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Abstract

In many data broadcasting applications clients are grouped into several groups, each one located at a different region, with the mem-
bers of each group having similar demands. This paper proposes a mechanism that exploits locality of demand in order to increase the
performance of wireless data dissemination systems. It trades the received energy per bit redundancy at distances smaller than the radius
of the service area for an increased bit rate and thus increased transmission speed for items demanded by clients at such distances. The
paper focuses on performance optimization of clients located around the geographical area of interest. It does so by protecting degra-
dation caused by clients that are located elsewhere and demand the same information items with clients inside that area. Simulation
results are presented that reveal significant performance improvement for clients located around the area of interest.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Data broadcasting has emerged as an efficient means for
the dissemination of information over asymmetric wireless
networks [1]. Examples of data broadcasting applications
are traffic information, weather information, and news dis-
tribution systems. In such applications, client needs for
data items are usually overlapping. Consequently, broad-
casting stands to be an efficient solution, as the broadcast
of a single information item will likely satisfy a (possibly
large) number of client requests. A possible example of this
case could be the case of traffic information systems. It is
logical to assume that users demand traffic information
regarding the area around their current position.
0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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In a wireless data dissemination system, the transmis-
sion power of the broadcast server determines the service
area. Thus, if one wants to provide data dissemination ser-
vices in an area of radius R, transmission power must be set
at such a level that guarantees the necessary energy per bit
to noise density per Hz (Eb/N0) ratio for clients located at
the border of the service area. However, in wireless cellular
environments the path loss of wireless signals is a 1/d n type
loss with a typical n P 4 [9]. This fact creates an increasing
redundancy in the Eb/N0 figure for clients at distances
d < R from the antenna.

This paper proposes a mechanism that exploits locality
of demand in order to increase the performance of wireless
data dissemination systems. Locality of demand means
that clients are grouped into groups each one located at a
different place. Additionally, members of each group have
similar demands different from those of clients at other
groups. The proposed approach can trade the Eb/N0 redun-
dancy at clients in groups at distances d < R for an
increased bit rate for the broadcast of the items demanded
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Fig. 1. Convergence of automaton estimation of the demand of an item.
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by these groups. Knowledge of client positions is conveyed
to the server via a simple feedback pulse from the clients, a
mechanism that was used in [6] in order to provide adaptiv-
ity to dynamic client demands. Additionally, a simple
mechanism is introduced that protects performance around
the geographical area of interest from degradation caused
by clients that are located elsewhere and demand the same
information items with clients inside that area.

The remainder of this paper is organized as follows:
Section 2 presents the proposed system. Simulation results
which reveal the performance superiority of the proposed
approach to that of the fixed rate adaptive wireless push
scheme of [6] and the variable rate on of [7] in environ-
ments with locality of demand are presented in Section 3.
Finally, Section 4 summarizes and concludes the paper.

2. The variable bit rate adaptive wireless push system with

regional performance improvement

2.1. The Learning Automaton-based broadcast server

Learning Automata [10–13] are structures that can
acquire knowledge regarding the behavior of the environ-
ment in which they operate. In the area of data network-
ing Learning Automata have been applied to several
problems, including the design of self-adaptive MAC
protocols [14–17].

In the fixed rate adaptive wireless push system [6], which
enhanced the non-adaptive one of [4], the server is
equipped with an S-model Learning Automaton that
contains the server’s estimate pi of the demand probability
di for each data item i among the set of the items the server
broadcasts. Clearly,

PN
i¼1di ¼ 1, where N is the number of

items in the server’s database. At each cycle, the server
selects to transmit the item i that maximizes the cost func-
tion GðiÞ ¼ ðT � RðiÞÞ2 di

li
ð1þEðliÞ

1�EðliÞÞ, 1 6 i 6 N, where T is the
current time, R (i) the time when item i was last broadcast,
li is the length of item i and E (li) is the probability that an
item of length li is erroneously received. For items that
have not been previously broadcast, R (i) is initialized to
�1. If the maximum value of G (i) is shared by more than
one item, the algorithm selects one of them arbitrarily.
Upon the broadcast of item i at time T, R (i) is changed
so that R (i) = T.

After the transmission of item i, the broadcast server
awaits for an acknowledging pulse from every client that
was waiting item i. The aggregate received pulse power is
used at the server to update the Automaton. The probabil-
ity distribution vector p maintained by the Automaton esti-
mates the demand probability di (and thus the popularity)
of each information item i. For the next broadcast, the
server chooses which item to transmit by using the updated
vector p.

When the transmission of an item i does not satisfy any
waiting client, the probabilities of the items do not change.
However, following a transmission that satisfies clients, the
probability of item i is increased. The following Liner
Reward-Inaction (LR-I) probability updating scheme [11]
is employed after the transmission of item i (assuming it
is the server’s kth transmission).

pjðk þ 1Þ ¼ pjðkÞ � Lð1� bðkÞÞðpjðkÞ � aÞ; 8j 6¼ i;

piðk þ 1Þ ¼ piðkÞ þ Lð1� bðkÞÞ
X
i6¼j

ðpjðkÞ � aÞ; ð1Þ

where pi (k) 2 (a, 1) "k and L,a 2 (0,1). Parameter a pre-
vents the probabilities of non-popular items from taking
values in the neighborhood of zero and thus increases the
adaptivity of the Automaton. b (k) is the environmental re-
sponse and is represented by the sum of the received feed-
back pulses after the server’s kth transmission. After
normalization the value of b (k) lies in the interval [0, 1].

The normalization procedure needs a mechanism that
will enable the server to possess an estimate of the number
of clients under its coverage. This is achieved by the broad-
casting of a control packet that notifies all clients in the ser-
vice area of the antenna to respond with a feedback pulse.
The server will use this aggregate received pulse to estimate
how many clients are within its coverage area. However, as
the signal strength of each client’s pulse at the server suffers
a 1/dn type path loss (with a typical n = 4 [9]), the feedback
pulses of clients must be power controlled. To this end,
every information item will be broadcast including infor-
mation regarding the signal strength used for its transmis-
sion and acknowledging clients set the power of their
feedback pulse to be the inverse of the ratio (signal strength
of the received item)/(signal strength of the item transmis-
sion). Using this form of power control, the contribution of
each client’s feedback pulse at the server will be the same
regardless of the client’s distance from the antenna.

Using the described scheme, the item probabilities esti-
mated by the automaton converge to the actual demand
probabilities for each information item. Via simulation,
this convergence is shown in Fig. 1 for a randomly selected
information item. Overall client demand for the item is
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initially unknown to the server. It can also be seen that they
are of a dynamic nature as well: at some time instant, the
initial overall demand probability for the selected item (sol-
id line) changes to a new one (dashed line). It is clearly
seen, that convergence of the item probability estimated
by the automaton to the overall client demand for this item
is achieved. Moreover, simulation results in [6] and [18]
have demonstrated efficient operation in environments
characterized by dynamic and a-priori unknown to the
server, client demands.

2.2. The bit rate variation mechanism

To the authors’ knowledge, locality of demand has not
been taken into account in related research; on the con-
trary, clients are assumed to be uniformly distributed inside
the service area and generally make item requests using the
same or similar patterns (e.g. [4,6]). In many cases however,
clients are grouped into several groups located at different
places with the clients of each group having similar
demands, different from those of clients at other groups.

The method proposed in [7] aims in taking advantage of
locality of demand. It does so by acknowledging that in a
typical data broadcasting application (and generally in
wireless cellular systems), service area is an area of certain
radius R inside which mobile clients are able to receive
information items while experiencing a Bit Error Rate
(BER) below or equal to a certain requirement value.
The size of the service area depends on a number of param-
eters, such as the type of modulation that is used, the bit
rate, the server’s transmission power and noise density
per Hz and is determined by a simple rule stating that its
border is where the received energy per bit Eb divided by
the noise density per Hz N0 equals a certain constant A.
The value of A is determined so that the Eb/N0 ratio results
to a BER below or equal to a set requirement. Thus at the
border of the service area it stands that:

Eb

N 0

¼ A) Eb ¼ A0; ð2Þ

where A 0 = AN0.
Since Eb = TbSR, where SR is the received power at dis-

tance R from the antenna and Tb is the bit duration, we can
rewrite the above relation as:

T bSR ¼ A0. ð3Þ
Finally, since in wireless cellular environments the path loss
of wireless signals at distance d is a 1/dn type loss (with a
typical value of n P 4), (3) can be expressed as:

R�nT b ¼ A0. ð4Þ
In fixed bit rate systems, clients inside the service area (at
distance d < R) experience even lower BERs than those
required due to smaller distance from the antenna. Thus,
for such clients it holds that Eb > A 0 and therefore
d�nTb > A 0. Assume that there exists locality of demand,
as defined earlier. Then we can exploit the above
mentioned redundancy in the received BER by dynamically
reducing the Tb parameter for each information item i so
that it always holds that d�nTb (d) = A 0, where d is the dis-
tance of the group of clients that access item i.

Based on the above reasoning, the adaptive system of [6]
is enhanced by [7] as follows: each information item com-
prises a header that contains information that uniquely
identifies the item. All item headers are always broadcast
with the default Tb value, while the Tb value for the main
item payload can be altered by the server. After the trans-
mission of item i, the server waits for acknowledgment
pulses from all mobile clients that were satisfied by this
transmission. Since we consider groups of clients having
the same interests, acknowledgment pulses for a certain
item will be from a group of collocated clients and there-
fore arrive together at the server. The server monitors the
time elapsed from the broadcast of item i until the aggre-
gate pulse is received and uses this information to calculate
the distance d of the group of clients from the antenna.
When it broadcasts the next instance of this item the bit
duration that will be used, Tb (d), will be such that satisfies
the requirement that d�nTb (d) = A 0. Change of the bit
duration is not a problem for the mobile client, as it can
be informed of this via piggybacking of the new bit dura-
tion in the item header, which is always broadcast with
the default Tb value.

As far as acknowledgment pulses are concerned, a client
responds to the server via such a pulse if it demands item i

and successfully receives i’s header. We explain that this
provides support for clients that may have broken away
from the main group and are located further away from
the antenna than the main group. Assume that such a client
C, at a distance d1 receives only the header of i due to the
fact that the main item payload has been transmitted with a
bit rate determined by the location of the main group,
which is closer to the antenna. In that case the server will
receive more than one feedback pulses, one corresponding
to the main group and one from C. In order to prevent C
from starvation, the server will schedule the broadcast of
the next instance of item i according to the feedback pulse
of C (thus the client further away). This enables the client
further away from the group to successfully receive item i

when it is next broadcast. At the next broadcast of item
i, C will successfully receive the item. However, this time
C will not transmit a feedback pulse so as not to acknowl-
edge twice reception of one instance of item i, a fact that
would provide inaccurate information regarding demand
for item i to the probability updating scheme.

2.3. Performance increase around the area of interest

However, the scheme of [7] with acknowledging clients
located further away from the main group can cause
significant performance degradation for the main group
of clients. This is because acknowledging clients further
away will raise the bit duration for the information items
demanded by them (and also the main group) and
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Fig. 2. Demand probability produced by the Zipf distribution for different
values of h.
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consequently lower the average response time of clients in
the main group. Therefore, a mechanism is needed in order
to protect the increased performance around the geograph-
ical area of interest for a certain application (thus the per-
formance of the main group) while also ensuring that
clients further away are not subject to starvation. A simple
and acceptable solution would be for the server to allow a
client further away from the main group to define the bit
duration for subsequent transmissions with a probability
inversely proportional to the distance of the client from
the main group. Thus, clients very far away from the main
group whose feedback will greatly raise the bit duration
will rarely be taken into account for determination of sub-
sequent bit durations. On the other hand, clients close to
the main group whose feedback will cause a smaller
increase on bit duration will be taken into account for
determination of subsequent bit durations more frequently.
This is also logical from the point of view of the client fur-
ther away: the less is its distance from the main group, the
greater is its opportunity of receiving service. Simulation
results in the next section show significant performance
improvement for the main client groups.

3. Performance evaluation

In order to assess the performance increase offered by
the proposed system (denoted by S3 in the figures) in areas
with locality of demand, we used simulation to compare it
to the fixed bit rate system of [6] (denoted by S1 in the fig-
ures) and that of [7] (denoted by S2 in the figures). In S2,
the bit duration for the subsequent broadcast of an infor-
mation item is always defined by the acknowledging client
further away. The comparison is made in an environment
characterized by client demands that are a-priori unknown
to the server and location dependent.

3.1. Server model

We consider a broadcast server having a database of
equally sized Dbs data items. The server is initially unaware
of the demand for each item, so initially every item has a
probability estimate pi of 1/Dbs. In the fixed bit rate sys-
tem, the server broadcasts all items with the same bit rate.
In the variable rate system however, the server determines
the bit rate to use for each item according to the proposed
scheme. Page lengths vary from L0 = 1 to L1 = 10 accord-
ing to a random distribution where page lengths are ran-
dom integers uniformly distributed in [L0..L1].

3.2. Client model

We consider a client population of ClNum clients that
have no cache memory, an assumption also made in other
similar research (e.g. [4] and [6]). Clients are grouped into G
groups each one of which is located at a different distance
from the antenna and outside the antenna’s near field. Any
client belonging to group g,1 6 g 6 G is interested in the
same subset Secg of the server’s database. All items outside
this subset have a zero demand probability at the client.
Finally, Seci „ Secj,"i, j 2 [1..G], i „ j, which means that
there do not exist common demands between any two cli-
ents belonging to different groups.

Assume that such a subset comprises Num pages. The
demand probability di for each item in place i in that sub-
set, is computed according to the Zipf distribution, which is
used in other papers dealing with data broadcasting as well
[2–8]:

di ¼ c
1

i

� �h

; where c ¼ 1
X

k

1

k

� �h

; k 2 ½1..Num�
,

;

ð5Þ
where h is a parameter named access skew coefficient.
For h = 0, the Zipf distribution reduces to a uniform dis-
tribution of demand for the items in that range. For
large values of h, the Zipf distribution produces increas-
ingly skewed demand patterns. The Zipf distribution can
thus efficiently model applications that are characterized
by a certain amount of commonality in client demands.
For a database comprising 150 items, the demand prob-
abilities per item for different values of h in [1..150] are
shown in Fig. 2.

Client placement takes place among LP different dis-
tance points outside the antenna’s near field, with the max-
imum distance corresponding to the coverage radius of the
system. Members of a group g are initially located at a dis-
tance Locg. To simulate some ‘‘noise’’ in client placement,
we introduce the parameter Dev, which determines the per-
centage of clients that deviate from initial client placement.
For every client, a coin toss, weighted by Dev, is made. If
the outcome of the toss states that the client is to deviate
from the initial client placement then its position is changed
to a new one selected in a uniform manner from the inter-
val [1..LP].
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3.3. The simulation environment

We performed our experiments with an event-driven
simulator coded in C. The simulator models the ClNum

mobile clients, the broadcast server and the server–client
links as separate entities. We assume that the broadcast
server’s antenna is at the center of the circular cell and a
path loss model of 1/dn. In order to model different
group sizes, we also calculated the size of each group g

via the above mentioned Zipf distribution governed by
parameter h1.

Assume that any client located at distance d receives
items with Eb = Th. In the fixed bit rate system every item
being broadcast is assumed to be correctly decoded at the
mobile clients. As was mentioned earlier, item headers are
broadcast with the default bit rate and are thus assumed
to be always correctly decoded by clients in the variable
rate system as well. Item payloads however are correctly
decoded by clients in the variable rate system if and only
if they arrive at the demanding clients with an Eb figure
being at least equal to Th.

The simulation is carried out until at least N item broad-
casts have been made. Finally, the overhead due to the
duration of the feedback pulse and the signal propagation
delay is considered to be very small compared to the item
transmission time (parameter Ovh), as would happen in
low-speed broadcasting applications spanning an area of
several kilometers.

3.4. Simulation results

The simulation results presented in this section were
obtained with the following parameters values: n = 4,
Dbs = 150, ClNum = 10000, G = 5, Sec1 = [0..59], Sec2 =
[60.104], Sec3 = [105..119], Sec4 = [120..134], Sec5 =
[135..149], LP = 100, N = 106, Ovh = 10�3, L = 0.15, and
a = 10�4. Figs. 3–8 compare the performances offered by
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the various schemes to client groups located around
the area of interest of an application characterized by
locality of demand (thus the mean performance among
‘‘main groups’’). Unit of count is the duration for transmis-
sion of a unit length information item by the fixed rate
system. Comparison is made in four different environ-
ments, N1, N2, N3, and N4. The parameters of these
environments are:

(1) N1: Loc1 = 10, Loc2 = 30, Loc3 = 50, Loc4 = 70,
Loc5 = 90, Dev = 0.2.

(2) N2: Loc1 = 10, Loc2 = 30, Loc3 = 50, Loc4 = 70,
Loc5 = 90, Dev = 0.3.

(3) N3: Loc1 = 90, Loc2 = 70, Loc3 = 50, Loc4 = 30,
Loc5 = 10, Dev = 0.2.

(4) N4: Loc1 = 90, Loc2 = 70, Loc3 = 50, Loc4 = 30,
Loc5 = 10, Dev = 0.3.
The main conclusions that are drawn from the figures
are:

• For all schemes (S1, S2, and S3), the performances of
clients around the area of interest improve for increas-
ing values of the data skew parameter h. This is
expected behavior [6,18], as the Learning-Automaton
adaptation mechanism manages to learn the actual
demand probabilities of the various information items
and use these values on the selection of the item to
broadcast.

• The performances of clients around the area of inter-
est of the adaptive variable bit rate systems (S2 and
S3) are superior to that of the fixed bit rate one of
[6] (S1). This is due to the fact that in the adaptive
system bit rate is not fixed but dynamically deter-
mined by client distance from the antenna; thus many
items are transmitted much faster than in the fixed bit
rate system resulting to the overall performance
increase.

• The performance of the proposed adaptive variable
rate system that optimizes response time for client
groups located around the area of interest (scheme
S3) significantly outperforms the performances of
the other schemes. This is due to the fact that the
bit rate for groups located near the antenna is rarely
affected by acknowledgments of clients further away
and thus remains small most of the time. This has
also been confirmed by our simulation results. For
example, for h = 1 and h1 = 1, in environment N1

the mean bit duration (normalized to the bit duration
of the fixed rate system) is 0.72 for S2 and 0.09 for
S3.

• When the size of the groups that are located far
away from the antenna increases (e.g., the case of
(a) N1 and N2 for h1 = 0 compared to N1 and N2

for h1 = 1, (b) N3 and N4 for h1=1 compared to
N1 and N2 for h1 = 0, respectively), the performance
of S3 starts to degrade. This is due to the fact that
larger distances from the antenna for the main
groups give rise to a higher mean bit duration. For
example, for h = 1, h1 = 0 in environment N1 the
mean bit duration (normalized to the bit duration
of the fixed rate system) is 0.22 whereas for h = 1,
h1 = 1 in environment N3 it is equal to 0.39. Howev-
er, the performance of S3 remains significantly supe-
rior to that of S2 due to the fact that in S2 the
mean bit duration for items demanded by groups
close to the antenna is still protected from acknowl-
edging clients that are located further away. This of
course does not hold for S2.

• The performance degradation described above is not
observed for S2 for h1 = 1 in N3 and N4 compared
to N1 and N2, respectively. This is because the slight
performance decrease (due to the higher mean bit
duration caused by the larger groups of clients located
further away) is counter measured by the fact that
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overall demand skewness (overall h) increases. This is
because for h1 = 1, in N3 and N4 the sizes of these
groups become a lot larger than the sizes of those
of groups located closer to the antenna. Thus, an
increasing majority of clients are interested in certain
database subsets which is translated in overall increase
in demand skewness and consequently a certain
amount of performance gain.
4. Conclusion

This paper proposed a mechanism that exploits local-
ity of demand in order to increase the performance of
wireless data dissemination systems. It trades the Eb

redundancy at a distance smaller than the coverage radi-
us, for an increased bit rate for transmission of items
demanded by client groups at this distance. Moreover,
it protects performance from degradation caused by indi-
vidual clients that demand the same information items
with those demanded by client groups located elsewhere.
Simulation results have been presented that reveal signif-
icant performance improvement for clients located
around the area of interest.
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