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In  the  last  decade  increasing  concerns  about  the  environment,  financial  reasons  based  on  fuel  prices  and
application-specific  operational  challenges  have  been  driving  the  development  of  electric propulsion  and
hybrid  or  full-electric  ships.  The  use  of  battery  energy  storage  systems  (BESS),  which  are  suitable  for  a
broad  range  of ship  applications  with  different  requirements,  can  reduce  the  use of fossil  fuels. In  this
eywords:
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paper  the  benefits  of  an onboard  DC  grid,  as  applied  by  ABB,  are  briefly  presented.  The  integration  of
BESS  and  the  challenges  for ship  applications  are  also  discussed.  The  focus  of this  paper  is  on  a parameter
identification  method  for  an  electric  model  of a  battery  and  the  evaluation  and  validation  of  a  battery
state  estimation  method,  in respect  to  the accuracy  requirements  for  ship  applications.
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tate estimation algorithms

. Introduction

Environmental, financial and operational reasons have been
riving the development of electric propulsion and hybrid electric
hips. Recently, the concept of all electric ships (AES) has been also
ntroduced, due to many benefits, such as flexibility in space and

eight allocation, more degrees of freedom in the power system
ayout, enhanced operating life, increased survivability and main-
ainability and overall efficiency, etc.[1]. Main drivers behind this
re the naval applications [2], which involve special loads, e.g., the
ulsed load of electromagnetic aircraft launchers, however other
ype of vessels also start to become interesting applications for
lectric ships with energy storage, like ferries [3,4].

The use of battery energy storage systems (BESS), which among
thers could be also charged by renewable energy sources mostly
nshore, may  reduce the use of fossil fuels for some ship appli-
ations. A broad range of specific applications, like peak shaving,
apacity firming, spinning reserve, backup power and pure elec-
ric operation etc. are suitable for BESS, however they usually have
uite different requirements. Vessel types specifically benefiting
rom such applications are offshore support vessels, drill rigs, ice
reakers, tug boats and shuttle ferries.

∗ Corresponding author.
E-mail address: antonis.marinopoulos@ieee.org (A. Marinopoulos).

1 A. Marinopoulos is now employed by the Joint Research Centre of the European
ommission, Directorate C – Energy, Transport and Climate, Petten, The Netherlands.
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378-7796/© 2017 Elsevier B.V. All rights reserved.
For such hybrid or full electric ships, the optimization of the
power system’s operation relies heavily on the management of the
energy storage. This has been already identified as a key issue for
the control of the power system in AES [5], and it is for this reason
that an accurate state estimation of the BESS is also so important.
In specific, fast acting energy storage can compensate the lag of
diesel generators and reduce their negative effects on power qual-
ity, while for longer time scales, an appropriate BESS could satisfy
temporary increases in power demand, avoiding the need to start
an additional generator, which would have to operate in partial load
with low efficiency. The modular nature of BESS can also be seen
as ideal for distributed energy storage, which can increase the reli-
ability and flexibility of the complete power system, comparing to
centralized storage, and is also easier to adjust to different types of
load variation by reprogramming the inverters’ control algorithms
[5].

The technology of choice today is the Li-ion battery, which keeps
improving continuously [6], while its cost is coming down quickly.
The cost per kWh  for electric vehicles (EV) batteries dropped by 35%
during 2015 alone, according to Bloomberg New Energy Finance [7].
Much of this is driven by the economy of scale when battery man-
ufacturers are ramping up production to meet increased demand
from electric vehicles and stationary energy storage, but improve-
ments in energy density is also an important factor. This increased
interest in batteries for EVs in combination with environmental

and energy issues is reflected to the recent work of a number of
researchers [8–11].

dx.doi.org/10.1016/j.epsr.2017.05.009
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2017.05.009&domain=pdf
mailto:antonis.marinopoulos@ieee.org
dx.doi.org/10.1016/j.epsr.2017.05.009


1  System

a
s
c
L
m
s
r
m
i
c
o
7
p

b
d
r
t
t
m
i
s
l
d

2

s
f
i
v
p
i
i
t

a
t
v
a
s
t
T
o
t
g
a

d
t
s
B
g
t
m
A
f
i
t

s
f
k

16 G.S. Misyris et al. / Electric Power

Depending on the system requirements for a BESS in a marine
pplication stated by power profile, design lifetime, footprint and
afety, etc., Li-ion batteries based on lithium nickel manganese
obalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA) or
i-phosphate (LFP) cathodes and carbon or Li-titanate (LTO) anodes
ay  be chosen. Different battery systems have their respective

trengths and weaknesses in terms of cost, charge and discharge
ate capabilities, calendric and cyclic lifetimes and safety. That said,

ost BESS have to be designed with a sufficient initial over-sizing
n order to cope with the fade in energy capacity and/or power
apability over its lifetime. A marine BESS is typically comprised by
ne or more parallel strings with a nominal voltage in the range of
00 and 1000 V. Strings are paralleled to meet energy capacity and
ower capability requirements.

In this paper, an overview of an onboard DC system, as applied
y ABB, is briefly presented and its benefits versus AC are shortly
iscussed. The integration of BESS along with some technical
equirements and challenges for marine applications are also men-
ioned. The focus is on a parameter identification method for a
ypical battery model, and on a capacity and state-of-charge esti-

ation using a combination of algorithms. The estimation method
s validated with experimental results from lab measurements and
hown to provide good accuracy. A discussion on the method’s chal-
enges to make it robust for demanding ship applications is also
one.

. BESS integration into an onboard DC system

There are many ways to integrate a BESS into the electric power
ystem of a ship, in terms of circuit configuration, hardware inter-
ace and control. For example, even though the BESS is usually
nterfaced to the power distribution grid with its own  power con-
erter, it can also be connected directly to the DC-link of the electric
ropulsion system, eliminating the need for a DC/DC converter, but

ncreasing the size of the frequency converter and the propulsion
nverter that have to control the voltage of the DC-link to control
he state-of-charge (SOC) of the BESS [12].

In the last years, the onboard DC grid is being adopted for various
pplications. For example, its advantages versus traditional AC sys-
ems regarding dynamic positioning operation of offshore support
essels (OSV) include improved efficiency, optimization of oper-
tion and fast ramping connected with the integration of energy
torage [13]. In Fig. 1, an onboard DC distribution system including
he BESS, as applied by ABB [14], can be seen in high-level detail.
he main benefits from including a battery system are the reduction
f fuel consumption and emissions, but also the improvement of
he dynamic response of the system, compared to a diesel-electric
enerator, and the increased availability due to the instantaneous
vailability of energy back-up source.

The onboard DC grid in general provides a highly efficient power
istribution system that allows a wide range of sea-faring vessels
o cut their fuel consumption, as well as incorporate DC energy
ources, such as solar PV panels and fuel cells, and of course BESS.
ased on a recent analysis from ABB [14], the implementation of DC
rid may  reduce the electrical equipment footprint and weight of up
o 30% and the fuel consumption and emissions by 20%. In fact, tests

ade in Dina Star, an offshore platform supply vessel outfitted with
BB’s onboard DC grid, in 2014, identified a reduction of specific

uel oil consumption of up to 27% [15]. It has to be noted, that these
mprovements were the result of the onboard DC grid only, not
aking into consideration any extra benefit from BESS integration.
BESS enabled vessels may  be highly dependent on their energy
torage systems to meet backup power requirements, dynamic per-
ormance and overall power system stability. Consequently, it is of
ey importance to ensure that the BESS at every moment have the
s Research 151 (2017) 115–124

capability to meet even the worst case scenarios. This is achieved
by state estimation, i.e., SOC and state-of-health (SOH) estima-
tion. Accurate battery state estimation is important since not only
does it reflect the battery performance but it also enables appro-
priate, application-driven control actions. Moreover, information
from the state estimation, both SOC and SOH, can be integrated
into the onboard diagnostics and maintenance system of the ship.
State estimation techniques can be broadly categorized in: direct
measurement methods, book-keeping estimation, adaptive sys-
tems and hybrid methods.

3. Battery cell modeling

In this section, the battery cell modeling and the main phenom-
ena that need to be taken into account for an accurate model, i.e., the
relationship between the open circuit voltage (OCV) and the SOC,
the hysteresis effect, the temperature and the charge/discharge
current rate, and the capacity degradation, are described. In gen-
eral and in its simplest form, a battery model can be expressed
as a capacitor, whose capacity is equal to the real capacity of the
battery. Considering the internal resistance of the battery, a resis-
tor is added in series with the capacitor to simulate the instant
drop of the battery voltage, after a current pulse. The capacitor and
the resistance simulate the steady state of the battery. In order to
describe the dynamic response of the battery (relaxation effect)
after a current pulse, series connected RC branch(es) is/are used.
A higher number of RC branches can give higher accuracy to the
battery model, but also increases the complexity of the battery
model. The efficient number of the RC branches, considering the
complexity and the accuracy is regarded to be two  [16], but in
this work to make the model simpler only one RC branch, which
gives also adequate results [17], is used. The choice of the num-
ber of RC branches is a trade-off between accuracy and complexity.
Complexity refers to the computational effort that the algorithms
add to the system operation, especially for an online application,
which is also translated into increased computational burden as
well as cost. Moreover, the proposed ECM is mostly dependent
on the OCV–SOV curve and especially within the area of operation
(0.1–0.9 SOC), a fact that makes it rather generic and universal and
not only for Li-ion batteries. Consequently, considering the addi-
tional complexity, especially for online applications, to use a second
(or more) RC branch for achieving a rather small accuracy improve-
ment, the modeling with only 1 RC branch for this kind of batteries
and applications is justified as more appropriate.

3.1. OCV–SOC relationship

The OCV has a non-linear relationship with the SOC  and this
non-linearity makes the battery parameter identification and the
state of charge estimation rather challenging in terms of the sta-
bility and performance of the battery model. Therefore, although
for modeling purposes the relationship between the OCV and the
SOC could be considered as static, independent of the battery aging
and the current rate, it can be shown that in reality it changes for
different temperatures, especially below 0 ◦C. In order to deal with
this non-linearity, the average OCV–SOC curve is divided into linear
segments. In an approach similar to [18], to find the appropriate
number of linear segments the first and second derivative of the
OCV versus SOC have been used. The analysis resulted in 18 linear
segments i.e., 10 linear segments from 0 to 0.2 of SOC and eight
segments from 0.2 to 1.0 of SOC. This non-uniform distribution

of linear segments across the OCV–SOC curve has been performed
in order to deal with the high non-linearity of the OCV–SOC rela-
tionship observed for SOC levels below 0.2. Based on the fact that
for normal C-rates the operation point moves “slowly” along the
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CV–SOC curve, a piece-wise linear relationship between OCV and
OC at each operation point of the battery can be considered. The
quation which describes the OCV–SOC relationship for each of the
inear segments [19] has the below generic form:

OC = b0 + b1 · SOC (1)

here b0 is the y-intercept and b1 the slope of the linear equation.

.2. Hysteresis effect

The equilibrium potential is higher at the charging process than
hat at the discharging process. Therefore we can infer that the equi-
ibrium potential depends on the operation history of the battery
uring the charging and discharging process [20]. In this paper, the
verage of the equilibrium potentials of charging and discharging
s considered to simplify the model.

.3. Temperature effect and C-rate

Most of the researchers until now have been trying to estimate
he parameters of the battery based on fixed conditions for tem-
erature and current by identifying them offline. However, this
uts a limitation using the model for real-time applications, where
ffline measurements are not available, but also for different kind of
atteries, since each cell of a battery might present different char-
cteristics, even if it is from the same manufacturer. As shown in
18], without change in temperature or current-rate the battery
arameters can change as much as 800% and if we add on this the
ging effect this difference can be even higher, so the estimation of
OC may  be very inaccurate.

.4. Capacity degradation

The maximum (nominal) capacity Q of a battery cell can be

efined by the following equation:
t1

t1

�i(�)
3600

d� = Q (SOC(t2) − SOC(t1)) (2)
Fig. 2. Battery-equivalent circuit.

where � is the coulombic efficiency, i(�) the current at time �, Q
the capacity, and SOC(t1) the state of charge at t1. It is obvious
that Eq. (2) has a linear structure of y = Qx.  An accurate estima-
tion of the battery capacity is very important, in order to face the
capacity fading as the battery ages. However, it is difficult to mea-
sure the battery capacity directly, thus some appropriate methods
need to be applied in order to estimate it. As shown in [21] there
are three kind of methods for capacity estimation: analytical, com-
putational intelligence-based and model-based. In this paper, the
model-based method, in which the SOC estimation and maximum
capacity are based on battery models is used, and the total least
squares (TLS) algorithm is implemented, to deal with the error
being added to the system during the estimation processes.

3.5. Equivalent circuit model

In Fig. 2, the battery equivalent circuit model is presented. The
RC branch simulates the relaxation effect of the battery, which
represents the slow convergence of the battery voltage to its equi-
librium after hours of relaxation following charging/discharging.
The parameters of the RC branch, R1 and C1, respectively, change
with SOC, temperature and aging. In order to bridge SOC to
the OCV voltage, a voltage-controlled source is used. This source

describes the nonlinear relationship between OCV and SOC, which
is static. When the battery is being charged or discharged, current-
controlled source IL is used so that the SOC of the battery changes
dynamically. The series resistance R0 simulates the instant voltage
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fter charge/discharge of the battery. It represents the electrochem-
cal process of the battery due to the electrolyte and the inter-phase
esistance. R0 also changes with SOC, temperature and the aging
ffect of the battery and is a great indication of battery SOH.

As pre-mentioned, one RC branch in the equivalent circuit is
sed, so the state-space equations, which describe the battery oper-
tion are:⎡
⎣ ˙SOC

˙VRC

⎤
⎦ =

⎡
⎢⎣

0 0

0
−1

R1C1

⎤
⎥⎦

[
SOC

VRC

]
+

⎡
⎢⎣

1
QR

1
C1

⎤
⎥⎦ iL

VT =
[
b1 1

][
SOC

VRC

]
+ R0iL + b0

(3)

here the state variables of the system are the SOC and the voltage
rop on the RC branch. The only known variables from this state-
pace system are the current and the output voltage. In order to
stimate the SOC and VRC we need first to identify the unknown bat-
ery parameters. Since we can extract b1 and b0 from the OCV–SOC
urve and QR does not affect the other parameters [22], apart from
1 that is anyway known, the only unknown parameters are R1, C1
nd R0.

. Parameter identification and SOC/capacity estimation

This section has three parts: in the first part the parameter
dentification method for the above mentioned battery model is
escribed, in the second part the SOC estimation is presented and

n the third part the capacity estimation algorithms are given. Based
n the model shown in Fig. 2, the transfer function of the system,
rom which the parameters of the equivalent circuit are extracted
s:

Y(s) − b0

U(s)
= R0s2 + ((b1/QR) + (1/C1) + (R0/R1C1QR))s + (b1/R1C1QR)

s(s + (1/RC))
(4)

Then, using bi-linear transformation(s → 2
T
z−1
z+1 ), we get the dis-

rete transfer function (5) with sample time T. By implementing
 recursive least squares (RLS) filter with forgetting factor we can
stimate the coefficients of the discrete transfer function and then
dentify the parameters of the battery. The forgetting factor � is

 parameter used in the RLS filter, which takes values between 0
nd 1, giving exponentially less weight to older error samples. The
maller the � is, the smaller is the contribution of previous sam-
les to the co-variance matrix, making the filter more sensitive to
ecent samples. It is also worth mentioning that the sample time is
ery important for the parameter identification. As shown in [23],
he sample time of the data (input/output) affects the parameter
dentification, so we choose a sample time to be greater than 0.5 s
o maintain a good performance for the parameter identification.

Y(z
−1) − b0

U(z−1)
= c0 + c1z−1 + c2z−2

1 + a1z−1 + a2z−2
(5)

.1. Parameter identification

In order to identify the battery parameters we use the RLS filter,
ith its limitation that poor excitation of the system can lead to

he co-variance “wind-up problem” [24] and the different battery
ynamics [25]. In terms of this problem, we propose changing the
alue of the forgetting factor based on the excitation of the sys-
em and implementing RLS with different forgetting factor for the

arameters according to the system dynamics, so that we  estimate
he battery parameters. Specifically, when the excitation of the bat-
ery reduces, the forgetting factor increases and tends to unity to
nhance the performance of the estimator. On the other hand, when
s Research 151 (2017) 115–124

the excitation of the battery is high, we  want the old information
continuously to be forgotten, due to the new dynamic information
that keeps coming in, so the forgetting factor reduces and tends to
a lower value. Therefore, the forgetting factor depends on the level
of excitation of the system and ranges between 0.96 and 1.00.

On the battery equivalent circuit the series resistor and the
parameters of the RC branch vary with different rate, so in order to
estimate them accurately we use two different values for the forget-
ting factor: one higher value, when we  estimate the series resistor
on the battery-equivalent circuit, and one lower value when we
estimate the parameters on the RC branch. Both of these values
for the forgetting factor are between 0.96 and 1.00 and change, as
described above, based on the battery excitation. For the sake of
briefness, the RLS algorithm is not presented, since it is available
and is described extensively in [24].

Afterwards, we estimate the discrete transfer function coeffi-
cients, using the equations found in [22]. In order to deal with some
overshoot or undershoot that may  occur, when we  use the RLS with
forgetting factor, we put limits to the parameters of the equivalent
circuit. We  only put limit 0 to 1 � to the series resistance, because it
changes with a very high rate, and that causes some overshoots and
undershoots, which affect the SOC estimation and thus the capacity
estimation, as well. So we  can see that by using the voltage output
and the current we can identify the battery parameters and how
they vary with the aging and the temperature, since the voltage
output and the current carries the information for the battery.

4.2. SOC estimation

Having identified the battery parameters, we  then proceed to
the SOC estimation. Since we linearize our battery system at every
time step, we can use the linear Kalman Filter algorithm, which
is described analytically in [26]. The state equations of the battery
are:{
ẋ = Ax + Bu

y = Cx + Du + b0
(6)

where x1 = SOC, x2 = VRC, A =
[

0 0

0
−1
R1C1

]
, B =

⎡
⎣ 1
QR
1
C1

⎤
⎦,

C =
[

1 0
0 b1

]
, D = R0, u = IL, y = VT and x =

[
x1
x2

]
.

Based on the theory of linear Kalman filters, the co-variance cal-
culation is independent of the state, so we can infer that the capacity
degradation does not affect the SOC estimation when using the lin-
ear Kalman Filter. The solution of the Riccati equation in a time
invariant system converges to steady state co-variance if the matri-
ces A, C are observable, which in our case depends on b1, R1 and C1.
Therefore, we conclude that an accurate parameter identification,
i.e., R1 and C1 values, is crucial for the SOC estimation.

The equations for the implementation of the algorithm for the
SOC estimation can be divided into 5 steps, which are repeated at
each time update, after the initialization of the state matrix, the
co-variance and the process and measurement noise:

1. State estimate time update:

x̂−
k

= Ak−1
ˆx+
k−1 + Bk−1uk−1 (7)
2. Error co-variance time update:

∑
x̂−
k

= Ak−1
ˆ∑
x+
k−1A

T
k−1 +

∑
w (8)
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Fig. 3. Overview of the proposed model. (For interpretation of the references to

3. Kalman gain matrix:

k =
∑

x̂−
k
CTk [ck

∑
x̂−
k
CTk +

∑
u]

−1

(9)

4. State estimate measurement update:

+̂
k

= x̂−
k

+ Lk[yk − Ckx̂
−
k

− Dkuk] (10)

5. Error co-variance measurement update:

x̂+
k

= (I − LkCk)x̂
−
k

(11)

.3. Capacity estimation

Capacity update is crucial when we want to model the operation
f the battery as it ages, because knowing the capacity (together
ith the increase of the internal resistance) will provide infor-
ation about the SOH of the battery. In order to estimate the

apacity degradation, we use total least squares (TLS) algorithm
hat, as applied for the estimation of the battery capacity, tries to
nd the slope of the equation y = Qx̂ where x = SOC(t2) − SOC(t1)
nd y =

∫ t1
t1

�i(�)
3600d�.  We  will assume � = 1 at all values of current

nd temperature which is inside the normal operation according
o the manufacturer. For operations outside of the normal of this
ange, like low temperature and high C-rate, � must be specifically
djusted according to the analysis presented in [27]. The algorithm
e use for the capacity estimation is an extension of the TLS algo-

ithm and has been proposed in [28]. Due to its simplicity, no need
o store any value, it can be very easily computed in a recursive

anner, which makes it suitable for the MATLAB/Simulink
®

envi-
onment. The steps of the algorithm are extensively described in
28].

.4. Discussion
The main novelty in the proposed model is the introduction of
ifferent forgetting factors, which has not been presented in lit-
rature yet. The use of different forgetting factors enables more
 in this figure citation, the reader is referred to the web  version of this article.)

accurate SOC and capacity estimation results, since the parameter
identification process, which is of key importance considering the
battery states estimation becomes more accurate. Moreover, a fully
detailed model regarding the necessary to estimate parameters
during the whole lifetime of the battery is presented.

In case of ships, several BESSs are connected in series or in par-
allel as a battery set a fact that makes important that the proposed
model simulates the battery and the battery-cell as black boxes.
The measured voltage and current of the battery are used from the
algorithms as inputs to estimate the states and identify the param-
eters. The measured voltage of either a battery pack or a battery
cell is being simulated and processed in the same way  from the
algorithms in case the battery cells are in series. Same goes for the
current in case the battery cells are in parallel. The main factor that
affects the states estimation is the OCV–SOC curve considering the
voltage level. OCV–SOC curve can be extracted for a battery pack
accurately in the same way  that is described for a battery cell. Con-
sequently, the proposed model is generic and could be applied in
case of both battery packs and/or battery cells, as long as an accurate
OCV–SOC curve can be extracted.

5. Evaluation and experimental validation

In order to verify the accuracy of the proposed model we  have
setup two simulation tests, testing its efficiency on two different
types of Li-ion batteries at different excitation levels of the bat-
tery. Firstly, based on the analysis presented in Sections 3 and 4,
an overview of the proposed model is illustrated in Fig. 3. Fig. 3
corresponds to a block diagram showing two  parallel paths: one
for simulation with algorithms and one for test results. They both
start with test measurements for V and I and then the algorithms,
considering these, estimate the states, while for the experimen-
tal results the SOC for example comes from the current integration,
due to high resolution and accuracy. In principle the SOC and capac-

ity estimation are sent to the DC grid controller. The two tests
have been performed at varying temperatures and different current
rates. Table 1 shows the nominal characteristics of the two tested
batteries. For the tests we  used the LifeTest SBT0550 battery cell
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Table  1
Batteries nominal characteristics.

Battery 1 Battery 2

Maximum capacity (Ah) 25.90 20.00
Nominal voltage (V) 4.2 2.7
Chemistry Li-ion Li-ion

NMC-LMO/graphite LTO/mixed oxide
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Fig. 5. Current and voltage profile for the second experiment. (For interpretation
of  the references to color in this figure citation, the reader is referred to the web
version of this article.)

Table 2
Forgetting factor range.

R0 R1,C1

�exp1 [0.995 0.99986] [0.98 0.99986]
�exp2 [0.992 0.99996] [0.96 0.99996]
ig. 4. Current and voltage profile for the first experiment. (For interpretation of the
eferences to color in this figure citation, the reader is referred to the web  version
f  this article.)

ester from PEC Corporation, which offers a very accurate current
easurement at a rate of 1 ms.  This current measurement is used

o integrate current for Coulomb counting (CC) SOC estimation and
o compare to the proposed state estimation method.

In case of online applications, load profiles can be separated into
wo major categories, i.e., either with high or with poor excita-
ion [24]. The following experiments have been chosen, in order to
nvestigate the accuracy and the efficiency of the proposed model
nder such varying loading conditions. Note that the dynamic loads
re not necessarily divided based on the application but based on
he input dynamic change. Consequently, considering load-profiles
ith such different characteristics as the ones presented in Figs. 4

nd 5 , could be easily translated into an assessment of two  dif-
erent ship loads as the ones described in Section 1. Voltage and
urrent for both examined cases have been captured during lab
easurements. Furthermore, the reference SOC that is to be used

s a benchmark in order the SOC estimation results to be compared
ith, has been also derived from experimental results.

The first experiment that we set up for Battery 1 is a full dis-
harge of the battery. The specific load profile is given in Fig. 4,
hich illustrates a pulse test from 1 to 0 SOC, with 10 s and

0 s pulses made at 10% SOC increments to capture the dynamic
esponse of the battery at each SOC increment. In the upper plot
f Fig. 4 the imposed discharge current pulses are presented, while

n the bottom the voltage response of the battery cell is illustrated.
ccording to the manufacturer, the battery cell can have a maxi-
um current-rate of 5 C and given that in this case 1 C equals 25.9 A

nominal cell capacity 25.9 Ah), 5 C leads to a current of almost
25 A. In case of the experiment presented in Fig. 4, a maximum

urrent rate of 4 C is measured, therefore 100 A. We can think of
his experiment as a low excitation input in order to see how the
LS with variable forgetting factor can adjust the “wind-up” of the
o-variance matrix.
Fig. 6. R0–SOC relationship on the first experiment. (For interpretation of the refer-
ences to color in this figure citation, the reader is referred to the web version of this
article.)

The second experiment is a dynamic load with high excitation
and different current rates, which is implemented to Battery 2. Cur-
rent and voltage profile for the second experiment are given in
Fig. 5. In the upper and bottom plots of Fig. 5 the imposed dis-
charge current pulses and the voltage response of the battery cell
are depicted, respectively. For this experiment, the maximum cur-
rent rate equals again 5 C, however for this case 1 C equals 20 A
(nominal cell capacity 20 Ah). In order to validate the algorithm
for the capacity estimation we  applied the same load to Battery
2 for a long period of time. Also we should mention that on this
experiment the temperature varies between 20◦ and 30◦ so we can
estimate our system’s dependency on temperature. A voltage drop
within one second is considered instantaneous, therefore this as
the sample time in our model [29].

Specifically, on the first experiment there is a slow changing
current profile, with currents equal to 25.9 A and 100 A. The tem-
perature on this experiment slowly changes and the discharging
process lasts 39,842 s. In the following figures we present the
parameter identification and the SOC estimation. Since we only dis-

charge the battery once we  do not present any capacity estimation.
The forgetting factor variance is presented in Table 2. In Figs. 6–8
we present the curves of the battery parameters versus SOC, which
have been identified using RLS with multiple forgetting factor.
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Fig. 7. R1–SOC relationship on the first experiment. (For interpretation of the refer-
ences to color in this figure citation, the reader is referred to the web version of this
article.)

Fig. 8. Time constant–SOC relationship on the first experiment. (For interpretation
of  the references to color in this figure citation, the reader is referred to the web
version of this article.)
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Fig. 10. Difference between R1 identification using SFF and MFF. (For interpretation
ig. 9. SOC estimation and SOC error for the first experiment. (For interpretation
f  the references to color in this figure citation, the reader is referred to the web
ersion of this article.)

As for the SOC estimation, the results show that it is very accu-
ate at the higher level of SOC, but as the depth of discharge
ncreases, the non-linearity increases, as well. Thus, the error in
OC increases since the equivalent circuit model cannot simulate
ery accurately the dynamic response of the battery and further-
ore an error is being added to the estimation because the linear

alman Filter is not able to do the estimations of states when there
s high non-linearity, as shown in Fig. 9. Therefore, since the lin-
ar Kalman Filter is not efficient under 20% (as we  will also see in
he validation part), using simple CC method for the range 0–20%

ight actually give better results for the SOC estimation. This idea

f using two different SOC estimation methods for different ranges
f SOC, is under investigation for future work.

On the second experiment, as seen in Fig. 5, there is a much
aster changing current profile, with currents varying from 0 to 5 C.
of  the references to color in this figure citation, the reader is referred to the web
version of this article.)

On this experiment the temperature changes very little, since the
cell under test was inside a climate chamber. The charging and dis-
charging lasted almost one week (for the capacity estimation), but
for the sake of briefness, we will present only the first 1800 s of the
experiment.

The fast changing currents on this experiment allow for checking
the importance of using multiple values for the forgetting factor. As
mentioned above, the forgetting factor (�) gives the contribution
of previous samples to the co-variance matrix. The smaller it is,
the more sensitive it becomes to recent samples. For the proposed
model, we  want the series resistance to change much slower than
the parameters of the RC branch at every new data that arrives as
an input to our model, thus a higher value for the forgetting factor
than the one that we set for the R1 and C1. This is because the RC
branch simulates the relaxation effect, which means that they vary
more than the series resistance with a much longer time constant.
So with a lower value for the forgetting factor R1 and C1 change
at every input, in order to capture the transient response of the
battery. When the excitation of the system is slow we set a value
very close to 1, since we  do not expect our system states to change
much. On Table 2 we  can see the range of the forgetting factor values
for this experiment, as well.

To illustrate the importance of using different values for the �
for estimating the different parameters, we conduct a comparison
between single (SFF) and multiple forgetting factor (MFF). The rea-
sons to apply MFF  have been mentioned above, while applying SFF
means that the value of � still changes for different excitation, but
is the same for estimating R0, R1 and C1. For the MFF  we apply the �
as mentioned in the previous paragraph, whereas for the RLS with
SFF we chose to simulate the worst case, i.e., low � for the R0 esti-
mation, which will give an accurate estimation for R1 and C1, but
poor for the R0, and high � for the R1 and C1 estimation, which
will give accurate estimation for the R0 but poor for R1 and C1. In
Figs. 10 and 11 we can see the difference of using SFF and MFF. If we
choose SFF, we might end up to lose information of the variance of
the parameters or even worse have great overshoots/undershoots
of the parameters values, which may  lead to greater error on the
SOC estimation. The benefit of MFF  is that the series resistance R0
changes much slower than the parameters, R1 and C1, of the RC
branch for every new data that arrives as an input to the model,
thus a higher value for the forgetting factor � than the one that is
set for the R1 and R1, as indicated in Table 2 also. The algorithm that
used to implement MFF  is based on the work of [24]. Moreover, we
present how the series resistance respond to the variances of the
temperature.
As shown in Fig. 12, when the temperature is high the resis-
tance decreases and when the temperature drops the resistance
increases. As it is shown from the SOC estimation figures, our model
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Fig. 11. Difference between R0 identification using SFF and MFF. (For interpretation
of  the references to color in this figure citation, the reader is referred to the web
version of this article.)

Fig. 12. R0 identification considering the variance of temperature. (For interpreta-
tion  of the references to color in this figure citation, the reader is referred to the web
v
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Fig. 13. SOC estimation without noise to the current. (For interpretation of the ref-
erences to color in this figure citation, the reader is referred to the web version of
this  article.)
ersion of this article.)

ives very accurate results, with an error less than 2%, when we do
ot have current noise and less than 6% average when we have
oise.

In Figs. 13–15 we can see three different simulations that we
ave set up for the SOC estimation. One is for the SOC estimation
ithout any noise and the other two are for an average noise ±10 A

o the current, a really extreme measurement error considered on
urpose to validate the convergence of our algorithm to the true
OC. In the same Figures, and for the same noise in current mea-
urement, the error (over 15%) for the simple CC method for SOC
stimation is shown.

CC has been used as a reference, since it is a conventional method
o estimate SOC and gives very accurate results in short term, right
ecause PEC test equipment provides a very accurate current mea-
urement and an internal current integration. Its main drawback is
hat in long term, due to SOC-drifting, SOC estimation may  give bad
esults. Therefore it is essential the model to be able at any point of

attery life to converge to the actual value of SOC considering also
he battery capacity fading. That is why an initial noise in the initial
OC has been added, so that the main advantage of the proposed
ethod to be pointed out, i.e., that the SOC estimation converges
Fig. 14. SOC estimation with −10 A average noise to the current. (For interpretation
of the references to color in this figure citation, the reader is referred to the web
version of this article.)

back to the reference value even when the algorithm is fed on pur-
pose with an offset current. Note that in Figs. 14 and 15, the red
curve (Ref) comes from the accurate internal CC method from the
tester, but the yellow curve (Coulomb) refers to what the SOC esti-
mation would have been if the CC method would have been used
but with low resolution current input, i.e., the same that is used as
an input to the algorithms.

Regarding the capacity estimation, as we can see from Fig. 16 the
capacity has not dropped at all. This is due to the battery’s chem-
istry, which presents a very long life cycle (in the range of 10,000
cycles). The capacity drop is 0.03% and we  see the accuracy of the
TLS algorithm.

6. Conclusions
In this paper we began with a short discussion about the bene-
fits of including energy storage, in specific BESS, into the electrical
network of hybrid and full-electric ships. A brief overview of an
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Fig. 15. SOC estimation with +10 A average noise to the current. (For interpretation
of  the references to color in this figure citation, the reader is referred to the web
version of this article.)
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[25] Y. Hu, Y.Y. Wang, Two time-scaled battery model identification with
ig. 16. Battery capacity estimation. (For interpretation of the references to color in
his  figure citation, the reader is referred to the web version of this article.)

nboard DC grid has been also presented, showing the improve-
ents that it can bring in total system efficiency and the easier

ntegration of BESS. The differences between onshore grid applica-
ions and onboard ship applications regarding safety and operation
reate a more challenging environment for the BESS. Thus, in order
o exploit an integrated BESS for an optimized ship power sys-
em operation an accurate SOC estimation is crucial from technical,
conomic and safety point of view. We  proposed a parameter iden-
ification method that uses RLS filter with multiple and variable
orgetting factors for different parameters and a SOC and Capacity
stimation based on Kalman filter and TLS algorithm, respectively.
hese were validated with test measurements in two different bat-
ery cells and the results showed a good fit, especially regarding
he SOC and the capacity. Future work includes improvements of
he parameter identification method, as well as the idea of using
ifferent SOC estimation for different SOC ranges to tackle the non-

inearity in lower SOC levels.
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