstrate that such a
sequence of closed sets exists for each natural number larger than 1. In
doing this, we will use the following lemma.

LeEMMA 5.2. Let J = [a,b] and I = [c,d] be closed intervals and let f be
a continuous function satisfying f(J) D I. Then there exists an interval
Jo such that Jo C J and f(Jo) = I.

This is an intuitively clear result the proof of which depends on the
continuity of f. It is easy to convince oneself of the truth of the lemma
by drawing suitable graphs. In particular, one quickly finds that it is
impossible to draw the graph of a continuous function for which the lemma
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wouldn’t hold. An analytic proof is outlined in Exercise 5.7 at the end of
this chapter.

Now, to complete the proof of the theorem, let n be a natural num-
ber larger than 1. We create the desired sequence and establish each of
the requirements in turn. Obviously, we can choose Ag so that Ag = I
and property (1) is satisfied. Since A9 = I; and f([1) D I, we have
f(Ag) D Ay, and so Lemma 5.2 implies there is A; contained in Ay such
that f(A;) = Ag. Then A; C A implies that f(A;) D A;. Consequently,
by Lemma 5.2 there is Ap C A; such that f(A2) = A;. We continue in
this manner and define Ay for k = 1,2,...,n — 2. In each case, we find Ax
contained in Ax_ so that f(Ax) = Ax_q for k = 1,2,...,n— 2 as required
by property (2). Notice that f(Ax) D Ax for each k, so Lemma 5.2 implies
that the process of defining the intervals A; can continue indefinitely. To
demonstrate that property (3) holds, we note that property (2) implies

F(Ax) = f(F(AR) = f(Ak-1) = Ak—2
FP(Ak) = F(fA(AR) = f(Ak-2) = Ar-3

FHAR) = F(F72(AR) = f(Ar-e-2) = f(A2) = 4
fHAR) = F(FFH(AR) = f(A1) = Ao = I

for each k = 1,2,...,n — 2, as required by (3). To define A, _; consistent
with property (4), we note that

fnﬁl(An—2) = f(fn—2(An—2)) = f(Il)~

Since f(I) D Iy, we know that f*~!(A4,_2) O I;. Hence, by Lemma 5.2
there is A, C A,_2 such that f*~1(A,_;) = Iy. Finally,

fH(An-1) = F(f*"H(An-1)) = f(Lo)

and f(lp) D I imply that f*(A,_1) D I;. Again using Lemma 5.2, we see
that thereis A, C A,_1 such that f*(A,) = I, as required by property (5),
and the proof is complete. [

As surprising as Theorem 5.1 might be, it is only a special case of a more
general theorem proven by A. N. Sarkovskii in 1964. This interesting and
beautiful result depends only on the continuity of the function in question
and should give pause to anyone who thinks that all of the really good
theorems using only elementary properties of functions were proven before
the dawn of the twentieth century.

In his theorem, Sarkovskii places an order on the integers that we define
here. The statement of the theorem follows the definition.
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DEFINITION 5.3. SARKOVSKII'S ORDERING. Sarkouvskii’s ordering of
the natural numbers is

3-=5>T7T»-+>2-3>2-5>2-7T>---
922,35 22555227 . = 2" .3 2" .5 - 2" T - .
e 23025 2 1.

The relation a > b indicates a precedes b in the order. When writing
the order, all odd numbers except one are listed in ascending order, then
two times every odd, then four times every odd, and so on. The order is
completed by listing the powers of two in descending order. Every natural
number can be found exactly once in Sarkovskii’s ordering.

THEOREM 5.4. [SARKOVSKIL, 1964] Suppose that f is continuous func-
tion of the real numbers and that f has a periodic point with prime period n.
If n = m in Sarkouvskii’s ordering, then f also has a periodic point with
prime period m.

While the proof of Sarkovskii’s Theorem uses no tools that are not used
in the proof of Theorem 5.1, it is somewhat longer. In spirit it is much
the same. Essentially, we show that if n > m, then the existence of a
prime period n point implies the existence of a sequence of closed intervals
I, In, ..., I, such that f(;) D I41 for all i < m and f(I) D I
Then Theorem 4.4 implies there is a period m point in I;. If one of the
intervals is disjoint from all of the other intervals, then there is a point
with prime period m. The key then is to find these intervals ;. Rather
than write the proof out in detail here, we refer the reader to the proof by
Huang on pages 91-102 of the April 1992 issue of Mathematics Magazine.
Huang’s exposition is clear and complete. A similar proof can be found in
Devaney’s text, Introduction to Chaotic Dynamics, which is listed in the
references. Both authors demonstrate that Sarkovskii’s Theorem is sharp
by constructing continuous functions that have period five points, but no
period three points. The technique used allows for the construction of a
continuous function that has a periodic point with prime period n and no
periodic point with prime period that precedes n in the Sarkovskii ordering.

In addition to implying the existence of orbits with prime periods lower
than that of a known orbit, Sarkovskii’s Theorem can be used to show that
points with certain periods do not exist. For example, in Figure 5.1 the
graphs of h(z) = 3.22(1 — z), h*(z) and h*(z) are shown.

In the first graph, we see that h has fixed points at 0 and near .7. In
the second graph, we see the fixed points again, and a period two orbit
near .5 and .8. In the third graph, we see that the only period four points
are at 0 and near .7, .5, and .8. That is, A has no prime period four
orbits. Therefore, we can conclude that h has no orbits with prime period
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FIGURE 5.1. The graphs of h(z) = 3.2z(1 — z), h?*(z),
and h'(z).

other than 2 and 1, since those are the only two numbers less than 4 in
the Sarkovskii ordering. We should note that, as was demonstrated in
Exercise 4.5, all of the periodic points of h lie in the interval [0, 1], so we
do not need to graph any other portion of the function.

Exercise Set 5

5.1

5.2

5.3

5.4

Let I; and Iy be as described in the proof of Theorem 5.1. Use the
Intermediate Value Theorem to show that f(Iy) D I, f(I1) D I,
and f(Il) D I.

Demonstrate the existence of an orbit of h(z) = 4z(1 — z) with
prime period three. What does Sarkovskii’s Theorem tell us about
the periodic points of h(z)?

Hint: Use a computer graphics package to look at the graphs
of h and h3.

Show that f(x) = =* arctan(z) does not have a point with prime
period 32. What are the possible prime periods of periodic points
of f7

Hint: Use a computer graphics package to look at the graphs
of the iterates of f.

Suppose that Iy, I, Iz, ..., I, are closed intervals and f is a
continuous function such that f(I;) D Ix4y for 0 <k <n—1.

a) Show that I contains a sequence of closed intervals 4g D A; D
A2 D+ D Ap_; such that f*(Ay) =Ix for 1<k <n-—1.
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5.

5.5

5.6

x5.7

Sarkovskii’s Theorem

b) Show that there is a point zq in Iy such that f*(z¢) is in I; for
0<i<n-1.

¢) Prove that if f(I,—1) D Ip, then f has a periodic point in Iy
with period n.

d) Prove that if f(I,—1) D Io and I is disjoint from the other
intervals, then f has a point with prime period n in Ip.

Let f: R — R be continuous, n > 3, and z1, 22, ...,Z, be points
such that ;1 < zo < -+ < z,. Show that if f(z;) = z;4+1 for
1 =1,2,...,n—~1 and f(xz,) = 1, then f has points with all
prime periods.

a) Let f:I — I be a continuous function of the interval I and
suppose f has a periodic point with prime period three in I. Show
that f has periodic points of all orders in /.

Hint: Extend f to a continuous function of the real line.

b) Let I be an interval. State and prove an analog of Sarkovskii’s
Theorem for f : I — I. You may assume Sarkovskii’s theorem.

Prove Lemma 5.2.

Hint: Let z¢ be a point in [a, b] such that f(zo) = ¢. Without
loss of generality, we can assume there is y in [zg,b] such that
f(y) = d. (Explain why we can do this.) Let z3 be the greatest
lower bound of the set {y in [zg,b] | f(y) = d} and z, be the
least upper bound of the set {z in [zg,z2] | f(z) = c¢}. Show that

f(z1, z2]) = [, d].
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Differentiability and
Its Implications

In many cases, the functions we consider are differentiable. In this chapter
we examine the dynamical information contained in the derivative of the
function.

DEFINITION 6.1. Let I be an interval, f: I — R, and let a be a point
in I. The function is differentiable at a if the limit

1o f@) = f(a)
T—a T —a
exists. In this case, we say f is differentiable at a and denote the limit

as f'(a) or the derivative of f at a. A function is differentiable if it is
differentiable at each point in its domain.

Recall from calculus that a function that is differentiable at a point
is also continuous at that point. An important property of differentiable
functions, which we will often exploit, is the Mean Value Theorem.

THEOREM 6.2. MEAN VALUE THEOREM. Let f : [a,b] — R be differ-
entiable on [a,b]. Then there ezists ¢ in [a,b] such that

f(b) = f(a) = f'(c)(b — a).

After examining a few graphs, the reader will realize that the Mean Value
Theorem is an intuitively clear result. A proof can be found in any good
calculus text. We use the Mean Value Theorem to get another result about
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fixed points. Theorem 4.2 states that every continuous function that maps
a closed interval back into itself has at least one fixed point. If the function
is differentiable on the closed interval and the value of the derivative is less
than one in absolute value, we get a much stronger result.

THEOREM 6.3. Let I be a closed interval and f : I — R be a differen-
tiable function satisfying f(I) C I and |f'(z)| < 1 for all z in I. Then f
has a unique fized point in I. Moreover, if x and y are any two points in
I andz #y, then |£(z) — f(y)| < |z — .

In the hypothesis of Theorem 6.3, we ass