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A B S T R A C T

Condition based maintenance constitutes a useful tool towards upgrading aging infrastructure in the context of
asset management in smart grids. Towards that aim, on-line partial discharge (PD-OL) monitoring systems can
provide useful information regarding insulation degradation, that can be used to prevent destructive faults. In
this study, a set of novel algorithms is proposed for utilization in such a system. More specifically, an enhanced
approach is proposed to denoise partial discharge (PD) associated measurements, by the utilization of the dis-
crete wavelet transform (DWT). Moreover, an overall process is presented for the efficient detection of peaks in
denoised signals, and the respective calculation of the PD apparent charge. Furthermore, algorithms are pro-
posed for the detection and location of PDs in practical applications, taking also into account possible pulse
reflections, and disregarding the corresponding false positive detections. All proposed methods are rigorously
tested, and the respective results are presented.

1. Introduction

Underground networks constitute the backbone of urban medium
voltage (MV) power distribution, covering vast areas and delivering
large amounts of energy. The uninterrupted operation of underground
distribution networks is of crucial importance for the overall system
reliability. One of the major problems that may affect the network
uninterrupted operation is the occurrence of partial discharges (PDs) on
underground MV cables, which can lead to gradual insulation de-
gradation, and finally to destructive faults.

The detection and location of PD activity can provide crucial in-
formation to the respective utility regarding the insulation condition of
operating MV distribution cables [1–3] and MV equipment in general
[4,5]. This can be achieved by the installation of on-line PD (PD-OL)
monitoring systems, which can detect and locate PDs. The information
related to the progression of the phenomenon over time can prevent the
occurrence of destructive faults [6–8], hence improving system relia-
bility indices, and preventing short circuit current stressing of other
equipment. Hence, such a system can contribute towards one of the
important aspects of smart grid that is to make the best use of existing
assets by the implementation of optimized preventive maintenance
[9–11] and intelligent asset condition awareness [12,13].

Detection of PD sources is a subject that has attracted intense re-
search activity for a long time. Approaches using pattern recognition

techniques have been proposed in the literature [14–16]. Other studies
have focused on the modelling of PDs, taking into account the physics
of the occurring discharges [17,18]. For practical applications such as
PD-OL monitoring systems, the discharge can be considered as an im-
pulse current of certain magnitude according to the respective charge
[19–22]. In regard to the location of PD activity, systems have been
proposed based on single end measurements, which utilize time domain
reflectometry (TDR) along with signal processing techniques [23–25].
However, such systems can mainly be used off-line, and exhibit strict
limitations regarding their efficiency and application scope [19].

One major advantage of an on-line system is the capability to op-
erate under real operational conditions, hence eliminating the need to
disconnect system components. Furthermore, the utilization of mea-
surements at both ends of a monitored cable provides supplementary
information regarding the location and apparent charge of the detected
PD activity. Naturally, time synchronization of the respective mea-
surements is of crucial importance. This can be achieved by the injec-
tion of a specific signal on the monitored cable, utilizing the known
propagation time between the two cable ends, as described in [26].

However, PD-OL monitoring systems may have to operate under
excessive noise conditions, therefore the utilization of a highly efficient
denoising scheme is really important. The objective of a denoising
process is to remove noise from the measured data as effectively as
possible, while preserving the signal features which are essential for the
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detection and location of the PDs. Two main approaches have been
proposed towards this purpose in the literature, i.e. the utilization of
discrete wavelet transform (DWT) [27–31], and matched filter banks
(MFB) [32,33]. These approaches share the main concept of comparing
the PD associated signals to specific signal templates, while the de-
noising process is relied on the resemblance between them. Regarding
the DWT approach, Ma et al. propose to base the selection of an optimal
mother wavelet on the maximization of the cross correlation coefficient
among PD associated pulses and wavelet families [27]. Zhou et al.
suggest respectively that the optimal mother wavelet can be determined
according to the energy distribution at different levels of decomposition
[28]. Both methods have advantages and are able of providing efficient
results. Additionally, Zhang et al. have suggested that the determina-
tion of the thresholds for different levels of decomposition can come
from the knowledge of the existing noise levels [29,30].

In this manuscript, a novel denoising process in suggested, utilizing
DWT and incorporating the advantages of already existing methods in
the literature [27,28]. Moreover, a peak detection process is proposed
that can be implemented in practical applications, along with a re-
spective process that can efficiently determine the apparent charge of
detected and located PD activity. Furthermore, two algorithms are
proposed for the detection and location of PDs. The second algorithm
differs from the first one in its ability to account for pulse reflections,
being thus able to disregard false positive detections associated with
reflections instead of first arriving pulses. All proposed methods are
rigorously tested, and the respective results validate their efficiency.

2. Proposed denoising process

Typically, the measured signals associated with PD activity are
distorted with significant noise levels, therefore the denoising process is
of crucial importance. Two main methods have been proposed in the
literature focusing on the implementation of discrete wavelet transform
(DWT), and specifically on the mother wavelet selection procedure. The
first one, suggested by Ma et al. [27], aims at the maximization of the
cross correlation coefficient relating the PD associated pulses, denoted
as vector X, and the mother wavelet data vocabulary V , with entries
denoted as Y , as
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where K is the number of available samples corresponding to vectors X
and Y and notation (·) corresponds to the mean value of the involved
vector.

A second approach relies on the energy distribution of the DWT
coefficients at different levels of decomposition. The most suitable
mother wavelet is selected, so that the corresponding energy distribu-
tion is concentrated at specific levels of decomposition and does not
spread significantly over various levels. This can result into better de-
noising, hence the PD signal could be recovered more easily [28].
Threshold selection is conducted for both cases by hard thresholding,
with the threshold being computed for each level.

A new methodology is proposed in this work, aiming at taking ad-
vantage of both aforementioned techniques. This is achieved by
adopting the selection of the mother wavelet of the first approach [27],
incorporating at the same time the adaptive thresholding technique of
the second approach [28]. More concretely, the levels of decomposition
with insignificant energy distribution, i.e. smaller than an energy
threshold en, are not taken into account, by raising the respective
threshold at a value larger than the maximum coefficient at the specific
level. At the same time, the thresholds for levels with significant energy
distribution are computed as in [27,28]. The proposed adaptive
thresholding approach is mathematically formulated as
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where mj is the median value of the coefficients at level j, Cdji is the ith
coefficient at level j of total Nk number of coefficients at this particular
level, nj is the number of coefficients at level j and Nd the total number
of decomposition levels.

In conclusion, the proposed method uses the mother wavelet se-
lection procedure as it is described in [27]. At the same time, it exploits
the advantages of mother wavelet selection procedure presented in
[28], by incorporating a novel adaptive thresholding process that is
presented in Eq. (2), which takes into account the energy distribution at
each decomposition level.

3. PD detection and location in practical applications

The utilization of synchronized measurements at both monitored
cable ends provides the ability of both detecting and locating PD
sources, as long as an efficient algorithm is implemented. The outputs
of such an algorithm correspond to the location of a PD source, along
with the respective apparent charge of the detected discharge.
Therefore, apart from the defected cable parts that can be located, the
progress of the phenomenon in time can also be monitored focusing on
the apparent charge variation of the occurring discharges.

Let us consider that the denoised voltages corresponding to mea-
surements at both monitored cable ends, k an m, are u t( )k and u t( )m ,
respectively. These denoised measurements contain PD associated
pulses at specific time instances, corresponding to the arrival times at
each cable end. Assuming that the detected pulses are generated by a
PD located at some point along the monitored cable, they will arrive at
cable end k at time instant toak, and at cable end m at time instant toam.
The difference in time of arrival, toa, is defined as

=t t t .oa oa oam k (3)

Considering that the monitored cable segment has a length of lc, and
the traveling time from one cable end to the other is tc, the location of
the occurring PD with respect to cable end k, zPD, can be computed as

=z t t
t

l
2·

· .PD
c oa

c
c (4)

In practice, the effectiveness of the PD location algorithms relies
heavily on three important aspects. The first aspect corresponds to the
necessity that the times of arrivals taken into account in (3) are asso-
ciated with the same PD activity. The second aspect deals with the fact
that these arrival times correspond to first arriving pulses and not to
their reflections. The inability of a PD location algorithm to account for
these two issues can significantly deteriorate its respective perfor-
mance. Finally, the third and crucial aspect is associated with the cor-
rect calculation of the apparent charge corresponding to the PD activity
from both cable ends. In order to address all these three aspects, robust
approaches of peak detection, apparent charge calculation, detection
and location algorithms have to be implemented.

3.1. Peak detection process

In order to address the first important aspect, let us assume that two
vectors are available after the denoising process of the sampled mea-
sured signals at both cable ends k and m, i.e. uk and um respectively. By
applying a peak detection algorithm, the occurring peaks and their
respective time instances can be extracted from the vectors of mea-
surements. Peaks cannot be obtained by comparing the sample values,
instead the first order difference can be used to identify them [34].
Specifically, a peak occurs when the trend of the first order difference
changes from positive to negative. Apart from that, the results of the
peak detection algorithm can be enhanced by introducing a minimum
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amplitude for the detected peaks, p, associated to the minimum de-
tected charge of a PD regarding the system under design. Furthermore,
the introduction of a minimum time difference among successive de-
tected peaks, t , is important. The measured PD associated pulses can
exhibit several peaks due to their fluctuating shapes, hence in order to
avoid detecting secondary peaks in a PD associated pulse, t has to be
utilized. Naturally, the value of t has to be equal to the expected time
duration of a PD associated pulse. The outputs of the simple peak de-
tection process are vectors containing the values of the detected peaks
for each measured cable end, namely pk and pm, for cable end k and m
respectively. Moreover, the time stamps corresponding to the detected
peaks form two more vectors, Toak and Toam respectively. Focusing on
the peak amplitude introduced limitation, let us assume that the ith
element of vector pk corresponds to a peak amplitude equal to x, de-
tected at cable end k. It is necessary that this peak satisfies the
minimum amplitude condition as it is expressed in

= >p i x x( ) , ,k p (5)

while the same expression can be easily appropriately modified for
peaks detected in measurements coming from cable end m.

Furthermore, the time difference among successive elements of
vectors Toak and Toam has to be larger than the expected duration of a
PD associated pulse. For that reason, considering the difference, ,
among two successive elements of Toak, i.e. T i( )oak and +T i( 1)oak , the
following criterion has to be met

+ = >T i T i( 1) ( ) , ,oa oa tk k (6)

while the same formulation can easily be expressed for measurements
coming from cable end m.

3.2. Apparent charge calculation

An efficient PD detection and location procedure is also based on
the accurate apparent charge calculation corresponding to the PD ac-
tivity at both cable ends. Let us consider a PD occurring at distance
equal to zPD from cable end k. The PD current can be represented in the
time domain with a vector IPD

t consisted of N time sample elements as

=I [1 0 0].PD
t (7)

The first arriving current pulse caused by the studied PD and mea-
sured at cable end k forms in the frequency domain a vector denoted as
Ik

f . The nth element of this vector is computed as in

=I n n e I n( ) ( )· · ( )k
f

k
n z

PD
f( )· PD (8)

where n( )k is the transmission coefficient at cable end k corresponding
to the nth examined frequency, n( ) the propagation constant at the
same frequency, and I n( )PD

f is the nth element of vector IPD
f , which is the

frequency domain equivalent of PD current IPD
t . In time domain the first

arriving pulse can be computed by applying an inverse Fourier trans-
form (IFFT), and the outcome can be used as a template pulse Ik

tem

corresponding to the specific location of occurrence. Considering the nth
peak detected at cable end k, p n( )k , the template pulse can be nor-
malized in order for its maximum value to be equal to this detected
peak as in
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where notation max(·) denotes the maximum value of the enclosed
expression.

The normalized template pulse can be used in order to calculate the
apparent charge of the PD as shown in the following equation

=Q max IFFT FFT
e

dtI2· ( )
·

·k z
k
norm

k
· PD (10)

where the notations FFT (·) and IFFT (·) denote the fast Fourier

transform (FFT) and the inverse FFT of the enclosed vectors, and dt is
the sampling time. It is shown that the apparent charge is computed as
the product of the maximum absolute value of the current corre-
sponding to the PD, i.e. the expression inside the brackets, and the
sampling time. Naturally, the same process may be used in order to
calculate the apparent charge as measured from cable end m, simply by
adjusting the involved values accordingly.

The proposed methodology for the calculation of a PD apparent
charge has the advantage that it requires only the location of the PD,
and the respective detected peak, as obtained after the denoising and
peak detection processes. Therefore, it can perform efficiently regard-
less of the effectiveness of the denoising process. Furthermore, it
comprises an important part of the overall detection and location pro-
cess, as it is used in combination with measurements from both cable
ends to determine a valid PD detection and location, as explained in the
next subsection.

3.3. Detection and location neglecting pulse reflections

After the peak detection process for every element of vector Toak, a
process has to be implemented to determine possible arriving times in
Toam that could correspond to the same PD activity. For that reason, the
search area regarding the arrival times at cable end m is reduced to the
set of values t t[ , ]down up which are equal to +T i t T i t[ ( ) , ( ) ]oa c oa ck k re-
spectively. The reason behind this selection is the physical time limit
imposed by the cable propagation time for the extraction of plausible
arriving time pairs. Consequently, for every element of vector Toak, two
corresponding vectors can be formed. The first one, denoted as Tcand

oam ,
contains pulse arriving times detected at cable end m within the com-
puted search area t t[ , ]down up , while the second one, denoted as pm

cand,
contains the respective detected peak values. Subsequently, for every
element in vector Tcand

oam the respective PD location, zPD
cand, can be com-

puted. If the computed respective apparent charges Qk and Qm have
sufficiently similar values, as determined by a convergence criterion c,
the algorithm is considered to have detected and located a PD. The
overall procedure is also included in Algorithm 1.

Algorithm 1. PD detection and location algorithm

1: Acquire measurement vectors uk and um .
2: Acquire vectors uk and um from denoising procedure.
3: Apply peak detection to denoised vectors and acquire vectors p p T, ,k m oak and

Toam taking into account limitations as stated in Eqs. (5) and (6).
4: N number of elements of Toak.
5: for =i 1 to N do
6: +t T i t( )up oak c

7: t T i t( )down oak c

8: Reduce the search domain into t t[ , ]down up .
9: Acquire the elements of Toam that belong into the set of values t t[ , ]down up and

their respective peak values from pm.

10: Form vectors Tcand
oam and pm

cand using the values from previous step.

11: M number of elements of Tcand
oam .

12: for =j 1 to M do

13: t T j T i( ) ( )oam
cand

oak

14: z l·PD
cand tc t

tc c2·
15: Calculate corresponding apparent charges of discharges for both cable ends,

Qk and Qm.

16: if Qk Qm
Qm c do

17: Store location and apparent charge for detected PD.
18: end if
19: end for
20: end for
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3.4. Detection and location taking into account possible pulse reflections

The approach presented in Section 3.3 is capable of associating
pulses detected at both cable ends which correspond to the same PD
activity, by comparing the respective apparent charge of every pair of
detected pulses, as shown in Algorithm 1.

However, despite the fact that this approach may be effective for
many cases, it cannot account for pulse reflections. These become sig-
nificant, and have to be taken into consideration, in cases where the
attenuation introduced by the monitored cable is not significant, as well
as in cases of certain values of signal to noise ratio (SNR) exhibited at
monitored cable ends. Neglecting pulse reflections in such cases can
result in false positive detection of PD activity, since the reflected pulses
will be detected and associated to different PD activity than the one
corresponding to the first arriving pulses. For that reason, the algorithm
presented in the previous subsection has to be appropriately modified.

In order to avoid false positive PD detection due to reflections, let us
consider that a PD has been detected and located correctly. Thus, the
detected and associated pulses correspond to the first arriving pulses at
both cable ends, regarding a PD located at some point along the length
of the monitored cable. Let us assume that the detected pulses corre-
spond to time instances tk

PD and tm
PD of measurements from cable end k

and m, respectively, regarding a detected PD at location zPD. The time
instances at which the reflected pulses will arrive at both cable ends can
easily be computed, as the monitored cable length and the propagation
time between both cable ends are known. Therefore, for every detected
PD the expected time instances corresponding to reflections can be
calculated and excluded from the procedure as restricted ones. For that
reason, a vector containing restricted time instances with respect to
every detected pulse at cable end k, RLk, is introduced, corresponding
to reflections. Similarly, vector RLm formed by restricted time instances
for cable end m is also introduced. The number of respective elements
for both vectors can be limited to N significant reflections, the nth ele-
ments of which are calculated as

= +RL n
n t n O

l z n l n E( )
2·( 1)·
[ 2 ( 1)· ]·k

c

c PD c
t
l
c
c (11)

= +RL n
n t n O

z n l n E( )
2·( 1)·
[2 ( 2)· ]·m

c

PD c
t
l
c
c (12)

where set E corresponds to the positive, non-zero even numbers,
= +E k k{2 : }, while set O corresponds to the positive, non-zero odd

numbers, = +O k k{(2 1): }.
Consequently, a set of vectors can be formed for every detected PD,

containing time instances corresponding to reflections, in order for
them to be disregarded in the remaining detection and location pro-
cedure. Therefore, vectors RTk and RTm can be formed for every de-
tected first PD pulse arriving at cable ends k and m at time instances tk

PD

and tm
PD, respectively. The aforementioned vectors are calculated as

= + tRT RL k
PD

k k (13)

= + tRT RL .m
PD

m m (14)

Thus, for a new valid PD detection and location, the corresponding
time instances have to be excluded from the vectors containing re-
stricted time instances, RTk and RTm.

The proposed approach is presented in Algorithm 2 in more detail.
Naturally, there are significant differences in comparison with
Algorithm 1, which does not account for possible reflection detection.
In particular, the time instances corresponding to detected pulses at
both cable ends are compared to the elements of vectors RTk and RTm.
If the minimum absolute value of the distance in time for both vectors is
lower than a predefined convergence criterion denoted as rt , the as-
sociated pulses are considered to correspond to the same PD activity,
hence the location and the charge are stored as the PD activity is

regarded as detected and located. For every valid PD detection, vectors
RTk and RTm are updated respectively, by incorporating new computed
elements. The new version of the vectors will be used in order to ex-
clude possible pulse reflections, hence false positive detections, for
following pairs of detected pulses at both cable ends.

Algorithm 2. PD detection and location algorithm taking into account
reflections

1: Acquire measurement vectors uk and um .
2: Acquire vectors uk and um from denoising procedure.
3: Apply peak detection to denoised vectors and acquire vectors p p T, ,k m oak and

Toam taking into account limitations as stated in Eqs. (5) and (6).
4: Initialize empty vectors RTk and RTm.
5: N number of elements of Toak.
6: for =i 1 to N do
7: +t T i t( )up oak c

8: t T i t( )down oak c

9: Reduce the search domain into t t[ , ]down up .
10: Acquire the elements of Toam that belong into the set of values t t[ , ]down up and

their respective peak values from pm.

11: Form vectors Tcand
oam and pm

cand using the values from previous step.

12: M number of elements of Tcand
oam .

13: for =j 1 to M do

14: t T j T i( ) ( )oam
cand

oak

15: z l·PD
cand tc t

tc c2·
16: Calculate corresponding apparent charges of discharges for both cable ends,

Qk and Qm.

17: if Qk Qm
Qm c then

18: T iTD RT( )oakk k

19: T jTD RT( )oam
cand

m m

20: if <min TD( )k rt and <min TD( )m rt then
21: Store location and charge for detected PD.
22: Calculate RLk RLm using (11) and (12).
23: Calculate new elements for RTk and RTm.
24: Update RTk and RTm.
25: end if
26: end if
27: end for
28: end for

An overall overview of the overall process, including the two types
of algorithms is presented in Fig. 1.

4. Simulations

The proposed approaches have to be tested in order to validate their
ability to provide enhanced results as compared to already existing
formulations. Bearing that in mind, several tests have to be conducted
in order to evaluate all proposed techniques, i.e. the novel proposed
denoising process which combines two different approaches existing in
the literature, the peak detection algorithm, the apparent charge cal-
culation process, as well as the two different versions of detecting and
locating algorithms, with the second one being also able to account for
pulse reflections.

The selected test case consists of the same cable configuration as in
Part I of the manuscript. Hence, the monitored cable segment connects
two RMUs, which are modelled as described in Part I and in [19].

First of all, the proposed enhanced denoising technique is put to the
test. The method implements DWT with the mother wavelet being se-
lected based on the maximization of the cross correlation coefficient
among the expected PD signals and the wavelet candidates. After rig-
orous testing, the Daubechies 2 wavelet family [35], i.e. db2, was se-
lected because it maximized the cross correlation coefficient. Apart
from that, the proposed technique changes the way the thresholds are
calculated for each decomposition level, in order to incorporate the
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advantages of the denoising methodology proposed in [28]. For that
reason, the energy regarding the coefficients for several decomposition
levels is plotted in Fig. 2. It is evident that the largest part of the energy
is concentrated in decomposition level 4, and also that the energy of

some levels is insignificant. Hence, by applying an energy threshold en,
as defined in (2), equal to 0.05, several levels will be disregarded, as
this threshold exceeds their respective maximum coefficients.

The proposed denoising scheme is tested in comparison with

Fig. 1. Overview of the overall process.

Fig. 2. Coefficients’ energy per decomposition level using db2 wavelet family.
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proposed approaches by Ma et al. [27] and Zhou et al. [28] for the noisy
signal presented in Fig. 3 corresponding to −25 dB SNR, and the results
are presented in Fig. 4. The denoised signal uk corresponds to a case at
which a PD occurs at 15 ms and 300 m away from cable end k. As shown
in Fig. 4, all denoising schemes are able to effectively extract the pulses
corresponding to the actual PD, which is also magnified in the plot.
However, it is also evident that the two comparison methods also ex-
tract pulses that do not actually correspond to PD activity, as it is
emphasized in the first two included magnified plots. This specific in-
efficiency can lead to undesired false positive detections, hence to de-
teriorated overall detection and location results.

Moreover, the overall performance of the denoising methods is
tested for various cases of PD activity, as well as for different SNR
scenarios. The selected performance metrics are the precision and recall
of the denoising process [36,37]. Specifically, the denoising process is
considered to provide true positive detection when a pulse corre-
sponding to PD activity is present into the denoised signal. Moreover,
false positive detections are considered when a noise pulse is present
into the denoised signal, and false negative detections correspond to PD
pulses that are absent from the denoised signal. Focusing on the content
of Table 1, it is deduced that the proposed methodology produces en-
hanced results in comparison with the other two schemes for every
tested SNR scenario, exhibiting significantly high values of precision

and recall. The performance of all methods deteriorates for lower SNR
values, as expected.

Furthermore, the testing results regarding the peak detection pro-
cess are presented in Fig. 5, corresponding to the peaks detected in the
denoised voltage signals uk . Specific variables have to be set in this
case, according to the PD associated pulse shapes and the minimum
desired PD charge to be detected. More specifically, for the studied test
case, the variable p was set to 7 mV, which corresponds to the
minimum detected PD charge of 0.5 nC, whereas variable t was set to
2 µs in order to prevent several peak detections on the same PD asso-
ciated pulse. Moreover, the SNR was set to −15 db, and the depicted

Fig. 3. Original noisy signal.

Fig. 4. Comparison of denoising schemes.

Table 1
Metrics of denoising methods.

Ma et al. Zhou et al. Proposed

SNR (dB) Precision Recall Precision Recall Precision Recall

−5 0.89 1.00 0.75 0.99 0.96 1.00
−15 0.83 1.00 0.74 0.98 0.85 1.00
−25 0.62 0.98 0.73 0.97 0.82 0.99
−35 0.17 0.90 0.52 0.90 0.75 0.95
−45 0.01 0.07 0.02 0.05 0.10 0.10
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PD corresponds to a 41 nC charge, located 300 m away from cable end
k. The detected peaks are highlighted in the figures, illustrating that the
proposed approach is able to provide as an outcome the actual points
corresponding to the arriving pulses. Peak detection can be really tricky
in signals containing several peaks, but the introduction of the
minimum peak height and the time difference between peaks in the
proposed approach is capable of providing correct results, as shown.

The next test case aims to evaluate the performance of the proposed
scheme, as presented in Section 3.2, in regard to the ability to effec-
tively detect the apparent charge of occurring PD activity. Towards that
purpose, several scenarios were tested regarding various SNR cases, as
presented in Table 2. It may be observed that the results are very good,
exhibiting relatively small percentage deviation even for very low SNR
values, and proving thus that the proposed approach is highly effective.

In the next test case, the overall detection and location procedures
are evaluated as they were described in Sections 3.3 and 3.4. The first
version, denoted as Algorithm 1, deals with the detection and location
process neglecting the possible occurrence of pulse reflections, whereas
Algorithm 2 also accounts for possible reflections, ensuring that the
corresponding pulses will not lead to false positive PD detection. For the
testing procedure, variable c was set to 0.5, while the utilized noise
levels corresponded to a SNR value equal to −15 db. The respective
results for various test cases are presented in Table 3, and it is evident
that both algorithms can detect effectively the location and the ap-
parent charge of the occurring PDs. For every tested scenario, the
precision was significantly improved. Evidently, false detections as

expressed by the precision metric are much more when the reflections
are not taken into account as in Algorithm 1. It is shown that the uti-
lization of Algorithm 2 significantly improves the overall performance
by not exhibiting false positive detections.

The final case presents the overall statistics of the proposed ap-
proach, as they were obtained by its application in a large number of
scenarios. More specifically, for each SNR scenario, the method was
implemented for all possible PD locations along the monitored cable,
with a distance step equal to 5 m, and for apparent charges ranging
from 1 to 20 nC, with a charge step equal to 0.5 nC. These variables set
a large number of scenarios that were simulated. The results are in-
cluded in Table 4 in terms of mean and median deviation regarding
detected charge and location, as well as overall method precision. It
may be seen that the overall performance is highly effective in both
detecting the actual charge associated with PD activity, and locating the
defect. The mean deviation in respect to apparent charge detection is
for all noise level cases lower than 10%, whereas the deviation in the
location is close to 0.5 m. This location error is considered to be rela-
tively low in practical applications, at which the substitution of the
defected part of the cable will require the on-site visit by a utility crew
which can accurately spot the exact defect location. Furthermore, the
overall precision is close to unity for each SNR scenario, showing that
the overall detecting and locating capability is highly efficient.

5. Conclusion

The manuscript includes a set of approaches that can be used in PD-
OL systems in order to effectively detect and locate PD activity along
the length of the monitored cable towards the enhancement of the asset
management in the smart grid context. Specifically, a novel denoising
method implementing DWT is proposed. This approach combines the
advantages of methods already existing in the literature, by appro-
priately selecting the mother wavelet family and the respective
thresholds at different levels of decomposition according to the energy
of the wavelet coefficient at each specific level. The method is tested
and compared with already existing methods, and is proven to provide
enhanced results by significantly improving the precision and recall of
the denoising process. Moreover, a peak detection method is proposed,
and is shown that it can provide the correct peaks in denoised PD as-
sociated signals that exhibit several peaks. The proposed approach can
also effectively derive the apparent charge of the detected PD activity as
indicated by the conducted tests. Moreover, two algorithms are pre-
sented which can provide the detection and location of PD activity,
with the second one being able to also take into account possible pulse
reflections, and avoid respective false positive detections. The two al-
gorithms are tested and it is shown that the consideration of reflections

Fig. 5. Detected peaks on denoised signal from cable end k.

Table 2
Apparent charge detection.

SNR (dB) Qapp (nC) Qdet (nC) Deviation (%)

−5 1 0.98 2
6 5.84 3

−10 1 0.97 3
6 5.84 3

−15 1 0.98 2
6 5.84 3

−20 1 0.99 1
6 5.67 5.4

−25 1 0.94 6
6 5.55 7.4

−30 1 0.89 11
6 5.54 7.6
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can lead to significantly enhanced results in terms of precision. Through
the thorough testing procedure of the overall methodology, it is shown
that PD activity is correctly detected in terms of apparent charge and
located along the monitored cable.
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