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Abstract: An ongoing evolution of the power grids into more intelligent and sophisticated ones has been taking place since the
beginning of the 21st century. The underlying objective of the power systems is to deliver electrical energy with high-security
standards, i.e. to supply power to the consumers uninterruptedly. However, the integration of information technology into the
smart grid introduces new vulnerabilities related to cyber-security which the authors should address extensively. This study
discusses the impact of coordinated cyber-attacks on the advanced metering infrastructure. In this work, emulations of
distributed denial-of-service attacks in a closed testbed environment using a topology of smart meters that participate in an
electricity market are being performed. This study proposes a method to evaluate the impact on the reliability of such attacks.
The results demonstrate that the proposed method can serve as a tool for the evaluation of the short-term risk of botnet attacks

during load shifting in smart distribution networks.

1 Introduction
1.1 Motivation, objective, and solution

Power supply continuity is a key objective in the reliability studies
of the power grids. In recent years, considerable effort has been
spent such as GredEx III security exercise [1] to study the power
grids’ response and recovery from cyber-physical attacks. Smart
grid appears to be the next generation of power grids, providing
energy with high-reliability standards, while reducing gas
emissions and focusing on renewable energy resources and
distributed generation. Consequently, smart grid can increase the
overall efficiency and sustainability of the power system. In
addition, the ability of intentional islanding due to the decentralised
production of energy can provide a more robust system [2, 3].

In general, the smart grid can be described as a broadly
dispersed network of various interconnected devices that function
uninterruptedly to provide a higher degree of reliability and
security. Gungor et al. in [4] consider the smart grid as a large data
communication network, mainly due to the critical role of its
communication infrastructure. The wide range of sophisticated
devices deployed in smart grids, enables real-time monitoring by
the utilities, using measurements collected from sensors placed
throughout the grid, and thus providing locational awareness in
case of emergency. In this way, the grid becomes self-healing as it
can detect and mitigate timely and effectively security failures, a
critical feature which is absent in the conventional power grids.

Apart from locational awareness, consumers have the
opportunity to participate actively in the electricity market either
by controlling the amount of energy they consume or by selling
part of their produced energy back to the grid. The utilities can
broadcast either price signals to participants in incentive-based
demand response (DR) programmes or direct load control
commands in emergency cases to reduce the overload probability.
These DR actions result in a flattened demand curve which
consequently reduces the need for high installed power for peak
power plants. Thus, the overall cost-effectiveness of the smart grid
is improved [5].

In this work, we consider that the impact of a cyber-attack on
the distribution infrastructures is related to the structure of the
distribution network and the penetration of controllable power
loads. Therefore, we propose a method to assess the short-term risk
of a distributed denial-of-service (DDoS) attack on the advanced
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metering infrastructure (AMI) which handles the electric vehicles
(EVs) controllable charging as well as the DR mechanism.

1.2 Literature review

The shift toward a grid with distributed intelligence comes along
with critical security issues. Interoperability and heterogeneity are
the main features of the smart grid as it will consist of devices and
networks of various complexity and diversity. Moreover,
incompatibilities between devices might occur [6] as well as
proprietary technologies might conceal potential dangers [7]. As a
result, security breaches will arise in the less protected areas,
introducing new vulnerabilities.

On the other hand, the use of public communication channels is
a challenge which might be exploited by malicious users to launch
cyber-attacks which will affect the normal grid operation. The
motivation can vary from a simple prank to terrorist action, due to
the critical nature of the power grid [5]. For example, disgruntled
employees could inflict severe damage by attacking critical grid
nodes. In other examples of malicious activity, unauthorised access
to personal data stored in smart meters might endanger the
protection of privacy, and the use of botnets could hinder the actual
grid status. Therefore, security measures are fundamental
requirements to protect the smart grid operation from the above
threats [8]. The American Recovery and Reinvestment Act of 2009
is an example of the effort spent toward the evolution of power
grids while also addressing cyber-security threats [2, 9, 10].

The cyber-security problems and the following effects on the
power grid are not a new subject of interest in the research
community. Manasseh et al. in [11] highlight the importance of the
communication network between utilities and consumers hosting
electrical vehicles. Moreover, researchers in [12] utilised the
communication network to activate electrical storage when power
fluctuations occurred. Consequently, attackers could consider this
particular network as a potential target.

Kang et al. in [13] highlight the ability of a man-in-the-middle
attack to alter the power flow of a photovoltaic inverter by sending
falsified packets, when the attackers have access to the local area
network (LAN). Although the above work focuses on the effect on
the physical system with a hijacked connection, it does not
consider the impact of the loss of availability. On the contrary, the
work in [14] approaches the loss of availability problem by
simulating DDoS attacks in a topology of smart meters, routers,
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Fig. 1 Flowchart of the proposed method

and a utility server. Nevertheless, it does not study the impact on
the load curve. Asri and Pranggono in [15] demonstrate the effect
on the physical system where they simulate a botnet DDoS attack
on a topology of smart meters which are supplied by a wind
generator. This paper illustrates the effect of a user datagram
protocol (UDP) DDoS attack on the communication channel as
well as the loss of power supply during the attack scenario.
Although the successful scenario, UDP DDoS attacks can be easily
detected and blocked by a firewall. On the other hand, transmission
control protocol (TCP) is based on the three-way handshake. As a
result, detection mechanisms may not identify the malicious traffic
and thus forward it as legitimate, especially when the botmaster
spoofs the internet protocol (IP) addresses.

Regarding the advances in the DR technologies and
programmes, Paterakis et al. in [16] constructed a reference point
reviewing DR efforts throughout the world. They provide the
status quo regarding real-life applications including EV and
heating ventilation air-conditioning (HVAC) ones. In [17], a
hierarchical DR for EVs via charging stations is studied and a
distributed deadline-aware two-level market mechanism is
proposed. In [18], a DR control strategy for HVAC is proposed that
uses real-time occupancy monitoring with occupancy prediction to
achieve efficient conditioning.

In this paper, we evaluate the short-term risk of DDoS attack in
a topology of household consumers due to the apparent loss of
communication with the server of the DR provider. We take into
account the condition-depended failure rates (CDFRs) of the
distribution transformer and the main feeder, to calculate their
impact on a distribution reliability index, namely the system
average interruption duration index (SAIDI). The short-term risk of
the DDoS attack is expected to occur by an increased value of
SAIDI due to the uncontrolled operation of the controllable loads.

1.3 Contribution

In this paper, we consider that the botmaster has access to the smart
grid network. The implemented topology consists of a number of
smart meters. Every smart meter represents a household, while the
server represents the central point of the topology. The contribution
of this work is two-fold. First, we demonstrate as a proof-of-
concept, the loss of communication between the server and the
consumers due to the DDoS attack. Second, we propose a method
for the assessment of the short-term risk of a DDoS attack. The
method formulates both the communication network and the power
distribution network which hosts controllable power loads.
Consequently, the method's algorithm calculates the aggregate
power curves during normal and attack scenarios and takes into
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account CDFRs which in turn may affect the SAIDI values.
Finally, the outcome of the proposed method is the tailor-made
quantification of the short-term risk of the DDoS attack in the
distribution network, expressed as the difference in the SAIDI.

1.4 Paper organisation

The remainder of this paper is organised as follows: Section 2
describes the theoretical background of the modules of the
proposed method. More specifically, it describes the architecture of
the AMI and DR, followed by important cyber-security issues.
Subsequently, it focuses on the most significant cyber-security
details and it analyses and formulates DDoS attacks. Section 3
presents the simulation results of the case studies (CSs), and finally
Section 4 concludes this paper.

2 Formulation

The proposed method formulates both the communication network
and the power distribution network which hosts controllable power
loads. As it is shown in Fig. 1, the algorithm collects at the
beginning all the input data, i.e. the network, reliability, and CDFR
data. Consequently, the algorithm splits into two similar
subroutines to calculate in parallel two SAIDI values. One for the
normal load shifting operation and one for the DDoS attack
scenario. Each subroutine calculates first the aggregate load curve,
to determine the CDFRs of the components based on their loading
condition, which in turn are needed for the SAIDI calculation. In
the last step of the algorithm, the SAIDI values are presented.

2.1 Advanced MI

A fundamental smart grid enabling technology is the AMI, which
usually refers to the system that collects measurements and
processes various energy usage data from devices throughout the
network [19]. AMI allows the system operators to monitor the grid
in real time to avoid potential failures and power outages and
eventually increase the overall reliability of the grid [14]. For the
grid stability, various communication requirements in the different
AMI layers provide interoperability and uninterrupted operation in
every part of the AMI.

Two-way communication is an essential feature of the AMI,
omitted in its ancestor, the advanced meter reading system [4, 20].
To achieve two-way communication between consumers and
system operators, the AMI must efficiently provide interconnection
between the intelligent devices deployed in every part of the grid,
from intelligent electronic devices (IEDs) in substations to smart
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meters at the consumers’ premises. Thus, electricity and
communication data will flow through the network without
hindering the normal operation of the grid [21]. Various nodes in
the implemented architecture of the AMI perform as such, which is
followed in the rest of this paper, and can be divided into three
distinctive parts, in accordance with the U.S. Department of Energy

[9]:

i. A meter data management system (MDMS) connected via a
head end to the rest of the AMI. It is responsible for storing
and managing the smart meter's data [21] which are mostly
power consumption and communication data exchanged
between utilities and consumers [22]. To transmit a large
amount of data it uses high-bandwidth technologies such as
worldwide interoperability for microwave access (WiMAX),
fibre optics or the public Internet. The MDMS is considered an
important component of the smart grid.

ii. An aggregation point, otherwise regarded as an interconnected
node between the MDMS and the end-use consumers, is
employed with the task to implement bidirectional
communication between the entities above. It can be
considered as a data concentrator from groups of smart meters
covering a neighbourhood area network (NAN) to store and
forward the necessary data to utilities for further processing.
The use in a substation level must allow interoperability
between regional and consumer networks that need to
communicate effectively to avoid security failures [6].

iii. Smart meters are the local household recorders of electricity
consumption, demand, time of use (TOU), and operational data
[9]. Implemented as a gateway to the home area network with
low-bandwidth requirements, they are entitled to collect
forward the above data at specific time intervals [5]. DR
signals received by the smart meters influence the real-time
household consumption when it is necessary.

The proposed method is applied to the distribution level of the
network which spans from the distribution transformer to the
consumers’ appliances. Therefore, it is expected that the topologies
under study will host a number of 100-500 consumers. Various
household devices are considered to be installed in each house such
as refrigerators, washing machines, lighting devices, and HVAC
system. It is also assumed that an EV charger is connected in a pre-
defined number of households.

2.2 Demand response

Among the smart meter capabilities, the remote load influence can
be considered the most pioneering one, as it allows consumers to
participate actively in the electricity market. DR signals can be
either mandatory or voluntary requests for load curtailment in the
form of a price signal. Consumers may choose to accept the price
incentives to maximise their profit. For the utility company, real-
time pricing (RTP) signals can result in significant peak-shaving,
especially in high-demand periods, reducing the risk of failure and
eventually increasing the reliability of the grid.

In the current approach, we divide the consumers into active
and unresponsive ones. The members of the first group participate
actively in an RTP market by following the price signals from a
central server, while the others use their appliances when needed,
regardless the price signal. The response to price signals is
automatic without human interference. Participants send their bids
to an electricity market which collects and sorts the bids and
transmits back the appropriate price signal. The price after the
electricity market closes determines in which households a switch-
off command of the controlled devices will be performed. In this
paper, the EV charging and the HVAC systems are considered as
the only controllable power loads by the electricity market. In the
EV charging case, the load can be shifted in off-peak periods to
reduce the overall power consumption during peak hours.
Accordingly, in the HVAC case, a responsive consumer may accept
a switch-off during peak hours.
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2.3 Cyber-security

Information technology and computer networks are widely
embedded and are supposed to increase rapidly the complexity of
the smart grid [5, 21]. Combining this factor with the large-scale
nature of the grid, security in every part of this newly introduced
grid will be an impossible task [23]. Moreover, the interconnection
of networks and systems of different technical characteristics, from
generation to consumption, which will hardly be owned by the
same entity, introduces various new vulnerabilities [24].

Cyber-security has been addressed as a priority for the broad
implementation of the smart grid, according to Locke and
Gallagher [25], and is a major impediment to the ongoing
development of the smart grid. European countries such as
Germany have delayed the installation of smart meters due to
privacy issues [9]. Therefore, security requirements must be
fulfilled to address the problem effectively.

Considering the smart grid as a network of bidirectional
exchange of information, the basic information security
requirements are confidentiality, integrity, and availability.
Alternatively, these definitions can be substituted by interception,
modification, and interruption, respectively, as stated in [24].
Reference [3] considers the availability as the prime requirement
for the reliable management of the power grid. Consequently, the
rest of this paper focuses on the loss of availability of the
transmitted information and its outcome on the underlying power
grid.

2.4 DDoS attacks

The main contribution of this paper is to demonstrate the impact of
a DDoS attack and consequently the loss of availability in the
smart grid. Unlike a DoS attack where the attacker makes the target
unavailable to its legitimate users, a DDoS attack is a coordinated
DoS attack where the attacker exploits multiple compromised
systems such as botnets, to cause greater damage to the target.
More specifically, a DDoS attack can deplete the computational
resources of the target and cause serious delay or even failure in the
data transmission through the communications channel [5, 6, 26].
Such attacks might have severe consequences regarding critical
infrastructures. For example, a delay of some milliseconds in a
mandatory load disconnection command can result in a
significantly increased load during a period when its curtailment
would be crucial to avoid overload of the grid.

We examine the use of botnets to initiate highly coordinated
DDoS attacks considering that the topology uses public
communication channels in parts of the smart grid network. Public
Internet access will serve as the necessary entry point for the
botmaster to gain access to the internal network and initiate a
coordinated attack. According to [27], public Internet is considered
as a possible communication path between utility providers and
consumers. More specifically, it states that the Internet can be used
in the communication between third-party services, which in this
work is considered the main server, and the consumers. Therefore,
DR messages, load control, and remotely switch-off commands are
dispatched through the Internet, making its adoption as a
communications path a realistic case scenario.

A DDoS attack can transcend from the communication channels
to the physical system of the power distribution. Cyber-physical
security [5, 28] is a growing issue in the field of smart grid cyber-
security. A characteristic example of cyber-physical security threat
is when a switch-off command is sent to an IED that controls a
circuit breaker remotely, and due to a DDoS attack, the command
fails to reach its destination resulting in possible equipment failure
or even power outage [13]. GridEx II [29] demonstrates the
importance of cyber-physical security in the exercise of the North
American Electric Reliability Corporation, where the ability of the
power grid to deal with the adverse situations of a cyber-attack is
examined thoroughly.

Regarding the communication technologies in AMIs, WiMAX
can be considered secure and reliable, offering a wide coverage of
50 km and data rates of 70 Mbps, suitable for DR applications.
Additionally, authentication mechanisms are an inherent part of
WIMAX as encryption techniques, and standards make packet
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sniffing difficult. Consequently, sensitivity to compromise is low in
this case; however, it is still possible to perform a successful DDoS
attack to the system effectively [30]. The utilisation of cellular
technologies is an alternative solution to WiMAX, and they are
advantageous due to the wide coverage even in remote places.
General packet radio service (GPRS) offers strong security
protocols for data transmission as well as a range of authentication
mechanisms that make the packet sniffing procedure a demanding
task. However, Traynor ef al. in [31] demonstrated that a botnet of
poorly secured mobile phones could be utilised to cause significant
availability issues in the examined cellular network. The present
work aims to address the increasingly sophisticated attacks that
may occur in such networks. Therefore, as GPRS utilises [P-based
protocols, the examined DDoS attack can be a potential threat. In
addition, low data rate, low quality-of-service during peak hours,
and availability issues in critical conditions, as stated in [32], could
ensure the communication congestion in GPRS in the case of a
DDoS attack. For these reasons, in this paper, we focus on WiMAX
technologies for the communication between data concentrators
and servers.

Regarding the potential number and type of the devices that
could initiate a coordinated attack, there are reports in current
bibliography such as the Mirai case [33] that raise the number too
many thousands of Internet-connected devices such as closed-
circuit televisions and IP cameras, printers, and wireless routers.
Mirai software was used to launch the large-scale 2016 Dyn cyber-
attack that resulted in major Internet platforms be unavailable for a
period. The same report states that more than 145,000
compromised [oT devices that formed part of a botnet were utilised
for the attack that occurred in OVH web-hosting provider. The cost
of launching such attacks can be varied per several parameters, e.g.
the target characteristics, the source of the attack, and the attack
scenario. A recent report [34] collects some current tariffs for the
hire of DDoS resources. For example, a 3 h DDoS attack would
cost $60.

In this work, we focus on TCP Synchronise (SYN) sequence
number flood DDoS attacks using a botnet. The conducted
experiments aim to address the serious issue of initiating a DDoS
attack when part of the communications infrastructure lies on the
public Internet, and therefore its vulnerabilities are inherited in the
smart grid. We assumed that only the communication between the
aggregation point and the main server is deployed via the Internet,
whereas the rest of the communication between the aggregation
point and the meters utilise IP-based protocols. As a result, the
botmaster can gain access to the smart grid communication
network while utilising techniques such as packet sniffing, so that
the IP address of the central server can be acquired to launch an
attack. The attacks target the server because attacking a single
smart meter has insignificant interest [21, 35].

2.5 CDFR and SAIDI

To analyse the impact of a DDoS attack on the physical system
especially on peak hours, we use the CDFR of the main
distribution components during the attack. These components are
the power transformer, and the main power distribution line, also

known as main feeder. According to [36—40] the failure rate of the
power distribution components should be considered as a function
of loading. Since there is not any standard method for the
modelling of the CDFR of a component, we use the CDFR model
as shown in Fig. 2. It is expected that potential network overload
due to uncontrolled operation of the controllable power loads will
have a negative effect on the distribution reliability. In addition,
lower reliability means higher risk [41].

In this work, excluding the power transformer and the main
feeder, we assume that all the other distribution components, as
well as the upstream transmission system, are fully reliable. We
calculate the availability 4 of the transformer and the main feeder,
using the mean time between failures, mean time to repair
(MTTR), and mean failure rate as follows:

MTBF
A= MTBF + MTTR )
where MTBF = 1/MFR.
Owing to the series connection of the transformer and the main
feeder, the expected system unavailability Usg, is

USZI_AT'AF (2)

where At and Ap are the availability of the transformer and the
main feeder, respectively.

The Us can be expressed in an annual term, as the system
unavailability over the course of a year, to represent the expected
interruption duration which every consumer sustains during a year.
By definition, this metric equals to the SAIDI. To sum up, the
network components that are characterised by CDFR, trigger
spontaneous interruptions, which in turn are logged by SAIDI
values regarding the annual average interruption duration for each
consumer. Finally, the attack impact on the SAIDI value is
assumed as the short-term risk of cyber-attack in terms of increased
consumer interruption probability.

3 CSs and discussion

This section presents the simulation results of four CSs, namely
CS1-CS4, to estimate the impact of a DDoS attack on the smart
grid infrastructure in both the communications network and the
power infrastructure. The simulations are grouped into two
distinctive sections. First, we emulate a massive DDoS attack,
applied by a botnet on a closed testbed environment (CS1-CS2),
and second we integrate the drawn results to a smart grid topology
of 300 smart meters with 150 EVs (CS3-CS4) to present the
impact on the power grid. We use the CS1 and CS2 as a proof-of-
concept, while in the CS3 and CS4 we calculate the DDoS impact.

3.1 DDoS attack on the central server

For the DDoS attack in CS1 and CS2, we use the Botnet Simulator
(BoNeSi) [42] which employs a botnet of 50,000 bots to perform a
DDoS attack. BoNeSi can generate realistic traffic patterns such as
TCP and UDP data flows to simulate a DDoS attack successfully.
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Moreover, the simulator allows the specification of various
parameters such as data volume, the number of IP addresses, and
the total packets per second that are being sent to the targets.
Regarding the TCP/SYN flood DDoS attack, BoNeSi must be
combined with a closed testbed environment. For this purpose, we
use the Emulab testbed [43, 44], because the TCP answers from the
server must be routed back to the BoNeSi to extract the results.

Fig. 3 shows the emulated topology. It consists of a web server,
the target of the attack, which can be deemed as the central server
of the AMI, broadcasting data and price signals to smart meters.
Two smart meters and the BoNeSi machine are running; otherwise,
known as the botmaster which is the attacking node. Hostgate also
can be considered as a data concentrator for the group of smart
meters, to implement bidirectional communication between the
group and the main server. Since it is impractical to use more than
300 real machines in the testbed to emulate the smart meters and
allocate IP addresses, we present selected key features of the
proposed topology. Albeit, the smart meters are not participating
actively in the attack scenario, they attempt to communicate with
the server to evaluate whether the server can communicate with the
healthy devices during the attack.

In this work, the graphic user interface of Emulab is used to
design the specified topology. The wireless area network (WAN)
where both the server and the botmaster are connected is assumed
to be the public Internet. We implement the dedicated connections
between the two entities and the LANs by broadband network
infrastructures such as fibre optics or WiMAX due to the large
traffic volume that flows in these sub-networks. On the other hand,
we use low-bandwidth technologies such as ZigBee in the smart
meter connections. We present in the Appendix the specific
bandwidth connection details, as well as web traffic characteristics
that we use in the BoNeSi emulation.
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Table 1 CS2 —web server ping attempt under botnet DDoS
attack

Moment of ping Duration until Outcome
transmission, s rejection, s
60 480.80 rejected
570 382.41 rejected
960 526.62 rejected
1500 368.75 rejected
1890 414.22 rejected
2310 745.95 rejected
3060 365.45 rejected
3450 166.49 aborted — end of
simulation

In CS1, we initiate a DDoS attack by the botmaster toward a
server, utilising every bot available in the botnet. When the
simulation begins, the bots flood the server with TCP packets. The
attacker targets the communication infrastructure of the smart grid
once he manages to gain access through the public Internet. In
Fig. 4, the total number of TCP packets per second that are
successfully received by the botmaster are shown when the target is
the server of the topology in a real-time 10 min emulation. The
packets represent the answers from the server to the initial TCP
requests that are sent by the bots. The gradual decrease in the
number of received packets depicts the incompetence of the server
to respond to incoming traffic.

Apart from the packet received rate, we examine the ability of
the smart meter to communicate with the server and send metering
data during the attack scenario. For that case, we model a typical
computer in the Emulab topology to represent the smart meter of a
household which participates in the electricity market.

As we consider that an hourly isolation of a smart meter could
have a non-negligible influence on the aggregate power load, we
implement a 60 min CS, the CS2, where the SMARTMETERI
from the above topology sends a TCP request to the web server to
test its availability. The ping sequence is set to start by the 60th
second of the emulation, with a maximum of 20 retry attempts.
Table 1 lists the results of this emulation, where we observe only
rejection messages.

CS1 and CS2 demonstrate the gradual unavailability of the
topology server and the incompetence of the household smart
meter to send consumption measurements to extract price signals
for the RTP market that the HVAC participates and the TOU
market that the EV participates. CS1 demonstrates that the constant
requests being sent from the bots eventually floods the
communication channel of the server resulting in an inability of
communicating with the meters. Similarly, CS2 shows the meters’
efforts to send its measurements to the central server during the 1 h
scenario that is examined. Each meter starts sending a packet after
the first minute of the emulation. When the packet is aborted, it is
being resent automatically until 20 efforts are reached the packet is
finally rejected. Subsequently, a new packet is sent and the
procedure continues until the end of emulation.

3.2 DDoS impact on the power distribution network

In the second part of the simulations (CS3—CS4) we use GridLAB-
D [45], where we deploy the topology of the distribution network
for 300 households. GridLAB-D is a power distribution simulation
tool which gives valuable insight into the operation of the
distribution network while integrating new technologies such as
EVs. When combined with the framework for network co-
simulation (FNCS), it allows the users to model both the
communications network and the power infrastructure of a smart
grid. More specifically, GridLAB-D models the power network,
whereas network simulator 3 (ns-3) [46] is employed to construct
the communications topology. Subsequently, FNCS ensures the
cooperation of these different simulation environments especially
in cases where multiple households participate in electricity
markets with the dispatch of price signals.
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In the simulation environment, we assume that a group of the
households participates in the electricity market that controls the
usage of the HVAC cooling system. We also assume that a DDoS
attack occurs during the summer days when cooling demand is
increased. The bid price and quantity are determined based on the
current indication of the thermostat of each house and the comfort
zone that each consumer specifies in collaboration with the utility
company. The comfort zone is defined as the upper limit that each
consumer allows the temperature to climb before the house
becomes too hot. For example, unspecified comfort zone indicates
zero participation in the electricity market for this consumer who is
considered as unresponsive one and his electricity demand is
considered inelastic. On the basis of the current air temperature,
consumers send their bids, which are forwarding through ns-3 via
communication channels of specified bandwidth, to the market
which collects and sorts them. Afterwards, the market broadcasts
its clearing price to the participants, and the appliances are
switched on in the case of bid acceptance. Otherwise, the consumer
can bid again in the next market timeslot which occurs every 5
min. Although the load control is restricted in the HVAC, the
results can be expanded in cases where multiple EDs participate in
the market.

Apart from the HVAC system, we implement a second market
which controls the charging of the EVs. We model two types of
EVs, and their characteristics can be found in the Appendix. The
market for the EVs is based on a TOU programme. More
specifically, during the day, a high price signal is broadcast to the
households to prevent the vehicles from charging during the peak
hours of the day. During the night, when the demand is relatively
low, the charging is promoted, and the market allocates the EV
charging load in such a way to avoid unexpected peaks in the load
curve. Through this procedure, we manage to model the load
shifting from peak hours to off-peak hours, during the night. We
examine a 50% EV penetration, i.e. 150 households host an EV
(50x Type 1 and 100x Type 2). We use the reliability data for the
transformer and the main feeder from [47], as listed in Table 2. The
simulation results are presented in the following paragraphs.

3.2.1 SC3 -market participation: Fig. 5 illustrates the
importance of participating in an RTP market which can shift part
of the load to off-peak hours. In this scenario, we assume that EV
charging is an elastic load that can be shifted to the night when the
market price is low. Furthermore, the load distribution should be as
smooth as possible to avoid unexpected peaks.

3.2.2 SC4 — DDoS attack impact on the grid: To incorporate
the obtained results from CS1 and CS2, we assume that each
participating household in the RTP market behaves as if it was
unresponsive in the beginning. In other words, there is no tolerance
in the temperature rise or fall in the house, and the HVAC is
utilised whenever the temperature changes above or below a pre-
specified value. Consequently, as the main server does not receive
any bid from the participating customers as a result of the DDoS

Table 2 CDFR data

Network element P /P o MTTR,h m
power transformer 0.9 0.015/year 200 15
main feeder 0.9 0.065/year 5 10

attack, it considers them as unresponsive, and therefore must meet
their demand for power in each moment. Regarding the EV
charging, the modelled chargers take as input the arrival time of
each car depending on various implemented scenarios. It should be
mentioned that the EVs do not charge during their absence from
the household and their day trip is pre-defined. The participation of
the EVs in the TOU market starts from 11 pm until 7 am on the
next day. During that time, the procedure takes into account the
initial demand at the beginning of the TOU market and calculates
the difference between this value and the power consumption in the
case where no cars are charging during the night (red curve in
Fig. 5) for 5 min intervals. Gradually, the system allows more cars
to charge, by considering the full EV capacity and the requirement
that each car must be fully charged before leaving the house, to fill
smoothly the valley in the power consumption during the night
without imposing new peaks. When a DDoS attack occurs, it is
assumed that there is no communication between the server and the
charger, and therefore the EVs charge as they arrive at home as
none price incentive is imposed during that time to shift their load
to off-peak hours. As a result, an uncontrolled EV charging
happens during the DDoS attack scenario.

Fig. 6 depicts the 24h aggregate power consumption
comparison between the regular DR operation, where we apply
load shifting and the respective attack situation of total
communication loss in the communications network due to the
DDoS attack. We can observe that between 12 am to 8 am the
valley filling of the aggregate load curve cannot be achieved
because the DDoS attack prevents the scheduled operation of the
controllable loads. As a result, the HVAC systems and the EV
charging are served uncontrollably during the day.

Apart from the overall impact of the DDoS attack in the shape
of the demand curve, Figs. 7 and 8 depict the period of time during
the transformer and the main feeder are stressed with load <90% of
the initial peak load. We can observe that during the attack, the
load is constantly >90% of the initial peak for 265 min (4.417 h),
compared with the base case where the peak load occurs
sporadically for a total time of 10 min (0.167 h).

In the final step, we use the reliability and the CDFR data, as
they are stated in Table 2, to calculate the impact of the DDoS
attack on the SAIDI by (1) and (2). The simulation and calculation
results are listed in Table 3.

The short-term risk of a DDoS attack on a distribution network
is quantified in terms of SAIDI value by the proposed method. We
calculate that during a DDoS attack, the consumers can be exposed
to a nearly double system unavailability and SAIDI value. In other
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Fig. 5 CS3 - load control with 50% EV penetration
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Table 3 Results of CS3 and CS4 regulation targets. Therefore, the proposed method could be useful
CSs Peak period Us SAIDI, h/year to calculate the impact of controllable loads in the reliability
css  oferh 00003337 349 by evtimate specific ok management. actons. e, penetation
cs4 4417h 0.0007565 6.63 limits of controllable loads, to avoid the risk of performance
penalties due to DDoS attacks.
words, such attacks may multiply the short-term expected

interruption probability, as it is shown in the above CSs.

A modern distribution network operator (DNOs) might operate
under performance-based regulation regarding the SAIDI value.
Currently, in Europe, various reward and penalty schemes have
been applied in 17 countries [48]. In such cases, the annual SAIDI
performance could result in rewards or penalties imposed by the

IET Cyber-Phys. Syst., Theory Appl.

4 Conclusion

This paper investigates the ability of botnets to infiltrate the
communication network of the smart grid and initiate a DDoS
attack and it proposes a method for the short-term risk assessment.
The method evaluates the risk in terms of the impact on the SAIDI
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value of distribution network, taking into account controllable
loads as EVs and HVAC.

We used the BoNeSi for the DDoS attacks, and the graphical
user interface of Emulab to design the topology for the proof-of-
concept. To calculate the short-term risk, we modelled the
distribution network and its communication infrastructure with the
collaboration of GridLAB-D, FNCS, and ns-3.

Finally, CSs have been presented to demonstrate the capability
of the proposed method. The method can be used by a DNO as a
decision support system for the calculation of the maximum
penetration of controllable loads, according to the desired risk
tolerance.
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6 Appendix

6.1 Simulation parameters
See Tables 4—6.
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Table 4 Topology parameters

SMARTMETER-to-NAN 0.768 Mbps
NAN-to-hostgate 155 Mbps
hostgate-to-WAN 1000 Mbps
BOTMASTER-to-LAN 10 Mbps
LAN-to-botmastergate 155 Mbps
botmastergate-to-WAN 1000 Mbps
SERVER-to-LAN 100 Mbps
LAN-to-servergate 155 Mbps
servergate-to-WAN 1000 Mbps

Table 5 Web traffic

packet payload 32B
packets per second 5000
destination port 22

Table 6 EV types

Type 1 Type 2
battery size 70 kWh 17.1 kWh
charging efficiency 0.92 0.9
charge rate 10 kW 3.6 kW
electric range 240 miles 53 miles
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