
Multiuser Broadcast Erasure Channel with
Feedback — Capacity and Algorithms

Marios Gatzianas∗, Leonidas Georgiadis∗ and Leandros Tassiulas†

∗Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki,
Thessaloniki, 54 124, Greece.

†Computer Engineering and Telecommunications Department, University of Thessaly, Volos, 38 221, Greece.

Abstract

We consider theN -user broadcast erasure channel where feedback from the users is fed back to the transmitter
in the form of ACK messages. We provide a generic outer bound to the capacity of this system and propose a coding
algorithm that achieves this bound for an arbitrary number of users and symmetric channel conditions, assuming
that instantaneous feedback is known to all users. Removing this assumption results in a rate region which differs
from the outer bound by a factorO(N2/L), whereL is packet length. For the case of non-symmetric channels, we
present modifications of the previous algorithm whose achievable region is identical to the outer bound forN ≤ 3,
when instant feedback is known to all users, and differs from the bound byO(N2/L) when each user knows only
its own ACK. The proposed algorithms do not require any prior knowledge of channel statistics.

I. INTRODUCTION

Broadcast channels have been extensively studied by the information theory community since their introduction
in [1]. Although their capacity remains unknown in the general case, special cases have been solved, including the
important category of “degraded” channels [2]. Another class of channels that has received significant attention
is erasure channels, where either the receiver receives the input symbol unaltered or the input symbol is erased
(equivalently, dropped) at the receiver. The latter class is usually employed as a model for lossy packet networks.
Combining the above classes, a broadcast erasure channel (BEC) is a suitable abstraction for wireless communica-
tions modeling since it captures the essentially broadcast nature of the medium as well as the potential for packet
loss (due to fading, packet collision etc). Since this channel is not necessarily degraded, the computation of its
feedback capacity region is an open problem. Numerous variations of this channel, under different assumptions,
have been studied, a brief summary of which follows.

For multicast traffic, an outer bound to the capacity region of erasure channels is derived in [3], in the form of
a suitably defined minimum cut, and it is proved that the bound can be achieved by linear coding at intermediate
nodes. The broadcast nature is captured by requiring each node to transmit the same signal on all its outgoing
links, while it is assumed that the destinations have complete knowledge of any erasures that occurred onall
source-destination paths. In a sense, [3] is the “wireless” counterpart to the classical network coding paradigm of
[4], since it carries all the results of the latter (which were based on the assumption of error-free channels) into
the wireless regime.

The concept of combining packets for efficient transmission based on receiver feedback is also used in [5]
where broadcast traffic is assumed and a rate-optimal, zero-delay, offline algorithm is presented forN = 3. Online
heuristics that attempt to minimize the decoding delay are also presented. Reference [6] expands on this work by
presenting an online algorithm that solves at each slot a (NP-hard) set packing problem in order to decide which
packets to combine. This algorithm also aims in minimizing delay.

Multiple unicast flows, which are traditionally difficult to handle within the network coding paradigm, are studied
in [7] for a network where each source is connected to a relay as well as to all destinations, other than its own,
and all connections are modeled as BECs. A capacity outer bound is presented for arbitraryN and is shown to
be achievable forN = 3 and almost achievable forN = 4, 5. The capacity-achieving algorithm operates in two
stages with the relay having knowledge of the receiver message side information at the end of the first stage but
not afterward (i.e. once the second stage starts, the relay does not receive feedback from the receivers).

A similar setting is studied in [8], where ACK-based packet combining is proposed and emphasis is placed on
the overhead and complexity requirements of the proposed scheme. An actual implementation of the use of packet
XORing in an intermediate layer between the IP and 802.11 MAC layers is presented and evaluated in [9], while

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

1

[10] proposes a replacement for the 802.11 retransmission scheme based on exploiting knowledge of previously
received packets.

This report expands upon earlier work in [11] (which studied the caseN = 2) and is sufficiently different from
the aforementioned work in that, although it also uses the idea of packet mixing (similar to the network coding
sense), it provides explicit performance guarantees. Specifically, an outer bound to the feedback capacity region
for multiple unicast flows (one for each user) is computed and two online algorithms are presented that achieve
this bound for the following settings, respectively: an arbitrary number of usersN with symmetric channels (this
concept will be defined later), and 3 users with arbitrary channel statistics. For the second setting, three, essentially
equivalent, algorithm variations are presented.

The algorithms do not require any knowledge of channel parameters (such as erasure probabilities) or future events
so that they can be applied to any BEC. They use receiver feedback to combine packets intended for different users
into a single packet which is then transmitted. The combining scheme (i.e. choosing which packets to combine and
how) relies on a set of virtual queues, maintained in the transmitter, which are updated based on per-slot available
receiver ACK/NACKs. This queue-based coding concept has also been used in [12], albeit for broadcast traffic
with stochastic arrivals where the stability region of the proposed algorithm becomes asymptotically optimal as the
erasure probability goes to 0, whereas we consider systems with an arbitrarily fixed number of packets per stream
where the capacity is achieved for arbitrary values of erasure probability.

This document is structured as follows. Section II describes the exact model under investigation and provides
the necessary definitions in order to derive the capacity outer bound in Section III. The first coding algorithm,
namedCODE1, is presented in Section IV, which also contains a discussion of the intuition behind the algorithm,
its correctness and optimal performance for symmetric channels. The overhead required for sending feedback
information to the receivers and the corresponding reduction in the achieveable region are also addressed. Section V
contains three modifications, namedCODE2 throughCODE4, of the previous algorithm that achieve capacity for 3
users under arbitrary channels and differ only in their implementation, while Section VI concludes the report. The
proofs of all stated results are gathered in the Appendix.

II. SYSTEM MODEL AND DEFINITIONS

Consider a time slotted system where messages (packets) of lengthL bits are transmitted in each slot. We
normalize to unity the actual time required to transmit a single bit so that the time interval[(l − 1)L lL), for
l = 1, 2, . . . , corresponds to slotl. The system consists of a single transmitter and a setN

△
= {1, 2, . . . ,N} of

receivers, while there exists at the transmitter a distinct stream of unicast packets for each receiver. We denote with
Ki the set of packets intended for receiver (i.e. user)i. The channel is modeled as broadcast erasure so that each
broadcast packet is either received unaltered by a user or is dropped (i.e. the user does not receive it), in which
case an erasure occurs for the user. This is equivalent to considering that the user receives the special symbolE,
which is distinct from any transmitted symbol. Hence, each user knows whether an erasure has occurred or not by
examining its received symbol.

Define Zi,l
△
= I[useri receivesE in slot l], whereI[·] denotes an indicator function, and consider the random

vector Zl = (Z1,l, Z2,l, . . . , ZN,l). The sequence{Z l}
∞
l=1 is assumed to consist of iid vectors (we denote with

Z = (Z1, . . . , ZN) the random vector with distribution equal to that ofZl) although, for a fixed slot, arbitrary
correlation between user erasures is allowed. For any index setI ⊆ N , we define the probability that an erasure
occurs to all users inI as

Pr (Zi = 1, ∀ i ∈ I)
△
= εI , (1)

where, by convention, it holdsε∅ = 1. For simplicity, we writeεi instead ofε{i} and assumeεi < 1 to avoid
trivial cases.

According to the introduced notation, when the transmitter, at the beginning of slotl, broadcasts symbolXl,
each useri receives symbolYi,l given by

Yi,l = Zi,lE + (1 − Zi,l)Xl, (2)

where we denoteY l
△
= (Yi,l)i∈N . At the end of each slotl, all users inform the transmitter whether the packet

was received or not, which is equivalent to each useri sending the value ofZi,l through an error-free control
channel. In information-theoretic terms [13], the broadcast channel is described by the input alphabetX , the output

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

2

alphabetsY1,Y2, . . . ,YN for users1, 2 . . . ,N , respectively, and the probability transition functionp(Y l|Xl). Due
to the memoryless property, the transition probability function is independent ofl and can be written asp(Y |X).
In the rest of this document, we setX = Fq, with Fq a suitable field of sizeq, so that by definition of erasure
channel it holdsYi = X ∪ {E} for all i ∈ N .

A channel code(2nR1 , . . . , 2nRN , n) for the broadcast channel with feedback consists of the following components

• message setsWi of size2nRi for each useri ∈ N . DenoteW = (W1, . . . ,WN) ∈ W1 × . . . ×WN .
• an encoder that at slotl transmits symbolXl based on the value ofW and all previously gathered feedback

Y
l−1 △

= (Y 1, . . . ,Y l−1). X1 is a function ofW only.
• N decoders, one for each useri ∈ N , represented by the functionsgi : Yn

i → Wi.

A decoding error occurs with probabilityPe = Pr (∪i∈N{gi(Y
n
i) 6= Wi}), whereY n

i
△
= (Yi,1, . . . , Yi,n). A rate

R = (R1, . . . , RN) is achievable if there exists a sequence of channel codes(2nR1 , . . . , 2nRN , n) such thatPe → 0
asn → ∞. Finally, the capacity region of this system is defined as the closure of the set of achievable rates.

The following definition, introduced in [2], will be useful in deriving the outer bound for the capacity of the
broadcast erasure channel.

Definition 1: A broadcast channel(X , (Yi)i∈N , p(Y |X)) with receiver setN is physically degraded if there
exists a permutationπ on N such that the sequenceX → Yπ(1) → . . . → Yπ(N) forms a Markov chain.
A generalization toN users of the 2-user proof in [14] provides the following remarkable result.

Lemma 1:Feedback does not increase the capacity region of a physically degraded broadcast channel.
We now have all necessary tools to compute the actual capacity outer bound.

III. C APACITY OUTER BOUND

The derivation of the capacity outer bound is based on a method similar to the approaches in [15]–[17]. We
initially state a general result on the capacity of broadcast erasure channelswithout feedback[18].

Lemma 2:The capacity region (measured in information bits per transmitted symbol) of a broadcast erasure
channel with receiver setN and no feedback is

Cnf =

{

R ≥ 0 :
∑

i∈N

Ri

1 − εi
≤ L

}

. (3)

We denote withC the channel under consideration and, for an arbitrary permutationπ on N , introduce a new,
hypothetical, broadcast channelĈπ with the same input/output alphabets asC and an erasure indicator function of

Ẑπ(i),l =
i∏

j=1

Zπ(j),l ∀ i ∈ N , (4)

while the output of userπ(i) in slot l for Ĉπ is given by

Ŷπ(i),l = Ẑπ(i),lE + (1 − Ẑπ(i),l)Xl. (5)

In words, a userπ(i) erases a symbol in channelĈπ if and only if all usersπ(j), with j ≤ i, erase the symbol
in channelC. This occurs with probabilitŷεπ(i)

△
= ε∪i

j=1
{π(j)}. Equivalently, a userπ(i) in Ĉπ receives the input

symbol successfully as long as at least one userπ(j), with j ≤ i receives it inC. In a sense, each userπ(i) sends
its outputŶπ(i) to userπ(i + 1) (through a virtual error-free and zero-delay channel as shown in Fig. 1), which in
turn sends it to the next “downstream” user.

Denote withỸπ(i) the symbol (viewed as a random variable) that appears at the output of channelĈπ as input
to userπ(i), while Ŷπ(i) is the “final” symbol seen by userπ(i) and computed recursively as follows

Ŷπ(1) = Ỹπ(1),

Ŷπ(i) =

{

E if Ỹπ(i) = Ŷπ(i−1) = E,
X otherwise.

(6)

Denoting withp(Y |X) the transition probability for channelC, it follows that p̃(Ỹ |X), p(Y |X) are identical so
that Ĉπ can indeed be regarded as a regular broadcast erasure channel, with erasure probabilityεπ(i) for userπ(i),

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

3

π(1)

π(2)

π(3)

π(N)

x (X ,Y,

p̃(Ỹπ(1), . . . , Ỹπ(N)|X))

Ỹπ(1)

Ỹπ(2)

Ỹπ(3)

Ỹπ(N)

Ŷπ(1)

Ŷπ(1)

Ŷπ(2)

Ŷπ(2)

Ŷπ(3)

Ŷπ(3)

Ŷπ(N−1)

Ŷπ(N)

Fig. 1. Schematic of channel̂Cπ. White arrows represent virtual error-free channels.

with the addition of error-free channels sequentially connecting the users. The following two results are proved in
Appendix A.

Lemma 3:ChannelĈπ is physically degraded.
Lemma 4:Denote withCf , Ĉπ,f the feedback capacity regions of channelsC, Ĉπ, respectively. It holdsCf ⊆ Ĉπ,f .

Notice that Lemma 4 already provides an outer bound toCf . In order to derive this bound, we note that the previous
results imply that the feedback capacity region of the physically degraded channelĈπ is identical, due to Lemma 1,
to the capacity region of̂Cπ without feedback. The latter is described, in general form, in Lemma 2, whence we
deduce the following result.

Lemma 5:The feedback capacity region of̂Cπ is given by

Ĉπ,f =

{

R ≥ 0 :
∑

i∈N

Rπ(i)

1 − ε̂π(i)
≤ L

}

. (7)

The above analysis was based on a particular permutationπ. Considering allN ! permutations onN provides a
tighter general outer bound.

Theorem 1:The following set inclusion is true

Cf ⊆ Cout
△
= ∩π∈PĈπ,f , (8)

whereP is the set of all possible permutations onN .

IV. CODING ALGORITHM CODE1

In this section, we present a coding algorithm namedCODE1, show its correctness, and analyze its performance
for symmetric channels, i.e. channels which satisfy the conditionεI = εJ whenever|I| = |J |, for anyI,J ⊆ N .
To indicate this special setting, we introduce the notationǫ|I|

△
= εI (i.e. the subscript ofǫ indicates the cardinality of

the erasure set). In the following, we assume that each user knows the size|Ki| of all streams and instant feedback
is available to all users. The first condition can be easily satisfied in practice while the second one will be removed
in a later section.

Before the description of the algorithm, a brief discussion of the underlying rationale will be useful. Since each
useri must decode exactly|Ki| packets, one way of achieving this is by sending linear combinations, over the field
Fq, of appropriate packets so that useri eventually receives|Ki| linearly independent combinations of the packets
in Ki. Specifically, each transmitted symbols is an element ofFq and has the form

s =
∑

p∈∪i∈NKi

as(p)p, (9)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

4

whereas(p) are suitable coefficients inFq. If the symbols can also be written as

s =
∑

p∈Ki

bs(p)p + cs, (10)

wherebs = (bs(p), p ∈ Ki), cs are known to useri, thens is considered to be a “token” fori. Additionally, if s
is received byi and thebs coefficients ofs, along with thebs′ coefficients of all previously received (byi) tokens
s′, form a linearly independent set of vectors overFq, thens is considered to be an “innovative token” fori. In
words, an innovative token fori is any packets that allowsi to effectively construct a new linear equation (with
the packets inKi as unknowns sincebs, cs are known) that is linearly independent w.r.t. all previously constructed
equations byi. Hence, each useri must receive|Ki| innovative tokens in order to decode its packets. Note that it
is quite possible, and actually very desirable, for the same packet to be a token (better yet, an innovative token)
for multiple users.

In order to avoid inefficiency and, hopefully, achieve the outer bound of Section III, it is crucial that, under
certain circumstances, a symbol (i.e. a linear combination of packets) that is erased by some users, but is received
by at least one other user, is stored in a appropriate queue so that it can be combined in the future with other
erased symbols to provide tokens for multiple users (and thus compensate for the loss). The crux of the algorithm
is in the careful bookkeeping required to handle these cases.

A. Description of algorithmCODE1

The transmitter maintains a virtual network of queuesQS , indexed by the non-empty subsetsS of N (see Fig. 2
for an illustration for 4 users). The queues are initialized with the stream packets as follows

QS =

{

Ki if S = {i},
∅ otherwise.

Additionally, with each queueQS , indicesT i
S are maintained for alli ∈ S and are initialized as

T i
S =

{

|Ki| if S = {i},
0 otherwise.

It will become apparent from the algorithm’s description that indexT i
S represents the number of innovative tokens

(i.e. packets of the form in (10)) that useri must successfully recover fromQS in order to decode its packets1 (due
to the performed initialization, this statement is trivially true for allS with |S| = 1). These indices are dynamically
updated during the algorithm’s execution based on the received feedback, as will be explained soon. Finally, each
receiveri ∈ N maintains its own set of queuesRi

S , for all non-emptyS ⊆ N with i ∈ S, where it stores the
innovative tokens it receives fromQS .2 We assume for now that all users know which queue the packet they receive
comes from and show later how this can be achieved. All queuesRi

S are initially empty.
Denote withQn the set of all queuesQS with |S| = n. The algorithm operates inN phases so that in phase

n, with 1 ≤ n ≤ N , only transmissions of linear combinations of packets in one of the queues inQn occur.
Specifically, at phasen, the transmitter orders the setQn according to a predetermined rule, known to all users
(say, according to lexicographic order, which corresponds to the top-to-bottom ordering shown in Fig. 2). The
transmitter then examines the first (according to this order) queueQS and transmits a symbol (or packet)s that
is a linear combination of all packets inQS , i.e. s =

∑

p∈QS
as(p)p. We slightly abuse parlance and say that “s

is transmitted fromQS ”, although it is clear thats is not actually stored inQS . The coefficientsas(p) can be
produced either via a pseudo-random number generator or through structured codes. The exact generation method
for as(p) is unimportant as long as the following conditions hold:

1it will be seen that the transmitted combination of packets fromQS can never become a token for any useri ∈ N − S , so that the
transmitter does not need to maintain indices for them.

2it will be seen in a later Section that, if instant feedback is not available to all users, the feedback information is sent to the users after
all information packets have been sent. In this case, any information packets received by useri are initially placed in a single queue. Once
the complete feedback is known, the packets of this queue are moved to the appropriate queuesRi

S so that the decoding procedure (i.e. the
construction of the|Ki| linearly independent equations) can begin.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

5

1

2

3

4

1,2

1,3

2,4

3,4

1,2,3

1,2,4

1,3,4

2,3,4

1,2,3,4

1,4

2,3

Fig. 2. Transmitter virtual queues required for 4 users and some possible index transitions.

• the generation procedure is known to all users, so that they can always reproduce the values ofas(p) even
whey they don’t receive the packets (this implies that the receivers must also know the size of allQS , S ⊆ N ,
at all times)

• the set of coefficient vectors(as(p) : p ∈ QS), for all packets (i.e. linear combinations)s tranmitted fromQS ,
is a linearly independent set of vectors overFq.

If the coefficientsas(p) are randomly produced, the second requirement need only be satisfied with probability
arbitrarily close to 1 for sufficiently large field sizeq.

Depending on the received feedback for the packets transmitted from queueQS , the following actions, collec-
tively referred to asACTFB1, are taken (all 4 cases must be examined)

1) if no user inN receivess, it is retransmitted.
2) for each useri ∈ S that receivess and satisfiesT i

S > 0, s is added to queueRi
S andT i

S is decreased by 1.
3) if s has been erased by at least one useri ∈ S and has been received byexactly the users in some setG,

with ∅ 6= G ⊆ N − S, the following 2 steps are performed

• packets is added to queueQS∪G (no packets are removed fromQS).
• for each useri ∈ S that eraseds and satisfiesT i

S > 0, T i
S is reduced by 1 andT i

S∪G is increased by 1.

4) if the setG of users that receives is a subset ofS such thatT i
G = 0 for all i ∈ G, s is retransmitted.

Fig. 2 presents the allowable index transitions from queuesQ{1}, Q{1,3} that occur in step 3 ofACTFB1 (the other
transitions are not shown to avoid graphical clutter; dashed lines correspond to step 2 ofACTFB1). Transmission
of linear combinations of packets fromQS continues for as long as there exists at least onei ∈ S with T i

S > 0.
When it holdsT i

S = 0 for all i ∈ S, the transmitter moves to the next queueQS′ in the ordering ofQn and repeats
the above procedure until it has visited all queues inQn. When this occurs, phasen is complete and the algorithm
moves to phasen + 1. The algorithm terminates at the end of phaseN .

B. Properties and correctness ofCODE1

The second statement in the following Lemma, proved in Appendix B, is the crucial property ofCODE1 and
follows from its construction.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

6

Lemma 6:Any packets that is stored in queueQS with |S| ≥ 2 is a linear combination of packets in queue
QIs

, for some non-emptyIs ⊂ S, that has been received byexactlyall users inS − Is. Hence, any packet in
queueQS is a token for alli ∈ S (and only thesei ∈ S) and any linear combination of all packets inQS is an
innovative token for alli ∈ S with T i

S > 0.
The above Lemma gives a very intuitive explanation to the algorithm’s operation. Specifically, step 2 ofCODE1

is equivalent to saying that whenever useri receives a useful token (meaning thatT i
S > 0 and there remain tokens

to receive) fromQS , the (innovative) token should be added toRi
S . If this is not the case and there exist users,

comprising setG ⊆ N −S, who receive this packet (step 3), then the packet has become a token for users inS ∪G
and should be placed in queueQS∪G. This allows the token to be simultaneously received by multiple users in the
future and thus compensate for the current loss. Additionally, since useri can now recover a token more efficiently
from QS∪G instead ofQS , the indicesT i

S , T i
S∪G should be modified accordingly to account for the token transition.

Step 4 merely states that the packet is retransmitted when it is only received by users who have already recovered
all tokens intended for them.

Finally, since for any slott that someT i
S is reduced by 1, either some otherT i

S∪G is increased by 1 or (exclusive
or) some packet is added to queueRi

S in the same slot, it follows that the following quantity is constant during
the execution ofCODE1.

∑

S:i∈S

|Ri
S(t)| +

∑

S:i∈S

T i
S(t) = const = |Ki|, ∀ i ∈ N , (11)

where the last equality follows from the initialization ofCODE1. Since the algorithm terminates when it holds
T i
S = 0 for all non-emptyS ⊆ N and all i ∈ S, we conclude that at the end of the terminating slottf it holds
∑

S:i∈S |R
i
S(tf)| = |Ki| for all i ∈ N . Hence, each user has recovered|Ki| tokens which, by choosing a sufficiently

large field sizeq, can be made linearly independent with probability arbitrarily close to 1. Thus, all users can
decode their packets with a vanishing probability of error andCODE1 operates correctly. Notice that this result
holds for arbitrary channels, so that, in principle,CODE1 is universally applicable. Additionally, no knowledge of
channel parameters (such asεI , for I ⊆ N) is required for its execution.

C. Performance ofCODE1

The analysis of the performance ofCODE1 for symmetric channels is straightforward and consists of determining
the number of slots required to complete allN phases. We assume without loss of generality that|K1| ≥ . . . ≥ |KN |

and |KN | is sufficiently large to invoke the weak law of large numbers. We also denote the eventsES
△
= {Zi =

1, ∀ i ∈ S} andRG
△
= {Zi = 0, ∀ i ∈ G}, which imply

Rc
G =

⊎

H6=∅:H⊆G

(EH ∩ RG−H) , (12)

where c stands for set complement and⊎ for disjoint union. For completeness, we defineE∅ = R∅ = Ω (the
sample space). Combining the identityES = (ES ∩ RG) ⊎

(

ES ∩ Rc
G

)

with (12) yields

Pr(ES) = Pr(ES ∩ RG) +
∑

H6=∅:H⊆G

Pr(ES∪H ∩ RG−H). (13)

By definition of symmetric channels, all probabilities depend only on the cardinality of the corresponding set, so
that we introduce the notationpe,ρ

△
= Pr(ES ∩ RG) for any setsS,G with |S| = e, |G| = ρ. This allows us to

rewrite (13) as

pe,0 = ǫe,

pe,ρ = ǫe −
ρ
∑

l=1

(

ρ

l

)

pe+l,ρ−l ∀ ρ ≥ 1,
(14)

where we used the fact that there are
(ρ

l

)
distinct setsH ⊆ G with cardinality l. The following result is easily

proved by induction in Appendix C.
Lemma 7: It holds

pe,ρ =
ρ
∑

l=0

(

ρ

l

)

ǫe+l(−1)l, ∀ e ≥ 0, ∀ ρ ≥ 0. (15)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

7

We also need to compute the exact values ofT i
S , with i ∈ S, at the beginning of phasen = |S| (i.e. before any

transmissions from queues inQn take place). We denote these values withki
S and exploit symmetry to note that

ki
S depends only on|S|. Hence, denotingki

l = ki
S for any S with |S| = l and i ∈ S, the construction ofCODE1

implies the following relation
ki
S =

∑

I6=∅: i∈I,
I⊂S

T i
I,S , (16)

whereT i
I,S is the number of indices moved fromI to S in step 3 (i.e. while processingQI). This is given by

T i
I,S =

ki
I

Pr(T i
I is decreased by 1)

Pr
(

T i
I is decreased by 1, T i

S is increased by 1
)

. (17)

By the algorithm’s construction,T i
I is not decreased for a packet transmission if the packet is erased byi and all

users inN − I, which occurs with probabilityPr(E{i}⊎(N−I)) = ǫN−|I|+1. Also, the rightmost probability in the
RHS of (17) is equal toPr(E{i}⊎(N−S)∩RS−I) = pN−|S|+1,|S|−|I|. Setting|S| = l and substituting the probability
values in (16) yields

ki
l =

l−1∑

m=1

(

l − 1

m − 1

)

ki
m

1 − ǫN−m+1
pN−l+1,l−m, ∀ l ≥ 2, (18)

where we summed over all setsI ⊆ S containingi with |I| = m and used the fact that there exist
(l−1
m−1

)

such
sets. Eq. (18) holds for alli ∈ N and is accompanied by the initial conditionki

1 = |K1|. The computation ofki
l is

essential for the subsequent analysis, so we immediately present the following result.
Lemma 8: It holds for all i ∈ N and all l with 1 ≤ l ≤ N ,

ki
l

1 − ǫN−l+1
= |Ki|

l−1∑

m=0

(

l − 1

m

)

(−1)m

1 − ǫN−l+m+1
= (−1)l+1|Ki|

l−1∑

m=0

(

l − 1

m

)

(−1)m

1 − ǫN−m
. (19)

Proof: Proof appears in Appendix D.
Sinceki

l depends oni only via the multiplicative term|Ki|, we introduce the quantitỹkl = ki
l/|Ki|, which is

independent ofi. The number of slots required byCODE1 to process all queuesQS ∈ Ql (i.e. complete phasel)
is, by construction,

T ∗
l =

∑

S:|S|=l

1

1 − ǫN−l+1

(

max
i∈S

ki
S

)

. (20)

Sincemaxi∈S ki
S = kmini∈S i

S , and indexr is the minimum index in
(N−r

l−1

)
sets of cardinalityl, we can rewrite (20)

as

T ∗
l =

k̃l

1 − ǫN−l+1

N−l+1∑

r=1

(

N − r

l − 1

)

|Kr| =
l−1∑

m=0

(

l − 1

m

)

(−1)m

1 − ǫN−l+m+1

N−l+1∑

r=1

(

N − r

l − 1

)

|Kr|, (21)

where the last equality is due to Lemma 8. The number of slots required to complete allN phases is obviously

T ∗∗ =
N∑

l=1

T ∗
l =

N∑

l=1

N−l+1∑

r=1

l−1∑

m=0

(

N − r

l − 1

)(

l − 1

m

)

(−1)m

1 − ǫN−l+m+1
|Kr|. (22)

The last expression can be considerably simplified through the following result, proved in Appendix E.
Lemma 9:The number of slots required for the execution ofCODE1 is

T ∗∗ =
N∑

r=1

|Kr|

1 − ǫr
. (23)

Hence, underCODE1, each useri achieves a rateRi = |Ki|/T
∗∗, which implies (via the assumption|K1| ≥

. . . ≥ |KN |) that R1 ≥ . . . ≥ RN . Lemma 9 has the following obvious consequence.
Corollary 1: The achievable rate region ofCODE1, measured in information bits per transmitted symbol, is a

superset of the set
{

R ≥ 0 :
N∑

i=1

Ri

1 − ǫi
≤ L

}

,

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

8

for anyR such thatRi ≥ Ri for any i < j.
This leads to the first important result in this document
Theorem 2:For symmetric channels, the capacity region outer boundCout defined in Theorem 1 is given by

Cout =

{

R ≥ 0 :
∑

i∈N

Rπ∗(i)

1 − ǫi

≤ L

}

, (24)

whereπ∗(i) is the order permutation, i.e.Rπ∗(i) ≥ Rπ∗(j) for i < j. Furthermore,Cout is achieved byCODE1.
Proof: Proof appears in Appendix F.

D. Taking the overhead into account

The above analysis rests on the assumption that complete feedback is instantaneously available to all users
at the end of each slot. To remove this assumption (so that each user need only know its own feedback), the
feedback information must be conveyed to the users by the transmitter at the expense of channel capacity (i.e. the
incorporation of overhead) and increased complexity at the receivers. The following overhead scheme is proposed,
under the assumption that the coefficientsas(p) of all transmitted linear combinations are known to all users,
including those thatdo not receive the packet.

A single overhead bith is reserved in each packet of lengthL. This bit is 0, unless step 4 ofCODE1 occurred in
the transmission of the (immediately) previous packet, in which case it is set to 1. Essentially, bith is the indicator
bit of step 4 for the previously transmitted packet. The transmitter now appliesCODE1 normally (taking feedback
into account according toACTFB1), and keeps a feedback log as follows:

• if the transmitted packet is erased by all users, nothing is written in the log.
• for each transmitted packet withh = 0 that is received by at least one user, the transmitter writes in the log

an N -bit groupOQ, where group bitOQi is set to 1 or 0, depending on whether useri received the packet
or not, respectively.

• for each transmitted packet withh = 1 that is received by at least one user, the transmitter creates theN -bit
groupOQ as in the caseh = 0, but writes nothing in the loguntil it eventually transmits a packet withh = 0.
When this occurs, the transmitter writes theOQ group that corresponds to the last transmitted packet with
h = 1 (after that, theOQ group for the current packet withh = 0 is also written in the log, due to the previous
rule).

In other words, the transmitter appends a singleN -bit feedback entryOQ to the log whenever a packet is transmitted
only once. For a packet that is retransmitted due to step 4, the transmitter writes two entries in the log, the first
one containing the feedback for the first packet (the one withh = 0) and the second one containing the feedback
for the last transmitted packet withh = 1. Notice that these two packets may have been transmitted in arbitrarily
distant (in the temporal sense) slots, so that this scheme ensures the feedback log will not grow arbitrarily large.
In fact, some thought reveals that the log will contain at most2N

∑N
n=1

∑

S:|S|=n

(
maxi∈S ki

S

)
≤ 2N2∑N

i=1|Ki|
entries.

During the packet transmission and log creation, the users store all their received packets in a single queue,
since they can do nothing more until they know the complete feedback. However, the following simple procedure
is applied: for each packets received by useri, a single bit flagM is attached tos if packet s hash = 1 and
there was no erasure for useri in the immediately previous slot (i.e. useri received two consecutive packets, the
second one, nameds, havingh = 1). When this occurs, we say thats is “marked”. WhenCODE1 terminates, the
transmitter transmits the entire feedback log until all users have received it. Once the users have the feedback log,
they can essentially “replay” the execution ofCODE1. Specifically, since the order in which queuesQS ∈ Qn are
visited is known, and the user can deduce, from the feedback log, the values ofT i

S for all i ∈ S, S ⊆ N (so that the
phase boundaries are distinguishable), the users always know which queue the received packet comes from. This
allows them, with some extra bookkeeping, to createRi

S and recover all necessary innovative tokens, according to
the following scheme.

Each user has local copies ofT i
S for all i ∈ S andS ⊆ N which are initialized to 0 (except forT i

{i} which are
initialized to |Ki|).3 User i keeps the following virtual queues, which are initially empty:

3for example, ifN = 3, each user has local copies of the following indices:T 1

{1}, T 2

{2}, T 3

{3}, T 1

{1,2}, T 2

{1,2}, T 1

{1,3}, T 3

{1,3}, T 2

{2,3},
T 3

{2,3}, T 1

{1,2,3}, T 2

{1,2,3}, T 3

{1,2,3}.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

9

• queuesRi
S for anyS ⊆ N with i ∈ S. These queues are intended for storing the innovative packets of useri

that are received fromQS as well as the necessary information for decoding (i.e. the cofficients of the linear
combinations).

• queuesQ̃i
S for any S ⊆ N such thati 6∈ S. These queues hold the packets that are received byi when a

linear combination of packets from queueQS is transmitted.
• queuesM i

S,T for any setsS,T ⊆ N with i ∈ S andS ⊂ T . These queues store information about linear
combinations of packets fromQS that are added toQT in step 3 ofCODE1. Hence, these packets arenot
received byi and they are received by all users inT −S. Additionally, since a linear combination of packets
from QS is a token for alli ∈ S, any packetp ∈ QS can be written asp = cp +

∑

u∈Ki
bp(u)u, wherebp(u), cp

are known toi. The values(bp(u))u∈Ki
, cp are actually stored, as a single entry, inM i

S,T .

In addition to the above, useri also keeps local variables‖QS‖ (which are equal to the current size ofQS for all
S ⊆ N) and a special binary variableIi. These variables are initialized as‖QS‖ = |Kj | · I[S = {j}] andIi = 0.

Useri now examines the feedback log and the single queue containing all received packets (the two structures are
accessed by indicesindf , indq, respectively) and, potentially, moves each packet of the single queue to one of the
queuesRi

S , Q̃i
S , M i

S,T according to the following rules, collectively referred to asREPFB. We assume w.l.o.g. that
the current packet comes fromQS :

1) if it holds Ii = 0, useri examines the currentOQ group pointed to byindf and creates the setG = {k ∈
N − S : OQk = 1}.

a) if it holds {k ∈ N : OQk = 1} ⊆ {k ∈ S : T k
S = 0}, i.e. all users that received the packet have already

recovered all innovative tokens fromQS , thenIi is set to 1. Also, if it holdsT i
S = 0, useri peeks at

the packetw immediately after the one pointed to byindq (without actually changingindq). If the h
bit of packetw is 1 andw is marked, useri advancesindq until it finds the last consecutively marked
packet withh = 1. If w is not marked,indq is not advanced.

b) if OQi = 1 and i 6∈ S, useri moves the packet currently pointed to byindq to Q̃i
S . It also advances

indq.
c) for each userj ∈ S − {i} with OQj = 1 andT j

S > 0, T j
S is decreased by 1. Additionally, if it holds

G 6= ∅, for each userj ∈ S −{i} with OQj = 0 andT j
S > 0, T j

S is decreased by 1 andT j
S∪G , ‖QS∪G‖

are increased by 1 (allT indices refer to the local copies stored in useri).
d) if OQi = 1 andi ∈ S, useri examines the packetx currently pointed to byindq. The following actions

are performed only if it holdsT i
S > 0:

• T i
S is decreased by 1.

• useri constructs the setI = {I : ∅ 6= I ⊂ S}, consisting of all non-empty proper subsets ofS, and
orders this set according to the predefined order of processing the various queuesQI duringCODE1.4

• useri computes the following quantities

bx(u) =
∑

I∈I:
i∈I

∑

f∈M i
I,S

ax(f)bf (u), ∀u = 1, . . . , |Ki|,

cx =
∑

I∈I:
i∈I

∑

f∈M i
I,S

ax(f)cf +
∑

I∈I:
i6∈I

∑

f∈Q̃i
I

ax(f)f,
(25)

whereax(f) is known toi by assumption andbf (u), cf are the components of the entries inM i
I,S .

• The quantities(bx(u))u∈Ki
, cx, x are stored, as a single entry, inRi

S .

Regardless of the value ofT i
S , indq is advanced.

e) if OQi = 0, i ∈ S andG 6= ∅, then the packet (call itx) referred to byOQ was erased ati. User i
repeats the calculations in (25) and stores the quantities{bx(u)}u∈Ki

, cx, as a single entry, inM i
S,S∪G.

At this point, indf is advanced.
2) if it holds Ii = 1, useri examines the currentOQ group pointed to byindf (by construction of the feedback

log, the user knows that thisOQ group corresponds to the last consecutively transmitted packet withh = 1,

4for example, if N = 5, S = {1, 2, 4} and the queues are processed in lexicographic order, it holdsI = {{1}, {2}, {4},
{1, 2}, {1, 4}, {2, 4}}, where the elements ofI are written in the order of their processing.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

10

for which step 4 does not occur) and creates the setG = {k ∈ N − S : OQk = 1}. It now performs the
following:

• if OQi = 0, i ∈ S, and the currently packet pointed to byindq is marked (which implies thatT i
S = 0 and

the last transmitted packet withh = 1 waserasedby i), the packet is discarded, andindq is advanced.
• Ii is set to 0.
• useri now applies verbatim steps 1b)–1e) of the procedure forIi = 0. Step 1a) need not be examined

since it cannot occur at this point.
• indf is advanced.

Note that the actions inREPFB are performed in parallel and asynchronously by all users based on their privately
stored feedback log; the receivers essentially replay the transmitter’s decisions in the 4 steps ofACTFB1. The
validity of this overhead scheme is justified by Lemma 6. Specifically, assume that a packetx, transmitted as a
linear combination of all packets inQS , is received byi ∈ S. Then it holds

x =
∑

p∈QS

ax(p)p,

whereax(p) are known to all users. Each packetp in QS is, by Lemma 6, a linear combination of all packets in
QIp

(with i ∈ Ip, Ip ⊆ S) that is received byexactlyall users inS − Ip, so that the last sum can be written as

x =
∑

p∈QS :
i6∈Ip

ax(p)p +
∑

p∈QS :
i∈Ip

ax(p)p. (26)

By the rules inREPFB, it follows that any packetp ∈ QS that comes fromQIp
with i 6∈ Ip is received byi, so

that p is stored in queuẽQi
Ip

. For any packetp ∈ QS with i ∈ Ip, it follows that the packetp was erased byi and
received by all users inS − Ip. Hence,p can be written as

p =
∑

u∈Ki

bp(u)u + cp, ∀ p ∈ QS , i ∈ Ip,

wherebp(u), cp are stored inM i
Ip,S . Inserting the last equation into (26) yields

x =
∑

u∈Ki







∑

p∈QS :
i∈Ip

ax(p)bp(u)







︸ ︷︷ ︸

bx(u)

u +







∑

p∈QS :
i6∈Ip

ax(p)p +
∑

p∈QS :
i∈Ip

ax(p)cp







︸ ︷︷ ︸

cx

=
∑

u∈Ki

bx(u)u + cx, (27)

where all parameters, exceptu, are known to useri. Hence,i can recover a token (i.e. form a linear equation
containingu ∈ Ki) by storingbx(u), cx, x in Ri

S . The reader will notice that the expressions forbx(u), cx in (27)
are identical to the ones in (25).5

V. THE 3-RECEIVER CASE

Although CODE1 achieves capacity for symmetric channels, for sufficiently largeL, this is not always true for
arbitrary channels. This is rigorously demonstrated in Appendix G although it can be intuitively understood for the
3-receiver case by the following argument (note that, forN = 3, the network corresponding to Fig. 2 contains only
queues for setsS ∈ {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}). Assume that in phase 2 ofCODE1, the order
in which the queues are visited is{1, 2}, {1, 3}, {2, 3}. When the transmitter sends linear combinations of packets
from Q{1,2}, it is quite possible that the indicesT 1

{1,2}, T 2
{1,2} do not become zero simultaneously. Say it happens

that T 1
{1,2} = 0 andT 2

{1,2} > 0. By construction,CODE1 will continue to transmit linear combinations fromQ{1,2}

until T 2
{1,2} also becomes0. However, this creates a source of inefficiency, as implied by step 4 ofACTFB1.

Specifically, if a transmitted packets is only received by 1, step 4 will forces to be retransmitted until either 2
or 3 receive it, in a sense “wasting” this slot. We claim that there exists potential for improvement at this point, by

5the fact that the summations in (27), (25) are over different sets is natural since they correspond to different parts of the system
(transmitter/receivers, respectively) which store information in different placeholders. However, the numerical results of the summations in
(27), (25) are the same.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

11

combining the packets inQ{1,2} with the packets inQ{1,2,3}. A linear combination of packets in these queues creates
a token for both 1 and 2. Hence, even if the packet is received only by 1, the slot is not wasted, since 1 recovers an
innovative token (provided thatT 1

{1,2,3} > 0). Unfortunately, the previous reasoning implies that the rule of always
combining packets from a single queue must be discarded if the objective is to achieve capacity. ForN > 3, it is
not even clear what structure a capacity achieving algorithm should have. However, forN = 3, we present a class
of closely related algorithms, namedCODE2 throughCODE4, that achieve capacity for arbitrary channels without
any knowledge of channel parameters.6 As will be seen, the main difference between the algorithms is the order
in which the queues inQ2 are combined withQ{1,2,3}. Specifically,CODE4 imposes no order on the processing
of queues inQ2 but may require each queue to be processed more than once, whereasCODE3 andCODE2 impose
a certain structure on the order with which the queues are processed. In the following sections we describe each
algorithm separately, starting fromCODE4.

A. AlgorithmCODE4

CODE4 operates in phases as follows. Phase 1 ofCODE4 is identical to phase 1 ofCODE1, with the transmitter
acting according to the rules in ACTFB1 (note that step 4 cannot occur in this phase ofCODE4). In phase 2 of
CODE4, the transmitter orders the queuesQS in Q2 according to an arbitrary rule and transmits linear combinations
from QS until at least oneuser i ∈ S recovers all innovative tokens fromQS (i.e. T i

S = 0). When this occurs,
the transmitter moves to the next queue inQ2. Again, the rules inACTFB1 are applied. When all queues in
Q2 have been visited, eachQS ∈ Q2 has at most one surviving index (meaning somei ∈ S with T i

S > 0).
For convenience, we denote this epoch withts and define the survival numbersu(i) of index i ∈ {1, 2, 3} as
su(i)

△
= |{S : |S| = 2, T i

S(ts) > 0}|. In words,su(i) is equal to the number of queues inQ2 which contain
unrecovered innovative tokens for useri at time ts. By definition, it holds0 ≤ su(i) ≤ 2 for all i ∈ {1, 2, 3}. The
transmitter now distinguishes cases as follows

• if it holds su(i) = 0 for all i ∈ {1, 2, 3}, CODE4 reverts toCODE1, starting at phase 3.
• if it holds su(i) = 1 for all i ∈ {1, 2, 3}, CODE4 reverts toCODE1, starting at phase 2. The following crucial

result, proved in Appendix H shows that this event occurs with arbitrarily small probability for sufficiently
large |Ki|

3
i=1, so that the capacity region is unaffected by any actions taken henceforth.

Lemma 10: DenoteK
△
= mini∈N |Ki|. It holdsPr (su(i) = 1, ∀ i ∈ N) → 0, asK → ∞.

If none of the above two occurs, we definẽQ △
= {Q{i,j} : T i

{i,j} > 0 ∨ T j
{i,j} > 0} as the set of all queues inQ2

with exactly one surviving index (at epochts, it clearly holdsQ̃ 6= ∅). We also introduce the auxiliary variables
Fi for each useri and initialize them to 0. The following statement, which is proved in Appendix I, is important.

Lemma 11:If Q̃ 6= ∅, then either (or both) of the following conditions is true

1) there exists at least onei∗ with Fi∗ = 0 such thatT i∗

S = 0 for all S ⊆ N with i∗ ∈ S.
2) there exists at least one queueQ{i,j} ∈ Q̃ such thatT i

{i,j} > 0, T j
{i,j} = 0, T j

{1,2,3} > 0.

It should be noted that the crucial part in 1) is the specification “withFi∗ = 0”, since there may exist other users
j who have also recovered all tokens but for whom it holdsFj = 1. The transmitter now applies the following
procedure.

Procedure 1:The transmitter checks Lemma 11 to determine which condition applies. Note that condition 1)
takes precedence over condition 2) in the sense that, if both conditions are true, the transmitter will only take the
actions dictated by condition 1) below.

• If condition 1) is true, the transmitter constructs the setQ∗
1 = {QS ∈ Q̃ : i∗ ∈ S, i∗ satisfies 1)} as the

set of queues that contain a surviving index and an index corresponding to a useri∗ that has recovered all
tokens. Also, for alli∗ that satisfy 1),Fi∗ is set to 1. Then, for eachQS ∈ Q∗

1 the transmitter transmits linear
combinations of packets fromQS , applying the rules ofACTFB1, until it holds T i

S = 0 for all i ∈ S. When
this occurs, the transmitter moves to the next queue inQ∗

1 until it has visited all queues. The relative order of
the queues withinQ∗

1 is arbitrary.
• If condition 2) is true, the transmitter constructs the setQ∗

2 = {Q{i,j} ∈ Q̃ : Q{i,j} satisfies 2)}. It then picks
the first queue inQ∗

2 (denote it withQ{i,j}; relative order withinQ∗
2 is arbitrary) and transmits a packets that

6the names of the algorithms are chosen in accordance with [19].

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

12

is a linear combination of all packets in queuesQ{i,j} and Q{1,2,3}. Depending on the received feedback, the
following actions, collectively referred to asACTFB4, are taken (all 4 cases must be examined).

1) if no user inN receivess, it is retransmitted.
2) if user i receivess, T i

{i,j} is decreased by 1.

3) if userj receivess, T j
{1,2,3} is decreased by 1.

4) if i erasess andk ∈ {1, 2, 3} − {i, j} receives it,s is added toQ{1,2,3}, T i
{i,j} is decreased by 1 and

T i
{1,2,3} is increased by 1.

Transmission continues until it holdsT i
{i,j} = 0 or T j

{1,2,3} = 0, whichever occurs first. IfT i
{i,j} = 0 occurs

first, the transmitter moves to the next queue inQ∗
2, otherwise (i.e. ifT j

{1,2,3} = 0 occurs first) it aborts further
processing ofQ∗

2.
At this point, the transmitter updates̃Q, using the current values ofT i

S for all S with |S| = 2, and checks whether
Q̃ = ∅. If this is true (which implies thatT i

S = 0 for all S with |S| = 2 and i ∈ S), CODE4 reverts toCODE1
starting at phase 3, otherwise it repeats Procedure 1, creating all relevant entities (such asQ∗

1, Q∗
2) from scratch.

In this case, it is proved in Appendix I that Lemma 11 becomes a loop-invariant (i.e. a condition that is true at
the beginning of each call to Procedure 1), which guarantees that eventually it will holdQ̃ = ∅, at which point
CODE4 continues with phase 3 ofCODE1. Hence, Procedure 1 is repeated for a finite number of times.

1) Correctness ofCODE4: SinceCODE4 is identical toCODE1 up to epochts (i.e. until all queues inQ2 have
at most one surviving index), it is clear that Lemma 6 holds for all queuesQS up to epochts. Hence, in order to
show the correctness ofCODE4, it suffices to prove that any packet stored inQ{1,2,3} after epochts is a token for
all i ∈ {1, 2, 3} (i.e. the second statement of Lemma 6 holds for the entire operation ofCODE4), at which point
we can repeat the arguments of Section IV-B verbatim.

By examining the logic of Procedure 1, we conclude that, since the queues inQ∗
1 are handled exactly as in

CODE1, we need only consider the case when the transmitter sends a linear combinations of all packets in a queue
Q{i,j} ∈ Q∗

2 and Q{1,2,3}. Hence, we need to prove the following result.
Lemma 12:Denote withP{1,2,3}(t) the set of packets that are stored inQ{1,2,3} at the beginning of slott, with

t > ts. The following implication is true

(∀ p ∈ P{1,2,3}(t))(p is token for alll ∈ {1, 2, 3}) ∧ (s is added toQ{1,2,3} in slot t due to step 4 ofACTFB4)

⇒ (∀ p ∈ P{1,2,3}(t + 1))(p is token for alll ∈ {1, 2, 3}).

Proof: Clearly, we only need to prove thats is a token for alll ∈ {1, 2, 3}. Assume w.l.o.g. thats is a linear
combination of all packets stored inQ{i,j} andQ{1,2,3} at the beginning of slott. Then, by construction ofACTFB4,
we conclude thats was received byk ∈ {1, 2, 3} − {i, j} so thats is a token fork. Additionally, since any packet
stored in queuesQ{i,j}, Q{1,2,3} at the beginning of slott is a token for bothi, j (this is true by construction for the
former queue and by assumption for the latter), ands has the forms =

∑

p∈P{1,2,3}(t) as(p)p +
∑

p∈Q{i,j}
as(p)p,

it is apparent thats is also a token for bothi, j.
The correctness of the second statement of Lemma 6 now followsfrom Lemma 12 and induction on time (actually,

slot index), starting from the beginning of the slot immediately after epochts.

B. AlgorithmCODE3

Although the order of the queues in the setsQ∗
1, Q∗

2 is unimportant, the presented implementation ofCODE4
allows for the possibility of a queueQS ∈ Q2 being processed in more than one calls to Procedure 1. A slight
modification, hereafter referred to asCODE3, of CODE4 allows for eachQS to be processed only once by imposing
a specific order relation on the processing ofQ2. The overhead scheme forCODE3 is also considerably easier to
implement (in a manner similar to that described in Section IV-D) compared toCODE4, although it will be seen
that bothCODE4 andCODE3 achieve capacity when complete feedback is known to all users.
CODE3 is identical toCODE4 up until epochts, i.e. until each queue inQ2 has at most one surviving index.

The survival indexsu(i) is computed for each useri at this point and the two casessu(i) = 0 ∀ i ∈ {1, 2, 3} and
su(i) = 1 ∀ i ∈ {1, 2, 3} are handled exactly as inCODE4. If none of these cases occurs, we introduce a binary
relation≺ in {1, 2, 3} as follows

i ≺ j ⇔ (su(i) < su(j)) ∨
(

T j
{i,j} > 0 ∧ T i

{i,j} = 0
)

∨ (su(i) = su(j) ∧ i < j), (28)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

13

whereT i
{i,j}, T j

{i,j} are evaluated atts. It is easy to see by direct enumeration of all possible cases that≺ has
a transitive property so that it can be interpreted as an order relation. Hence, at epochts, the transmitter can
order the queues inQ2 according to≺. For example, if it holds2 ≺ 1 ≺ 3, the queues can be ordered as
{1, 2} ≺ {2, 3} ≺ {1, 3}, while the other cases are similarly handled through a permutation on{1, 2, 3}.

The transmitter now initiates a subphase, called 2.1, in which the following actions are performed:
1) the transmitter visits each queueQ{i,j} ∈ Q2 according to the≺ order. If it holdsT i

{i,j} = T j
{i,j} = 0 for

queueQ{i,j}, this queue is skipped.
2) assume w.l.o.g. that queueQ{i,j} has one surviving index and it holdsj ≺ i (this implies thatT i

{i,j} > 0

andT j
{i,j} = 0). The transmitter transmits a packets which is either a linear combination of all packets in

queuesQ{i,j} and Q{1,2,3} (if it holds T j
{1,2,3} > 0) or a linear combination of all packets inQ{i,j} (if it

holds T j
{1,2,3} = 0).7 Depending on the received feedback, the following actions, collectively referred to as

ACTFB3, are taken
a) if i receivess, T i

{i,j} is decreased by 1.

b) if j receivess and it holds T j
{1,2,3} > 0, T j

{1,2,3} is decreased by 1.
c) if i erasess andk ∈ {1, 2, 3} − {i, j} receives it,s is added toQ{1,2,3}, T i

{i,j} is decreased by 1 and
T i
{1,2,3} is increased by 1.

d) if s is erased by all users or is received only byj when it holdsT j
{1,2,3} = 0, s is retransmitted.

Notice thatACTFB4 andACTFB3 differ only in their conditions for retransmission (steps 1, 2d, respectively)
and, since condition 2 of Lemma 11 ensures that it always holdsT j

{1,2,3} > 0 whenACTFB4 is applied, we
conclude that the two rule sets are effectively indentical.
The above procedure is repeated until it holdsT i

{i,j} = 0, at which point the next queue inQ2 is visited

according to≺. Obviously, sinceT j
{1,2,3} is dynamically updated depending on feedback, the decision of

whether to combine packets inQ{i,j} with Q{1,2,3} is also dynamic. By construction ofCODE3, the transmitter
starts subphase 2.1 by combiningQ{i,j} with Q{1,2,3} and switches toQ{i,j} only as soon asT j

{1,2,3} = 0.

At the end of subphase 2.1, it holdsT i
S = 0 for all i ∈ S with |S| = 2. CODE3 now reverts toCODE1, starting

at phase 3. The crucial characteristic ofCODE3, which ensures that no throughput is lost, is the following result,
which is proved by simple enumeration

Lemma 13:Because queues inQ2 are visited according to the≺ order in subphase 2.1, userj has recovered
all tokens available to it as soon as it holdsT j

{1,2,3} = 0
The last statement, combined with Lemma 12 (which is still true), implies the correctness ofCODE3. It also
guarantees that each queue inQ2 will only be processed once.

C. AlgorithmCODE2

Algorithm CODE2 falls in betweenCODE4 andCODE3 in the sense that, although it does not impose a rigid
order in the processing of the queues inQ2 (asCODE3 does), it enforces a “weak” priority on the processing of
queues inQ2. Specifically,CODE2 is identical toCODE3 up until epochts, i.e. until each queueQS ∈ Q2 has at
most one surviving index. The transmitter now constructs the valuessu(i) for i ∈ {1, 2, 3} exactlyas inCODE3.
The two cases,su(i) = 0 for all i ∈ {1, 2, 3} andsu(i) = 1 for all i ∈ {1, 2, 3}, are handled exactly as inCODE3.

If none of the above 2 cases occur, then there exists at least one useri∗ such thatsu(i∗) = 0. In fact, simple
enumeration reveals that all possible configurations forsu(i) fall in exactly one of the following 4 categories:

1) there exist distinct usersi∗, j∗, k∗ ∈ {1, 2, 3} such thatsu(i∗) = 0, su(j∗) = 1, su(k∗) = 2.
2) there exist distinct usersi∗, j∗, k∗ ∈ {1, 2, 3} such thatsu(i∗) = 0, su(j∗) = su(k∗) = 1.
3) there exist distinct usersi∗, j∗, k∗ ∈ {1, 2, 3} such thatsu(i∗) = su(j∗) = 0 andsu(k∗) = 2.
4) there exist distinct usersi∗, j∗, k∗ ∈ {1, 2, 3} such thatsu(i∗) = su(j∗) = 0 andsu(k∗) = 1.

To provide some concrete example, Fig. 3 contains 4 possible configurations (each belonging, from left to right,
to one of the above categories), where circles are used to denote surviving indices. The values(i∗, j∗, k∗) for

7strictly speaking, the receivers still receive innovative tokens even if the transmitter continues combiningQ{i,j} with Q{1,2,3} even after
T

j

{1,2,3}
becomes zero. However, in terms of complexity, it is advantageous to switch to transmitting combinations of packets inQ{i,j} only

after T
j

{1,2,3}
becomes 0 since this requires the generation of fewer coefficientsas(p).

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

14

21 21 21

1 3

2 332

1 3

32

1 3

21

2 3

1 3

Fig. 3. Possible states of innovative token indices for the queues inQ2 at epochts.

each configuration are(3, 2, 1), (2, 1, 3), (3, 2, 1), (3, 2, 1), respectively. Clearly, each category contains multiple
configurations (obtainable via permutations on{1, 2, 3}) that satisfy the above conditions. The configurations that
appear in Fig. 3 correspond to a single permutation; the other permutations are handled similarly as described next.

The transmitter now constructs the setQsu = {Q{i∗,j} : su(i∗) = 0, T j
{i∗,j} > 0} consisting of all queues inQ2

that contain a surviving indexj and an indexi∗ with su(i∗) = 0. Referring to Fig. 3, the constructed setQsu for
each category is, respectively,{Q{2,3}, Q{1,3}}, {Q{1,2}}, {Q{1,2}, Q{1,3}}, {Q{1,2}}. Relative order withinQsu is
unimportant. A subphase is now initiated in which the following actions are performed.

• the transmitter visits each queueQ{i∗,j} in Qsu and transmits a packets that is a linear combination of all
packets in queuesQ{i∗,j} andQ{1,2,3}. Depending on the received feedback, the following actions, collectively
referred to asACTFB2, are taken:

1) if j receivess, T j
{i∗,j} is decreased by 1.

2) if i∗ receivess and it holds T i∗

{1,2,3} > 0, T i∗

{1,2,3} is decreased by 1.

3) if j dropss andk ∈ {1, 2, 3} − {i∗, j} receives it,s is added toQ{1,2,3}, T j
{i∗,j} is decreased by 1 and

T j
{1,2,3} is increased by 1.

4) if s is dropped by all users or received only byi∗ when it holdsT i∗

{1,2,3} = 0, s is retransmitted.

The transmitter keeps sending linear combinations fromQ{i∗,j} andQ{1,2,3} until it holdsT j
{i∗,j} = 0, at which

point the next queue inQsu is processed and the entire procedure is repeated for the new queue.
• once all queues inQsu have been processed, the transmitter computes the new values ofsu(i) for i ∈ {1, 2, 3}

and constructsQsu from scratch. IfQsu = ∅, CODE2 reverts toCODE1 starting at phase 3, otherwise it
repeats the above procedure verbatim for the newQsu. It is easy to verify that at most 2 iterations of this
procedure will be performed until it holdsQsu = ∅.

By construction ofQsu, it is easy to verify (by inspecting each configuration in Fig. 3) that if, during the
combination ofQ{i∗,j} ∈ Qsu with Q{1,2,3}, T i∗

{1,2,3} becomes 0 beforeT j
{i∗,j} does, theni∗ has recovered all

available innovative tokens (i.e. it holdsT i∗

S = 0 for all S ⊆ N with i∗ ∈ S). Hence,i∗ cannot gain any more
innovative tokens by combiningQ{i∗,j} with Q{1,2,3} and no efficiency is lost. The last statement is essentially a
repetition of Lemma 13. The correctness ofCODE2 now follows from the validity of Lemmas 6, 12.

D. An example of application ofCODE2, CODE3, CODE4

It is obvious from the previous section thatCODE2–CODE4 have similar operation. Essentially, all 3 algorithms
duplicate the operation ofCODE1 until each queue inQ2 has at most one surviving index and then suitably combine
each surviving queue inQ2 with Q{1,2,3} so that no slot is wasted. Since the difference in their operation lies in
how this combining is performed, we present the following concrete example (as mentioned,CODE2–CODE4 are
identical up to epochts where each queue inQ2 has at most one surviving index; hence we concentrate on what

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

15

happens afterts). Assume w.l.o.g. that the state of the indices atts is

T 2
{1,2} > 0, T 1

{1,2} = 0,

T 3
{1,3} > 0, T 1

{1,3} = 0,

T 3
{2,3} > 0, T 2

{2,3} = 0,

T i
{1,2,3} > 0, ∀ i ∈ {1, 2, 3}.

(29)

CODE4 operates as follows. It setsF1 = F2 = F3 = 0, determines that condition 2) of Lemma 11 is true
and constructsQ∗

2 = {Q{2,3}, Q{1,2}, Q{1,3}}. It now picks Q{2,3} and combines it withQ{1,2,3} until T 3
{2,3} or

T 2
{1,2,3} become 0 (whichever occurs first). Say it happens thatT 2

{1,2,3} = 0 occurs first. The transmitter aborts
further processing ofQ∗

2, checks Lemma 11 again, determines that condition 2) is still true and constructsQ∗
2 =

{Q{1,3}, Q{1,2}}. It now combinesQ{1,3} with Q{1,2,3} until eitherT 3
{1,3} or T 1

{1,2,3} first become 0. Say it happens
that T 1

{1,2,3} = 0 occurs first. The transmitter checks Lemma 11, determines that user 1 satisfies condition 1),
setsF1 = 1 and constructsQ∗

1 = {Q{1,2}, Q{1,3}}. It transmits linear combinations of packets fromQ{1,2} until
T 2
{1,2} = 0 and, when this occurs, moves toQ{1,3} and processes it until it holdsT 3

{1,3} = 0. Notice that no
efficiency is lost during this stage if any packets are only received by 1, since 1 has already recovered all tokens
and can gain nothing more. The transmitter checks Lemma 11 again and determines that 2 satisfies condition 1).
Hence, it setsF2 = 1 and constructsQ∗

1 = {Q{2,3}}. It then sends linear combinations of packets fromQ{2,3}

(which is the only queue inQ2 with remaining tokens) untilT 3
{2,3} = 0. Again, no efficiency is lost if the packet is

received only by 1 or 2, since both users have recovered their tokens. WhenT 3
{2,3} = 0 occurs,CODE4 determines

that all innovative tokens have been recovered fromQ2 and switches toCODE1, starting at phase 3.
CODE3 operates as follows. The transmitter computes the surviving indices at epochts assu(1) = 0, su(2) = 1,

su(3) = 2, so that it holds1 ≺ 2 ≺ 3 and, therefore,{1, 2} ≺ {1, 3} ≺ {2, 3}. It then transmits linear combinations
of packets inQ{1,2} until T 2

{1,2} = 0. If it happens thatT 1
{1,2,3} = 0 while T 2

{1,2} > 0, the transmitter continues
processingQ{1,2} since, at this point, user 1 has recovered all tokens and there is nothing more to gain. Once
T 2
{1,2} = 0, the transmitter moves toQ{1,3} (the next queue according to the≺ order) and processes it until

T 3
{1,3} = 0. Finally, it processesQ{2,3} until T 3

{2,3} = 0. When this occurs, all innovative tokens have been
recovered fromQ2 soCODE3 reverts toCODE1, starting at phase 3.
CODE2 operates as follows. The transmitter computes at epochts the valuessu(1) = 0, su(2) = 1, su(3) = 2

and constructs the setQsu = {Q{1,2}, Q{1,3}}. It combines each queue inQsu with Q{1,2,3} until all T indices
(T 2

{1,2}, T 3
{1,3}, respectively) in the queue ofQsu become zero. When this occurs, the valuessu(i) are computed

again assu(1) = su(2) = 0 andsu(3) = 1, so that the new setQsu is Qsu = {Q{2,3}} since it holdsT 3
{2,3} > 0.

The transmitter then combinesQ{2,3} with Q{1,2,3} until T 3
{2,3} becomes 0. At this point,CODE2 switches toCODE1

starting at phase 3.

E. Performance ofCODE2–CODE4

The performance ofCODE2–CODE4 can be analyzed similarly toCODE1 by computing the number of slots re-
quired for all phases, paying special attention to the number of tokens moved between the queues when combinining
queues inQ2 with Q{1,2,3}. The procedure, described in detail in Appendix J, is straightforward but tedious so we
only state the final result.

Theorem 3:CODE2–CODE4 achieve the capacity region outer bound of Theorem 1, assuming complete feedback
is known to all users.
The assumption of complete feedback known to all users can be removed by overhead mechanisms essentially
identical to the one described in Section IV-D, with a similar reduction in the achievable region. This issue will
not be pursued any further.

VI. CONCLUSIONS

This document presented coding algorithms that achieve the feedback capacity ofN -user broadcast erasure
channels with multiple unicast streams for the following cases

• symmetric channels, for arbitraryN .

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

16

• arbitrary channels, forN ≤ 3.

For the second case three different implementations,CODE2–CODE4, were presented (in contrast to the first case,
which is handled by a single algorithm). The main characteristic of the algorithms is the introduction of virtual
queues, on the transmitter side, for storing packets depending on received feedback, and the appropriate mixing
of the packets to allow for simultaneous reception of innovative tokens (i.e. linearly indepedent combinations of
the unknown packets) by multiple users, while none of them requires knowledge of channel statistics. Since only
an outer bound to the capacity region is known forN ≥ 4 and arbitrary channels, future research may involve
the search for capacity achieving algoriths forN ≥ 4. It is expected that such algorithms cannot be constructed
through minor modifications ofCODE1 and may possibly require complete knowledge of channel statistics. If this
is the case, adaptive algorithms that essentially “learn” the relevant statistics may be pursued.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

17

APPENDIX

PROOFS OF VARIOUS RESULTS

A. Proof of Lemmas 3, 4

For Lemma 3, it suffices to prove the existence of a permutationπ̂ such that the sequence of random variables
X → Ŷπ̂(π(1)) → . . . → Ŷπ̂(π(N)) forms a Markov chain. We claim that a suitable permutation is the reverse ordering
π̂(π(i)) = π(N − i + 1) so that we need to prove the sequenceX → Ŷπ(N) → . . . → Ŷπ(1) to be a Markov chain.
We need only prove the following equality for alli ≥ 1

Pr
(

Ŷπ(i) = ŷπ(i)|Ŷπ(i+1) = ŷπ(i+1), . . . , Ŷπ(N) = ŷπ(N),X = x
)

= Pr
(

Ŷπ(i) = ŷπ(i)|Ŷπ(i+1) = ŷπ(i+1)

)

, (30)

where the uppercase letters denote random variables and the corresponding lowercase letters their actual values. If
(30) holds, the Markov chain property can then be proved by repeated application of (30). We start from the LHS
and distinguish cases

• if there exists somej > i such thatŷπ(j) = E (equivalently, Ẑπ(j) = 1), it follows from (4), (5) that
Ẑπ(i) = Ẑπ(i+1) = 1, which impliesŶπ(i) = Ŷπ(i+1) = E.

• otherwise, if for allj > i it holdsŷπ(j) 6= E, it follows from (4), (5) that it must hold̂yπ(i+1) = . . . = ŷπ(N) = x

for the conditioning of the LHS to occur on a non-null set. We denote this event asEi
△
= {Ŷπ(i+1) = . . . =

Ŷπ(N) = X = ŷπ(i+1)} so that the LHS of (30) becomesPr(Ŷπ(i) = ŷπ(i)|Ei).

Combining the two previous cases yields

LHS of (30)=

{

I[ŷπ(i) = E] if ŷπ(i+1) = E,

Pr(Ŷπ(i) = ŷπ(i)|Ei) if ŷπ(i+1) 6= E.
(31)

For the RHS of (30), we know that̂Yπ(i+1) = E implies Ŷπ(i) = E so that it holdsPr(Ŷπ(i) = ŷπ(i)|Ŷπ(i+1) =

ŷπ(i+1)) = I[ŷπ(i) = E] for ŷπ(i+1) = E. For the casêyπ(i+1) 6= E (equivalentlyẐπ(i+1) = 0), we note the
following set inclusion due to (4), (5)

{Ŷπ(i+1) = ŷπ(i+1)} ⊆ {Ŷπ(i+1) = . . . = Ŷπ(N) = X = ŷπ(i+1)} = Ei, (32)

and sinceEi ⊆ {Ŷπ(i+1) = ŷπ(i+1)}, we conclude thatEi = {Ŷπ(i+1) = ŷπ(i+1)} for ŷπ(i+1) 6= E. Hence, we can
write

RHS of (30)= Pr(Ŷπ(i) = ŷπ(i)|Ei) ∀ ŷπ(i+1) 6= E. (33)

Comparing the derived expression for the two sides completes the proof of Lemma 3.
Lemma 4 is easily proved by recalling that Fig. 1 implies thatĈπ can be regarded as a regular broadcast channel

with erasure probabilityεπ(i) for userπ(i) along with error-free channels between successive users. Hence, any
rate that is achieved in channelC can also be achieved in̂Cπ by applying the code for channelC to channelĈπ

and forcing the users to discard any information received through the error-free channels.

B. Proof of Lemma 6

The first statement of the Lemma is true by the algorithm’s construction. For the second statement, we use strong
induction on|S|. Specifically, we consider the queues in setQ2 and pick an arbitrary queue of that set, sayQ{i,j}

with i 6= j. By the algorithm’s construction, any packets ∈ Q{i,j} has exactly one of the following forms

s =







(
∑

p∈Ki
as(p)p

){j}
,

(
∑

p∈Kj
ãs(p)p

){i}
,

(34)

where the set superscript denotes the users that have succesfully received this packet. Since the coefficientsas(p),
ãs(p) are known to all users (including those that erase the packet), it is apparent thats is a token for bothi, j
(and for no other user), and sincei, j are arbitrary, this conclusion can be extended to all queues inQ2. We now
assume that all packets in the queues of setsQ1,Q2, . . . ,Qn are tokens (for the appropriate users), and we prove
that the packets in the queues ofQn+1 are also tokens.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

18

Consider some packets ∈ QS with |S| = n+1. By the first statement of the Lemma there exists some non-empty
Is ⊂ S (which implies1 ≤ |Is| ≤ n) such that it holdss =

∑

p∈QIs
as(p)p, whereas(p) are known to all users.

We now show thats is a token for all users inS. Since the inductive hypothesis is true forIs (meaning thats is
a token for the setIs), we know that for anyp ∈ QIs

and anyi ∈ Is it holds

p =
∑

u∈Ki

bi,p(u)u + ci,p, (35)

wherebi,p, ci,p are known to useri. Hence,s can be written as

s =
∑

p∈QIs

as(p)
∑

u∈Ki

(bi,p(u)u + ci,p) =
∑

u∈Ki




∑

p∈QIs

as(p)bi,p(u)



 u +
∑

p∈QIs

as(p)ci,p, (36)

so thats is a token for anyi ∈ Is. Consider now somei ∈ S −Is. Again, by the algorithm’s construction, a linear
combination of packets fromQIs

is added to queueQS when exactly the users inS − Is receive the packet. In
that cases is known to all usersi ∈ S − Is. Since the following relation is trivially true

s =
∑

p∈Ki

0 · p + (s)S−Is , ∀ i ∈ S − Is, (37)

we conclude thats is also a token forS − Is. Hence,s is a token for anyS with |S| = n + 1 such thati ∈ S and
the proof is complete.

C. Proof of Lemma 7

Proof is by strong induction onρ. Specifically, forρ = 0, the result is true for alle. We assume that the hypothesis
holds for alle andρ = 0, . . . , n and prove that it holds for alle andρ = n + 1. Specifically, it holds by (14)

pe,n+1 = ǫe −
n+1∑

l=1

(

n + 1

l

)

pe+l,n+1−l = ǫe −
n+1∑

l=1

n+1−l∑

m=0

(

n + 1

l

)(

n + 1 − l

m

)

ǫe+l+m(−1)m, (38)

where we used the inductive hypothesis to substitute forpe+l,n−l+1 in the second equality. Settingm′ = l +m and
renamingm′ to m yields

pe,n+1 = ǫe −
n+1∑

l=1

n+1∑

m=l

(

n + 1

l

)(

n + 1 − l

m − l

)

ǫe+m(−1)m+l. (39)

The index domain is changed to1 ≤ m ≤ n + 1 and1 ≤ l ≤ m to get

pe,n+1 = ǫe −
n+1∑

m=1

m∑

l=1

(

n + 1

l

)(

n + 1 − l

m − l

)

ǫe+m(−1)m+l

= ǫe +
n+1∑

m=1

ǫe+m(−1)m
[

m∑

l=1

(

n + 1

l

)(

n + 1 − l

m − l

)

(−1)l+1

]

.

(40)

At this point, the following identities from [20] involving binomial coefficients will be useful.
(

r

k

)

=

(

r

r − k

)

, (41)

(

r

m

)(

m

k

)

=

(

r

k

)(

r − k

m − k

)

, (42)

∑

k

(

l

m + k

)(

s + k

n

)

(−1)k = (−1)l+m

(

s − m

n − l

)

, ∀ l ≥ 0. (43)

All quantities in (41)–(43) are assumed to be non-negative integers and the summation in (43) extends over allk
such that the binomial coefficients appearing in the summand are non-zero (by definition,

(n
k

)
= 0 if k > n).

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

19

The sum in square brackets is computed as follows (barring access to symbolic math packages such as Maple)
m∑

l=1

(

n + 1

l

)(

n + 1 − l

m − l

)

(−1)l+1 =
m∑

l=1

(

n + 1

n + 1 − l

)(

n + 1 − l

n + 1 − m

)

(−1)l+1 =
m∑

l=1

(

n + 1

n + 1 − m

)(

m

m − l

)

(−1)l+1

=
m∑

l=1

(

n + 1

m

)(

m

l

)

(−1)l+1 =

(

n + 1

m

)[
m∑

l=0

(

m

l

)

(−1)l+1 + 1

]

=

(

n + 1

m

)

,

(44)

where we applied, in immediate succession, (41), (42), (41) and used the binomial expansion for(1 + (−1))m.
Combining this with (40) yields

pe,n+1 = ǫe +
n+1∑

m=1

ǫe+m(−1)m
(

n + 1

m

)

=
n+1∑

m=0

(

n + 1

m

)

ǫe+m(−1)m, (45)

where the last equality was achieved by inserting the first term into the sum. The last form is the exact form of
the inductive hypothesis forρ = n + 1 and the proof is complete.

D. Proof of Lemma 8

The last equality in the RHS of (19) is easily verified by settingm′ = l − 1 − m and renamingm′ back tom.
We fix i and prove the result with strong induction onl. For l = 1, (19) is easily seen to be true. We now assume
that the hypothesis is true forki

1, ki
2 up to ki

l−1 (for l ≥ 2) and we prove the hypothesis true forki
l . Starting from

the RHS of (18) we have

ki
l =

l−1∑

m=1

(

l − 1

m − 1

)

ki
m

1 − ǫN−m+1
pN−l+1,l−m = |Ki|

l−1∑

m=1

(

l − 1

m − 1

)

(−1)m+1
m−1∑

j=0

(

m − 1

j

)

(−1)j

1 − ǫN−j
pN−l+1,l−m

= |Ki|
l−1∑

m=1

m−1∑

j=0

(

l − 1

m − 1

)(

m − 1

j

)

(−1)m+j+1

1 − ǫN−j

pN−l+1,l−m

= |Ki|
l−2∑

j=0

(

l − 1

j

)

(−1)j+1

1 − ǫN−j





l−1∑

m=j+1

(

l − 1 − j

m − 1 − j

)

(−1)mpN−l+1,l−m



 ,

(46)

where we used, in succession, the inductive hypothesis forki
m with m < l, (42), and the change of indices to

0 ≤ j ≤ l − 2, j + 1 ≤ m ≤ l − 1.
We denote withDj the sum inside the square brackets and concentrate on its calculation. Expanding the term

pN−l+1,l−m according to Lemma 7 yields

Dj =
l−1∑

m=j+1

l−m∑

k=0

(

l − 1 − j

m − 1 − j

)(

l − m

k

)

(−1)m+kǫN−l+1+k

=
l−1∑

m=j+1

(

l − 1 − j

m − 1 − j

)

(−1)mǫN−l+1 +
l−1∑

m=j+1

l−m∑

k=1

(

l − 1 − j

m − 1 − j

)(

l − m

k

)

(−1)m+kǫN−l+1+k

=ǫN−l+1

l−j−2
∑

m=0

(

l − 1 − j

m

)

(−1)m+j+1 +
l−1∑

m=j+1

l−m∑

k=1

(

l − 1 − j

m − 1 − j

)(

l − m

k

)

(−1)m+kǫN−l+1+k,

(47)

where the termk = 0 was extracted from thek summation in the transition from the first to the second line. The
first sum in the third line results from the first sum of the second line after settingm′ = m− j − 1 (and renaming
m′ back tom). The binomial theorem yields for anyj with 0 ≤ j ≤ l − 2

l−j−2
∑

m=0

(

l − 1 − j

m

)

(−1)m =
l−j−1
∑

m=0

(

l − 1 − j

m

)

(−1)m −

(

l − 1 − j

l − 1 − j

)

(−1)l−j−1 = 0l−j−1 − (−1)l−j−1 = (−1)l+j .

(48)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

20

Inserting (48) back to (47) yields

Dj =(−1)l+1ǫN−l+1 +
l−1∑

m=j+1

l−m∑

k=1

(

l − 1 − j

m − 1 − j

)(

l − m

k

)

(−1)m+kǫN−l+1+k

=(−1)l+1ǫN−l+1 +
l−j−1
∑

k=1

l−k∑

m=j+1

(

l − 1 − j

m − 1 − j

)(

l − m

k

)

(−1)m+kǫN−l+1+k

=(−1)l+1ǫN−l+1 +
l−j−1
∑

k=1

(−1)kǫN−l+k+1

l−k−1−j
∑

m=0

(

l − 1 − j

l − m − 1 − j

)(

l − m − j − 1

k

)

(−1)m+j+1,

(49)

where we changed indices again between the first and second lines and setm′ = m − j − 1 (and renamedm′ to
m) between the second and third lines. The rightmost binomial can be written as

(l−m−j−1
l−m−j−1−k

)
so that performing

the substitutionm′ = l − m − k − 1 − j (and renaming back tom) finally yields

Dj = (−1)l+1ǫN−l+1 +
l−j−1
∑

k=1

(−1)j+k+1ǫN−l+1+k

l−k−1−j
∑

m=0

(

l − 1 − j

k + m

)(

k + m

k

)

(−1)m. (50)

Applying (43) to the rightmost sum of (50) yields

l−k−1−j
∑

m=0

(

l − 1 − j

k + m

)(

k + m

k

)

(−1)m = (−1)l+1+j+k

(

0

k − (l − 1 − j)

)

= I[k = l − 1 − j], (51)

so that thek summation inDj essentially contains only the termk = l − j − 1 andDj becomes

Dj = (−1)l+1ǫN−l+1 + (−1)lǫN−j . (52)

InsertingDj back to (46) yields

ki
l =|Ki|

l−2∑

j=0

(

l − 1

j

)

(−1)j+1

1 − ǫN−j

[

(−1)l+1ǫN−l+1 + (−1)lǫN−j

]

=|Ki|
l−2∑

j=0

(

l − 1

j

)

(−1)j+1

1 − ǫN−j

[

(−1)l+1(ǫN−l+1 − 1) + (−1)l+1(1 − ǫN−j)
]

=|Ki|(1 − ǫN−l+1)
l−2∑

j=0

(

l − 1

j

)

(−1)j+l+1

1 − ǫN−j

+ |Ki|
l−2∑

j=0

(

l − 1

j

)

(−1)j+l.

(53)

The right term in the last line becomes

|Ki| (−1)l





l−1∑

j=0

(

l − 1

j

)

(−1)j − (−1)l−1



 = |Ki| (−1)l(−1)l = |Ki|, (54)

so that

ki
l

1 − ǫN−l+1
= |Ki|





l−1∑

j=0

(

l − 1

j

)

(−1)j+l+1

1 − ǫN−j
−

1

1 − ǫN−l+1



+
|Ki|

1 − ǫN−l+1
= |Ki|

l−1∑

j=0

(

l − 1

j

)

(−1)j+l+1

1 − ǫN−j
. (55)

The last result is the RHS of (19) so that the inductive hypothesis also holds forki
l and the proof is complete.

E. Proof of Lemma 9

Changing indices in (22) to1 ≤ r ≤ N , 1 ≤ l ≤ N − r + 1, 0 ≤ m ≤ l − 1 results in

T ∗∗ =
N∑

r=1

|Kr|

[
N−r+1∑

l=1

l−1∑

m=0

(

N − r

l − 1

)(

l − 1

m

)

(−1)m

1 − ǫN−l+m+1

]

. (56)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

21

We restrict attention to the sum inside the square brackets and sum diagonally through a change of indicesd =
l − m − 1, k = m, which yields

N−r∑

d=0

N−r−d∑

k=0

(

N − r

d + k

)(

d + k

k

)

(−1)k

1 − ǫN−d

=
N−r∑

d=0

1

1 − ǫN−d

N−r−d∑

k=0

(

N − r

d + k

)(

d + k

d

)

(−1)k, (57)

where we also used (41) to change the last binomial coefficient. Extracting the termd = N − r from the last sum
yields

N−r∑

d=0

N−r−d∑

k=0

(

N − r

d + k

)(

d + k

d

)

(−1)k

1 − ǫN−d

=
1

1 − ǫr
+

N−r−1∑

d=0

1

1 − ǫN−d

N−r−d∑

k=0

(

N − r

d + k

)(

d + k

d

)

(−1)k. (58)

Hence, in order to prove the desired equality, it suffices to show that

N−r−d∑

k=0

(

N − r

d + k

)(

d + k

d

)

(−1)k
?
= 0 ∀ d = 0, . . . , (N − r − 1). (59)

This is achieved by invoking (43) (through the obvious substitutions), which provides

N−r−d∑

k=0

(

N − r

d + k

)(

d + k

d

)

(−1)k = (−1)N−r+d

(

0

d − (N − r)

)

= 0, ∀ d = 0, . . . , (N − r − 1). (60)

This completes the proof.

F. Proof of Theorem 2

By Theorem 1, the capacity region outer boundCout is equal to

Cout =

{

R ≥ 0 : max
π∈P

Rπ(i)

1 − ε̂π(i)
≤ L

}

, (61)

whereP is the set of all possible permutationsπ on N and ε̂π(i) = ε∪i
j=1

{π(j)} = ǫi, where the last equality is due
to the symmetric channels property. Since it holdsǫ1 ≥ . . . ≥ ǫN , which in turn implies,

1

1 − ǫ1
≥ . . . ≥

1

1 − ǫN
,

it is apparent that theπ∗ that achieves the maximum in (61) satisfies the conditionRπ∗(1) ≥ . . . ≥ Rπ∗(N). Hence,
Cout is indeed given by (24) and the achievability ofCout by CODE1 follows immediately from Corollary 1.

G. Proof of the suboptimality ofCODE1 for 3 users

We examine the case of general channels with equal ratesRi = R (which implies that|Ki| = K for all
i ∈ {1, 2, 3}). Considering all possible permutations in the set{1, 2, 3}, Theorem 1 yields the following outer
bound

Ceq,out =

{

R1 : max

[

R

1 − ε1
+

R

1 − ε{1,2}
+

R

1 − ε{1,2,3}
,

R

1 − ε1
+

R

1 − ε{1,3}
+

R

1 − ε{1,2,3}

R

1 − ε2
+

R

1 − ε{1,2}
+

R

1 − ε{1,2,3}
,

R

1 − ε2
+

R

1 − ε{2,3}
+

R

1 − ε{1,2,3}
,

R

1 − ε3
+

R

1 − ε{1,3}
+

R

1 − ε{1,2,3}
,

R

1 − ε3
+

R

1 − ε{2,3}
+

R

1 − ε{1,2,3}

]

≤ L

}

.

(62)

We now assume that it holdsε1 = ε2 = ε3 andε{1,2} > ε{1,3} > ε{2,3} so that (62) is reduced to

Ceq,out =

{

R1 : R

(

1

1 − ε1
+

1

1 − ε{1,2}
+

1

1 − ε{1,2,3}

)

≤ L

}

, (63)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

22

and proceed to show that, under the previous assumptions, the region in (63) is not achievable byCODE1, i.e. there
exists someR1 ∈ Ceq,out that cannot be achieved byCODE1. In order to prove the last claim, we must compute
the number of slots required for the operation ofCODE1 under asymmetric channels.

Initially, we compute the values ofT i
S for all S with |S| = 2 andi ∈ S at the beginning of phase 2 (equivalently,

end of phase 1) ofCODE1 (i.e. as soon as it holdsT i
S = 0 for all S = {i}. The number of slotsNS1 required to

recover all tokens fromQ{1} (i.e. reduceT 1
{1} from |K1| to 0) is

NS1 =
|K1|

1 − ε{1,2,3}
in probability asK → ∞, (64)

since a token is removed fromQ{1} whevenever at least one user receives the packet. Therefore, the total number
of tokens moved fromQ{1} to Q{1}∪S in step 3 ofCODE1 is (all subsequent statements denote convergence in
probability so we henceforth omit this declaration)

T 1
{1},{1}∪S = NS1

(

ε1 − ε{1}∪S
)

. (65)

Iterating the last relation over all appropriate setsS yields

T 1
{1},{1,2} = |K1|

ε{1,3} − ε{1,2,3}

1 − ε{1,2,3}
,

T 1
{1},{1,3} = |K1|

ε{1,2} − ε{1,2,3}

1 − ε{1,2,3}
,

T 1
{1},{1,2,3} = |K1|

ε1 − ε{1,2} − ε{1,3} + ε{1,2,3}

1 − ε{1,2,3}
.

(66)

Similarly, the number of slotsNS2, NS3 required to recover all tokens fromQ{2}, Q{3}, respectively, in phase 1
is

NS2 =
|K2|

1 − ε{1,2,3}
,

NS3 =
|K3|

1 − ε{1,2,3}
,

(67)

while the number of tokens moved to each queue due to step 3 is

T 2
{2},{1,2} = |K2|

ε{2,3} − ε{1,2,3}

1 − ε{1,2,3}
,

T 2
{2},{2,3} = |K2|

ε{1,2} − ε{1,2,3}

1 − ε{1,2,3}
,

T 2
{2},{1,2,3} = |K2|

ε2 − ε{1,2} − ε{2,3} + ε{1,2,3}

1 − ε{1,2,3}
,

(68)

and

T 3
{3},{1,3} = |K3|

ε{2,3} − ε{1,2,3}

1 − ε{1,2,3}
,

T 3
{3},{2,3} = |K3|

ε{1,3} − ε{1,2,3}

1 − ε{1,2,3}
,

T 3
{3},{1,2,3} = |K3|

ε3 − ε{1,3} − ε{2,3} + ε{1,2,3}

1 − ε{1,2,3}
.

(69)

The previous expressions give the number of tokens remaining in the queues at the beginning of phase 2 of
CODE1. Specifically, if we denote withki

S the values ofT i
S at the beginning of phase 2 ofCODE1, it holds

ki
S = T i

{i},S . We now compute the number of tokens moved between the queues inQ2 andQ{1,2,3} during phase

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

23

2 of CODE1. Denote withNS{1,2} the number of slots required to reduce to zero all indices inQ{1,2} (i.e. k1
{1,2},

k2
{1,2}). Analogous interpretations are given toNS{1,3}, NS{2,3}. It holds

NS{1,2} = max

(
k1
{1,2}

1 − ε{1,3}
,

k2
{1,2}

1 − ε{2,3}

)

,

NS{1,3} = max

(
k1
{1,3}

1 − ε{1,2}
,

k3
{1,3}

1 − ε{2,3}

)

,

NS{2,3} = max

(
k2
{2,3}

1 − ε{1,2}
,

k3
{2,3}

1 − ε{1,3}

)

.

(70)

The number of tokens moved fromQ{1,2}, Q{1,3}, Q{2,3} to Q{1,2,3} during phase 2 is given by

T 1
{1,2},{1,2,3} = NS{1,2}(ε1 − ε{1,3}),

T 2
{1,2},{1,2,3} = NS{1,2}(ε2 − ε{2,3}),

(71)

T 1
{1,3},{1,2,3} = NS{1,3}(ε1 − ε{1,2}),

T 3
{1,3},{1,2,3} = NS{1,3}(ε3 − ε{2,3}),

(72)

T 2
{2,3},{1,2,3} = NS{2,3}(ε2 − ε{1,2}),

T 3
{2,3},{1,2,3} = NS{2,3}(ε3 − ε{1,3}),

(73)

so that at the beginning of phase 3 ofCODE1 (denote this epoch witht3), the values of the indices are as follows

T 1
{1,2,3}(t3) = T 1

{1},{1,2,3} + T 1
{1,2},{1,2,3} + T 1

{1,3},{1,2,3},

T 2
{1,2,3}(t3) = T 2

{2},{1,2,3} + T 2
{1,2},{1,2,3} + T 2

{2,3},{1,2,3},

T 3
{1,2,3}(t3) = T 3

{3},{1,2,3} + T 3
{1,3},{1,2,3} + T 3

{2,3},{1,2,3}.

(74)

Hence, the number of slots required to process queueQ{1,2,3} is

NS{1,2,3} = max

[
T 1
{1,2,3}(t3)

1 − ε1
,

T 2
{1,2,3}(t3)

1 − ε2
,

T 3
{1,2,3}(t3)

1 − ε3

]

, (75)

and the number of slots required for the entire execution ofCODE1 is

T̃ ∗∗ = NS1 + NS2 + NS3 + NS{1,2} + NS{1,3} + NS{2,3} + NS{1,2,3}. (76)

Using the conditionsε1 = ε2 = ε3, ε{1,2} > ε{1,3} > ε{2,3} and |Ki| = K provides the following significantly
simplified expressions

NS{1,2} = K

(

1

1 − ε{1,3}
−

1

1 − ε{1,2,3}

)

,

NS{1,3} = NS{2,3} = K

(

1

1 − ε{1,2}
−

1

1 − ε{1,2,3}

)

,

(77)

T 1
{1,2,3}(t3) = K

(

ε1 − ε{1,2}

1 − ε{1,2}
+

ε1 − ε{1,3}

1 − ε{1,3}
−

ε1 − ε{1,2,3}

1 − ε{1,2,3}

)

,

T 2
{1,2,3}(t3) = K

(

ε2 − ε{2,3}

1 − ε{1,3}
+

ε2 − ε{1,2}

1 − ε{1,2}
−

ε2 − ε{1,2,3}

1 − ε{1,2,3}

)

,

T 3
{1,2,3}(t3) = K

(

ε3 − ε{2,3}

1 − ε{1,2}
+

ε3 − ε{1,3}

1 − ε{1,2}
−

ε3 − ε{1,2,3}

1 − ε{1,2,3}

)

,

(78)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

24

NS{1,2,3} = K max

[

1

1 − ε1
−

1

1 − ε{1,2}
−

1

1 − ε{1,3}
,

ε2 − ε{2,3}

(1 − ε2)(1 − ε{1,3})
,

2ε3 − ε{1,3} − ε{2,3}

(1 − ε{1,2})(1 − ε3)

]

+
K

1 − ε{1,2,3}
.

(79)

Therefore, the total number of slots required byCODE1 is (after some algebra)

T̃ ∗∗ = K max

[

1

1 − ε1
+

1

1 − ε{1,2}
+

1

1 − ε{1,2,3}
,

1 − ε{2,3}

(1 − ε2)(1 − ε{1,3})
+

1

1 − ε{1,2}
+

1

1 − ε{1,2,3}
, (·)

]

, (80)

where the third term is denoted as(·) because its actual value does not affect the fact that

T̃ ∗∗ > K

(

1

1 − ε{1}
+

1

1 − ε{1,2}
+

1

1 − ε{1,2,3}

)

, (81)

since it holdsε1 = ε2 and1−ε{2,3} > 1−ε{1,3}. Hence, each user achieves a rate ofR = KL/T̃ ∗∗ information bits
per transmitted symbol, which is strictly smaller than the bound in (63). This clearly demonstrates the suboptimal
performance ofCODE1 for general channels.

H. Proof of Lemma 10

Proof is by contradiction, specifically we assume that there exists someδ > 0 such thatPr (su(i) = 1, ∀ i ∈ N) >
δ for all values ofK = mini∈N |Ki|. This implies that at least one of the following events has probability larger
thanδ/2 for all K

{

T 1
{1,2}(ts) > 0, T 2

{1,2}(ts) = 0, T 3
{1,3}(ts) > 0, T 1

{1,3}(ts) = 0, T 2
{2,3}(ts) > 0, T 3

{2,3}(ts) = 0
}

,
{

T 2
{1,2}(ts) > 0, T 1

{1,2}(ts) = 0, T 1
{1,3}(ts) > 0, T 3

{1,3}(ts) = 0, T 3
{2,3}(ts) > 0, T 2

{2,3}(ts) = 0
}

,
(82)

Assume without loss of generality that the first event in (82) has probability larger thanδ/2 (the second event is
handled similarly). To arrive at a contradiction, we use the weak law of large numbers to compute the values of
all T i

S(ts), essentially repeating a part of the analysis performed in Appendix G.
Specifically, since phase 1 is the same for bothCODE1 andCODE4, (64), (66), (67), (68), (69) are still applicable.

Again, we denote withki
S the values ofT i

S at the beginning of phase 2 ofCODE2 so that it holdski
S = T i

{i},S
(remember thatCODE4 is identical toCODE1 up to epochts, so that (16) is still applicable). We now compute
the number of tokens moved between the queues during phase 2 ofCODE4 until we reach epochts. Denote with
NS{1,2} the number of slots required to reduce to zero at least one ofk1

{1,2}, k2
{1,2} (analogous interpretations are

given toNS{1,3}, NS{2,3}. It holds

NS{1,2} = min

(
k1
{1,2}

1 − ε{1,3}
,

k2
{1,2}

1 − ε{2,3}

)

,

and the remaining indices at epochts are

Rk1
{1,2}

△
= T 1

{1,2}(ts) = max

(

k1
{1,2} − k2

{1,2}

1 − ε{1,3}

1 − ε{2,3}
, 0

)

,

Rk2
{1,2}

△
= T 2

{1,2}(ts) = max

(

k2
{1,2} − k1

{1,2}

1 − ε{2,3}

1 − ε{1,3}
, 0

)

.

(83)

Similarly, we have for the other queuesQ{1,3}, Q{2,3}

NS{1,3} = min

(
k1
{1,3}

1 − ε{1,2}
,

k3
{1,3}

1 − ε{2,3}

)

,

NS{2,3} = min

(
k2
{2,3}

1 − ε{1,2}
,

k3
{2,3}

1 − ε{1,3}

)

,

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

25

while the remaining indices are

Rk1
{1,3}

△
= T 1

{1,3}(ts) = max

(

k1
{1,3} − k3

{1,3}

1 − ε{1,2}

1 − ε{2,3}
, 0

)

,

Rk3
{1,3}

△
= T 3

{1,3}(ts) = max

(

k3
{1,3} − k1

{1,3}

1 − ε{2,3}

1 − ε{1,2}
, 0

)

,

(84)

and

Rk2
{2,3}

△
= T 2

{2,3}(ts) = max

(

k2
{2,3} − k3

{2,3}

1 − ε{1,2}

1 − ε{1,3}
, 0

)

,

Rk3
{2,3}

△
= T 3

{2,3}(ts) = max

(

k3
{2,3} − k2

{2,3}

1 − ε{1,3}

1 − ε{1,2}
, 0

)

.

(85)

We have assumed thatPr
(

Rk1
{1,2} > 0, Rk3

{1,3} > 0, Rk2
{2,3} > 0, Rk2

{1,2} = Rk1
{1,3} = RK3

{2,3}

)

> δ/2 for all
K, whence it follows from (83)–(85) that, for sufficiently largeK (large enough for all previous expressions to
hold), there exists a sample path such that the following inequalities are simultaneously true

k1
{1,2}

1 − ε{1,3}
>

k2
{1,2}

1 − ε{2,3}
⇒ |K1|

(

1

1 − ε{1,3}
−

1

1 − ε{1,2,3}

)

> |K2|

(

1

1 − ε{2,3}
−

1

1 − ε{1,2,3}

)

, (86)

k3
{1,3}

1 − ε{2,3}
>

k1
{1,3}

1 − ε{1,2}
⇒ |K3|

(

1

1 − ε{2,3}
−

1

1 − ε{1,2,3}

)

> |K1|

(

1

1 − ε{1,2}
−

1

1 − ε{1,2,3}

)

, (87)

k2
{2,3}

1 − ε{1,2}
>

k3
{2,3}

1 − ε{1,3}
⇒ |K2|

(

1

1 − ε{1,2}
−

1

1 − ε{1,2,3}

)

> |K3|

(

1

1 − ε{1,3}
−

1

1 − ε{1,2,3}

)

, (88)

where the RHS inequalitites follow from (66)–(69). Since all RHS terms inside the parentheses are positive, we
multiply the RHS of (86)–(88) by terms and arrive at the contradiction|K1||K2||K3| > |K1||K2||K3|, which
completes the proof. As a final note, the number of tokens moved fromQ{1,2}, Q{1,3}, Q{2,3} to Q{1,2,3} during
phase 2 up until epochts is still given by (71)–(73).

I. Proof of Lemma 11

We initially prove that Lemma 11 holds the first time Procedure 1 is called, i.e. when it holdsFi = 0 for all
i ∈ N . Without loss of generality, we assumeT 1

{1,2} > 0, T 1
{1,3} > 0, T 2

{2,3} > 0 so thatQ̃ = Q2 (all other cases,
excluding the casessu(i) = 0 for all i ∈ N and su(i) = 1 for all i ∈ N , can be similarly handled through an
appropriate permutation on{1, 2, 3}). This is depicted in Fig. 4, where the circles indicate surviving indices in the
queues ofQ2 (the surviving indices inQ{1,2,3}, if any, are not indicated). It is simple to observe that at least one
of the following conditions is true

• it holds T 3
{1,2,3} = 0. In this case, 3 has recovered all available innovative tokens and, sinceF3 = 0, is a valid

index for condition 1) of Lemma 11.
• it holds T 3

{1,2,3} > 0. In this case, both queuesQ{1,3}, Q{2,3} satisfy condition 2) of Lemma 11.
Hence, Lemma 11 is true upon the first call of Procedure 1.

We now prove that Lemma 11 is actually a loop-invariant by examining the actions taken for each of the above
cases:

• if T 3
{1,2,3} = 0, the transmitter constructs the setQ∗

1 = {Q{1,3}, Q{2,3}}, setsF3 = 1 (so that it still holds
F1 = F2 = 0), and transmits linear combinations of packets from each individual queue inQ∗

1 until all relevant
indicesT i

S become zero. When this occurs, Procedure 1 is called again. In the new call, it holdsQ̃ = {Q{1,2}}
so that at least one of the following conditions is true

1) it holds T 2
{1,2,3} = 0, in which case 2 has recovered all innovative tokens and, sinceF2 = 0, satisfies

condition 1) of Lemma 11.
2) it holdsT 2

{1,2,3} > 0, in which caseQ{1,2} satisfies condition 2) of Lemma 11.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

26

1 2

1 3

2 3

1 2 3

Fig. 4. Sample case for proving Lemma 11.

• if T 3
{1,2,3} > 0, the transmitter constructs the setQ∗

2 = {Q{1,3}, Q{2,3}} and combines each queue inQ∗
2 with

Q{1,2,3} until T 1
{1,3}, T 2

{2,3} become both zero orT 3
{1,2,3} = 0, whichever occurs first. Hence, at least one of

the following is true

1) all indices inQ∗
2 become zero. In the next call to Procedure 1 it holdsQ̃ = {Q{1,2}} andF1 = F2 =

F3 = 0. Then, it either holdsT 2
{1,2,3} = 0, in which case index 2 satisfies condition 1) of Lemma 11, or

T 2
{1,2,3} > 0, in which caseQ{1,2} satisfies condition 2) of Lemma 11.

2) it holdsT 3
{1,2,3} = 0. In the next call to Procedure 1, it still holdsF1 = F2 = F3 = 0 andQ̃ contains at

leastQ{1,2}. Clearly, 3 satisfies condition 1) of Lemma 11.

Since all of the above cases satisfy at least one condition of Lemma 11 at the beginning of the next call to
Procedure 1, Lemma 11 is a loop-invariant. Additionally, it is easy to see by extending the previous analysis that
Procedure 1 is called a finite number of times.

J. Proof of Theorem 3

We assume w.l.o.g. that the state of the indices at epochts is as follows (the analysis is similar for any of the
other cases)

T 2
{1,2}(ts) > 0, T 1

{1,2}(ts) = 0,

T 3
{1,3}(ts) > 0, T 1

{1,3}(ts) = 0,

T 3
{2,3}(ts) > 0, T 2

{2,3}(ts) = 0.

(89)

Using the computations performed in Appendix H, the conditions in (89) imply the following inequalities

k1
{1,2}

1 − ε{1,3}
≤

k2
{1,2}

1 − ε{2,3}
⇒ |K1|

(

1

1 − ε{1,3}
−

1

1 − ε{1,2,3}

)

≤ |K2|

(

1

1 − ε{2,3}
−

1

1 − ε{1,2,3}

)

,

k1
{1,3}

1 − ε{1,2}
≤

k3
{1,3}

1 − ε{2,3}
⇒ |K1|

(

1

1 − ε{1,2}
−

1

1 − ε{1,2,3}

)

≤ |K3|

(

1

1 − ε{2,3}
−

1

1 − ε{1,2,3}

)

,

k2
{2,3}

1 − ε{1,2}
≤

k3
{2,3}

1 − ε{13}
⇒ |K2|

(

1

1 − ε{1,2}
−

1

1 − ε{1,2,3}

)

≤ |K3|

(

1

1 − ε{1,3}
−

1

1 − ε{1,2,3}

)

.

(90)

The values of the indices inQ{1,2,3} at epochts are as follows:

T 1
{1,2,3}(ts) = k1

{1,2,3} + k1
{1,2}

ε1 − ε{1,3}

1 − ε{1,3}
+ k1

{1,3}

ε1 − ε{1,2}

1 − ε{1,2}
,

T 2
{1,2,3}(ts) = k2

{1,2,3} + k1
{1,2}

ε2 − ε{2,3}

1 − ε{1,3}
+ k2

{2,3}

ε2 − ε{1,2}

1 − ε{1,2}
,

T 3
{1,2,3}(ts) = k3

{1,2,3} + k1
{1,3}

ε3 − ε{2,3}

1 − ε{1,2}
+ k2

{2,3}

ε3 − ε{1,3}

1 − ε{1,2}
,

(91)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

27

while the remaining indices inQ{1,2}, Q{1,3}, Q{2,3} are

Rk2
{1,2} = k2

{1,2} − k1
{1,2}

1 − ε{2,3}

1 − ε{1,3}
,

Rk3
{1,3} = k3

{1,3} − k1
{1,3}

1 − ε{2,3}

1 − ε{1,2}
,

Rk3
{2,3} = k3

{2,3} − k2
{2,3}

1 − ε{1,3}

1 − ε{1,2}
.

(92)

The number of slots expended up until epochts is given up

NS(ts) =
|K1| + |K2| + |K3|

1 − ε{1,2,3}
+

k1
{1,2}

1 − ε{1,3}
+

k1
{1,3}

1 − ε{1,2}
+

k2
{2,3}

1 − ε{1,2}
. (93)

Denote with∆+
S,{1,2,3}k

i
{1,2,3}, ∆−

S,{1,2,3}k
i
{1,2,3} the number of tokens moved into/out of, respectively,Q{1,2,3}

while combiningQS with Q{1,2,3}. With this definition, we can write

∆+
{1,2},{1,2,3}k

2
{1,2,3} = Rk2

{1,2}

ε2 − ε{2,3}

1 − ε{2,3}
,

∆−
{1,2},{1,2,3}k

1
{1,2,3} = Rk2

{1,2}

1 − ε1

1 − ε{2,3}
,

(94)

∆+
{1,3},{1,2,3}k

3
{1,2,3} = Rk3

{1,3}

ε3 − ε{2,3}

1 − ε{2,3}
,

∆−
{1,2},{1,2,3}k

1
{1,2,3} = Rk3

{1,3}

1 − ε1

1 − ε{2,3}
,

(95)

∆+
{2,3},{1,2,3}k

3
{1,2,3} = Rk3

{2,3}

ε3 − ε{1,3}

1 − ε{1,3}
,

∆−
{2,3},{1,2,3}k

2
{1,2,3} = Rk3

{2,3}

1 − ε2

1 − ε{1,3}
.

(96)

Denote witht3 the epoch when phase 3 ofCODE4 (or CODE3 or CODE2) begins. The values of the indices at
t3 are given by

T 1
{1,2,3}(t3) =

[

T 1
{1,2,3}(ts) − ∆−

{1,2},{1,2,3}k
1
{1,2,3} − ∆−

{1,3},{1,2,3}k
1
{1,2,3}

]+
,

T 2
{1,2,3}(t3) =

[

T 2
{1,2,3}(ts) + ∆+

{1,2},{1,2,3}k
2
{1,2,3} − ∆−

{2,3},{1,2,3}

]+
,

T 3
{1,2,3}(t3) =

[

T 3
{1,2,3}(ts) + ∆+

{1,3},{1,2,3}k
3
{1,2,3} + ∆+

{2,3},{1,2,3}k
3
{1,2,3}

]+
,

(97)

where[x]+
△
= max(x, 0). The number of slots contained in the interval[ts t3] is given by

Rk2
{1,2}

1 − ε{2,3}
+

Rk3
{1,3}

1 − ε{2,3}
+

Rk3
{2,3}

1 − ε{1,3}
, (98)

while the number of slotsNS{1,2,3} required to complete phase 3 (i.e. recover all tokens fromQ{1,2,3}) is

NS{1,2,3} = max

[
T 1
{1,2,3}(t3)

1 − ε1
,
T 2
{1,2,3}(t3)

1 − ε2
,
T 3
{1,2,3}(t3)

1 − ε3

]

. (99)

Hence, the total number of time slots required byCODE2–CODE4 is

NStotal = (93)+(98)+(99). (100)

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

28

After some algebra, and taking (90) into account, we find

NStotal = max

[

|K1|

1 − ε{1,2,3}
+

|K2|

1 − ε{2,3}
+

|K3|

1 − ε3
,

|K1|

1 − ε{1,2,3}
+

|K2|

1 − ε2
+

|K3|

1 − ε{2,3}

|K1|

1 − ε1
+

|K2|

1 − ε{1,2,3}
+

|K3|

1 − ε{1,3}

]

.

(101)

The capacity region outer bound of Theorem 1 is

Cout =

{

R ≥ 0 : max

[

R1

1 − ε1
+

R2

1 − ε{1,2}
+

R3

1 − ε{1,2,3}
,

R1

1 − ε1
+

R2

1 − ε{1,2,3}
+

R3

1 − ε{1,3}
,

R1

1 − ε{1,2}
+

R2

1 − ε2
+

R3

1 − ε{1,2,3}
,

R1

1 − ε{1,2,3}
+

R2

1 − ε2
+

R3

1 − ε{2,3}
,

R1

1 − ε{1,3}
+

R2

1 − ε{1,2,3}
+

R3

1 − ε3
,

R1

1 − ε{1,2,3}
+

R2

1 − ε{2,3}
+

R3

1 − ε3

]

≤ L

}

,

(102)

where all permutations in{1, 2, 3} were considered. Due to (90), (which implies analogous inequalities forR1, R2, R3

by replacing|Ki| with Ri in (90)), (102) is further simplified to

Cout =

{

R ≥ 0 : max

[

R1

1 − ε{1,2,3}
+

R2

1 − ε{2,3}
+

R3

1 − ε3
,

R1

1 − ε{1,2,3}
+

R2

1 − ε2
+

R3

1 − ε{2,3}

R1

1 − ε1
+

R2

1 − ε{1,2,3}
+

R3

1 − ε{1,3}

]

≤ L

}

.

(103)

Comparing the last expression with (100) reveals thatCout is achieved byCODE2–CODE4, which completes the
proof.

REFERENCES

[1] T. Cover, “Broadcast channels,”IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 2–14, January 1972.
[2] P. Bergmans, “Random coding theorem for broadcast channels with degraded components,”IEEE Trans. Inf. Theory, vol. 19, no. 2,

pp. 197–207, March 1973.
[3] A. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capacity of wireless erasure networks,”IEEE Trans. Inf. Theory, vol. 52,

no. 3, pp. 789–804, March 2006.
[4] R. Ahlswede, C. Ning, S. Li, and R. Yeung, “Network information flow,”IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July

2000.
[5] L. Keller, E. Drinea, and C. Fragouli, “Online broadcasting with network coding,” inProc. 4th Workshop on Network Coding, Theory

and Applications, 2008.
[6] P. Sadeghi, D. Traskov, and R. Koetter, “Adaptive network coding for broadcast channels,” inProc. 5th Workshop on Network Coding,

Theory and Applications, June 2009, pp. 80–86.
[7] C. Wang, “On the capacity of wireless 1-hop intersession network coding — a broadcast packet erasure channel approach,” inProc.

International Symposium on Information Theory (ISIT), June 2010, pp. 1893–1897.
[8] P. Larsson and N. Johansson, “Multi-user ARQ,” inProc. Vehicular Technology Conference, May 2006, pp. 2052–2057.
[9] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “XORs in the air: practical wireless network coding,”IEEE/ACM

Trans. Netw., vol. 16, no. 3, pp. 497–510, June 2008.
[10] E. Rozner, A. Iyer, Y. Mehta, L. Qiu, and M. Jafry, “ER: efficient retransmission scheme for wireless LANs,” inProc. ACM CoNEXT,

December 2007.
[11] L. Georgiadis and L. Tassiulas, “Broadcast erasure channel with feedback — capacity and algorithms,” inProc. 5th Workshop on

Network Coding Theory and Applications, June 2009, pp. 54–61.
[12] Y. Sagduyu and A. Ephremides, “On broadcast stability of queue-based dynamic network coding over erasure channels,”IEEE Trans.

Inf. Theory, vol. 55, no. 12, pp. 5463–5478, December 2009.
[13] T. Cover and J. Thomas,Elements of information theory, 2nd ed. John Wiley, 2006.
[14] A. E. Gamal, “The feedback capacity of degraded broadcast channels,”IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 379–381, May

1978.
[15] L. Ozarow and S. Leung-Yan-Cheong, “An achievable region and outer bound for the gaussian broadcast channel with feedback,”IEEE

Trans. Inf. Theory, vol. 30, no. 4, pp. 667–671, July 1984.
[16] S. Vishwanath, G. Kramer, S. Shamai, S. Jafar, and A. Goldsmith, “Capacity bounds for gausian vector broadcast channels,” inDIMACS

Workshop on Signal Processing for Wireless Transmission, October 2002, pp. 107–122.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

29

[17] R. Liu and H. Poor, “Secrecy capacity region of a mutiple-antenna gaussian broadcast channel with conditional messages,”IEEE Trans.
Inf. Theory, vol. 55, no. 3, pp. 1235–1249, March 2009.

[18] A. Dana and B. Hassibi, “The capacity region of multiple input erasure broadcast channels,” inProc. International Symposium on
Information Theory (ISIT), September 2005, pp. 2315–2319.

[19] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Multiuser broadcast erasure channel with feedback — capacity and algorithms,”
submitted to NetCoop 2010.

[20] R. Graham, D. Knuth, and O. Patashnik,Concrete mathematics, 2nd ed. Addison Wesley, 1994.

The information in this document is superceded by the document in
http://users.auth.gr/~leonid/public/TechReports/tecreport_bec_v2.pdf
Please refer to latter source for the most recent version.

