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Abstract

We consider theV-user broadcast erasure channel where feedback from the users is fed back to the transmitter
in the form of ACK messages. We provide a generic outer bound to the capacity of this system and propose a coding
algorithm that achieves this bound for an arbitrary number of users and symmetric channel conditions, assuming
that instantaneous feedback is known to all users. Removing this assumption results in a rate region which differs
from the outer bound by a facté?(N?/L), whereL is packet length. For the case of non-symmetric channels, we
present modifications of the previous algorithm whose achievable region is identical to the outer bolynd f&yr
when instant feedback is known to all users, and differs from the bour@(By? /L) when each user knows only
its own ACK. The proposed algorithms do not require any prior knowledge of channel statistics.

I. INTRODUCTION

Broadcast channels have been extensively studied by the information theory community since their introductior
in [1]. Although their capacity remains unknown in the general case, special cases have been solved, including tt
important category of “degraded” channels [2]. Another class of channels that has received significant attentiot
is erasure channels, where either the receiver receives the input symbol unaltered or the input symbol is eras
(equivalently, dropped) at the receiver. The latter class is usually employed as a model for lossy packet network:
Combining the above classes, a broadcast erasure channel (BEC) is a suitable abstraction for wireless communic
tions modeling since it captures the essentially broadcast nature of the medium as well as the potential for pack
loss (due to fading, packet collision etc). Since this channel is not necessarily degraded, the computation of it
feedback capacity region is an open problem. Numerous variations of this channel, under different assumption:
have been studied, a brief summary of which follows.

For multicast traffic, an outer bound to the capacity region of erasure channels is derived in [3], in the form of
a suitably defined minimum cut, and it is proved that the bound can be achieved by linear coding at intermediatc
nodes. The broadcast nature is captured by requiring each node to transmit the same signal on all its outgoir
links, while it is assumed that the destinations have complete knowledge of any erasures that occadied on
source-destination paths. In a sense, [3] is the “wireless” counterpart to the classical network coding paradigm c
[4], since it carries all the results of the latter (which were based on the assumption of error-free channels) intc
the wireless regime.

The concept of combining packets for efficient transmission based on receiver feedback is also used in [5
where broadcast traffic is assumed and a rate-optimal, zero-delay, offline algorithm is presented forOnline
heuristics that attempt to minimize the decoding delay are also presented. Reference [6] expands on this work L
presenting an online algorithm that solves at each slot a (NP-hard) set packing problem in order to decide whic
packets to combine. This algorithm also aims in minimizing delay.

Multiple unicast flows, which are traditionally difficult to handle within the network coding paradigm, are studied
in [7] for a network where each source is connected to a relay as well as to all destinations, other than its own
and all connections are modeled as BECs. A capacity outer bound is presented for afitaay is shown to
be achievable forN = 3 and almost achievable faN = 4,5. The capacity-achieving algorithm operates in two
stages with the relay having knowledge of the receiver message side information at the end of the first stage bl
not afterward (i.e. once the second stage starts, the relay does not receive feedback from the receivers).

A similar setting is studied in [8], where ACK-based packet combining is proposed and emphasis is placed or
the overhead and complexity requirements of the proposed scheme. An actual implementation of the use of pack
XORing in an intermediate layer between the IP and 802.11 MAC layers is presented and evaluated in [9], while
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[10] proposes a replacement for the 802.11 retransmission scheme based on exploiting knowledge of previous
received packets.

This report expands upon earlier work in [11] (which studied the ¢ése 2) and is sufficiently different from
the aforementioned work in that, although it also uses the idea of packet mixing (similar to the network coding
sense), it provides explicit performance guarantees. Specifically, an outer bound to the feedback capacity regic
for multiple unicast flows (one for each user) is computed and two online algorithms are presented that achiev
this bound for the following settings, respectively: an arbitrary number of uSewgth symmetric channels (this
concept will be defined later), and 3 users with arbitrary channel statistics. For the second setting, three, essential
equivalent, algorithm variations are presented.

The algorithms do not require any knowledge of channel parameters (such as erasure probabilities) or future ever
so that they can be applied to any BEC. They use receiver feedback to combine packets intended for different use
into a single packet which is then transmitted. The combining scheme (i.e. choosing which packets to combine an
how) relies on a set of virtual queues, maintained in the transmitter, which are updated based on per-slot availab
receiver ACK/NACKSs. This queue-based coding concept has also been used in [12], albeit for broadcast traffi
with stochastic arrivals where the stability region of the proposed algorithm becomes asymptotically optimal as the
erasure probability goes to 0, whereas we consider systems with an arbitrarily fixed number of packets per strea
where the capacity is achieved for arbitrary values of erasure probability.

This document is structured as follows. Section Il describes the exact model under investigation and provide!
the necessary definitions in order to derive the capacity outer bound in Section Ill. The first coding algorithm,
namedCODEL, is presented in Section IV, which also contains a discussion of the intuition behind the algorithm,
its correctness and optimal performance for symmetric channels. The overhead required for sending feedbar
information to the receivers and the corresponding reduction in the achieveable region are also addressed. Sectior
contains three modifications, nam&@DE2 throughCODE4, of the previous algorithm that achieve capacity for 3
users under arbitrary channels and differ only in their implementation, while Section VI concludes the report. The
proofs of all stated results are gathered in the Appendix.

II. SYSTEM MODEL AND DEFINITIONS

Consider a time slotted system where messages (packets) of |énpits are transmitted in each slot. We
normalize to unity the actual time required to transmit a single bit so that the time inférvall)L (L), for
[ =1,2,..., corresponds to slot The system consists of a single transmitter and a\Set {1,2,...,N} of
receivers, while there exists at the transmitter a distinct stream of unicast packets for each receiver. We denote wi
K; the set of packets intended for receiver (i.e. ugefjhe channel is modeled as broadcast erasure so that each
broadcast packet is either received unaltered by a user or is dropped (i.e. the user does not receive it), in whic
case an erasure occurs for the user. This is equivalent to considering that the user receives the special, symbol
which is distinct from any transmitted symbol. Hence, each user knows whether an erasure has occurred or not k
examining its received symbol.

Define Z;; £ T[useri receivesE in slot ], wherel[] denotes an indicator function, and consider the random
vector Z; = (Zy,, Z24,---,2%n,). The sequencgZ,;}7°, is assumed to consist of iid vectors (we denote with
Z = (Z1,...,Zn) the random vector with distribution equal to that &f) although, for a fixed slot, arbitrary
correlation between user erasures is allowed. For any indeX sef\/, we define the probability that an erasure
occurs to all users id as

Pr(Z =1, Viel)£er, 1)

where, by convention, it holdsy = 1. For simplicity, we writee; instead ofe;, and assume; < 1 to avoid
trivial cases.

According to the introduced notation, when the transmitter, at the beginning of, $hobadcasts symbak;,
each usei receives symbol;; given by

Yii=Zi,E+ (1 —-2;)X, (2)

where we denot&’; £ (Yi1)ien- At the end of each slat, all users inform the transmitter whether the packet
was received or not, which is equivalent to each useending the value of;; through an error-free control
channel. In information-theoretic terms [13], the broadcast channel is described by the input alphtideedutput
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aphabets)y, Vs, ..., Yy for usersl,2..., N, respectively, and the probability transition functipfl’;| X;). Due
to the memoryless property, the transition probability function is independénaiod can be written ag(Y | X).
In the rest of this document, we sat = [, with I, a suitable field of size, so that by definition of erasure
channel it holdsy; = X U {E} for all i € NV.
A channel codé2" ... 2nfix n) for the broadcast channel with feedback consists of the following components
« message setd); of size 2" for each usei € N. DenoteW = (Wi,...,Wn) €Wy X ... x Wy.
« an encoder that at sléttransmits symbolX; based on the value dV and all previously gathered feedback
Y-l 2 (Yy,..., Y, ). X, is a function of W only.
« N decoders, one for each usee N, represented by the functiogs: V" — W;.
A decoding error occurs with probabilitf, = Pr (Usen{g:(Y;") # Wi}), whereY;* £ (Yi1,...,Y;,). A rate
R = (Ry,...,Ry) is achievable if there exists a sequence of channel c@#&s, ..., 2"* n) such thatP, — 0
asn — oo. Finally, the capacity region of this system is defined as the closure of the set of achievable rates.
The following definition, introduced in [2], will be useful in deriving the outer bound for the capacity of the
broadcast erasure channel.
Definition 1: A broadcast channdlX, ();):enr, p(Y'| X)) with receiver set\ is physically degraded if there
exists a permutatiom on A such that the sequencé — Y,y — ... — Y () forms a Markov chain.
A generalization toV users of the 2-user proof in [14] provides the following remarkable result.
Lemma 1:Feedback does not increase the capacity region of a physically degraded broadcast channel.
We now have all necessary tools to compute the actual capacity outer bound.

[1l. CAPACITY OUTER BOUND
The derivation of the capacity outer bound is based on a method similar to the approaches in [15]-[17]. We
initially state a general result on the capacity of broadcast erasure chavithelat feedback18].
Lemma 2: The capacity region (measured in information bits per transmitted symbol) of a broadcast erasure
channel with receiver se¥” and no feedback is

cnf:{Rzo;Z B gL}. (3)

ieN 1-e
We denote withC' the channeIAunder consideration and, for an arbitrary permutation /, introduce a new,
hypothetical, broadcast chanr&} with the same input/output alphabets@sand an erasure indicator function of

Zﬂ(i),l = H ZT('(j)J Vi€ N, (4)
j=1

while the output of user (i) in slot{ for C, is given by

A~

Yaiyg = Zr@y B+ (1= Zry )Xo (5)
In words, a userr(i) erases a symbol in chann€l if and only if all usersz(j), with j < i, erase the symbol
in channelC'. This occurs with probability . ;) £ EUL_, {n(j)}- Equivalently, a user(i) in C, receives the input
symbol successfully as long as at least one us¢), with j < i receives it inC. In a sense, each use(fi) sends
its outputffﬂ(i) to usern(i 4+ 1) (through a virtual error-free and zero-delay channel as shown in Fig. 1), which in
turn sends it to the next “downstream” user.
Denote withffﬂ(i) the symbol (viewed as a random variable) that appears at the output of clianaslinput
to usern (i), while ?ﬂ(i) is the “final” symbol seen by user(i) and computed recursively as follows

Yo = Yra)s
Vo = E - if Y/Tr(z') = Yﬂ(ifl) =FE, (6)
)7 ) X otherwise.

Denoting withp(Y'|X) the transition probability for channél, it follows that 5(Y'|X), p(Y'|X) are identical so
that C'; can indeed be regarded as a regular broadcast erasure channel, with erasure prehabibtyuserr (i),
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Fig. 1. Schematic of channél,.. White arrows represent virtual error-free channels.

with the addition of error-free channels sequentially connecting the users. The following two results are proved in
Appendix A.

Lemma 3:ChannelC; is physically degraded.

Lemma 4:Denote withCy, (fmf the feedback capacity regions of chanr@)<;, respectively. It holds; C (fmf.
Notice that Lemma 4 already provides an outer boundtdn order to derive this bound, we note that the previous
results imply that the feedback capacity region of the physically degraded ch@pieldentical, due to Lemma 1,
to the capacity region of’; without feedback. The latter is described, in general form, in Lemma 2, whence we
deduce the following result.

Lemma 5: The feedback capacity region 6 is given by

. R,
cﬂf:{Rzo:zﬂg}. @)
' —~ 1 —E. 4
iEN 7(1)
The above analysis was based on a particular permutati@onsidering allN! permutations on\V" provides a
tighter general outer bound.
Theorem 1:The following set inclusion is true

Cf c Cout é ﬂﬂepéﬂ,f7 (8)

whereP is the set of all possible permutations ah

IV. CODING ALGORITHM CODE1

In this section, we present a coding algorithm nar@@DEL, show its correctness, and analyze its performance

for symmetric channels, i.e. channels which satisfy the conditios = ; whenevelZ| = | 7|, for anyZ, 7 C N.

To indicate this special setting, we introduce the notaft;@‘né ez (i.e. the subscript of indicates the cardinality of

the erasure set). In the following, we assume that each user knows th& diné all streams and instant feedback

is available to all users. The first condition can be easily satisfied in practice while the second one will be removec
in a later section.

Before the description of the algorithm, a brief discussion of the underlying rationale will be useful. Since each
useri must decode exactlyC;| packets, one way of achieving this is by sending linear combinations, over the field
IF,, of appropriate packets so that usesventually receive§C;| linearly independent combinations of the packets
in KC;. Specifically, each transmitted symbols an element of, and has the form

S = Z Qs (p)p7 (9)

PEUien K
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wherea,(p) are suitable coefficients ii,. If the symbols can also be written as

s= Y bs(p)p+cs, (10)
pEK;

whereb, = (bs(p), p € K;), ¢s are known to uset, thens is considered to be a “token” far Additionally, if s

is received byi and theb, coefficients ofs, along with theb, coefficients of all previously received (hy tokens

s’, form a linearly independent set of vectors ofr thens is considered to be an “innovative token” farln

words, an innovative token faris any packet that allows: to effectively construct a new linear equation (with

the packets irC; as unknowns sinck;, ¢, are known) that is linearly independent w.r.t. all previously constructed
equations byi. Hence, each usermust receivaC;| innovative tokens in order to decode its packets. Note that it

is quite possible, and actually very desirable, for the same packet to be a token (better yet, an innovative toker
for multiple users.

In order to avoid inefficiency and, hopefully, achieve the outer bound of Section lll, it is crucial that, under
certain circumstances, a symbol (i.e. a linear combination of packets) that is erased by some users, but is receiv
by at least one other user, is stored in a appropriate queue so that it can be combined in the future with othe
erased symbols to provide tokens for multiple users (and thus compensate for the loss). The crux of the algorithr
is in the careful bookkeeping required to handle these cases.

A. Description of algorithmCODE1

The transmitter maintains a virtual network of quedis indexed by the non-empty subs&of A/ (see Fig. 2
for an illustration for 4 users). The queues are initialized with the stream packets as follows

QS:{ K if S = {i},

@ otherwise.

Additionally, with each queu€)s, indicesT% are maintained for all € S and are initialized as

Ti Kil i S = {i},
STV 0 otherwise.

It will become apparent from the algorithm’s description that indéxepresents the number of innovative tokens
(i.e. packets of the form in (10)) that usemust successfully recover frofs in order to decode its packét@ue
to the performed initialization, this statement is trivially true for&Hvith |S| = 1). These indices are dynamically
updated during the algorithm’s execution based on the received feedback, as will be explained soon. Finally, eac
receiveri € A/ maintains its own set of queud%fg, for all non-emptyS C N with i € S, where it stores the
innovative tokens it receives frofs.> We assume for now that all users know which queue the packet they receive
comes from and show later how this can be achieved. All quélieare initially empty.

Denote withQ,, the set of all queue§s with |S| = n. The algorithm operates IV phases so that in phase
n, with 1 < n < N, only transmissions of linear combinations of packets in one of the queués, inccur.
Specifically, at phase, the transmitter orders the s€}, according to a predetermined rule, known to all users
(say, according to lexicographic order, which corresponds to the top-to-bottom ordering shown in Fig. 2). The
transmitter then examines the first (according to this order) qdguand transmits a symbol (or packet)that
is a linear combination of all packets @s, i.e. s = > o, as(p)p. We slightly abuse parlance and say that “
is transmitted fromQs”, although it is clear that is not actually stored irQs. The coefficientsu;(p) can be
produced either via a pseudo-random number generator or through structured codes. The exact generation mett
for as(p) is unimportant as long as the following conditions hold:

%it will be seen that the transmitted combination of packets fi@@m can never become a token for any usex A — S, so that the
transmitter does not need to maintain indices for them.

%it will be seen in a later Section that, if instant feedback is not available to all users, the feedback information is sent to the users aftel
all information packets have been sent. In this case, any information packets received byngseritially placed in a single queue. Once
the complete feedback is known, the packets of this queue are moved to the appropriateRjyisoethat the decoding procedure (i.e. the
construction of thg/C;| linearly independent equations) can begin.
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3.4

Fig. 2. Transmitter virtual queues required for 4 users amdespossible index transitions.

« the generation procedure is known to all users, so that they can always reproduce the vali@$ even
whey they don't receive the packe(this implies that the receivers must also know the size af)gll S C N,
at all times)

« the set of coefficient vectorg,;(p) : p € Qs), for all packets (i.e. linear combinationsfranmitted fromQs,
is a linearly independent set of vectors oWgr

If the coefficientsas(p) are randomly produced, the second requirement need only be satisfied with probability
arbitrarily close to 1 for sufficiently large field size

Depending on the received feedback for the paskieansmitted from queuégs, the following actions, collec-

tively referred to asACTFB1, are taken (all 4 cases must be examined)

1) if no user in\ receivess, it is retransmitted.

2) for each usef € S that receives and satisfiesI > 0, s is added to queu®% and T} is decreased by 1.

3) if s has been erased by at least one userS and has been received lexactlythe users in some sét,

with & # G C N — S, the following 2 steps are performed
« packets is added to queués g (no packets are removed fro@s).
o for each usei € S that erased and satisfiesI’s > 0, T% is reduced by 1 and’, ; is increased by 1.

4) if the setG of users that receive is a subset ofS such thatl; = 0 for all i € G, s is retransmitted.

Fig. 2 presents the allowable index transitions from quedigs, Q1 3y that occur in step 3 oACTFBL (the other
transitions are not shown to avoid graphical clutter; dashed lines correspond to stefC2ZRB1). Transmission
of linear combinations of packets frofjs continues for as long as there exists at least oaeS with 745 > 0.
When it holdsTg =0 for all i € S, the transmitter moves to the next quebg in the ordering ofQ,, and repeats
the above procedure until it has visited all queue®jn When this occurs, phaseis complete and the algorithm
moves to phase + 1. The algorithm terminates at the end of phaée

B. Properties and correctness GODEL

The second statement in the following Lemma, proved in Appendix B, is the crucial prope@gDi1 and
follows from its construction.
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Lemma 6:Any packets that is stored in queué@s with |S| > 2 is a linear combination of packets in queue
Q7z., for some non-empty; C S, that has been received l@xactlyall users inS — Z;. Hence, any packet in
gueueQ)s is a token for alli € S (and only theseé € S) and any linear combination of all packets@y is an
innovative token for ali € S with 7% > 0.

The above Lemma gives a very intuitive explanation to the algorithm’s operation. Specifically, stepODEE
is equivalent to saying that whenever useeceives a useful token (meaning tﬁ%t> 0 and there remain tokens
to receive) from@s, the (innovative) token should be addedR§. If this is not the case and there exist users,
comprising sety C N — S, who receive this packet (step 3), then the packet has become a token for uSerg in
and should be placed in queds; g. This allows the token to be simultaneously received by multiple users in the
future and thus compensate for the current loss. Additionally, sincei wsar now recover a token more efficiently
from Qsyg instead ofQ) s, the indicesTg, Tgug should be modified accordingly to account for the token transition.
Step 4 merely states that the packet is retransmitted when it is only received by users who have already recover:
all tokens intended for them.

Finally, since for any slot that someT; is reduced by 1, either some otHE§,  is increased by 1 or (exclusive
or) some packet is added to quehig in the same slot, it follows that the following quantity is constant during
the execution ofCODEL.

> |RS (1) + > TE(t) = const = |K;|, YVieN, (11)

S:eS S:eS
where the last equality follows from the initialization @ODEL. Since the algorithm terminates when it holds
TE = 0 for all non-emptyS C A" and alli € S, we conclude that at the end of the terminating $loit holds
Ssues|Rs(ty)| = |K;i| for all i € N. Hence, each user has recovefiggl tokens which, by choosing a sufficiently
large field sizeq, can be made linearly independent with probability arbitrarily close to 1. Thus, all users can
decode their packets with a vanishing probability of error &WDEL operates correctly. Notice that this result
holds for arbitrary channels, so that, in princip@ODEL is universally applicable. Additionally, no knowledge of
channel parameters (such as for Z C N) is required for its execution.

C. Performance oCODE1
The analysis of the performance ®ODEL for symmetric channels is straightforward and consists of determining
the number of slots required to complete &llphases. We assume without loss of generality Kat > ... > ||
and || is sufficiently large to invoke the weak law of large numbers. We also denote the @grﬁs{Zi =
1, Vie S} andRg £ {Z; =0, Vi € G}, which imply

RG= |  (BunRg ), (12)
HADHCG
where ¢ stands for set complement ardfor disjoint union. For completeness, we defifg, = Ry = ) (the
sample space). Combining the identiy = (Es N Rg) & (Es N RE) with (12) yields

Pr(Es) =Pr(EsNRg)+ »_, Pr(Esun N Rg—n). (13)
HAGHCG
By definition of symmetric channels, all probabilities depend only on the cardinality of the corresponding set, so
that we introduce the notatiop. , £ Pr(Es N Rg) for any setsS,G with |S| = e, |G| = p. This allows us to
rewrite (13) as

Pe,0 = €e,

p (14)
pevp - 66 - Z <€>p€+l,pl vp Z 17

=1

where we used the fact that there dfg distinct setsH C G with cardinality . The following result is easily
proved by induction in Appendix C.

Lemma 7:It holds )

De,p = Z <§)> Ee+l(_1)la Ve>0,Vp=>0. (15)

=0
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We also need to compute the exact value§pf with i € S, at the beginning of phase= |S| (i.e. before any
transmissions from queues @,, take place). We denote these values Wziyﬂand exploit symmetry to note that
k% depends only onS|. Hence, denoting; = k% for any S with |S| = andi € S, the construction oCODE1

implies the following relation ‘ ‘
Fs= > Tigs (16)

T#2:1€T,
ICcS

WhereT}’S is the number of indices moved frofito S in step 3 (i.e. while processingz). This is given by
Ky
Pr(T% is decreased by)1

7
I7s =

Pr (TI is decreased by, 1% is increased by)L a7

By the algorithm’s constructiorif’ is not decreased for a packet transmission if the packet is erasedrzyall
users inV — Z, which occurs with probabilityr(E;yunv—17)) = €n—|z/41- Also, the rightmost probability in the
RHS of (17) is equal t®r(Eyynv—s) N Rs-1) = pn—|s|+1,s|-|z- Setting|S| = [ and substituting the probability
values in (16) yields

ki—li L= K ) (18)

1= Ze\m—1)1- €N7m+1pN—l+1,l—ma Z 4

where we summed over all seIsC S containingi with |Z| = m and used the fact that there ex(m_ll) such
sets. Eq. (18) holds for alle A/ and is accompanied by the initial conditiéh = |K;|. The computation of; is

essential for the subsequent analysis, so we immediately present the following result.
Lemma 8:1t holds for alli € A/ and alll with 1 <[ < N,

= 1) =
1—€N I+1 |K|Z< )1—61\/ I+m +1_ +|K|Z< )1—61\7 ’ (19)

Proof: Proof appears in Appendix D. B |
Sincek} depends on only via the multiplicative term/k;|, we introduce the quantity, = &} /|K;|, which is
independent of. The number of slots required BYODEL to process all queuels € Q; (i.e. complete phash

is, by construction,

1

T = _— <maxk: ) (20)
! S:%l 1— EN—[+1 \ €S

min;es ¢

Sincemax;es ks = kg , and indexr is the minimum index i 1;/:{) sets of cardinality, we can rewrite (20)

as
];/‘l N—-I+1 N —r -1 -1 (_1)m N—-Il+1 N —r
= — _ =" 01
: 1—EN—I—H Z [—1 “CT‘ Z m Z =1 “CT‘? ( )

r=1 m=0 1= EN—l+m+1 5
where the last equality is due to Lemma 8. The number of slots required to compléfephlases is obviously
N N N—I+1 -1 1 (—1)m
=Y T — K| (22)

The last expression can be conS|derany S|mpI|f|ed through the following result, proved in Appendix E.
Lemma 9: The number of slots required for the executionGIDEL is

N

3 K|
T** — .

r=1 1 - €r

Hence, undelCODEL, each usel achieves a rat&?; = |KC;|/T**, which implies (via the assumptioiiC;| >
. > |Kn|) that Ry > ... > Ry. Lemma 9 has the following obvious consequence.
Corollary 1: The achievable rate region @ODE1, measured in information bits per transmitted symbol, is a

superset of the set
{ — € - } ’

(23)
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for any R such thatRk; > R; for anyi < j.
This leads to the first important result in this document
Theorem 2:For symmetric channels, the capacity region outer bafyd defined in Theorem 1 is given by

Rﬂ* i
CoutZ{RZO!ZASL}, (24)
ien - €
wheren* (i) is the order permutation, i.€2-;) > R,-(; for i < j. Furthermore(C,,, is achieved byCODEL.
Proof: Proof appears in Appendix F. |

D. Taking the overhead into account

The above analysis rests on the assumption that complete feedback is instantaneously available to all use
at the end of each slot. To remove this assumption (so that each user need only know its own feedback), th
feedback information must be conveyed to the users by the transmitter at the expense of channel capacity (i.e. tl
incorporation of overhead) and increased complexity at the receivers. The following overhead scheme is propose
under the assumption that the coefficientgp) of all transmitted linear combinations are known to all users,
including those thatlo notreceive the packet.

A single overhead bik is reserved in each packet of length This bit is 0, unless step 4 @ODE1 occurred in
the transmission of the (immediately) previous packet, in which case it is set to 1. Essentidllis Hite indicator
bit of step 4 for the previously transmitted packet. The transmitter now appiB&1 normally (taking feedback
into account according t&CTFB1), and keeps a feedback log as follows:

« if the transmitted packet is erased by all users, nothing is written in the log.

» for each transmitted packet with = 0 that is received by at least one user, the transmitter writes in the log

an N-bit group OQ, where group biOQ); is set to 1 or 0, depending on whether useeceived the packet

or not, respectively.

« for each transmitted packet with= 1 that is received by at least one user, the transmitter create¥-thie

groupOQ as in the casé = 0, but writes nothing in the logintil it eventually transmits a packet with= 0.

When this occurs, the transmitter writes &) group that corresponds to the last transmitted packet with

h =1 (after that, theD@ group for the current packet with = 0 is also written in the log, due to the previous

rule).
In other words, the transmitter appends a singhbit feedback entry)Q to the log whenever a packet is transmitted
only once. For a packet that is retransmitted due to step 4, the transmitter writes two entries in the log, the firs
one containing the feedback for the first packet (the one Wwith 0) and the second one containing the feedback
for the last transmitted packet with= 1. Notice that these two packets may have been transmitted in arbitrarily
distant (in the temporal sense) slots, so that this scheme ensures the feedback log will not grow arbitrarily large
In fact, some thought reveals that the log will contain at nsty" Y 25:18]=n (MaXjes ks) < 2N2 SN IK|
entries.

During the packet transmission and log creation, the users store all their received packets in a single queu
since they can do nothing more until they know the complete feedback. However, the following simple procedure
is applied: for each packet received by usef, a single bit flagh is attached tos if packets hash = 1 and
there was no erasure for usein the immediately previous slot (i.e. usereceived two consecutive packets, the
second one, namegd havingh = 1). When this occurs, we say thatis “marked”. WhenCODEL terminates, the
transmitter transmits the entire feedback log until all users have received it. Once the users have the feedback lo
they can essentially “replay” the execution @PDEL. Specifically, since the order in which queugs € Q,, are
visited is known, and the user can deduce, from the feedback log, the valtigdafall i € S, S C N (so that the
phase boundaries are distinguishable), the users always know which queue the received packet comes from. Tl
allows them, with some extra bookkeeping, to crefdteand recover all necessary innovative tokens, according to
the following scheme.

Each user has local copies B¢ for all i € S andS C A which are initialized to 0 (except de{ii} which are
initialized to |KC;|).2 Useri keeps the following virtual queues, which are initially empty:

*for example, if N = 3, each user has local copies of the following indic@s;,, T, Ttsy, 1101, Thoys Tirsy Tiiays Thasy
Ty Thzay Thasy Thizsy
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« queuesky for anyS C N with i € S. These queues are intended for storing the innovative packets of user
that are received frons as well as the necessary information for decoding (i.e. the cofficients of the linear
combinations).

. queues@fg for any S C N such thati ¢ S. These queues hold the packets that are receivedvayen a
linear combination of packets from que@k; is transmitted.

. queuestg’T for any setsS,7 C N with i € S andS C 7. These queues store information about linear
combinations of packets fro@s that are added t@); in step 3 of CODEL. Hence, these packets amet
received byi and they are received by all usersdn— S. Additionally, since a linear combination of packets
from Qs is a token for alli € S, any packep € Qs can be written ag = ¢, + 3, cx, by(u)u, whereb,(u), c,
are known toi. The value(b,(u))uek,, ¢, are actually stored, as a single entry,Nft, ..

In addition to the above, useéralso keeps local variabldg)s|| (which are equal to the current size @f for all
S C N) and a special binary variablg. These variables are initialized 89 s| = |K;| - I[S = {j}] andI; = 0.

Useri now examines the feedback log and the single queue containing all received packets (the two structures al
accessed by indicesdf, indg, respectively) and, potentially, moves each packet of the single queue to one of the
queuesky, QS, MS + according to the following rules, collectively referred toREPFB. We assume w.l.0.g. that
the current packet comes fro@s:

1) if it holds I; = 0, useri examines the currer®@ group pointed to byindf and creates the sét = {k €

N - S : OQk = 1}

a) ifitholds{k € N': OQ) =1} C {k € S: T& = 0}, i.e. all users that received the packet have already
recovered all innovative tokens fros, then; is set to 1. Also, if it hoIdSTg = 0, useri peeks at
the packetw immediately after the one pointed to ydq (without actually changingndg). If the h
bit of packetw is 1 andw is marked, usei advancesndg until it finds the last consecutively marked
packet withh = 1. If w is not marked;ndg is not advanced.

b) if OQ; =1 andi ¢ S, useri moves the packet currently pointed to bydq to Qg It also advances
indgq.

c) for each usej € § — {i} with OQ; =1 and Tj > 0, Tg is decreased by 1. Additionally, if it holds
G # o, for each uselj € S — {i} with 0Q; =0 andT] > 0, T% is decreased by 1 anﬂs’ug, 1Qsugll
are increased by 1 (all" indices refer to the local copies stored in uger

d) if OQ; =1 andi € S, useri examines the packet currently pointed to byndg. The following actions
are performed only if it holdg% > 0:

« T% is decreased by 1.

« useri constructs the set = {Z : & # Z C S}, consisting of all non-empty proper subsetsSofand
orders this set according to the predefined order of processing the various Gedesng CODEL.*

o useri computes the following quantities

=3 Y a(Hbrw), Yu=1,...,|K]

€T feM:
ieIf oS

(25)
Cy = Z Z am(f)cf + Z Z az(f)f
I3 feM; 1e3 jeQs

wherea,(f) is known toi by assumption ané;(u), c; are the components of the entriesl\i@s :
« The quantitiesb, (u))yex,, ¢z, = are stored, as a single entry, k.
Regardless of the value @f:, indq is advanced.
e) if 0OQ; =0,i € S andG # @, then the packet (call it) referred to byOQ was erased at Useri
repeats the calculations in (25) and stores the quanf{itigS:) }.<x,, c., as a single entry, irMéySUg.
At this point,indf is advanced.
2) ifit holds I; = 1, useri examines the currer®@ group pointed to byindf (by construction of the feedback
log, the user knows that thi9(Q) group corresponds to the last consecutively transmitted packetwith,

‘for example, if N = 5, S = {1,2,4} and the queues are processed in lexicographic order, it Holds {{1},{2}, {4},
{1,2},{1,4},{2,4}}, where the elements &f are written in the order of their processing.
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for which step 4 does not occur) and creates thegset {k € N' — S : OQ, = 1}. It now performs the
following:
« if OQ; =0,i€ S, and the currently packet pointed to bydq is marked (which implies thafs = 0 and
the last transmitted packet with= 1 waserasedby i), the packet is discarded, amddq is advanced.
o I; is setto 0.
« useri now applies verbatim steps 1b)-1e) of the procedurelfet 0. Step 1a) need not be examined
since it cannot occur at this point.
o indf is advanced.

Note that the actions IREPFB are performed in parallel and asynchronously by all users based on their privately
stored feedback log; the receivers essentially replay the transmitter’s decisions in the 4 st€fig-BiL. The
validity of this overhead scheme is justified by Lemma 6. Specifically, assume that a padketsmitted as a
linear combination of all packets iQs, is received byi € S. Then it holds

z= > a(p)p,
PEQs

wherea, (p) are known to all users. Each packein Qs is, by Lemma 6, a linear combination of all packets in
Qz, (with i € Z,,, 7, C S) that is received bexactlyall users inS — Z,, so that the last sum can be written as

z= > a:(Pp+ > a:(p)p. (26)
PEQs: PEQs:
i1, icZ,

By the rules inREPFB, it follows that any packep € Qs that comes fronQz, with i ¢ Z, is received byi, so
that p is stored in queué)&p. For any packep € Qs with i € Z,,, it follows that the packep was erased by and
received by all users i& — Z,,. Hence,p can be written as

p= Z by(w)u+c,, Vp € Qs, i€y,
'ILGIC-;

whereb,(u), ¢, are stored inM}p’S. Inserting the last equation into (26) yields

T = Z Z az(p)bp(u) [ u+ Z az(p)p + Z az(p)ey | = Z bz (u)u + g, (27)
uek; | peQs: PEQs: PEQs: uekl;
€T, ¢, 1€Z,
b. (u) Ca

where all parameters, except are known to usei. Hence,i can recover a token (i.e. form a linear equation
containingu € K;) by storingb, (u), ¢,  in Rs. The reader will notice that the expressions #gfu), ¢, in (27)
are identical to the ones in (25).

V. THE 3-RECEIVER CASE

Although CODE1 achieves capacity for symmetric channels, for sufficiently lakgehis is not always true for
arbitrary channels. This is rigorously demonstrated in Appendix G although it can be intuitively understood for the
3-receiver case by the following argument (note that,Nor 3, the network corresponding to Fig. 2 contains only
queues for sets € {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}). Assume that in phase 2 @ODE1, the order
in which the queues are visited {8, 2}, {1, 3}, {2,3}. When the transmitter sends linear combinations of packets
from @y 2, it is quite possible that the indicé%lm}, T{2172} do not become zero simultaneously. Say it happens
thatT{lm} =0 andT{QLQ} > 0. By constructionCODEL will continue to transmit linear combinations fro@y; 5,
until TQL2 also become$. However, this creates a source of inefficiency, as implied by stepAC®FB1.

Specifically, if a transmitted packetis only received by 1, step 4 will force to be retransmitted until either 2
or 3 receive it, in a sense “wasting” this slot. We claim that there exists potential for improvement at this point, by

Sthe fact that the summations in (27), (25) are over different sets is natural since they correspond to different parts of the systen
(transmitter/receivers, respectively) which store information in different placeholders. However, the numerical results of the summations ir
(27), (25) are the same.
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combining the packets Yy, 7y with the packets i), 5 3). A linear combination of packets in these queues creates

a token for both 1 and 2. Hence, even if the packet is received only by 1, the slot is not wasted, since 1 recovers &
innovative token (provided that}, , 3 > 0). Unfortunately, the previous reasoning implies that the rule of always
combining packets from a singﬁe’ dueue must be discarded if the objective is to achieve capadity>Frit is

not even clear what structure a capacity achieving algorithm should have. Howevar,=d, we present a class

of closely related algorithms, nam&DDE2 throughCODE4, that achieve capacity for arbitrary channels without
any knowledge of channel parametéras will be seen, the main difference between the algorithms is the order

in which the queues iQ, are combined withl)y; , 3. Specifically, CODE4 imposes no order on the processing

of queues inQ, but may require each queue to be processed more than once, wbeREs and CODE2 impose

a certain structure on the order with which the queues are processed. In the following sections we describe ea
algorithm separately, starting fro@ODE4.

A. Algorithm CODE4

CODE4 operates in phases as follows. Phase C@DE4 is identical to phase 1 dEODEL, with the transmitter

acting according to the rules in ACTFB1 (note that step 4 cannot occur in this phaX@Da#t). In phase 2 of
CODEA4, the transmitter orders the queugs in Q, according to an arbitrary rule and transmits linear combinations
from Qs until at least oneuseri € S recovers all innovative tokens fro)s (i.e. Tg = 0). When this occurs,
the transmitter moves to the next queue@a. Again, the rules inACTFB1 are applied. When all queues in
Q, have been visited, ead)s € Q, has at most one surviving index (meaning soine S with T > 0).
For convenience, we denote this epoch withand define the survival number (i) of indexi € {1,2,3} as
su(i) £ |{S : |S] = 2, Ti(ts) > 0}|. In words, su(i) is equal to the number of queues @, which contain
unrecovered innovative tokens for ugeat time¢,. By definition, it holds0 < su(i) < 2 for all i € {1,2,3}. The
transmitter now distinguishes cases as follows

o if it holds su(i) = 0 for all ¢ € {1,2,3}, CODE4 reverts toCODE1, starting at phase 3.

« if it holds su(i) =1 for all 7 € {1,2,3}, CODE4 reverts toCODE1, starting at phase 2. The following crucial
result, proved in Appendix H shows that this event occurs with arbitrarily small probability for sufficiently
large |K;|3_,, so that the capacity region is unaffected by any actions taken henceforth.

Lemma 10: Denote K £ min;ep|K;|. It holds Pr (su(i) = 1, Vi € N') — 0, as K — co.
If none of the above two occurs, we defi@eé {Q{i,j} : Tfi,j} >0V T{ji,j} > 0} as the set of all queues @,

with exactly one surviving index (at epoch, it clearly holdsQ # @). We also introduce the auxiliary variables
F; for each usei and initialize them to 0. The following statement, which is proved in Appendix I, is important.
Lemma 11:If Q # @, then either (or both) of the following conditions is true

1) there exists at least orié with F;. = 0 such thatl’sy = 0 for all S € NV with i* € S.

2) there exists at least one queig, ;, € O such thatT{ii,j} >0, T, , =0, T{j1,2,3} > 0.
It should be noted that the crucial part in 1) is the specification “With= 0", since there may exist other users
J who have also recovered all tokens but for whom it halds= 1. The transmitter now applies the following
procedure.

Procedure 1:The transmitter checks Lemma 11 to determine which condition applies. Note that condition 1)
takes precedence over condition 2) in the sense that, if both conditions are true, the transmitter will only take the

actions dictated by condition 1) below.

« If condition 1) is true, the transmitter constructs the &t= {Qs € Q : i* € S, i* satisfies 1} as the
set of queues that contain a surviving index and an index corresponding to & ubat has recovered all
tokens. Also, for alk* that satisfy 1),F;- is set to 1. Then, for eacs € QF the transmitter transmits linear
combinations of packets fros, applying the rules oACTFBL, until it holds 7% = 0 for all i € S. When
this occurs, the transmitter moves to the next queu@jiruntil it has visited all queues. The relative order of
the queues withirQj is arbitrary.

« If condition 2) is true, the transmitter constructs the &t= {Qy; ;; € Q: Q. satisfies 2}. It then picks
the first queue inQ3 (denote it withQy; ;,; relative order withinQ3 is arbitrary) and transmits a packethat

®the names of the algorithms are chosen in accordance with [19].
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is a linear combination of all packets in queugg ;, and Q; » 3). Depending on the received feedback, the
following actions, collectively referred to a&CTFB4, are taken (all 4 cases must be examined).

1) if no user in\ receivess, it is retransmitted.

2) if useri receivess, T{iij} is decreased by 1.

3) if userj receivess, T{j1 23} is decreased by 1.

4) if i erasess andk € {1,2,3} — {i,j} receives it,s is added toQy; 2 3, Tfij} is decreased by 1 and

T}, 53y is increased by 1.

Transmission continues until it hold§; ,, = 0 or T¢, , 5, = 0, whichever occurs first. Iff; , = 0 occurs

first, the transmitter moves to the next queuedf otherwise (i.e. i1Tg y = 0 occurs first) it aborts further
processing 0fQ3.
At this point, the transmitter updat@ using the current values dfg for all S with |S| =2, and checks whether
Q = @. If this is true (which implies thafi = 0 for all S with |S| = 2 andi € S), CODE4 reverts toCODEL
starting at phase 3, otherwise it repeats Procedure 1, creating all relevant entities (€ichs3 from scratch.
In this case, it is proved in Appendix | that Lemma 11 becomes a loop-invariant (i.e. a condition that is true at
the beginning of each call to Procedure 1), which guarantees that eventually it willicheldz, at which point
CODE4 continues with phase 3 @ODEL. Hence, Procedure 1 is repeated for a finite number of times.

1) Correctness 0CODE4: SinceCODE4 is identical toCODEL up to epochi (i.e. until all queues i@, have
at most one surviving index), it is clear that Lemma 6 holds for all quéyesip to epocht;. Hence, in order to
show the correctness @ODE4, it suffices to prove that any packet storeddn, » 3, after epoch; is a token for
all + € {1,2,3} (i.e. the second statement of Lemma 6 holds for the entire operatiQ®DE4), at which point
we can repeat the arguments of Section IV-B verbatim.

By examining the logic of Procedure 1, we conclude that, since the queu@$ are handled exactly as in
CODEL, we need only consider the case when the transmitter sends a linear combsinattialh packets in a queue
Qqijy € Q5 and Qqy 2,33- Hence, we need to prove the following result.

Lemma 12:Denote withPy, 5 31(t) the set of packets that are storeddn, » 3, at the beginning of slot, with
t > ts. The following implication is true

(Vp € Ppiaay(t))(p is token for alll € {1,2,3}) A (s is added toQy; 23y in slott due to step 4 oACTFB4)
= (Vp € P (t+1))(p is token for alll € {1,2,3}).

Proof: Clearly, we only need to prove thatis a token for alll € {1,2,3}. Assume w.l.0.g. that is a linear
combination of all packets stored @py; ;, andQy, 2 31 at the beginning of slat Then, by construction AACTFBA4,
we conclude that was received by: € {1,2,3} — {i,} so thats is a token fork. Additionally, since any packet
stored in queueg)y; ;;, Qq1,2,3) at the beginning of slatis a token for both, j (this is true by construction for the
fo_rmer queue and _by assumption for the latter), arfths the forms = D PP 0 (1) as(p)p + 2 peQuin as(p)p,
it is apparent that is also a token for both, j.

The correctness of the second statement of Lemma 6 now foffowsLemma 12 and induction on time (actually,
slot index), starting from the beginning of the slot immediately after egoch

1,2,3

B. Algorithm CODE3

Although the order of the queues in the s&§, Q5 is unimportant, the presented implementationCADE4
allows for the possibility of a queu@s € 9, being processed in more than one calls to Procedure 1. A slight
modification, hereafter referred to @ODE3, of CODE4 allows for each))s to be processed only once by imposing
a specific order relation on the processing@f. The overhead scheme fQODE3 is also considerably easier to
implement (in a manner similar to that described in Section 1V-D) compard2DiE4, although it will be seen
that bothCODE4 and CODE3 achieve capacity when complete feedback is known to all users.

CODE3 is identical toCODE4 up until epocht, i.e. until each queue i@, has at most one surviving index.
The survival indexsu(i) is computed for each useérat this point and the two cases(i) =0 Vi € {1,2,3} and
su(i) =1 Vi€ {1,2,3} are handled exactly as IBODE4. If none of these cases occurs, we introduce a binary
relation < in {1,2,3} as follows

i <j e (suli) < su(j) Vv (T{jm} >O0AT] 5y = 0) V (su(i) = su(j) Ai < j), (28)
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whereTfij}, T{jij are evaluated at;. It is easy to see by direct enumeration of all possible cases<haads
a transitive property so that it can be interpreted as an order relation. Hence, attgptind transmitter can
order the queues iQ, according to<. For example, if it hold®2 < 1 < 3, the queues can be ordered as
{1,2} < {2,3} < {1, 3}, while the other cases are similarly handled through a permutatiofi,n3}.
The transmitter now initiates a subphase, called 2.1, in which the following actions are performed:
1) the transmitter visits each quedg; ;; € Q2 according to the< order. If it hoIdsTfij} = T{Jij} = 0 for
queueq)y; ;3. this queue is skipped.
2) assume w.l.o.g. that quewg; ;, has one surviving index and it holgs< i (this implies thatTfZ.j} > 0
and T{jij} = 0). The transmitter transmits a packetvhich is either a linear combination of all packets in
queuesQy; j1 and Qy; o 3y (if it holds T{jlz?,} > () or a linear combination of all packets @y; ;, (if it
holds le 23} = 0).” Depending on the received feedback, the following actions, collectively referred to as
ACTFB3, are taken
a) if i receivess, sz‘j} is decreased by 1.
b) if j receivess and it holds Tfm’g} > 0, T{jl’273} is decreased by 1. ‘
c) if i erasess andk € {1,2,3} — {i,j} receives it,s is added toQy; 2 3, Ty iy is decreased by 1 and
T}, 53 is increased by 1. |
d) if s is erased by all users or is received only pwhen it hoIdsT‘f1 23} = 0, s is retransmitted.
Notice thatACTFB4 andACTFB3 differ only in their conditions for retransmission (steps 1, 2d, respectively)
and, since condition 2 of Lemma 11 ensures that it always Hﬁjggg} > 0 when ACTFB4 is applied, we
conclude that the two rule sets are effectively indentical.
The above procedure is repeated until it hoTCf;J.} = 0, at which point the next queue i@, is visited

according to<. Obviously, sincenglzg} is dynamically updated depending on feedback, the decision of
whether to combine packets @y; ;, with Q(; » 3, is also dynamic. By construction GODE3, the transmitter
starts subphase 2.1 by combiniyg; ;, with Qo3 and switches t@y; ;, only as soon aT{JLm} =0.

At the end of subphase 2.1, it hol@¥ = 0 for all i € S with |S| = 2. CODE3 now reverts toCODEL, starting
at phase 3. The crucial characteristic@DE3, which ensures that no throughput is lost, is the following result,
which is proved by simple enumeration

Lemma 13:Because queues i@, are visited according to the: order in subphase 2.1, usgthas recovered
all tokens available to it as soon as it holfi§ , 5, =0
The last statement, combined with Lemma ’15 (which is still true), implies the correctng3SDER3. It also
guarantees that each queuedsn will only be processed once.

C. Algorithm CODE2

Algorithm CODE2 falls in betweenCODE4 and CODES3 in the sense that, although it does not impose a rigid
order in the processing of the queues@a (as CODE3 does), it enforces a “weak” priority on the processing of
gueues inQ,. Specifically, CODE2 is identical toCODE3 up until epocht,, i.e. until each queué®s € Q- has at
most one surviving index. The transmitter now constructs the valu@s for ¢ € {1,2,3} exactlyas in CODES.
The two casessu(i) =0 for all i € {1,2,3} andsu(i) = 1 for all i € {1, 2,3}, are handled exactly as (BODE3.

If none of the above 2 cases occur, then there exists at least oné*umerh thatsu(i*) = 0. In fact, simple
enumeration reveals that all possible configurationssfqr) fall in exactly one of the following 4 categories:

1) there exist distinct users, j*, k* € {1,2,3} such thatsu(i*) = 0, su(j*) = 1, su(k*) = 2.

2) there exist distinct usen$, j*, k* € {1,2,3} such thatsu(i*) = 0, su(j*) = su(k*) = 1.

3) there exist distinct usens, j*, k* € {1,2,3} such thatsu(i*) = su(j*) = 0 and su(k*) = 2.

4) there exist distinct user$, j*, k* € {1,2,3} such thatsu(:*) = su(5*) = 0 and su(k*) = 1.

To provide some concrete example, Fig. 3 contains 4 possible configurations (each belonging, from left to right
to one of the above categories), where circles are used to denote surviving indices. The(#alifes™) for

"strictly speaking, the receivers still receive innovative tokens even if the transmitter continues conghiningwith Q1 - 31 even after
_ y Sp g gV {1,2,3}
T? becomes zero. However, in terms of complexity, it is advantageous to switch to transmitting combinations of pagkgts only

{1,2,3}
after 77 becomes 0 since this requires the generation of fewer coefficigs.

{1,2,3}
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Fig. 3. Possible states of innovative token indices for theugs inQ, at epochts.

each configuration ar€3,2,1), (2,1,3), (3,2,1), (3,2,1), respectively. Clearly, each category contains multiple
configurations (obtainable via permutations {n2,3}) that satisfy the above conditions. The configurations that
appear in Fig. 3 correspond to a single permutation; the other permutations are handled similarly as described ne:

The transmitter now constructs the €8t, = {Q ;- ;; : su(i*) =0, T{] > 0} consisting of all queues i@,

that contain a surviving index and an index* with su(i*) = 0. Referrlng to Fig. 3, the constructed 8%, for
each category is, respectivelyQ 2 31, Q1,31 1, {Qqu 20 1 {Qq1,2), Q1,31 ) {Qqu,2) - Relative order withinQy,, is
unimportant. A subphase is now initiated in which the following actions are performed.

« the transmitter visits each quedg;- ;; in Qs, and transmits a packatthat is a linear combination of all
packets in queueQy;- ;; and Qy; 2 33. Depending on the received feedback, the following actions, collectively
referred to aACTFB2, are taken:

1) if j receivess, T{J - is decreased by 1.

2) if 7* receivess andit holds T{1 231 > 0, T {1 53) IS decreased by 1. _

3) if j dropss andk € {1,2,3} — {7*, j} receives it,s is added t0Qy 2 31, T{]Z.*’j} is decreased by 1 and
gl 23) is increased by 1.

4) if s is dropped by all users or received only Bywhen it holdsT?} {1 903} = 0, s is retransmitted.

The transmitter keeps sending linear combinations fé@m ;, andQy; 2 3, until it hoIdsTj = 0, at which
point the next queue ¥, is processed and the entire procedure is repeated for the new queue.

« once all queues i®Q,, have been processed, the transmitter computes the new valseg pfor i € {1,2,3}

and construct®),, from scratch. IfQ,, = @, CODE2 reverts toCODE1 starting at phase 3, otherwise it
repeats the above procedure verbatim for the d&ywy. It is easy to verify that at most 2 iterations of this
procedure will be performed until it holdg,, = &.

By construction ofQ,,, it is easy to verlfy (by inspecting each configuration in Fig. 3) that if, during the
combination ofQy;- ;3 € Qsu With Qg 23y, T, {123} becomes 0 befor@f i does, theni* has recovered all
available innovative tokens (i.e. it hold&; = 0 for all S C A with i* € 8) Hence,i* cannot gain any more
innovative tokens by combinin@y;- ;; with Qy, 5 33 and no efficiency is lost. The last statement is essentially a
repetition of Lemma 13. The correctness@IDE2 now follows from the validity of Lemmas 6, 12.

D. An example of application cZODE2, CODE3, CODE4

It is obvious from the previous section th@®DE2—CODE4 have similar operation. Essentially, all 3 algorithms
duplicate the operation @ODEL until each queue il®; has at most one surviving index and then suitably combine
each surviving queue i@y with Qy; 5 3y so that no slot is wasted. Since the difference in their operation lies in
how this combining is performed, we present the following concrete example (as ment@piEl —-CODE4 are
identical up to epoch, where each queue i@, has at most one surviving index; hence we concentrate on what
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happens aftet;). Assume w.l.o.g. that the state of the indices ais
T{QLQ} > O, T{1172} - 0,

TP 5y >0, T}z =0, (29)
Thhay >0, Tiygy =0,

Tfm’g} >0, Vie{1,2,3}).

CODE4 operates as follows. It setgy = F, = F3 = 0, determines that condition 2) of Lemma 11 is true
and construct®); = {Qq23}, Q1,23 Q1,33 - It now picks Q2 33 and combines it withQ(; 5 3y until 7' {2 3 O
T{2123} become 0 (whichever occurs first). Say it happens 12Iﬁ1t23 = 0 occurs first. The transmitter aborts
further processing oDj, checks Lemma 11 again, determines that condltlon 2) is still true and cons@iets
{Qq, 3} Qq1,2y}- It now combines)y; 33 with Qy; 5 3y until eitherT’ {1 3} orT {172’3} first become 0. Say it happens
that T {1 53y = 0 occurs first. The transmitter checks Lemma 11, determines that user 1 satisfies condition 1),
setsFy = 1 and construct®] = {Qy 23, Qq1,3;}- It transmits linear combinations of packets frapy, 5, until
T3 23 = 0 and, when this occurs, moves @, 5y and processes it until it holdg?, 5, = 0. Notice that no
efficiency is lost during this stage if any packets are only received by 1, since 1 has already recovered all token
and can gain nothing more. The transmitter checks Lemma 11 again and determines that 2 satisfies condition 1
Hence, it setsy = 1 and construct®] = {Q23,}- It then sends linear combinations of packets frQp 3,
(which is the only queue Q- with remaining tokens) until’ {2 3 = = 0. Again, no efficiency is lost if the packet is
received only by 1 or 2, since both users have recovered their tokens. Wpen 0 occurs,CODE4 determines
that all innovative tokens have been recovered fr@mand switches t€CODEL, starting at phase 3.

CODE3 operates as follows. The transmitter computes the surviving indices at epasku(1) = 0, su(2) =1,
su(3) = 2, so that it holdsl < 2 < 3 and, therefore{1,2} < {1,3} < {2,3}. It then transmits linear combinations
of packets inQy, 5 until T{ gy = 0. If it happens thatl’f, , 5, = 0 while T7, ,, > 0, the transmitter continues
processingl( 23 since, at this point, user 1 has recovered all tokens and there is nothing more to gain. Once
Til’Q} = 0, the transmitter moves t@);; 3, (the next queue according to the order) and processes it until
T{ 5 = 0. Finally, it processes)(s 3, until T{?’Q’g} = 0. When this occurs, all innovative tokens have been
recovered fromQ, so CODE3 reverts toCODEL, starting at phase 3.

CODE2 operates as follows. The transmitter computes at eppthe valuessu(1l) = 0, su(2) =1, su(3) = 2
and constructs the s&@,, = {Q1,2}, Q1,31 It combines each queue i, with Qy 23y until all T indices
(T? (12} {1 3p respectively) in the queue &,, become zero. When this occurs, the valye$i) are computed
again assu(1) = su(2) = 0 andsu(3) = 1, so that the new sés, is Qsu = {Qy2,3y} since it holdsT’ {2 33 > 0.
The transmitter then combiné} 31 With Q; 5 3y until 7' } becomes 0. At this poinCODE2 switches toCODEL

{2 3
starting at phase 3.

E. Performance o€CODE2—-CCODE4

The performance o€ODE2—-CODE4 can be analyzed similarly t6ODEL1 by computing the number of slots re-
quired for all phases, paying special attention to the number of tokens moved between the queues when combininir
queues inQy with Qy; » 33. The procedure, described in detail in Appendix J, is straightforward but tedious so we
only state the final result.

Theorem 3:CODE2—-CODE4 achieve the capacity region outer bound of Theorem 1, assuming complete feedback
is known to all users.

The assumption of complete feedback known to all users can be removed by overhead mechanisms essentia
identical to the one described in Section IV-D, with a similar reduction in the achievable region. This issue will
not be pursued any further.

V1. CONCLUSIONS

This document presented coding algorithms that achieve the feedback capadtyusdr broadcast erasure
channels with multiple unicast streams for the following cases

« symmetric channels, for arbitrary.
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o arbitrary channels, forV < 3.
For the second case three different implementatiQ@BE2—-CODE4, were presented (in contrast to the first case,
which is handled by a single algorithm). The main characteristic of the algorithms is the introduction of virtual
gueues, on the transmitter side, for storing packets depending on received feedback, and the appropriate mixit
of the packets to allow for simultaneous reception of innovative tokens (i.e. linearly indepedent combinations of
the unknown packets) by multiple users, while none of them requires knowledge of channel statistics. Since onl
an outer bound to the capacity region is known fér> 4 and arbitrary channels, future research may involve
the search for capacity achieving algoriths fér > 4. It is expected that such algorithms cannot be constructed
through minor modifications c€ODE1 and may possibly require complete knowledge of channel statistics. If this
is the case, adaptive algorithms that essentially “learn” the relevant statistics may be pursued.
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APPENDIX
PROOFS OF VARIOUS RESULTS

A. Proof of Lemmas 3, 4
For Lemma 3, it suffices to prove the existence of a permutatisuch that the sequence of random variables
X = Yia)) — -+ — Ya@(v)) forms a Markov chain. We claim that a suitable permutation is the reverse ordering

(m(i)) = 7(N —i+ 1) so that we need to prove the sequence- YW(N) — ... Aﬂ(l) to be a Markov chain.
We need only prove the following equality for all> 1

Pr (Yw(i) = ey V(e 1) = G(is1)s - - Ye(v) = Jn(vys X = 96) = Pr (Yw(i) = G (i) [Yr(i41) = Qw(i-i—l)) , (30)
where the uppercase letters denote random variables and the corresponding lowercase letters their actual values
(30) holds, the Markov chain property can then be proved by repeated application of (30). We start from the LHS
and distinguish cases
o if there eX|sts somg > ¢ such thatym) — E (equivalently, Z =) = 1), it follows from (4), (5) that
Zﬂ(i) = Zx(i+1) = 1, Which impliesY’, (i) :.YW(ZH) =F. .
« otherwise, if for allj > ¢ it holdsg, ;) # E, it follows from (4), (5) thatit musthol@ ;) = ... = J-(v) =
for the conditioning of the LHS to occur on a non-null set. We denote this eveét és{Y7r (i41) = o0 =
Yo vy = X = gni+1)} SO that the LHS of (30) becomés (Y ;) = J(;)|E:)-

Combining the two previous cases yields

_ H[:&ﬂ'g’t = E] if :&W(i-f—l) =k,
LS of 0= { Pr(¥oy = Grol€) 1 i # B oy
For the RHS of (30), we know thét’ﬂ(iﬂ) = FE implies Y,T(Z-) = F so that it holdsPr (Y, = = Ur(i) | r(i41) =

Ur(i+1)) = W@ = E] for g.i41) = E. For the cas@).;) # F (equivalentIyZﬂ(iH = 0), we note the
following set inclusion due to (4), (5)

{YVe(irr) = On(irn)} S {Va(irn) =Yooy =X = Gniin)} = &, (32)

and since; € {Y(i41) = n(i41)}, We conclude thaf; = {Yw(z‘+1) = Gn(i+1)} fOF Gri41) # E. Hence, we can
write

Comparing the derived expression for the two sides completes the proof of Lemma 3.

Lemma 4 is easily proved by recalling that Fig. 1 implies thatcan be regarded as a regular broadcast channel
with erasure probability ;) for usern(i) along with error-free channels between successive users. Hence, any
rate that is achieved in chann@l can also be achieved ifi; by applying the code for channél to channelC,
and forcing the users to discard any information received through the error-free channels.

B. Proof of Lemma 6

The first statement of the Lemma is true by the algorithm’s construction. For the second statement, we use stron
induction on|S|. Specifically, we consider the queues in ggtand pick an arbitrary queue of that set, €y ;,
with i # j. By the algorithm’s construction, any packet Qy; ;, has exactly one of the following forms

(Sper asop)
(Zpele ds(p)p) W 5

where the set superscript denotes the users that have succesfully received this packet. Since the cagffitients
as(p) are known to all users (including those that erase the packet), it is apparentithattoken for both, j
(and for no other user), and sin¢gj are arbitrary, this conclusion can be extended to all queu&s,inVe now
assume that all packets in the queues of §&tsQs, ..., Q,, are tokens (for the appropriate users), and we prove
that the packets in the queues @, are also tokens.

(34)

S =
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Consider some packste Qs with |S| = n+1. By the first statement of the Lemma there exists some non-empty
Zs C S (which implies1 < |Zs| < n) such that it holdss = 3° ., as(p)p, Whereas(p) are known to all users.
We now show that is a token for all users i5. Since the inductive hypothesis is true fy (meaning that is
a token for the sef), we know that for any € 7, and anyi € Z it holds

p=Y bip(w)u+cip, (35)
UE’Ci
whereb; ,,, ¢; , are known to usei. Hence,s can be written as

s = Z as(p) Z (bi p(w)u + ¢ p) = Z ( Z as(p)bi,p(u)) U+ Z as(p)cip, (36)

PEQZ, uel; uelkl; \peQz, PEQZ,

so thats is a token for any € Z;. Consider now someec S —Z,. Again, by the algorithm’s construction, a linear
combination of packets from)z, is added to queu€)s when exactly the users i§ — Z receive the packet. In
that cases is known to all userg € S — Z,. Since the following relation is trivially true

s=Y 0-p+(s)°F, VieS—1I, (37)
peEK;

we conclude thas is also a token folS — Z,. Hence,s is a token for anyS with |S| = n + 1 such that € S and
the proof is complete.

C. Proof of Lemma 7

Proof is by strong induction op. Specifically, forp = 0, the result is true for akt. We assume that the hypothesis
holds for alle andp = 0,...,n and prove that it holds for alt andp = n + 1. Specifically, it holds by (14)

n+tl n+1n+1-1
n+1 n+1\(n+1-1 m
Pen+1 = €e — Z < / )pe—i—l,n—i—l—l = €e — Z Z < / ) ( m >€e+l+m(—1) ’ (38)

=1 =1 m=0
where we used the inductive hypothesis to substitutefer,,_; .1 in the second equality. Setting’ = I +m and

renamingm’ to m yields
n+1n+1
n+1\(n+1-1 m
Pen+1 = €e — Z Z < I ) ( 1 >€e+m(_1) o (39)

=1 m=1 m

The index domain is changed to< m <n -+ 1 and1 <[ < m to get

n+l m
n+1l\(n+1-1 m
o =ec= S35 () (M e

m=1[=1

n+1 m

m n+1l\(n+1-1
:ee+Zee+m(—1) lZ( l )( . )(_1)l+1].
m=1

=1

(40)

At this point, the following identities from [20] involving binomial coefficients will be useful.

(Z) - ( . k) 1)
() ()= ()65 @

Z <m i_ k) (S : k) (—DF = (=)™ (Sn__ﬂ;>, Vi>0. (43)

k

All quantities in (41)—(43) are assumed to be non-negative integers and the summation in (43) extendskover all
such that the binomial coefficients appearing in the summand are non-zero (by defiffitien( if & > n).
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The sum in square brackets is computed as follows (barring access to symbolic math packages such as Mapl
“fn+1\(n+1-1 4 n+1 n+1-1 4 e n+1 m 141
lzl< l )(m—l >( 1 _1:21 n+l—-10)\n+1-—m (=1) _Z n+l—m/)\m-—1I (=1)

S = (O EE =)

where we applied, in immediate succession, (41), (42), (41) and used the binomial expangibr-for1))™
Combining this with (40) yields

n+1 n+1
n+1 n+1
Dent1 = €e + Z Ee—l—m(_l)m( ) = Z < >Ee+m(_1)mv (45)
m=1 m m=0 m

where the last equality was achieved by inserting the first term into the sum. The last form is the exact form of
the inductive hypothesis fg5 = n + 1 and the proof is complete.

D. Proof of Lemma 8

The last equality in the RHS of (19) is easily verified by setting= [ — 1 — m and renamingn’ back tom.
We fix ¢ and prove the result with strong induction arFor ! = 1, (19) is easily seen to be true. We now assume
that the hypothesis is true faf, k3 up tok} , (for I > 2) and we prove the hypothesis true figr Starting from
the RHS of (18) we have

-1 i -1 ]
- [—1 k!, [—1 1)7
H=Y ( B 1) T v = K 3 (m B 1) 1ymt § : ( )—( ])V PN -1+ Li-m
m=1

m=1 L= en—m+

-1 m—1 m+j
=Kl Y Z <l_ ! ) ( N 1) ﬂp]\hlﬂ,km

= j 1-— EN—j
-2 -1 .
l— ) 1)J+1 <l— 1— )
Kl > D" PNt 1-m |
o’ 1—EN]|:mj+1 m—1—7
(46)

where we used, in succession, the inductive hypothesigfowith m < I, (42), and the change of indices to
0<j<l—2,j+1<m<Il-1.

We denote withD; the sum inside the square brackets and concentrate on its calculation. Expanding the term
PN—i+1,—m according to Lemma 7 yields

-1 I-m .
Dj= > Y ( -1 _‘7.) (l —km) (=)™ Fen_1i14n

mej1emo N L=
-1 . -1 m
l—l—j) [—1—3 Il—m &
= =DM en o+ Y Z( >< )(-Um+ EN—I+1+k (47)
mj+1<m—1—‘7 megi o 1= k
—1—] ymei+ oL l—1—j l—m etk
=€EN_1+1 Z + Y Z I (=)™ eN 1414k
m=j+1 k=1

where the termk = 0 was extracted from thé summation in the transition from the first to the second line. The
first sum in the third line results from the first sum of the second line after setting m — j — 1 (and renaming
m’ back tom). The binomial theorem yields for anywith 0 < j <[ —2

I 2 l 1 ]
JZ (—1_]) JZ <_1_]> 1)’”—(ﬁ:i:?)ml—j—l:ol—ﬂ‘—l—(—l)l‘j‘l=<—1>l“-

m=0 m=0
(48)
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Inserting (48) back to (47) yields

Dj =(=)"*en—141+ Z kZ (l_ L ) (l km>(_1)m+k€Nl+1+k

m=j+1 1
PN 1=\ (1-m
=(—1)"en_ip1 + Z Z ( _1_].)< k )(—1)m+k€Nl+1+k (49)
—J— l—k—1—j . .
l—1—7 l—-m—-—375—-1 il
=(=)"enip1 + z:: —l+k41 mZ:O <l—m—1—j>< i )(—1) G

where we changed indices again between the first and second lines anse» — j — 1 (and renamedn’ to
m) between the second and third lines. The rightmost binomial can be writt@d;é@;{;ik) so that performing
the substitutionn’ =1 —m — k — 1 — j (and renaming back te) finally yields

I+1 & k1 s AV
Dj=(-1)"en_y1 + kz:; (=1 ey ik mz::O < bt m )( i )(—1)”. (50)
Applying (43) to the rightmost sum of (50) yields
I—k—1—j )

L=1=3g\(k+m)\ . m o irieitk 0 T 71

m=0

so that thek summation inD; essentially contains only the terin=1[ — j — 1 and D; becomes

Dj = (=1)"en 11+ (—)en—j. (52)
Inserting D; back to (46) yields

s (L [0 e + (e

1—en_
- (_1)j+1 +1 +1
:|/Ci| Z < . )m [(—1) (EN—H—l - 1) + (—1) (1 - eij)} (53)
2 (_1)j+l+1 =2 1—1 j
=|Kil(1 — en—141 ;( )1_€N—] +|’Cl|j=0< j )( )7+

The right term in the last line becomes

il (= {Z ( ) - (D)7 = K D=0 =1k, (54)
so that
ki o (1 -1\ (=11 1 K] 1)ﬂ+l+1
—t =K ) - + = |K; ———. (55
I —en—it1 K jzo < J ) Il—en—j 1—en—iq1 1 —env—i1 | Z — €EN—j (59)

The last result is the RHS of (19) so that the inductive hypothesis also hold$ ford the proof is complete.

E. Proof of Lemma 9
Changing indices in (22) ta <r < N,1<I<N-—-r+1,0<m <[ —1resultsin

(15 U R A

7.:1 1 - 6N—l+m+1
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We restrict attention to the sum inside the square brackets and sum diagonally through a change of iadices
[ —m — 1, k = m, which yields

N—r N—r—d d+k (_1)k _Nfr 1 N—r—d N — d+k .
dzo ;;) <d+k>< k )fl\f—d_dzom ,;) <d+k>< d >(—1)’ (57)

where we also used (41) to change the last binomial coefficient. Extracting theltertN — » from the last sum
yields

N—r N—r—d B\ (1) N—r—1 Nood N — ¢\ [d+ &
> > <d+k>< ;> - _1_6T+ Z > <d+k>< Z )(—l)k. (58)

d=0 k=0 l—en—d l_eNd k=0

Hence, in order to prove the desired equality, it sufflces to show that

N—r—d
D @J:,:)(d;k)(—l)’“io Vd=0,...,(N—r—1). (59)

k=0
This is achieved by invoking (43) (through the obvious substitutions), which provides

N—r—d
> @;g)(dzk)(—l)k:(—l)]vT*“l(d_(jov_r)):o, ¥d=0,...,(N—r—1). (60)

k=0
This completes the proof.

F. Proof of Theorem 2
By Theorem 1, the capacity region outer boufyg; is equal to

_ . Ror(i)

Cout = ¢ R >0 :max - <L, (61)
neP 1 — & 0)

whereP is the set of all possible permutationson A" andé,.;y = e i r ()} = € where the last equality is due

to the symmetric channels property. Since it halds> ... > ey, which in turn implies,

>...> ,
1—¢ — “1—en

it is apparent that the* that achieves the maximum in (61) satisfies the condifign) > ... > R..(n). Hence,

Cout I1s indeed given by (24) and the achievability @f,; by CODE1 follows immediately from Corollary 1.

G. Proof of the suboptimality cZODE1 for 3 users

We examine the case of general channels with equal Afes- R (which implies that|X;| = K for all
i € {1,2,3}). Considering all possible permutations in the §&t2,3}, Theorem 1 yields the following outer
bound

R R R R R R
Ceq,out = § R1 : max + + 7 + +
1— €1 1— 8{172} 1— 5{1’273} 1— €1 1— 5{1’3} 1— 8{172’3}
R R R R R R
9 ) (62)
1-— €92 1-— 8{172} 1-— 5{17273} 1-— €92 1-— 5{273} 1— 6{17273}
R R R R R R

1— €3 1— 8{173} 1— 5{1’273} ’ 1— €3 1— 5{2’3} 1-— 6{172’3}

< L}.
We now assume that it holds = e; = e3 andeg; oy > €q131 > €q2,3y SO that (62) is reduced to

1 1 1
Coqout = { R1: R + + <L}, (63)
l—er l—-epgy l-€pnzy
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and proceed to show that, under the previous assumptions, the region in (63) is not achieva@iEhyi.e. there
exists someR1 € C.q 0 that cannot be achieved BODEL. In order to prove the last claim, we must compute
the number of slots required for the operationGIDEL under asymmetric channels.

Initially, we compute the values @ for all S with |S| = 2 andi € S at the beginning of phase 2 (equivalently,
end of phase 1) o€ODEL (i.e. as soon as it holds%: = 0 for all S = {i}. The number of slotsV.S; required to
recover all tokens fron®)y; (i.e. reduceT{ll} from |KC;| to O) is

NS, = & in probability asK — oo, (64)
l—¢en03)

since a token is removed fro@;, whevenever at least one user receives the packet. Therefore, the total number
of tokens moved fronQ;, to Q1yus in step 3 of CODEL is (all subsequent statements denote convergence in
probability so we henceforth omit this declaration)

Iterating the last relation over all appropriate s&tyields

€{1,3} —¢€{1,2,3
Ty = 1K1 L U123

1 —ep103
L B €{1,2} — €{1,2,3}
Ty s = 1Kl T o
€1 —€{1,2} —€{1,3} + €{1,2,3}
T} =K '
{1},{1,2,3} || 1-— €{1,2,3}

Similarly, the number of slot&v.Sy, N.S3 required to recover all tokens fro,y, Qy3;, respectively, in phase 1
is

T
1 —eq23))
2, 67
. o
ST 8{1,2,3}’
while the number of tokens moved to each queue due to step 3 is
2 _ {23} {123}
Toy ) = Wel =720
9 _ €{1,2} — €{1,2,3}
Toy g = el =270 o
9 B €2 — €12} — €{2,3} T €{1,2,3}
T{2}7{17273} - VCQ‘ 1-— 5{172,3} 7
and
3 _ {23} — {123}
Ty = Wl =720
3 B €{1,3} — €{1,2,3}
e )
3 B €3 — (1,3} — {23} T €{123}
T{3}7{17273} - ‘,Cg‘ 1-— 5{172,3} .

The previous expressions give the number of tokens remaining in the queues at the beginning of phase 2 ¢
CODE1. Specifically, if we denote withk the values of7% at the beginning of phase 2 &ODEL, it holds
ki = T{ii}’s. We now compute the number of tokens moved between the queu@s amd ), » 33 during phase
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2 of CODEL. Denote withN Sy, 5, the number of slots required to reduce to zero all indiceQ jny; (i.e. k%m}’
k«?m})' Analogous interpretations are given Sy, 33, N.S( 3. It holds

Fhay Rl
N — 9 9
Sy = max (1 —cpay 1- 5{273}) ’

1 3
Mg Mg (70)
- 5{1,2}7 - 5{2,3} 7

k2 k3
NS5 3y = max (2.3} , (2,3} .
’ 1— €{1,2} 1-— €{1,3}

NS{L?’} = Imax (

The number of tokens moved frof; 5y, Q1 3}, Q2,33 10 Q12,3 during phase 2 is given by

T{11,2},{1,2,3} = N5{1,2}(51 - 6{1,3})7

2 (71)
T{l,2},{1,2,3} = NS{1,2}(52 - 8{2,3})7
T{11,3},{1,2,3} = N5{1,3}(51 - 5{1,2}), 72)
Ths 023 = NSuay(es — ey,
T{22,3},{1,2,3} = NS{2,3}(52 - 8{1,2})7 73)

T?2,3},{1,2,3} = NS{2,3}(53 - 8{1,3})7
so that at the beginning of phase 3@DDEL (denote this epoch with), the values of the indices are as follows

T{11,2,3}(t3) = T{ll},{1,2,3} + T{11,2},{1,2,3} + T{11,3},{1,2,3}v
T{21,2,3} (t3) = T{22},{1,2,3} + T{21,2},{1,2,3} + T{22,3},{1,2,3}’ (74)
T?1,2,3} (t3) = TJ?B},{LQ,?)} + T?1,3},{1,2,3} + T?2,3},{1,2,3}'

Hence, the number of slots required to process qugye s, is

Thom(ts) T{osy(ts) Tiga(ts)
- {1,2,3}\"3 {1,2,3}\%3 {1,2,3}\"3
NS{17273} — Inax 1_ 1 s 1_ €5 s 1— es ‘| (75)
and the number of slots required for the entire executioG@DEL is
T** — NSl + NSQ —|— NS3 + NS{LQ} —|— NS{173} + NS{273} + NS{1’273}. (76)

Using the conditiong; = ea = €3, £(1,2) > €q1,3) > €q2,3) and |K;| = K provides the following significantly

simplified expressions
1 1
NS =K — ,
e (1 —epa 1- 5{1,273})

1 , (77)
NS5 =NSpn =K - ’
{1.3} (2.3} <1 —eng 1- 6{1,2,3}>
T{ll 2 3}(t3) =K LT + S L) B ) )
2, 1-— €{1,2} 1— €{1,3} 1—- €{1,2,3}
€2 —€{23} €2 —€E{12} €2 —€E{123)}
T? =K - !
{17273}(t3) ( 1-— 5{173} - 1- 8{1,2} L— 5{17273} ) 7 ( 8)

€3 —&{23} , €3~ ¢&{1,3% €3 6{1,2,3})
- )

T} t3) = K
{1,2,3}( 3) < 1— £01,2} 1— €{1,2} 11— €{1,2,3}
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1 1 1 €2 — (2,3} 263 — €013} — {23}
NS = K max — - ) 7 ) 7 7
{1,2,3} [1 —e1 l—epg l-epg (I—e)(l—epg) (1—epg)(l—e3) (79)
__K
l—epo3)

Therefore, the total number of slots required @DEL is (after some algebra)

~ 1 1 1 1—¢ 1 1
T = K max + + , (2,3} + + , ()], (80)
1 B 51 1 o 8{172} 1 B 5{13273} (1 B 52)(1 B 8{173}) 1 B 8{172} 1 B 5{13273}
where the third term is denoted &$ because its actual value does not affect the fact that
- 1 1 1
T > K + + , (81)
L—eqy T-epy 1T-fpay

since it holdss; = &9 and1—€{273} > 1—¢y 3. Hence, each user achieves a ratdlof KL/T** information bits
per transmitted symbol, which is strictly smaller than the bound in (63). This clearly demonstrates the suboptima
performance ofCODEL for general channels.

H. Proof of Lemma 10

Proof is by contradiction, specifically we assume that there exists §am@such thaPr (su(i) =1, Vi e N) >
d for all values of K = min;enr|KC;|. This implies that at least one of the following events has probability larger
thano/2 for all K

{T{11,2}(ts) > OaT{21,2}(ts) = O’Tfl,?,}(tS) > 0>T{11,3} (ts) = OaT{22,3} (ts) > Oan)Q,B} (ts) = 0} ;

{T{21,2}(ts) > OvT{11,2}(ts) = O,T{ll,?)}(ts) > 07T{31,3} (ts) = Ovaz,:s} (ts) > OvT{22,3} (ts) = 0} 5

Assume without loss of generality that the first event in (82) has probability largersffeafthe second event is
handled similarly). To arrive at a contradiction, we use the weak law of large numbers to compute the values o
all Tg(ts), essentially repeating a part of the analysis performed in Appendix G.

Specifically, since phase 1 is the same for KGBDEL andCODE4, (64), (66), (67), (68), (69) are still applicable.
Again, we denote withk; the values ofl': at the beginning of phase 2 @ODE2 so that it holdsk’ = sz},s
(remember thaCODE4 is identical toCODEL up to epochi,, so that (16) is still applicable). We now compute
the number of tokens moved between the queues during phas€@Da# until we reach epoch,. Denote with
N Sy1,9y the number of slots required to reduce to zero at least orkéugf}, k%m} (analogous interpretations are
given to NSy 33, NS(p3y. It holds

(82)

Foo Kl
l—epg 1—ep3))’

NS{172} = min <

and the remaining indices at epochare

1—=¢ 1,3
Rk{y 5y = T}y ) (t:) = max (k%m} - k?m?;?j’ 0) ’
7 (83)

1—-¢
RE2, 0 2 T2 (t,) = max | k2, o, — kL o —— 23 o)
12y = Tag ) ( (2 Mo

Similarly, we have for the other queuéx 3y, Qy2.3}

Fusy K
N ~ i ’ ’
Sy = min (1 ey - 8{2,3}> ’

k2 k3
NS{2 3} — min {273} N {2’3} N
’ 1-— £{1,2} 1— £{1,3}
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while the remaining indices are

1 Rt )
Rk{173} = T{l 3} = Imax (k{l 3} k{l 3} 1— 5{2 3} )
(84)
_ Rl - {28
RE}) 5 & TP o (ts) = (k 3y — ko, 3} [ )
and
2 A2 A L)
Rk{273} = T{2 3} = Imax <k{2 3} k{2 3} 1 5{1 3} 0)
(85)

3 3}
Rk} 3y 2 Tfy 5 (f) = max <k{z,3} kp, 3}T{12} 0)
1 3
We have assumed thBt (Rk{ 1,2y > 0, RE}y 54 >0, Rk:{ 231 > 0, Rk{l o) = Rk{l 3) = RK{2 3}) > /2 for all
K, whence it follows from (83)—(85) that, for suff|C|entIy largé (large enough for all previous expressions to
hold), there exists a sample path such that the following inequalities are simultaneously true

kL k2
02 2 (Lo o (—— L) (s
l—engy  1—ep3) l—engy l—ep23) l—ep3 1—¢epn23)
k3 kL
0 o 8 (L L o (—— L) ey
l—ep3 l—-epn l—¢ep3 l—epnos l—epno l—-epos

k? k? 1 1 1 1
23 5 23 iy = > |Ks| - . (88)
L—engy  l-epg L—engy  l1-cepnay L—engy  l-cepuey

where the RHS inequalitites follow from (66)—(69). Since all RHS terms inside the parentheses are positive, we
multiply the RHS of (86)—(88) by terms and arrive at the contradiction||Kz||/Cs| > |KC1]|K2||K3], which
completes the proof. As a final note, the number of tokens moved @om,, Q1 3}, Q12,3 t0 Q12,3 during

phase 2 up until epocty is still given by (71)—(73).

|. Proof of Lemma 11

We initially prove that Lemma 11 holds the first time Procedure 1 is called, i.e. when it Bplds0 for all
1 € N. Without loss of generality, we assurﬁl‘(%1 9y > 0, T{1 3 > 0, T2 > 0 so thatQ = Q- (all other cases,
excluding the casesu(i) = 0 for all i € N andsu(i) = 1 for all i € J\/} can be similarly handled through an
appropriate permutation ofl, 2,3}). This is depicted in Fig. 4, where the circles indicate surviving indices in the
queues ofQ, (the surviving indices i)y, 7 3y, if any, are not indicated). It is simple to observe that at least one
of the following conditions is true

o it holds T3 = 0. In this case, 3 has recovered all available innovative tokens and, Bined), is a valid

index for condltlon 1) of Lemma 11.

o it holds Tf’l 23} > 0. In this case, both queu€g; 3,, Q2 3) satisfy condition 2) of Lemma 11.
Hence, Lemma 11 is true upon the first call of Procedure 1.

We now prove that Lemma 11 is actually a loop-invariant by examining the actions taken for each of the above
cases:

o if T{12 5y = 0, the transmitter constructs the s@f = {Qq1,3y, Q231 ), setsFz = 1 (so that it still holds
Fy = F, = 0), and transmits linear combinations of packets from each individual que@¢ umtil all relevant
indicesT% become zero. When this occurs, Procedure 1 is called again. In the new call, |Q1©Jd[$2{172}}

so that at least one of the following conditions is true
1) it holds T{2123 = 0, in which case 2 has recovered all innovative tokens and, skiace 0, satisfies
condition 1) of Lemma 11.

2) it hoIdsT{1 53y > 0, In which case)y; o, satisfies condition 2) of Lemma 11.
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®)

123

®)

)

Fig. 4. Sample case for proving Lemma 11.

o if T{1 231 > 0, the transmltter constructs the 8% = {Qy; 3}, Q12,33 } and combines each queue @ with

Q1,23 until 7' {1 3p {2 5y become both zero dT{l 53y = 0, whichever occurs first. Hence, at least one of
the following is true

1) all indices inQ% become zero. In the next call to Procedure 1 it hofdls- {Quayt and iy = Iy =
F3 = 0. Then, it either holdg{1 93} = =0, in which case index 2 satisfies condition 1) of Lemma 11, or
{1 23} > 0, in which casel); o, satisfies condition 2) of Lemma 11.

2) it hoIdsT{?’1 531 = 0. In the next call to Procedure 1, it still hold§ = F, = F3 =0 and O contains at
leastQy, oy Clearly, 3 satisfies condition 1) of Lemma 11.

Since all of the above cases satisfy at least one condition of Lemma 11 at the beginning of the next call tc
Procedure 1, Lemma 11 is a loop-invariant. Additionally, it is easy to see by extending the previous analysis tha
Procedure 1 is called a finite number of times.

J. Proof of Theorem 3

We assume w.l.0.g. that the state of the indices at epodh as follows (the analysis is similar for any of the
other cases)

Th oy (ts) >0, T 5 (ts) =0,
T{31,3} (ts) >0, T{11,3} (ts) =0, (89)
T{32,3} (ts) >0, T{22,3} (ts) = 0.

Using the computations performed in Appendix H, the conditions in (89) imply the following inequalities

k k2 1 1 1 1
- {1,2} < {1,2} - |/C1| _ < |’C2| _ ’
—eqg L—epg L—engy 1-cpuay L—epp3y l—cpag

! k3 1 1 1 1
() PR ) ;&,,Cl,< - )s\i@,\( - ) (90)

- €{1,2} 1- €{2,3} - €{1,2} 1- €{1,2,3} - €{2,3} - €{1,2,3}
k?2

K 1 1 1 1
o < i - < 1K - .
—en2y l—ens l—epgy l—epn23) l—epngy l—epa3)

The values of the indices i@y, » 3y at epocht; are as follows:

€1 — &{1,2}
7! +) = kL + Ll 7{13} + kL _—
f123)(ts) = Koy + ) 1 —engy e

2 €{2,3} €2 =~ €{12}

T{1 0,3y (ts) = k{1 23} + k{1 2} 71 — 6{1 3 + k{Q }71 B (91)
3 23} | 2 —f13y

T}y 2y (t) = Koy + ki [ epgy | }1_5{12}
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while the remaining indices i), 2y, Q1.3}, Q2,3 are

— {2 3}
RE?, 5y = k7 S —
{1,2} {1,2} = {1, 2} 1—eq, 3}
3 _ 13 At 3}
R}, 3y = k{1 3y — k{1, 3} . (92)
11— 5{1 3}
Rkfyzy = klagy — Ky, )
The number of slots expended up until epaghs given up
k} k} k?
NS(t,) = IKi| + [Ko| + |’C3| {1,2} + {1,3} + (23} (93)
1 —eq123) - sy l—epgy l-epgy
Denote with A{ S2mk 123}, A‘{mg} {123} the number of tokens moved into/out of, respectivély; , s,
while comblnlngQS with Q1 2 33 With this definition, we can write
+ 2 &, 3}
A{172}7{17273}k{1’2’3} Rk{l 2} 1 6{2 3}
) 1 , 1 51’ (94)
Buanpastiey = By o
A, Koy = RED 5 123
{173}7{17273} {17273} {1 3} 1 _ 8{2 3}
) \ 1 51’ (95)
Apiy s kiias = BRus - s
N AR R L)
{2,3},{1,2,3}"{1,2,3} — {2,3} 1 — E(1.3)
) , L 52’ (96)
Apanaaiian = Fia T

Denote withts the epoch when phase 3 60DE4 (or CODE3 or CODE2) begins. The values of the indices at
t3 are given by

T{11,2,3} (ts) = [T{11,2,3} (ts) — A{_1 2},{1,2 3}]‘7{1,2,3} - A{_1 3},{1,2,3}]@%1,273}} : ’
T{21,2,3} (ts) = [T{21,2,3} (ts) + A{l,Q},{1,273}k{1,2,3} A a2 3}} " ) (97)
T{?’1,2,3} (t3) = [T{?’m,g} (ts) + AEr1,3},{1,2,3}k::{))l,2,3} + A{2,3},{1,2,3}k{1,2,3}} +’

where[z]t £ max(z,0). The number of slots contained in the inter{al ¢3] is given by

Rk{l 2} Rki{)’l’g} Rk{2 3}
(98)
1-— 8{273} 1-— 5{2’3} 1-— 6{173}

while the number of slotsv.Sy, 5 3, required to complete phase 3 (i.e. recover all tokens f@m, 3;) is

(99)

NS{ = max lT{11,273} (tB) T{21,273} (tB) T?1,273} (tB)]
1,2,3} — .

1— &1 ’ 1— £9 ’ 1— €3
Hence, the total number of time slots required @YDE2—-CODE4 is
N Siotar = (93)+(98)+(99) (100)
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After some algebra, and taking (90) into account, we find

K K K K K K
K1 N L] N K3 7 L& n K2 n s
1-— 5{17273} 1-— 5{273} 1-— €3 1-— 5{17273} 1-— £9 1-— 6{273}

N Stotar = max [

(101)
K IC K
K] n Le] n K3 ‘
1-— €1 1-— 5{1’273} 1-— 6{173}
The capacity region outer bound of Theorem 1 is
R R R R R R
Cout = R >0:max LE 2 + 3 , ! 4 2 + 3 ,
1-— €1 1-— 8{172} 1-— 5{1’273} 1-— €1 1-— 6{172’3} 1-— 6{173}
R R R R R R
LI LA L L 5 (102)
1-— 5{172} 1-— £9 1-— 5{17273} 1— 8{17273} 1— £9 1-— 8{273}
R R R R R R
1 + 2 + 3 7 1 + 2 + 3 S 19 7
1-— 5{173} 1-— 6{17273} 1-— €3 1-— 6{17273} 1-— 6{273} 1-— €3

where all permutations ifil, 2, 3} were considered. Due to (90), (which implies analogous inequalitie;foRs, R
by replacing|/C;| with R; in (90)), (102) is further simplified to
R R R R R R
1 + 2 + 3 7 1 + 2 + 3
1-— 5{17273} 1-— 5{273} 1-— €3 1-— 6{17273} 1-— £9 1-— 5{273}
R n Ry n R3 Ay
1-— €1 1-— 6{172’3} 1-— 6{173}

Comparing the last expression with (100) reveals thg}; is achieved byCODE2—-CODE4, which completes the
proof.

Cout = {RZO:maxl
(103)
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