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Abstract—The influence of earth stratification on underground
power cable impedances is investigated in this paper. A rigorous so-
lution of the electromagnetic field for the case of underground con-
ductors and a two-layer earth is presented. Analytic expressions
for the self and mutual impedances of the cable are derived. The in-
volved semi-infinite integrals are calculated by a novel, numerically
stable, and efficient integration scheme. Typical single-core cable
arrangements are examined for a combination of layer depths and
earth resistivities, based on actual measurements. The accuracy of
the results over a wide frequency range is justified by a proper fi-
nite-element method formulation. The differences in cable imped-
ances due to earth stratification are presented. Finally, a simple
switching transient simulation is examined to evaluate the influ-
ence of the earth stratification on transient voltages and currents.

Index Terms—Electromagnetic transient analysis, finite-element
method (FEM), nonhomogeneous earth, power cable modeling.

I. INTRODUCTION

I N TRANSIENT simulations, detailed transmission-line
modeling is required. In the case of underground power

cables, the model parameters are strongly influenced by the
resistive earth return path. The influence of the lossy earth
on conductor impedances has been analyzed since 1926. For
the case of overhead lines, proper earth correction terms can
be calculated using the widely accepted Carson’s formulas
[1]. Similar formulas have been developed by Pollaczek [2],
applicable not only to overhead conductor systems but also
to cases of underground power cables and to combinations of
both. In all of these approaches, the earth is assumed to be
semi-infinite and homogeneous.

In practice, however, the earth is composed of several layers
of different electromagnetic (EM) properties. Sunde [3] ex-
tended the homogeneous earth solution and proposed formulas
for the case of a two-layer earth, but only for overhead lines or
cables above or on the surface of the earth. In 1973, Nakagawa
[4], [5] proposed a general solution for the case of overhead
conductors above a multilayered earth model. However there is
still lack of an analytic formulation for the case of underground
conductors and multilayered earth structures.

The scope of this paper is to present new analytic formulas
which can be used for the direct calculation of the self and mu-
tual impedances of power cables buried in a two-layer earth. The
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Fig. 1. Geometric configuration of two SC underground cables in a two-layer
earth.

expressions are derived by a rigorous and general solution of
the EM field equations, using a methodology based on Sunde’s
approach [3]. Their form is similar to the corresponding ex-
pressions proposed by Pollaczek [2] and Sunde [3], containing
semi-infinite integral terms. These terms are evaluated using a
novel numerical integration scheme, based on proper combina-
tions of numerical integration methods to overcome efficiently
the problems due to the highly oscillatory form of the infinite
integrals [6].

The accuracy of the results obtained by the new expressions
is verified using a proper finite-element-method (FEM) formu-
lation [7]. The impedances of typical single-core (SC) cable ar-
rangements are calculated for various cases of two-layer earth
models based on actual ground resistivity measurements [8].

The differences between the cable impedances calculated by
the new formulas and those resulting by the well-known Elec-
tromagnetic Transients Program (EMTP) [9] for the case of ho-
mogeneous earth are also presented. Finally, the new formulas
are used to calculate the impedances for a typical switching tran-
sient simulation, in order to evaluate the influence of the earth
stratification on the actual transient voltages and currents. The
resulting differences show that earth stratification must be taken
into account especially in cases of unbalanced faults, where the
earth return path plays an important role.

II. PROBLEM FORMULATION AND SOLUTION

A. EM-Field Equations

In Fig. 1, two SC cables are buried in the first layer of
a two-layer earth. The second layer is considered to be of infi-
nite depth. The first layer has permeability , permittivity ,
and conductivity , while the corresponding properties of the
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second earth layer are . The air has a conductivity
equal to zero and permeability and permittivity equal to
those of the free space.

The mutual impedances between conductors may be derived
by integrating the field due to the conductor dipoles. The field
intensities and potentials can be expressed in terms of a single
vector function , usually referred to as the Hertzian vector [3].

The function has been adopted for the solution of the EM
field in this paper.

Assuming a horizontal dipole in the place of cable in Fig. 1,
the components of the function in the air, in the first and
in the second earth layer are defined as and , re-
spectively. The equation that describes at any point in the
air with coordinates is [3]

(1)

For is described by the following equations:

(2a)

and

(2b)

Finally, for is given by

(3)

In the above relations, is the Bessel function of the first
kind of zero order,

where is the imaginary unit and
is the angular velocity.

B. Determination of the Hertzian Vector Components

Since all of the and functions in (1)–(3) are unknown,
the determination of the Hertzian vector components is done by
means of an auxiliary configuration with a known EM field so-
lution together with the reciprocity theorem [10]. This theorem
states that in a linear, bilateral, single circuit network, the ratio
of excitation to response is constant, when the position of ex-
citation and response is interchanged. The ratio of the voltage
induced on cable to the current imposed on a conductor , lo-
cated in the air or in the second earth layer, can be calculated

Fig. 2. Geometric configuration of an overhead conductor and an underground
cable in a two-layer earth.

by existing formulas in [3]–[5]. Due to the reciprocity theorem,
this ratio is equal to the corresponding voltage induced on con-
ductor to the current imposed on cable .

Following the above reasoning, the auxiliary configuration
of Fig. 2 is considered first. The -components of the func-
tion in the different media, derived by a horizontal dipole in the
place of the overhead conductor , are given in [3]. Applying
the boundary conditions at and as given in [4],
the field at any point can be fully defined. A description of the
above procedure is presented in Appendix A.

The per-unit length mutual impedance between the overhead
conductor and the cable can be derived by integrating
along the infinite conductor , that is, along the -axis [3]

(4)

where is the moment of the dipole. By replacing with
the expressions of Appendix A, takes the form of (5a)

(5a)

The term can be substituted by
, as in [11] and [3], resulting in (5b).

In the above procedure, the overhead conductor was car-
rying the excitation current. According to the reciprocity the-
orem, an equation similar to (5b) can be obtained if the excita-
tion current is imposed on the cable , as shown in (5b) at the
bottom of the page.

(5b)
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Thus, assuming a horizontal dipole with a moment equal to
in the place of cable in Fig. 1, (1)–(3) become the equa-

tions which describe the problem. Therefore, is also given
by

(6)

From (5b), (6), and (1), and can be derived.
A similar procedure is adopted to define . Assuming a

cable buried in the second earth layer in a depth from
the surface of the earth and a horizontal separation distance
from cable and can be determined.

Finally, using the boundary conditions given in [4] at
and in Fig. 1, the field in the first earth layer is also
found. The analytic expressions of the and functions in (1),
(2a)–(3) are shown in Appendix B.

III. SELF- AND MUTUAL-IMPEDANCE FORMULAS

The per-unit length mutual impedance between cables
and is found by integrating along the infinite cable , that
is, along the -axis

(7)

Depending on the position of cable from (2a) or (2b)
will be replaced in (7). In either case, the final form of results
in (8), shown at the bottom of the page, where

and

The self-impedance of cable results from (8), by replacing
with the cable outermost radius and with .

From (8), the existing formula for the calculation of under-
ground power cables impedances for the homogeneous earth
case [2], [3] can be reproduced, simply by replacing with

and with .
Replacing with with , and setting equal to

as in [3], (8) takes the form of the well-known Carson formula
for the overhead line impedance above homogeneous earth.

Further observation of (8) reveals that it essentially consists
of four terms.

The first and dominant one contains an exponential function
which depends on the vertical distance between the cables. Both
factors of this exponential function are denoted with the symbol

to indicate the sum of EM properties of the three different
media involved: air, first, and second earth layer.

The second term depends on the vertical distance between
one cable and the image of the other with respect to the two
earth layers boundary. One factor of this term is represented
with the symbol to indicate the difference between the EM
properties that determine the two earth layers. Thus, when the
resistivity, permeability, and permittivity values of the two earth
layers are equal, this term vanishes, as the boundary of the two
layers disappears too.

The third term refers to the distance between one cable and
the image of the other with respect to the air-earth boundary.
One of the factors of the latter term is , indicating the dif-
ference between the EM properties that determine the air-earth
boundary. When this boundary does not exist, this term is also
zero.

Finally, the fourth term contains an exponential function
which depends on the distance between the image of the cable
closest to the air-earth boundary with respect to that boundary
and the image of the cable closest to the two earth layers limit
with respect to the two earth layers boundary. As expected, this
term has as factors only symbols denoted with , because it
vanishes whenever one of the two boundaries does not exist.

Equation (8) has a general form capable of handling cases
with arbitrary resistivities, permittivities, and permeabilities of
the earth layers. Therefore, it can be also applied in cases where
the effects of a ferromagnetic region must be taken into account
[4].

The proposed solution of the EM field can be generalized
in order to cover various cable arrangements and multilayered
earth structures. Proper analytic expressions may be derived for
cases of underground conductors buried in different earth layers
of multilayered earth structures as well as for combinations of
underground and overhead conductors. Thus, the above proce-
dure can be also helpful to problems of inductive interference
between overhead lines and neighboring underground insulated
metal pipes buried in multilayer earth or for EM compatibility
problems.

IV. NUMERICAL INTEGRATION OF THE IMPEDANCE FORMULAS

Direct numerical integration is used for the calculation of the
semi-infinite integral in (8). The integral shows both regular
and irregular oscillations, due to the cosine and the exponential
terms respectively, as recorded also in [12] for the Pollaczek in-
tegral of [2].

It also shows an initial steep descent between zero and the
first root of .

For these reasons, the use of a single numerical integration
method proved to be inefficient. To overcome these difficulties, a
combination of three numerical integration methods, namely the

(8)
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TABLE I
TWO-LAYER EARTH MODELS

Gauss–Legendre method [13], the Gauss–Laguerre method [13]
and the Lobatto rule [14] is used. This new integration scheme
was applied successfully to the calculation of earth return im-
pedances in cases of homogeneous earth [6] and proved to be
numerically stable and very efficient. A detailed description of
the methodology is presented in Appendix C.

V. FINITE-ELEMENT APPROACH

To check the accuracy of the results obtained by the new ex-
pressions, the cable impedances for the two-layer earth case are
also calculated by means of a proper FEM formulation. The
FEM package developed at the Power Systems Laboratory of
the Aristotle University of Thessaloniki has been used. Intro-
ducing a newly developed iteratively adaptive mesh generation
technique [15], this package can be applied for the computa-
tion of overhead line and underground cable parameters in un-
bounded discretization areas [7].

VI. NUMERICAL RESULTS

A. Comparison With the FEM

Six different two-layer earth models, based on actual
grounding parameter measurements [8], are investigated. The
corresponding data for the resistivities of the first and of
the second layer and for the depth of the first layer are shown
in Table I. The second layer is considered to be of infinite depth.

The case of a shallowly located SC cable system is exam-
ined in the horizontal cable arrangement of Fig. 3(a) as in [16].
Cables are in a depth m with a spacing m.
The core radius is m, while the outer radius
is m. The conductivity of the cable core is

S/m, while the relative permeability
for all of the areas in Fig. 3.

Series impedances are calculated for this cable configuration
and for the six earth models of Table I using the proposed an-
alytic formula of (8) for the frequency range of 50 Hz–1 MHz
to cover power cable operating conditions from steady-state up
to very fast transients. The novel numerical integration scheme
used for the calculation of the proposed formula proved to be
numerically stable. The computation time for the numerical in-
tegration, using a tolerance of , is less than 25 min for the
derivation of 60 impedance matrices in an Intel Pentium IV PC
at 2.66 GHz. When the tolerance is defined at , the compu-
tational time is less than 10 min for the set of the 60 cases.

The results are compared to the corresponding obtained by
the FEM. The relative differences are calculated using

Relative difference % (9)

Fig. 3. (a) Horizontal and (b) vertical SC cable arrangements.

Fig. 4. Differences in the magnitude of the mutual impedance between the
formula and the FEM.

Fig. 5. Differences in the magnitude of the self-impedance between the
formula and the FEM.

In Figs. 4 and 5, the relative differences for the magnitude of
the mutual and self-impedances of the horizontal cable arrange-
ment are shown, respectively. In all of the cases, the differences
recorded for the impedance magnitude and phase are less than
0.9 % for the whole frequency range under consideration.
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Fig. 6. SC cable with core and sheath.

TABLE II
DATA OF THE SC CABLE ARRANGEMENT OF FIG. 6

B. Comparison With the Homogeneous Earth Results

The SC cable of Fig. 6 having a core and sheath is considered
next. Original cable data from [17] are reproduced in Table II.
The two cable arrangements of Fig. 3 are examined. For the
vertical arrangement of Fig. 3(b), the first cable is in a depth

and m.
The series impedances for the configurations of Fig. 3 and

the six earth models of Table I are calculated for the frequency
range of 50 Hz to 10 MHz using the new analytic formulas. The
results are now compared to the impedances obtained by the
CABLE CONSTANTS/PARAMETERS supporting routine of
the EMTP for homogeneous earth with resistivity equal to the
resistivity of the first earth layer.

The differences, calculated by (10), are shown in Figs. 7 and
8 for the magnitude of the mutual and self cable impedances

Relative difference %

(10)

In the above diagrams, it is shown that differences from 10%
up to 40% are encountered. The differences are greater for the
mutual impedances, as the EM-field path is through the ground.
The differences are also maximized when the resistivities of the
two layers show a significant divergence. Also in the high-fre-
quency range, over 100 kHz, the differences become greater due
to the approximations used in earth return impedance calcula-
tion in the EMTP CABLE CONSTANTS supporting routine [6].

Fig. 7. Differences in the magnitude of the mutual impedance of the cables
sheaths between the two-layer and the homogeneous earth models. Horizontal
cable arrangement.

Fig. 8. Differences in the magnitude of the self-impedances between the
two-layer and the homogeneous earth models. Vertical cable arrangement.

Fig. 9. System diagram of the single line-to-ground short-circuit test.

C. Influence of Earth Stratification on Cable Transient
Response

In order to show the influence of the earth stratification on
the actual transient voltages and currents, a simple transient in a
cable configuration is examined. The test configuration adopted
from [17] is shown in Fig. 9. The SC cable of Fig. 6 is used in
the horizontal arrangement of Fig. 3(a), with a length varying
from 1 to 10 km. A three-phase balanced sinusoidal voltage
source with a peak magnitude of 1.0 p.u. is connected at the
sending end of the cable. The cable sheaths are grounded at
both sending and receiving ends with 10- resistances. A bal-
anced ohmic load of 100 is connected at the receiving end.
A single line-to-ground fault is applied at the receiving end of
core 1 through a resistance of 0.05 at time zero.

First, the cable configuration of Fig. 9 is considered to be
buried in a two-layer earth having the characteristics of the six
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Fig. 10. Cable 2 receiving-end voltage. Two-layer earth CASE IV versus
homogeneous earth model for the 5-km-long three SC cable arrangement.

cases of Table I. A time-domain transmission-line model is used
with distributed parameters calculated using the results obtained
by the new formulas. Next, in the same cable model, the earth
is assumed to be homogeneous with a resistivity equal to the
resistivity of the first layer. The transient voltages and currents
are calculated using the EMTP.

In Fig. 10, the voltage at the receiving end of core 2 for CASE
IV of the two-layer earth cases defined in Table I, for a cable
length of 5 km, is superimposed on the corresponding curve for
the homogeneous earth.

Results show that the differences in the cable impedances be-
tween the homogeneous and the two-layer earth models affect
also significantly the transient response of the system. The volt-
ages and currents for the stratified earth were 9% up to 30%
higher than the corresponding for the homogenous earth in all
examined cases. The divergences depend also upon the cable
length, as the length influences the frequency of the traveling
waves and, therefore, also the differences in the cable imped-
ances, according to Figs. 7 and 8.

VII. CONCLUSION

The problem of the calculation of the earth return impedances
of underground SC power cables buried in a two-layer earth
is addressed in this paper. A rigorous solution of the EM field
is presented, leading to new analytic expressions for the self
and mutual impedance. The new formulas can be generalized
to cover other cable arrangements and multilayer earth models.

For the numerical evaluation of the semi-infinite integrals in-
volved in the derived expressions, a novel numerical integra-
tion scheme, based on proper combinations of three integration
methods, is used. The proposed formulation is applied for the
case of typical SC power cable systems, buried in the first layer
of a variable two-layer earth structure. To check the accuracy of
the results obtained by the new expressions, they are compared
to those obtained by an FEM formulation. The recorded differ-
ences in the self and mutual impedance magnitudes and argu-
ments are less than 0.9% over a wide frequency range, covering
almost all possible power cable operational cases. The integra-
tion scheme proved to be numerically stable and efficient in all
examined cases.

The results obtained by the new expressions show significant
differences from the corresponding results for the homogeneous
earth case, where the resistivity of the earth is considered to be
equal to the resistivity of the first layer. These differences are

amplified in the high-frequency region, due to the approxima-
tions incorporated in the numerical calculation of the earth cor-
rection factors in the CABLE CONSTANTS/PARAMETERS
supporting routine of the EMTP.

Finally, a switching transient simulation is examined using
the impedances calculated for the two-layer earth cases. Earth
stratification seems to influence transient responses signif-
icantly, leading to higher transient voltages and currents.
Therefore, it cannot be ignored.

The proposed analytic expressions together with the new nu-
merical integration scheme constitute a useful tool in the de-
velopment of transient underground cable models. They elim-
inate the need for assumptions in the numerical evaluation of
the earth correction terms and enhance the simulation of var-
ious earth structures. They may be also adopted in most of the
commonly used transmission line or power cable parameter cal-
culation software packages.

APPENDIX

A. Field Derived by the Overhead Conductor Dipole

In Fig. 2, the equations that describe the EM field at any point
with coordinates are [3], [4]

(A.1)

(A.2)

(A.3)

where .
The boundary conditions at are [4]

(A.4)

(A.5)

whereas the corresponding boundary conditions at are [4]

(A.6)

(A.7)

Substituting (A.1)–(A.3) in (A.4)–(A7), the following equations
are derived:

(A.8)

(A.9)

(A.10)
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(A.11)

Solving the system of (A.8)–(A.11), and are obtained
and shown in (A.12) and (A.13), respectively, shown at the
bottom of the page. Thus, the function in the first layer
is completely defined.

B. Field Derived by the Underground Cable Dipole

Combining (1) and (6), the per-unit length mutual impedance
between the cable and the overhead conductor is also

given by

(A.14)

From (A.14) and (5b), the resulting expression for is
derived and shown in (A.15), at the bottom of the page, where

. Thus, in (1) is fully determined.
The function can be found using a similar procedure.

The per-unit length mutual impedance between cables and
can be produced by (5b), after the replacement of the variables
corresponding to the air with those of the second earth layer. Its
analytic form is shown in (A.16), shown in the equation at the
bottom of the page. Due to the reciprocity theorem, the same
impedance is given by an equation similar to (A.14), but for the
second earth layer

(A.17)

From (A.16) and (A.17), is derived and its analytic
form is shown in (A.18), at the bottom of the page. Thus,
in (3) is also determined.

Applying the boundary conditions (A.4)–(A.7) [4] for the
system of (1), (2a)–(3), the following are derived:

(A.19)

(A.20)

(A.21)

(A.22)

From (A.19)–(A.22), and are
derived. Thus, in (2), can be defined and is shown in (A.23)

(A.23a)

(A.23b)

(A.12)

(A.13)

(A.15)

(A.16)

(A.18)
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C. Numerical Integration Method

For the calculation of (8), three numerical integration
methods are implemented as follows:

When the term is not equal to one, the in-
terval between zero and the first root of is divided
into the following subintervals

. In each
of these subintervals, the complex integral of (8) is calculated
using the shifted 16-point Gauss–Legendre method [13]. Then,
in the intervals between the subsequent roots of ,
the 18-point Lobatto rule [14] is used. The procedure stops
when the absolute value of the calculated integral between two
subsequent roots is less than a user-predefined tolerance for
both the real and the imaginary part of the integral.

If the horizontal distance is zero, the integration procedure
is different. The shifted 16-point Gauss–Legendre method is
again applied in the same way between zero and . Then,
the shifted 35-point Gauss–Laguerre method [13] is used for the
evaluation of the rest of the integral, after the integrand is scaled
by the term . The procedure is repeated iteratively. In
each iteration, the use of the Gauss–Legendre method is ex-
tended by intervals to the right of , while the Gauss–La-
guerre method is implemented for the calculation of the rest in-
tegral until infinity. Convergence is achieved when the absolute
difference between two succedent values of the calculated inte-
gral is less than a user-predefined tolerance.
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