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Abstract—This paper investigates the ac resistance in the pres-
ence of harmonics and proposes ampacity derating factors for
cables made according to CENELEC Standard HD603. These
cables are widely used in low-voltage industrial and building
installations. Four-conductor cables of small, medium, and large
conductor cross sections are considered. The fourth conductor
is used as the neutral conductor. The cables are modeled using
finite-element analysis software. The ac/dc resistance ratio is
shown to increase with the frequency of the current and the cross
section of the conductor, the increase being much larger when
zero-sequence harmonics are present. A derating factor is defined
and calculated for five typical nonsinusoidal current loads, for ex-
ample, computer equipment. The derating of the cable’s ampacity
is shown to be very large when zero-sequence harmonics are
present. The cross section of the neutral conductor is shown to be
significant only when zero-sequence harmonics are present. The
validity of the method is verified by comparison with data given in
IEEE Standard 519-1992 and with measurements conducted on a
cable feeding a large nonlinear load.

Index Terms—Cable ampacity, cable resistance, harmonics.

I. INTRODUCTION

HE increased use of power-electronics devices in industry
Tand with office equipment has raised an interest in har-
monic pollution. Current and voltage harmonics cause a large
number of problems for electrical equipment, such as additional
losses in conductors, motors, power factor correction capaci-
tors and transformers, malfunction of circuit breakers (CBs) and
electronic equipment, and errors in electric power and energy
measurement and telephone interference [1], [2].

The additional losses in conductors increase the operating
costs in industrial and commercial energy systems [3].

The additional losses caused by harmonic currents must be
accounted for by proper derating of the ampacity of the cable.
The accurate calculation of a cable’s ampacity, when carrying
nonsinusoidal currents, is important for the determination of the
rating of its overcurrent protective device.

Besides the calculation of a derating factor for the cable am-
pacity, knowledge of the increased losses, due to harmonic cur-
rents, is significant also for the economic evaluation of measures
that attenuate harmonic currents. Such measures can be, for ex-
ample, passive or active harmonic filters [4], [5].

In wye-connected systems, the current in the neutral con-
ductor may be larger than the current in the phase conductors,
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when significant zero-sequence current harmonics are present
[6]. This fact may lead to overheating of the neutral conductor
unless the neutral is properly sized.

The ampacity of low-voltage (<1-kV) power cables used in
Europe is determined in [7] for various installations. However,
these ampacities are based on 50-Hz currents.

Using analytical equations and assuming balanced
three-phase loading of the cables, Rice [8] calculated the
increase of cable resistance and, through this, a derating factor
for the ampacity of cables with thermoplastic insulation, 90 °C
rated temperature and nylon jacket (THHN) and of cables with
thermoplastic insulation, 75 °C rated temperature, moisture
resistant and nylon jacket (THWN) as they are specified in
Article 310.13 and Table 310.13 of the National Electrical Code
(NEC) of the U.S. [17]. These are single-core cables assumed to
be immediately adjacent to each other in free air (i.e., no metal
conduits were considered). The derating factors calculated for
these cable types were later given in IEEE Standard 519-1992
[9].

Later, Meliopoulos and Martin [10] proposed a refinement of
the Neher and McGrath [11] analytical equations so that they
would reflect the additional cable losses in the presence of har-
monics. Their paper addressed the calculation of the effects of
harmonics on 600-V cables (as specified by the NEC) laid in
metallic or polyvinyl-chloride (PVC) conduits. Their objective
was to give simplified formulae for evaluating ohmic losses
due to harmonics and, subsequently, to compute a cable der-
ating factor. To derive their formulae, they assumed balanced
three-phase loading of the cables. However, they mentioned that
when the neutral conductor carries significant zero-sequence
harmonic currents, the classic Neher—McGrath equation for am-
pacity should be used. This equation contains terms such as the
ambient earth temperature and the effective thermal resistance
between conductors and ambient, which are not readily avail-
able. The ampacity derating factor defined in [10] is based on
the fundamental current component and not on the root mean
square (rms) value of the total current. This issue will be dis-
cussed later in this paper.

Palmer et al. [12] developed closed-form equations for calcu-
lating the ac/dc resistance of high-pressure fluid-filled (HPFF)
pipe-type power cables with a metallic shield. Since these ca-
bles are used in transmission systems, there is no separate neu-
tral conductor. The metallic shield carries only eddy currents
or currents during faults (i.e., it does not serve as a neutral con-
ductor). The results of the proposed closed-form equations were
compared with a finite-element analysis model that was devel-
oped for the specific cable type. The same equations were used
to calculate a derating factor for HPFF cables in five cases of
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harmonic loading which are typical for transmission systems
[13]. The derating factor defined in [13] is the same with the
one defined by Meliopoulos and Martin (i.e., it uses as refer-
ence the ampacity at fundamental frequency).

A thermal model for calculating cable ampacities in the pres-
ence of harmonics is given in [14]. This model includes the ef-
fect of currents in the neutral conductor but requires the knowl-
edge of the thermal parameters of the cable, such as thermal
resistance, which are not readily available.

This paper investigates the effect of harmonics on the losses
of PVC-insulated, low-voltage (0.6/1.0-kV) power cables
as they are specified by CENELEC Standard HD603 [15].
These cables are widely used for feeding individual loads or
distribution switchboards in industrial and commercial power
networks.

Four-conductor cables (three phases and neutral) are ex-
amined. Three phase-conductor cross sections are considered,
namely 16 mm?, 120 mm? and 240 mm?, which represent
small, medium, and large cables, respectively. Cases where the
cross section of the neutral conductor is equal to or less than
that of the phase conductors are examined.

The cables are modeled using OPERA-2d which is commer-
cially available finite-element analysis software manufactured
by Vector Fields Ltd. The cables were assumed to be symmet-
rically loaded and placed in free air (i.e., no metal conduits or
trays were considered). A number of typical power-electronic
loads are used to derive ampacity derating factors. The harmonic
signature of these loads was measured in industrial environ-
ment. Some of the measured loads contain triplen harmonics
which cause significant currents to flow in the neutral. Triplen
or zero-sequence harmonics are those harmonics that are an in-
tegral multiple of three times the fundamental.

The current in the neutral conductor and the fact that the
triplen harmonics are in phase, are properly modeled to derive
the ac resistance of the conductors at various frequencies. This is
a main distinction between the present and the aforementioned
studies. As will be shown in clause V, the fact that the triplen
harmonics are in phase causes a significant increase in the resis-
tance of the conductor.

A derating factor, based on the total rms current flowing in
the cable, is defined and calculated for a number of cases.

The validity of the model developed in this paper is verified
by comparison with 1) the ampacity derating given in IEEE Std.
519-1992; 2) the mathematical model developed in [10]; and
3) measurements conducted in a large lighting installation con-
trolled by dimmers.

II. CABLE AMPACITIES ACCORDING TO CENELEC STD. HD384

The ampacities of cables in [7] are listed according to their
cross section, insulation type, installation type, and the number
of active conductors. Ampacity derating factors are given for
various ambient temperatures and cable groupings.

The ampacity values are valid for 50-Hz currents, and for two
or three active conductors. This means that for four-conductor
cables, where the fourth conductor is the neutral, only the
phase conductors are assumed to be active. It is also assumed
in [7] that when the neutral conductor is carrying current to
the load, there is a respective reduction in the loading of
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Fig. 1. Cable layouts. L1, L2, and L3: phase conductors. N: neutral conductor.
The neutral conductor is shown shaded. Dimensions are shown in Table 1. (a)
Four-conductor cable with the neutral conductor having the same cross section
as the phase conductors. (b) Four-conductor cable with the neutral conductor
having a smaller cross section than the phase conductors.

one or more phase conductors so that the total cable losses
remain the same.

III. CABLE TYPES AND CONFIGURATIONS

The cables examined are of the JIVV type as they are speci-
fied in [15]. These are PVC-insulated cables, having no metallic
sheath and are rated for 0.6/1.0 kV. The configurations exam-
ined are shown in Fig. 1 and in Table L.

The conductors in all cables were assumed solid. Although
this is true only for the 16 mm? conductors, this assumption
leads to results (cable losses, ac/dc resistance ratio, and am-
pacity derating) that are on the conservative side.

IV. FINITE-ELEMENT ANALYSIS

The cables were modeled in two dimensions assuming that at
each harmonic frequency, balanced, three-phase, and sinusoidal
currents flow through them. The finite-element analysis (FEM)
software calculated the spatial distribution of the current den-
sity over each conductor’s surface, having as input the average
current density. The model of the diffusion equation used by the
FEM software is [16]
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TABLE 1
DIMENSIONS OF THE EXAMINED CABLES

Nominal cable cross-section, [mm?]

o (=3
= [\l
Dimensions, [mm] © b S T =
% S e < %
<t —
= <+ IS <
a &
;ﬁase-conductor radius, 23 625 6.25 8.9 89
Ic
Neutral-conductor 23 465 625 625 89
radius, Rjy,
Outer cable radius, R, 12.80 26.18 26.18 34.43 34.43
Thickness of Phase-
Conductor  insulation, 2.0 3.6 36 42 42
Wi
Thickness of Neutral-
Conductor  insulation, 2.0 34 3.6 3.6 42
Win
Thickness of  outer
sheath, 17, 1.8 2.3 24 2.8 29

where A is the magnetic vector potential (MVP), J; is the ap-
plied current density, u is the conductor permeability, and o is
the conductivity of the conductor.

In two dimensions, only the z component of A and J; exist.
Therefore, (1) is simplified to

OA,
ot '

1
-V-—VA,=Js—0 2)
I
Since the MVP and the currents were assumed to vary si-
nusoidally, they were expressed as the real parts of complex
functions A.e’“t and .J.e’“? respectively. Equation (2) now be-
comes

1
-V ;VAC =J.— JwoA, 3)

and is solved using complex arithmetic.
When the total measurable conductor rms current is given,
the software also solves the following equation:

0A
—/U<E—|—VV>CIS=I 4
s

where S is the surface of the conductor, V' is the electric scalar
potential, and [ is the total measurable conductor rms current.

V. COMPUTATION OF THE R,./Rq4. RATIO

To calculate the R,./Rq. resistance ratio, an ac steady-state
harmonic analysis was employed. Only the odd harmonics, up
to the 49th, were considered. The currents in each harmonic
frequency were assumed to be of equal magnitude in each phase
conductor. However, the phase displacement of the conductor
currents was assumed to be 27 /3 rads for nontriplen harmonic
frequencies and zero rads for triplen harmonic frequencies.
Hence, the neutral conductor carries only induced eddy cur-
rents when nontriplen harmonics are considered. When triplen
harmonics are considered, the neutral conductor is assumed to
carry the algebraic sum of the phase currents.

The following example will clarify the above mentioned
points: for a nontriplen harmonic, for example, the 5th har-
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monic, the three-phase conductors are assumed to carry the
following currents:

ir1(t) =1, cos(2-m-250-t) (5a)
2

iza(t) =1, cos <2-7r -250 -t + g) (5b)

. 2

ir3(t) = I, cos (2-7r-250-t—?> (5¢)

where ¢ is the time, I, is the peak value of the current, and L1,
L2, and L3 are the three phases. The neutral conductor only
carries the eddy currents calculated by the software. For a triplen
harmonic, for example, the 3rd harmonic, the phase conductors
are assumed to carry the following currents:

ir1(t) =I,cos(2-m-150-t) (62)
ir2(t) =1Ipcos(2-m-150-t) (6b)
irs(t) =I,cos(2-m-150-t) (6¢)
and the current in the neutral conductor is assumed to be
in(t)=3-I,cos(2-m-150-t+ ). @)

At each harmonic frequency /- 50 Hz, the software calculates
the losses per-unit length in each conductor using the integral

Pi(h) = / 2O ®

g
S

where S is the surface of the conductor, J(h) is the current
density, and o is the conductivity of the conductor.

Due to the geometry of the cables, the losses in the phase con-
ductors are not identical. In fact, the losses in phase conductors
L1 and L3 (Fig. 1) are the same, but, those in L2 are different.
The losses per-unit length in the three-phase conductors, when a
symmetrical current of rms value I,.,5(h) and of frequency £ -50
Hz flows through them, can be defined as Pyz1)(h), Pyr2)(h),
and Pyz3)(h). The losses in each phase conductor when car-
rying a dc current of amplitude I,,s can be defined as Py.. The
ratio P;(h)/ Py. for each phase conductor (L1, L2, L3) is shown
in Figs. 2 and 3 for cables with relatively small and large cross
sections, respectively. Similar results are also obtained for other
cross sections.

It is easily noticed from Figs. 2 and 3 that the losses of con-
ductor L2 are larger than the losses of conductors L1 and L3
when currents of 1st, 5th, 7th, 11th, etc., harmonic order flow,
whereas when triplen harmonics (3rd, 9th, 15th, etc.) flow, the
losses of conductors L1 and L3 are significantly larger than
those of conductor L2. This results from the cable geometry and
the fact that triplen harmonic currents are in phase with each
other.

The uneven heat generation inside the cable is a fact that also
needs to be considered when calculating the derating of cable
ampacity. According to [7], the average cable temperature but
also the temperature at any point along the insulation of the
cable should not exceed the maximum permissible one. There-
fore, for derating of the cable ampacity, the maximum conductor
losses should be considered and not their average. The max-
imum conductor losses can be represented by an equivalent con-
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Fig. 2. P(h) / Pa. ratio of conductors L1, L2, and L3, as a function of har-
monic frequency for a cable with 4 X 16 mm? cross section.
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Fig. 3. P,(h)/Pyc ratio of conductors L1, L2, and L3, as a function of har-
monic frequency for a cable with 3 x 240 + 120 mm? cross section.

ductor resistance per-unit length (k) for the harmonic order
h that is defined by the following formula:

3-Py(h)+ Pywy(h) =317, (h) -req(h) h#3-mn,neN
©

and P;(h) is defined by

Pl(h) = max {PI(LI)(h)7 PI(L2)(h)7 P[(LQ)(h)} (10)
where Pj(ny(h) is the loss per-unit length of the neutral con-
ductor when a symmetrical current of rms value I,;,s(h) and
frequency h - 50 Hz flows in the phase conductors. Py(ny(h) is
caused by eddy currents induced in the neutral conductor. Resis-
tance 7q(h) in (9) reflects the losses of the cable assuming that
all of the phase conductors have losses equal to the maximum
conductor losses. This definition of the conductor’s resistance
will be later used to calculate a derating of the ampacity that is
on the conservative side.

When triplen harmonics are present, the neutral conductor
picks up load. An equivalent resistance 1, (h), that reflects the
losses of the phase conductors, and another equivalent resistance
Teq(N)(h) that reflects the losses of the neutral conductor, are
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Fig. 4. Variation, with the harmonic frequency, of the equivalent Rac/Rdc ratio
of the phase conductors of various cables.

now defined in (11) and (12), respectively

3-Pu(h) =3 I (h) - 1eg(h)

PI(N)(h) = Irzms(N)(h) ’ Te‘l(N)(h)

(1)
12)

with A = 3 n, and n an odd integer. P;(h) is given by (10) and

Irms(N)(h) =3- Irms(h) (13)
is the rms value of the current in the neutral conductor for har-
monic order h.

The ratios 7cq(h)/Rac, Teq(h)/Rac, and 7eqxy(h)/Rae
shall, from now on, be referred to as the R,./Rq. ratio. Fig. 4
shows the R,./Rg. ratio of the phase conductors of the cables
shown in Fig. 1 and Table I. As expected, the R,./Rq. ratio
increases with both frequency and conductor cross section due
to skin and proximity effects. The R,./Rq. curve is not smooth
but presents spikes at triplen harmonics. This is due to the
increased losses in conductors L1 and L3 when zero-sequence
currents flow in the phase conductors and thereby in the neutral.

Fig. 5 shows the R,./Rq. ratio for the neutral conductor
of the cables shown in Fig. 1 and Table I. The R,./Rq. ratio
is shown only for triplen harmonics, because only then was
it assumed that current existed—other than eddy currents—in
the neutral conductor. It is evident from Fig. 4 and 5 that the
Rac/Rqc ratio of the neutral conductor is much smaller than
that of the respective phase conductors. This occus because the
zero-sequence currents decrease the proximity effect signifi-
cantly on the neutral conductor when its position, relative to the
phase conductors, is as shown in Fig. 1.

VI. DERATING DUE TO HARMONICS

A derating factor can be calculated when the R,./Rq. ratios
and the harmonic signature of the current are known. This der-
ating factor is defined as the ratio of the rms value of a distorted
current with a specific harmonic signature to the rms value of a
current of fundamental frequency that produces the same losses
in the cable as the distorted one.
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Fig. 5. Variation of the equivalent R, / R4, ratio of the neutral conductor of
various cables, with the harmonic frequency and the conductor cross section.

Assuming that I..; is the rms value of a current with a funda-
mental frequency that causes the same cable losses as a distorted
current with a I ;s rms value, the derating factor is

Id rms
k= & 14
I, (14)

If
I(%,rms =

oo
2

E Ih

h=1

then equating the losses yields

B-T5 m =3 IF-req(h)+ Y (3In)%  reqay(h) (15)
h=1 h=3n

where r is the equivalent resistance of the phase conductors in
the fundamental frequency (i.e., 71 = 7¢q (1)). The first term on
the right side of (15) represents the losses in the phase conduc-
tors, and the second term is the losses in the neutral conductor.
This second term is present only when triplen harmonics are
considered (i.e., Teq(xy(h) = 0), for b # 3 - n with n being an
integer.
Defining

Ih
Id,rms

(16)

ap =

and using (14) and (15), the derating factor k is calculated by

71/Tdc

Z 2.TQQ(h)+3Za

h=1 h=

k=

a7)

Teq ﬂ) (h)

where 0 < k£ < 1. A unity derating factor k£ means that no
derating of the cable’s ampacity is needed.

The derating factor was calculated for four representative in-
dustrial loads and an office load consisting mainly of computers.
The harmonic synthesis of the load currents is shown in Table II.
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TABLE II
HARMONIC PROFILES, I},, PERCENT

Harmonic Load Type
Order, & A B C D E
1 100.0 100.00 100.0 100.0 100.0
3 79.7 0.75 3.0 4.7 33
5 49.8 26.00 57.0 44.0 27.0
7 18.8 19.20 36.0 23.0 10.0
9 52 0.38 35 1.4 1.9
11 13.6 0.37 11.0 39 13.3
13 10.5 0.00 5.6 1.2 3.1
15 2.2 0.37 0.0 0.0 0.0
17 6.2 0.37 8.3 0.0 14
19 8.7 0.37 5.0 0.0 0.5
21 5.9 0.37 0.0 0.0 0.3
23 0.3 0.37 2.3 0.0 0.0
25 4.5 0.37 4.0 0.0 0.3
Lirms [%0] 140.3 105.1 121.8 111.8 105.0
THD [%] 98.39 32.35 69.53 50.06 32.13
1 1 ~ T
~ eV
0 0 ," \
i Load B ' b
_,. . Y,
1 - 4 .
2 y i / \/ \ -_
0] A A~ I o “ i %8
Load C Load D l\‘u
A A —
1 NG
1 14 ‘ Iy
,/\' \\' |
0 \
) Load E A

Fig. 6. Waveforms of the load currents shown in Table II. Each waveform rep-
resents one period of the fundamental frequency (20 ms).

In Table II, the total rms value and the total harmonic distor-
tion (THD) of the current are also given as percentages of the
fundamental frequency current.

The current waveforms of the loads are shown in Fig. 6. Load
A is a computer load, load B is a typical ac—dc—ac drive with
large inductance on the dc side, load C is a drive with capac-
itance on the dc side without a series choke, load D is a drive
with capacitance on the dc side and a 5% series choke, and load
E is a drive with relatively high 11th harmonic.

Load A was measured in a subdistribution board in an of-
fice building at the Aristotle University of Thessaloniki, Thes-
saloniki, Greece, while the other loads were measured in distri-
bution boards in the plants of a textile-spinning mill in Greece.

Factors ayj, of (16) can be calculated by dividing an I, value
given in Table II with the respective 14 ;ms value.
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TABLE III
CALCULATED AMPACITY DERATING FACTOR OF CABLES SHOWN IN
FIG. 1 AND TABLE I, FOR THE LOAD TYPES SHOWN IN TABLE II. EQUAL
MAXIMUM LOSSES PER CONDUCTOR WERE ASSUMED

Load Type
Cable Type A B C D E
4x16 mm? 0.710 0999 0996 0996  0.997
3x120+70 mm? 0.581 0984 0942 0965 0978
4x120 mm? 0.673 0984 0942 0966  0.979
3x240+120 mm? 0.536 0.963  0.881 0.926  0.956
4x240 mm? 0.621 0964 0.883 0928  0.958
TABLE 1V

CALCULATED AMPACITY DERATING FACTOR OF CABLES SHOWN IN FIG. 1
AND TABLE I, FOR THE LOADS SHOWN IN TABLE II. ACTUAL LOSSES
PER CONDUCTOR WERE ASSUMED

Load Type
Cable Type A B C D E
4x16 mm? 0.710 0.999  0.996 0996  0.998
3x120+70 mm? 0.585 0.987 0951 0971  0.982
4x120 mm? 0.680 0.987 0951 0972 0983
3x240+120 mm? 0.543 0.969 0.895 0935 0962
4x240 mm? 0.633 0.969 0.897 0937 0964

Table III shows the ampacity derating factors for all load
types shown in Table II and for various cables. For a cable with
cross section 3 x 240 4+ 120 mm? and a load with high triplen
harmonics—such as type A—the ampacity should be derated by
46%.

Even for cables with relatively small cross sections, such as
the 4 x 16 mm?2, derating can be as high as 29% when used for
feeding computer loads.

The results also show that a series choke applied in a variable
speed drive can lead to larger derating factors. This is evident
by comparing load types C and D for all cable sizes and types.

When triplen harmonics are present, the cross section of the
neutral conductor plays an important role as can be seen by com-
paring cable 3 x 120 + 70 mm? with cable 4 x 120 mm? and
also cable 3 x 240 4 120 mm? with cable 4 x 240 mm? for load
type A. The ampacity derating factor of cables with a reduced
neutral cross section is smaller by approximately 10%.

When triplen harmonics are not present or are relatively
small, as is the case for load types B, C, D, and E, the cross
section of the neutral conductor plays an insignificant role in
the derating of the cable’s ampacity.

Load types B and E have the same THD but different har-
monic profiles as shown in Table II. Load type E needs a slightly
larger ampacity derating than load type B, because its spectrum
is toward higher frequencies. Hence, not only the THD but, the
harmonic signature is of importance in cable derating, as also
shown in [10] and [12] for pipe-type cables.

The derating factors in Table III were calculated under the
assumption that the losses of each phase conductor of the cable
are equal to the maximum losses. If instead of that assumption
the actual losses of the phase conductors—as they appear in
Figs. 2 to 3—were used, the derating factors would be as shown
in Table IV.

It is easily noticed by comparing Tables III and IV that
the asymmetry in conductor losses leads to approximately
1.0-1.5% smaller derating factors in large cables. In small- and
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medium-sized cables, the effect of asymmetry in the losses is
negligible.

The above definition of the derating factor k relates the total
rms value of a distorted current to the rms value of a current
of fundamental frequency, whereas the derating factor given in
[10] and [12] is related to the fundamental frequency compo-
nents of the two currents. Thus, the definition followed in this
paper yields larger derating factors than those that would have
been calculated, if the definition given in [10] and [12] was
adopted.

In practical situations, an engineer knows the type of a load as
well as the maximum rms current it demands. On the contrary,
he or she rarely knows the harmonic signature of the current
and, thus, the fundamental harmonic component. Using the def-
inition of the derating factor given in (17), the engineer must
simply multiply the derating factor with the ampacity values
given in [7] to obtain the new permissible ampacity.

VII. VALIDATION OF THE MODEL

The model developed in this paper was validated by compar-
ison to 1) ampacity derating as mentioned in the IEEE Stan-
dard 519-1992, 2) the simplified mathematical model devel-
oped in [10] and 3) measurements of cable losses in a lighting
installation.

A. Comparison of IEEE Standard 519-1992

According to IEEE Standard 519-1992 [9], the cable am-
pacity should be derated when harmonic currents are present.
Ampacity derating factors for low-voltage (600-V) cables and
for a specific harmonic signature are given in Fig. 6-1 of this
standard. The R,./Rq. ratios, the definition of ampacity der-
ating factor, and the values of the derating factors for various
cable cross sections were derived from [8]. For example, ac-
cording to [8] and [9], a derating factor of 0.966 should be
applied to a three-phase system consisting of three THHN- or
THWN-type cables of 250-kcmil cross section when balanced
three-phase currents flow with harmonic signature as given in [9,
Fig. 6-1]. The specific value of the derating factor (k = 0.966)
is valid under the following assumptions [8].

1) No metallic trays are present in the neighborhood of the

cable system.

2) The cables are placed in close triangular form so that the

proximity effect is maximized.

3) The value of the fundamental current is equal to the cable’s

rated 60-Hz current.

The cable system of [9] was examined using the FEM model
developed in this paper. The geometry is shown in Fig. 7.

Table V shows the R,./Rq. ratios of the cable conductors
as calculated using the FEM model of this paper and as given
in [8] for a number of harmonic frequencies (the fundamental
frequency is 60 Hz).

By comparing the two columns of Table V, the difference
between the two approaches is always less than 5%.

Inserting the R,./Rq. values, as calculated by the current
FEM model, in the equation that defines the ampacity derating
factor in [8], we find that & = 0.968 which is very close to
k = 0.966 given in [8] and [9].
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Fig. 7. Geometry and dimensions of three 250-kcmil THHN cables placed in
close triangular form.

TABLE V
R../Rac RATIOS OF THE CONDUCTORS SHOWN IN FIG. 7

Harmonic order, #  R,c/Rqc as calculated by Rac/Rac as given in

the FEM model of this [8].
paper

1 1,02 1,02

5 1,36 141

7 1,58 1,64

11 1,95 2,04
13 2,10 2,20
15 2,41 2,48
19 2,54 2,60
23 2,80 2,81
25 2,91 2,90

It should be noted that the derating method given in [8] is very
conservative, since it is based on the conductor’s dc rating, not
the 60-Hz ac rating. If the same R,./Rq. values are applied in
(17), a derating factor of & = 0, 990 will result for the same
harmonic signature.

B. Comparison to a Simplified Mathematical Model

The simplified mathematical model developed in [10] in-
cludes the proximity effect due to currents in the neutral
conductor and in metallic pipes around the cables.

To compare the two methods, the cable arrangement pre-
sented in the example shown in [10] was modeled using the
method described in this paper and is shown in Fig. 8. The di-
mensions and other cable operational parameters are extracted
from [10]. A specific conductance of 36-10° S/m was assumed
for the conductors and 3.13 - 10¢ S/m for the pipe.

According to [10] and [11], the R,./Rq. ratio can be ex-
pressed as

Rac
Rdc

(f) = 1+zs(.f)+$sp(f)+xcp(f) (13)
where f is the frequency, xs(f) is the contribution to ac resis-
tance due to skin effect, a:sp( f) is the contribution to ac resis-
tance due to proximity of other conductors, and z.,(f) is the
contribution to ac resistance due to the proximity of pipe.

Fig. 8. Geometry and dimensions of the simulated pipe-type cable. All dimen-
sions are in millimeters.

TABLE VI
CONTRIBUTION TO AC RESISTANCE DUE TO SKIN EFFECT
FOR THE CABLE ARRANGEMENT SHOWN IN FIG. 8

Harmonic xs(f) as calculated using xs(f) as calculated using
order equation (5) in [10] this paper’s FEM model.
1 0,009717 0,009845
3 0,083572 0,083448
5 0,207882 0,208083
7 0,354270 0,355006
9 0,501529 0,503080
11 0,639867 0,642458
13 0,766395 0,770180
3,0
25+ —————
M-M
—-o-—Phase L1
20+ —————4 — - & --Phase L2
---%-- Phase L3

Harmonic order

Fig. 9. x,, (increase in conductor resistance due to proximity to other con-
ductors) as calculated by Meliopoulos and Martin (M-M) and the FEM model
developed in this paper for the phase conductors (L1, L2, L3) and the neutral
conductor.

Reference [10, (5)—(9)] can be used to calculate the above
coefficients as a function of geometry and frequency. Table VI
shows the values of zs(f) as calculated by using the equations
given in [10] and the FEM model in this paper. It is evident that
the difference between the two approaches is negligible since
the maximum discrepancy is of the order of 1.3%.

Fig. 9 shows the values of z,( f) as calculated using the two
methods.

The relatively large discrepancies between the two models are
due to the following reasons: first, the Meliopoulos and Martin
approach, as expressed by [10, (7)], is based on a respective
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3,0
25+ ---4 MM |- - - — ==
— —&— — Phase L1
20+ --—+4
—-A— - Phase L2
3‘ 164 ———d--- X---Phasel3 _ _ _ _ _ _ _ _ __ __________

Harmonic order

Fig. 10. x,, (increase in conductor resistance due to proximity to other con-
ductors) as calculated by Meliopoulos and Martin (M—M) and the FEM model
developed in this paper for the phase conductors (L1, L2, L3) assuming that the
3rd and 9th harmonic form a balanced system.
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Fig. 11. R,./R4. ratio as calculated by Meliopoulos and Martin (M-M) and
the FEM model developed in this paper for the cable shown in Fig. 8.

Neher—McGrath [11] equation which, however, is accurate “for
a system of three homogeneous, straight, parallel, and solid con-
ductors of circular cross section arranged in equilateral forma-
tion and carrying balanced 3-phase current remote from all other
conductors or conducting material” as stated in [11]. This means
that the approach in [10] does not take into account the influence
of the neutral conductor shown in Fig. 8. Second, the influence
of the neutral conductor is significant when zero-sequence har-
monics are present, because in such cases, the neutral conductor
carries significant currents. It is therefore expected that the prox-
imity effect and, hence, the z, factor, will be larger at zero-se-
quence harmonics. To demonstrate more clearly the difference
between the two approaches, we assume that the currents at the
3rd and 9th harmonic do not form a zero-sequence system but
are balanced (i.e., they have 27 /3 rads phase displacement). In
such a case x4, (f), as calculated by the two methods, is shown
in Fig. 10. Since in this case the neutral conductor carries only
eddy currents, the proximity effect is essentially only among the
phase conductors. For this reason, the discrepancies between the
two methods are much smaller.

It is therefore evident that since the 3rd and 9th are zero-
sequence harmonics, the method presented in this paper is closer
to reality.

Fig. 11 shows the R,./Rq. ratio as calculated by the two
methods. Now assuming that the cable shown in Fig. 8 carries a

591
Main switchboard Local switchboard
L1L2L3 N P PEN L3L2 L1 1-phase
| : Cable JIVV 4x95 : e
i able X ——
’ —H > -iiom s= —0r
L S | e g —_
.
MI1 Mi 2 .
.

Fig. 12. Measurement setup.

current with:

1) fundamental (60 Hz)—350 A;

2) 3rd harmonic—380 A;

3) 5th harmonic—12 A;

4) 7th harmonic—12 A.
The ampacity derating factor £ is calculated to be equal to 0.899
if the method in [10] is followed, and equal to 0.8961, if the
method presented in this paper is followed.

Although there is a large difference between the two methods
in the calculation of the cable resistance at zero-sequence har-
monics, the calculated derating factors are almost identical, due
to the difference in the definition of the derating factor as men-
tioned in clause VI.

C. Comparison to Measurements of Cable Losses

The losses in a cable feeding lighting dimmers were measured
and compared to calculations based on the model presented in
this paper.

The measurement setup was as follows: The theatrical
lighting in the Royal Theatre in Thessaloniki, Greece, is con-
trolled by several single-phase dimmers. The dimmers are fed
by a local distribution switchboard that is connected to the main
switchboard viaa JIVV 4 x 95 mm? cable, as shown in Fig. 12.
The cable is located at a distance away from other cables and
metallic trays for the largest part (~90 m) of its length.

Specific lights were turned on so as to form a three-phase
symmetrical load. Then, a dimming level that caused high levels
of triplen current harmonics was selected. Two identical mea-
suring instruments (MI1 and MI2 in Fig. 12) were used for the
measurement of the active power at the beginning and at the end
of the cable, respectively. By subtracting the power recordings
of the two instruments, the cable losses can be calculated.

The measuring instrument was the TOPAS 1000 model from
LEM Norma GmbH. One instrument was used to monitor the
voltage and current for each of the four cable conductors with
a sampling frequency of 6.4 kHz. The voltages are referenced
to the protective earth conductor (PE). The power measurement
error lies between 0.2% and 2.2% of the measured value, de-
pending on the frequency and magnitude of the current. Large
errors occur at frequencies beyond 1.25 kHz and at currents that
are 1% of the rating of the current sensor. At 50 Hz and at cur-
rents that are equal to the current sensor’s rating, the error is
small (0.2%). The instruments monitor the active power at each
harmonic frequency and log the values every 40 ms. Both in-
struments were set up by the same personal computer. Thus, the
clocks of the two instruments were synchronized, so that log-
ging is made at the same time.
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TABLE VII
HARMONIC ANALYSIS OF THE MEASURED PHASE AND NEUTRAL CURRENTS
AT TWO TIME INSTANCES. THE FUNDAMENTAL FREQUENCY IS 50 Hz

Harmonic I** time instant 2" time instant
Order Phase Neutral Phase Neutral
current, A current, A  current, A current, A
1 96,00 0,57 34,20 0,40
3 65,00 195,10 33,50 98,00
5 26,50 0,88 26,50 0,61
7 16,40 2,22 18,20 0,90
9 10,40 32,00 11,00 32,00
11 4,97 2,10 5,00 0,48
13 5,68 0,78 4,50 0,51
15 5,20 16,06 4,00 13,00
17 4,82 1,10 4,00 0,17
19 4,90 2,00 2,20 0,21
21 522 16,28 3,00 8,60
Lrms, A 121,29 199,06 59,57 104,27
40
35 +/@Phase L1- - - - - - - - - - - - - -
30 | |2 Phase L2 ,
o5 ||MPhasel3 _____________HH ’
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Fig. 13. Variation with harmonic order of the Rh/Rdc ratio of the phase and
neutral conductors of a4 x 95 mm? cable.

Measurements were compared with results obtained by using
the FEM model for two different time instances that correspond
to two different current harmonic signatures. Table VII shows
the harmonic components of the phase and neutral conductor
currents and the total rms values of the current at each instant.
Small asymmetries in the phase currents cause small currents in
the neutral conductor even at nontriplen harmonics.

The cable losses can be calculated by the following formula:

3 21
R R
2 h,m 2 h,N
ZZIh,m—RdC iy | (9)

dc

Ploss = Rdc '

m=1h=1

where I}, ,,, is the rms value of the A" harmonic current in phase
m, Ry m is the resistance of phase m conductor at the hth har-
monic, and ?;, v is the resistance of the neutral conductor at the
hth harmonic.

The Rj [ Rac and Ry N / Rae ratios, as calculated using the
FEM model developed in this paper, are shown in Fig. 13.

To calculate the losses, Rq4. at the operating temperature of
the cable must be known. According to manufacturer’s data,
Rgc = 0.19 mQ/m at 20 °C. Using an infrared thermometer,
the cable temperature was measured at various points along its
length. The temperature varied from 42 °C to 47 °C. For the
calculations, a mean temperature of 45 °C was assumed.
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Fig. 14. Calculated and measured cable losses at a first time instant as shown
in Table VII. The cable is design JIVV 4 x 95 mm? and 110 m long.
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Fig. 15. Calculated and measured cable losses at a second time instant as shown
in Table VIL The cable is design JIVV 4 x 95 mm? and 110 m long.

Figs. 14 and 15 show the measured and calculated cable
losses at each harmonic frequency for the first and second time
instance, respectively.

It can be noticed that the calculations are in good agreement
with the measurements, since the maximum discrepancy be-
tween them is less than 10% of the respective measured value.
The very good agreement at the zero-sequence harmonics,
which validates the method presented in this paper, is also of
special interest.

VIII. CONCLUSION

The R,./Rq. resistance ratio of four-conductor, PVC-insu-
lated low-voltage (0.6/1.0-kV) power distribution cables, as they
are specified by CENELEC Standard HD603, was calculated for
frequencies that correspond to the odd harmonics from the 1st
up to the 49th. It was shown that, due to cable geometry, the
phase conductors do not present equal losses but the losses of
one or two conductors can be larger than the losses of the rest.
The ac resistances were defined in a way to reflect the maximum
losses per conductor.

It was shown that the R,/ Rq. ratio increases with frequency
and that this increase is much larger when zero-sequence har-
monics (3rd, 9th, 15th, etc.) are present. The R,./Rq. ratio of
the neutral conductor was shown to increase with frequency too,
but not as much as that of the phase conductors.
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An ampacity derating factor was defined and calculated for
five typical cable configurations and for five typical nonsinu-
soidal loads. The derating factor was based on the total rms
values of a distorted current and of a current of fundamental
frequency that cause the same power losses in the cable.

It was shown that when triplen harmonics are present, the de-
rating of the ampacity is in the range of 29% to 46%, depending
on the cross section of the conductor. A larger ampacity der-
ating is required as the phase-conductor cross section increases.
When the neutral conductor has reduced the cross section, then
the derating should be larger than when it has the same cross
section as the phase conductors. This implies that for feeding
large computer loads (such as banks or large office buildings)
and to avoid a large derating of the cable ampacity, two separate
cables should be used: a three-conductor cable for the phases
and another single core cable for the neutral.

Industrial loads are mainly three-phase loads with an insignif-
icant amount of triplen harmonics. Such loads require ampacity
derating in the range of 0.1% to 12%, depending on the cross
section of the conductor. The cross section of the neutral con-
ductor is not significant for these loads.

It was shown that not only the THD but also the harmonic
signature of the load current is important. When the current
contains harmonics at higher frequencies, then the ampacity re-
quires larger derating.

The asymmetry in the losses of the conductors leads to ap-
proximately 1.0-1.5% larger derating for the ampacity of the
cable.

The validity of the model was verified by comparison with the
data given in IEEE Standard 519-1992, mathematical models in
the literature, and measurements in real installation.
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