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A Finite-Element Mesh Generator Based on Growing
Neural Networks
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Abstract—A mesh generator for the production of high-quality
finite-element meshes is being proposed. The mesh generator uses
an artificial neural network, which grows during the training
process in order to adapt itself to a prespecified probability distri-
bution. The initial mesh is a constrained Delaunay triangulation
(CDT) of the domain to be triangulated. Two new algorithms to
accelerate the location of the best matching unit are introduced.
The mesh generator has been found able to produce meshes of high
quality in a number of classic cases examined and is highly suited
for problems where the mesh density vector can be calculated in
advance.

Index Terms—Automatic mesh generation, best matching unit
location, finite-element method (FEM), let-it-grow (LIG) neural
networks, mesh density prediction.

I. INTRODUCTION

T HE FINITE-element method (FEM) is one of the most
widely used numerical methods in engineering, especially

due to its ability to cope with problems of high geometrical
complexity, where an analytical solution may be hard to de-
rive. The first step in the FEM is to create a mesh that describes
the solving region. Once the mesh is available, a solution for
the problem may be derived, by applying the corresponding ini-
tial and boundary conditions. The accuracy and the computation
time of the solution depend highly on the quality of the initial
mesh provided.

A. Common Methods of Mesh Generation

The usual approach is to start the solving process by using an
initial coarse mesh and to refine it afterwards by means of an
adaptive meshing procedure [1], [2]. During this procedure, the
solution error is estimated for each element and the elements
with error exceeding a given threshold are split into smaller
ones. This way, the initial mesh is refined and the procedure is
repeated, until the needed accuracy is met. This technique will
provide very accurate results, but may become quite time and
memory consuming. Also it does not take into account the ex-
perience that may have already been obtained by solving sim-
ilar problems. In such cases, an experienced user may be able to
foresee the density the final mesh should have. It is, therefore,
within the aim of the present paper to provide a mesh gener-
ator based on growing neural networks that is highly suited for
the parametrical analysis of problems with similar geometrical
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definitions. Starting from an initial coarse mesh, the proposed
mesh generator will provide a quality mesh, which will serve as
a good starting point for the adaptive refinement to follow.

One of the most common methods of mesh generation is to
start from an infinite triangular grid, which is then superimposed
on the object to be meshed. The elements that fall outside the
object are either removed or trimmed to fit the geometry of the
object. This method will produce very-high-quality elements in
the interior of the meshing area, but is not suitable in cases where
small objects are present in a large solving region. Such prob-
lems appear in overhead power transmission line (OTL) prob-
lems, where the size of the conductors is minimal compared to
the solving region. The initial grid would have to be made of el-
ements of very small size in order to match the geometry of the
conductors. This would produce an unnecessary large number of
elements in the rest of the solving area. A hybrid method could
probably be used in which the area to be meshed would be subdi-
vided in smaller regions, but the method would be case specific
and might not be able to cope with other problems it was not
designed for.

Another popular method of gridding is to start from an initial
(Delaunay) triangulation of the geometry of the problem and
then smooth the initial set of nodes by using a method such
as Laplacian smoothing. This method will also produce very
high-quality meshes, but does not take into account experience
that may have been gained by triangulating similar geometries
in the past.

B. Recent Developments in Mesh Generation Using ANN

In order to address the problem of triangulating geometries
which present similarities, the use of backpropagation artificial
neural networks (ANNs) has been proposed for predicting the
mesh density vector of certain electromagnetic field problems
[3]–[5]. The derived mesh density vector may then be used to
create the mesh, which maintains the mesh density properties of
the prediction. Various mesh generators have been proposed for
this purpose.

A Delaunay-based density driven mesh generator, guided by
an ANN providing the mesh density vector, may be used for
the generation of the mesh [5], [6]. Also, the utilization of self-
organizing maps (SOMs) [7] has been proposed for the same
purpose [8], [9]. A probability distribution (pd) is used to adapt
the coordinates of an initial constant topology of triangles or
rectangles. This approach suffers from the fact that the topology
of the mesh is seta priori, making it difficult to adapt itself in
cases were the pd presents high irregularities. In these cases the
mesh appears to be “stretched” and the elements are of poor
quality. In addition, all the nodes located on the boundaries have
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(a) (b)

Fig. 1. Nodea has been moved over edgeb–c, causing an inconsistency
in the mesh. The nodes of element 1 are originally stored in the
following order—(a; b; c). In the inconsistent mesh, the order has been
reversed—(a; c; b).

(a) (b)

Fig. 2. In mesh (a) the creation of nodes on the boundaries has been favored,
but not in mesh (b).

to be set in advance [8], thus, the process can not be totally
automated.

Recently, a mesh generator, based on let-it-grow (LIG) ANNs
has been presented [10]–[12]. In this approach, an initial coarse
mesh is used to generate the final mesh. The initial mesh is also
used to define the solving region of the problem, as well as to
carry the information of the piecewise constant probability den-
sity function (pdf) of the pd. This means that in regions were
a finer refinement is necessary the initial mesh has also to be
finer, thus, user intervention is not totally avoided, which is a
drawback if the mesh generation process should be entirely au-
tomated. In addition, another disadvantage of the LIG mesh gen-
erator is highlighted in [12], namely, the location of the best
matching unit. The proposed algorithms in [12] do not allow
the generation of large meshes due to their high computational
complexity. The pdf in this approach may as well be derived by
means of a backpropagation ANN [3]–[5].

C. Aim of this Paper

The main scope of this paper is to explore whether an LIG
mesh generator may be applied successfully to the parametrical
salvation of a large number of cases presenting similar geom-
etry. In this aspect, human intervention should be minimized at
all steps of the mesh generation procedure. Also, the mesh gen-
erator must provide consistent (conforming) quality meshes at
an acceptable time, which will be used as a good starting point
for an adaptive meshing procedure, instead of having to start the
meshing procedure each time from scratch.

Fig. 3. Flowchart of the proposed mesh generator.

This paper presents a new version of an LIG ANN-based
mesh generator for the production of two-dimensional (2-D)
meshes. The mesh generation starts using as an initial mesh
a constrained Delaunay triangulation (CDT), which may be
derived automatically using an appropriate algorithm [13].
This is a great advantage, because the meshing procedure
does not depend on the quality of the initial mesh, which will
be refined only where necessary. Also, human intervention
is avoided, since the initial mesh is provided automatically.
A pd, with a pdf that is not necessary piecewise constant, as
was originally proposed in [10], may then be used to drive
the mesh generator to produce the final mesh, maintaining
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the mesh density properties of the pd. The proposed mesh
generator also introduces two new algorithms, which reduce
the computational complexity of locating the best matching
unit. As a result, the mesh generation process is accelerated,
allowing for the generation of large meshes. Additionally, the
mesh generator offers a guarantee that the produced mesh is
conforming.

II. M ESH DENSITY PREDICTION

The mesh generator has been devised in such way that it
is independent of the technique that provides the mesh den-
sity vector, which should be considered as an input to it. The
derivation of the mesh density vector is actually a case-specific
problem. For specific problems in the magnetic device area, the
application of ANNs has been proposed to automate this process
[3], [4]. Furthermore, in this paper we apply the technique pro-
posed in [5], which is suitable for problems in the transmission
line area.

In the method described in [5], an ANN is trained using the
backpropagation method. The inputs to the ANN are the height

of the conductor above the air–ground boundary, the distance
from the conductor to the point where the mesh density is to

be estimated and the frequency to earth resistivity ratio.
is the frequency of the current flowing through the conductor
and is the resistivity of the ground.

Once the ANN has been trained it can produce a mesh
density prediction for new cases, which are presented to it
for the first time in minimal time. The output of the ANN is
a number corresponding to the mesh density inside a square
(called magnifier in [4]), which along with adjacent squares
covers the whole solving region. According to this prediction
a uniform cloud of points on the plane is produced, confined
within the corresponding square. The union of the cloud of
points for all squares produces the final cloud of points, which
drives the mesh generator. A thorough presentation of this
method may be found in [5].

III. M ESH GENERATOR

The inputs to the proposed mesh generator are:

1) CDT of the problem to be meshed;
2) pd ;
3) number of elements nel or the number of nodes nno to be

created;
4) two additional user-defined constantsand del and two

user defined functions , , where is the number
of nodes that have been inserted into the mesh, during the
mesh growing procedure.

Typical values for , , , and will be given in
Section VI. The CDT may be readily obtained by using a variety
of algorithms available [13], [14]. is given in the form of
a 2-D cloud of points, which is denser where a finer mesh is
required. may be automatically obtained by using an ANN
[3]–[5] or may be defined by the user [10].

The algorithm is very close to the original LIG algorithm [15]
with some variations, which are necessary for the mesh gen-
eration problem. The LIG ANN consists of neurons (nodes),
which are connected to form a triangular meshon the plane.

TABLE I
FOR EACH INPUT VECTOR, THE NODE NUMBER OF THEBMU LOCATED AT THE

PREVIOUS SEARCH THAT TOOK PLACE FOR THESAME INPUT VECTORIS
STORED IN THE EXTENDED CACHE ARRAY

Every neuron is associated with a position vector ,
which contains the coordinates of the neuron on the plane. An
input vector is then selected randomly according to the
pd . The node of the mesh that is closest to, called the
best matching unit (BMU), is selected. For this purpose, the Eu-
clidean metric has been used

(1)

A signal counter is assigned to each node. The signal
counter for the BMU is increased by one if the node lies in the
interior of the solving region. However, if the BMU lies on a
boundary or a material interface, the signal counter is increased
by 1.5. This is done to favor nodes that lie on boundaries or
interfaces, as to create a sufficient number of nodes on them.

The coordinates of the BMU are adapted according to

(2)

Also, the coordinates of all direct neighbors of the BMU are
adapted

(3)

where denotes the direct topological neighbors of BMU.
In some cases, the functions and may be selected
to be constant, but if the starting mesh is a CDT it is best to
choose small values for and in the beginning of the
meshing procedure and increase their values as the mesh grows.
This may be explained as follows: the coordinate adaptation re-
sulting from (2) and (3) is proportional to the distance between
the input vector and the BMU or its neighbors. In a sparse
mesh, this distance is rather large compared to a dense mesh.
Therefore, the coordinate adaptation may lead to mesh inconsis-
tencies, by moving a node over the edge of the triangle it belongs
to. Although this error is corrected afterwards by the proposed
mesh generator, it can be avoided by using not constant
and functions.

If a node lies on a boundary or an interface of two regions,
then the adaptation takes place only for the component of
which is parallel to the line defined by the boundary or interface.
If a node lies on the intersection of boundaries and/or interfaces,
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(a)

(b)

(c)

(d)

Fig. 4. Test cases (a)–(d). Left: corresponding CDT; middle: probability distribution used; right: final mesh produced.

then no adaptation takes place. The above procedure is repeated
times.
Before the algorithm can continue with the insertion of a new

node, the consistency of the mesh has to be checked. This is
very important, since during the adaptation process some nodes
may have been moved over an edge of a triangle, causing some
triangles to overlap others (Fig. 1). The problem may be con-
fronted by taking care so that all triangles have the same orien-
tation during the mesh generation process. In the proposed work
all triangles of the initial CDT have a counterclockwise orien-
tation of their nodes, thus an overlapping of triangles will cause
a triangle to appear with opposite orientation. In this case, the
corresponding node’s position vector is set back to the original
value it had before the adaptation process took place.

Once mesh consistency has been ensured, a new node is in-
serted on the edge of an existing triangle. The nodehaving the
highest signal counter is selected. The outgoing edge fromto

its farther direct neighbor is split in the middle. This way, two
new triangles are created if the edge lies in the interior of the
solving region or one new triangle is created if the edge lies on
a boundary. The new nodeis inserted in the middle of edge
– , its position vector given by

(4)

Circular boundaries are treated as follows: a circle is de-
scribed by its center, radius, and a polygon to which the circle
is circumscribed. If node is to be inserted on edge– , which
belongs to the polygon, then it is inserted in the middle of the
arc – instead. Further coordinate adjustment of this node is
not allowed.

Finally, a signal counter has to be assigned to the new node
. Also the signal counters of its neighbors have to be redefined.

This is necessary, because ifwas present in the mesh from the
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(a)

(b)

(c)

Fig. 5. Overhead transmission lines geometrical configurations of test cases
(e) to (g).

beginning it would have been BMU for a number of times, in-
stead of its neighbors. Therefore, the neighbors’ signal counters
have to be decreased. For all the direct topological neighbors

of , their signal counters are decreased according to

(5a)

(5b)

while the new node receives the total amount of signal counters
subtracted from its neighbors

(6)

denotes the area of the Voronoi region of node. For sim-
plicity, has been approximated according to

where (7)

TABLE II
PROBABILITY DISTRIBUTIONS FORTEST CASE (d)

where is the number of the direct topological neighbors of
node .

Furthermore, to improve mesh quality on interfaces and
boundaries if lies on an interface or boundary, its signal
counter is multiplied by a factor of 1.05, otherwise it is mul-
tiplied by 0.95. The same applies to the neighbors of .
Fig. 2 demonstrates the advisability of this proposal. Factors
1.05 and 0.95 have been determined by numerical experiments
and are most suitable for the category of problems examined in
this paper. A Delaunay triangulation takes place after del nodes
have been inserted in the mesh in order to improve the quality
of the mesh.

The procedure is repeated until the required number of ele-
ments nel or number of nodes nno is reached. At last, a final
optimization takes place by moving each node that does not lie
on a boundary or interface of the mesh, toward the centroid of
the polygon, formed by its neighboring nodes [16]. Also, a last
Delaunay triangulation takes place. Fig. 3 shows a flow chart of
the algorithm.

The mesh generator has been implemented using the Library
of Efficient Data Structures and Algorithms (LEDA), a pub-
licly available collection of C++ classes for combinatorial and
geometric computing [17]. LEDA provides a useful set of data
structures, highly suitable for the development of the presented
mesh generator. A data type calledgraphhas been used, which
allowed the usage ofnode mapsandedge maps. This way for
every node its direct neighbors were readily available, as well
as all its adjacent edges. Additional information was stored on
nodes and edges, such as the triangle and region it belongs to,
etc.

IV. L OCATING THE BMU

For a mesh with a large number of nodes, the procedure of
locating the BMU may be extremely time consuming. For this
purpose, the following technique of gradient search has been
implemented [12].

1) Start from an arbitrary nodein the mesh.
2) Calculate the distance between the input vectorand

node .
3) Calculate the distance betweenand each of the direct

topological neighbors of.
4) Compare the distances of Step 3 to the distance of Step

2. Keep the smallest distance and set c to be the node
corresponding to it.

5) Continue from Step 2, until no neighbor ofis closer to
than itself.

This approach of locating the BMU has been improved even
further by creating an appropriate set of starting nodes for the
search. This was implemented by maintaining some sort of
cache memory, which contains a small, but representative, set
of the nodes of the whole mesh. For this purpose, an amount
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TABLE III
DATA ON TEXT CASES(e)–(g)

TABLE IV
QUALITY FACTORS OF THETEST CASES(a)–(d)

TABLE V
QUALITY FACTORS OF THETEST CASESTAKEN FROM [10]

of 1.5% of the number of nodes constituting the mesh, which
have been BMU at some point in the algorithm, are kept in an
array named Cache. Step 1 of the procedure is then replaced by

1) Search the Cache array and locate the node, which is
closest to . Set this node to be.

The remaining steps are kept the same.
The Cache technique produced similar results, concerning the

time consumed in locating the best matching unit as the one
presented in [12], where variable start nodes have been used.
In [12], at the beginning of the algorithm, the triangle of the
initial coarse mesh is located in which each input vectorlies.
When is presented to the LIG ANN, one of the nodes of
are used as a starting point for the BMU location.

To improve the Cache technique even further, another ap-
proach has been introduced, implementing anextended Cache
array. The extended Cache array is actually a lookup table of
constant size, equal to the number of input vectors. For each
input vector , the last located BMU, which corresponded to
, is stored in the array in the form of a pair of integers (id of
, id of BMU), as illustrated in Table I. The symbol id refers

to the integer numbering of the input vectors and the nodes of
the mesh. The next time the same input vectoris presented

to the LIG ANN, the extended Cache array is being looked up
and the BMU stored in pair with is used as a starting point
for the BMU location. Again, the gradient-search algorithm
is used from this point on. It is reasonable to expect that
the new BMU will be near to the last located BMU. For the
initialization of the extended Cache array, the absolute BMU
for each input vector may be located once at the beginning of
the algorithm. Numerical experiments presented in Section VI
show that this method greatly improves the performance of
the algorithm.

It should be noted that the extended Cache algorithm in its
presented form works properly only if all the input vectors are
known at the start. This does not introduce any drawbacks in
the algorithm as long as the mesh density prediction takes place
in advance, before the mesh generation begins. The proposed
mesh generator has been designed under the assumption that no
new input vectors are presented to it during mesh generation.
We believe that it should be a simple task to change the
algorithm of the mesh generator in order to cope with cases,
where the input vectors are not known at start. In this case, the
extended Cache array would be a lookup table of dynamical
size.



1488 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002

Fig. 6. Comparison between meshes produced by the proposed mesh generator
and CDT meshes for test case (f).

V. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the BMU
location methods presented in Section IV is analyzed. For com-
pleteness, the absolute BMU detection method is presented as
well.

A. Absolute BMU Detection

At a given instant, let be the number of nodes in the mesh.
In order to locate the BMU , distance comparisons have to
take place, calculating the distance of the input vectorand all
the nodes in the mesh. Assume that the distance calculation and
comparison for one node is of constant time. Then, for
nodes, time is required. This procedure is repeatedtimes,
during which the number of nodes remains constant. Thus,
for nodes a total amount of time equal to is necessary.
The node insertion process will insert one node each time, thus
the number of nodes during the next BMU location will be

. The total amount of time spent for the BMU location is now

. The amount of time spent from the beginning of the
algorithm, with number of nodes to a given instant with
number of nodes, is equal to

(8)

where .
Thus, the algorithm for the absolute BMU detection is of

complexity.

B. Gradient Search BMU Detection

By using the gradient search algorithm the amount of time
spent for the BMU location reduces significantly, because at
each detection it is not necessary to make distance comparisons
between the input vector and all the nodes of the mesh. The pro-
cedure operates by moving from one node to the neighboring
node, until no neighbor is closer to the input vector than the
current node. The number of iterations necessary obviously de-
pends on the mesh topology and cannot be estimated for the gen-
eral case. Nevertheless, it is reasonable to assume that the larger
the mesh becomes the more distance comparison have to take
place, since the starting point for the search is set at random. As-
suming that the number of distance comparisons is proportional
to the size of the mesh, thus equal to , where , the
amount of time spent can be derived in a similar fashion as in
(8)

(9)

The gradient search algorithm is also of complexity, but
due to the factor , the BMU location time reduces significantly.

C. Variable Start Node Algorithm

The variable start node algorithm uses the gradient search al-
gorithm, but each BMU location does not start from a random
node of the mesh but from a node, which belongs to a triangle of
a copy of the initial mesh. Since the initial mesh does not evolve
along with the LIG NN, when the mesh has grown significantly
there is a large number of nodes inside of each of the trian-
gles of the copy of the initial mesh. As the mesh continues to
grow, continues to grow as well and will follow the mesh
density vector.

Most BMU locations will have to take place at locations
where mesh density is higher. This also happens to be where

is highest, because depends on the mesh density vector.
A simplifying assumption to exemplify the behavior of the
algorithm would be to assume that , .
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TABLE VI
COMPARATIVE RESULTS FORTEST CASES(e)–(g)

This assumption holds true for a uniform mesh density dis-
tribution and will lead to results, which are in favor of the
variable start node algorithm. In this case, each BMU location
is confined within a submesh of size . Since the gradient
search algorithm is applied, only distance calculations
have to take place. Therefore,

(10)

The computational complexity of the variable start node al-
gorithm is also . BMU location time reduces because
and .

D. Cache Algorithm

The Cache algorithm also uses the gradient search algorithm.
In this case, the procedure starts from a node stored in the Cache
array and not from a random node. The size of the Cache array
increases proportional to the mesh size and can be set equal
to , . The search algorithm starts by selecting
the node from the Cache array, which is closest to the input
vector . In order to find the start node within the Cache array,

distance comparisons have to take place, consuming
computational time.

Once the starting node has been located, the gradient search
algorithm is applied in order to locate the BMU. The new BMU
will usually be near the starting node, which is an older BMU
located in a case where an old input vector was in the region
of the current input vector. Therefore, only a small number of
distance comparisons is required to locate the new BMU. Since
the search area for the BMU is concentrated around the starting
node, and the number of starting nodes grows along with the
mesh, it is expected that the number of distance comparisons
to locate the BMU is independent of the size of the mesh. As-
suming a mean value of distance comparisons the computa-
tional time required is , therefore constant.

The total computational time is given by

(11)

The complexity of this algorithm is also , due to the fact
that the size of the Cache array grows with the mesh.
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(a)

(b)

Fig. 7. (a)" (t) and" (t) for test cases (a)–(d). (b)" (t) and" (t) for test cases (e)–(g).

E. Extended Cache Algorithm

In this case, the extended Cache array constitutes a lookup
table of constant size. The amount of time spent to look the table
up is minimal, constant, and may be ignored. Once the starting
node has been located from the extended Cache array, the gra-
dient search algorithm is applied. The algorithm starts from an
old BMU, which was recorded the last time, the same input
vector , as in the current case, was presented to the algorithm.

For the same reasons as in the Cache array algorithm the
number of distance comparisons required does not depend on
the mesh size and may be assumed equal to. Thus, the com-
putational time required is

(12)

The extended Cache algorithm has complexity and is
highly suited for generating large meshes. Fig. 8. Evolution of mesh into its final form for test case (c).
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(a)

(b)

Fig. 9. (a) Number of nodes versus time for test case (c) (see Fig. 4). (b) Linear plot of (a).

The complexity analysis presented here will be highlighted
by experimental results presented in the next section.

VI. RESULTS

Seven test cases have been considered to present the behavior
of the proposed mesh generator, as depicted in Figs. 4 and 5.
Test cases (a) and (b) are an L-shaped domain and a square,
respectively. The geometrical configurations of the domains as
well as the corresponding probability distributions have been
taken from [10] and are examined here as a comparison study.
Test case (c) is a C-shaped core taken from [4]. The pd has been
arbitrary defined by the authors. In cases (a)–(c), the probability

distributions are piecewise defined within square regions, as can
be noticed from the respective drawings in the middle of Fig. 4.
These test cases have been selected as a means of comparison
with results obtained in [10]. To demonstrate the independence
between the initial mesh and the pd used, a uniform distribution
of points has been superimposed to a Gaussian distribution of
points (Table II), in test case (d). This case constitutes a reverse
T slot embedded conductor [18].

Finally, three additional cases (e)–(g) are shown in Fig. 5.
These cases present three different cases of OTL problems lo-
cated in an area 10 km 10 km. The dimensions of the conduc-
tors and related data are presented in Table III. The pd for these
cases has been produced by means of an ANN [5], as explained
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(a)

(b)

Fig. 10. Number of nodes examined until the BMU is located for (a) the gradient search algorithm and (b) the variable start node algorithm.

in Section II. The problems belong to a family of problems with
similar geometry, for which the ANN has been trained to predict
the mesh density. The examples also demonstrate the capability
of the proposed mesh generator to cope with cases where small
features are present in a large solving region and high irregular-
ities are present in the input pd.

Table IV presents the number of nodes and elements for test
cases (a) to (d), as well as the CPU time for the mesh generation
on a Pentium based machine at 200 MHz, with 64 MB of RAM,
running a Linux operating system. In addition, the mean quality
of the mesh of the triangles for each test case, as well as the
worst, best and joint quality factors obtained are presented. The
quality of a triangle , having sides of length, , has been
defined as [20]

(13a)

(13b)

To calculate the mean quality factorof the whole mesh, the
weighted mean of has been used

(14)

where is the area of triangleand nel is the total number of
triangles in the mesh.

The joint quality factor of the mesh has been calculated
according to [20]

(15)

Table V reproduces the results from [10] for the test cases of
the L- and square-shaped domains. The proposed mesh gener-
ator produces similar results as the one proposed in [10]. It has
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(a)

(b)

Fig. 11. Number of nodes examined until the BMU is located for (a) the Cache algorithm and (b) the extended Cache algorithm.

a slight advantage in the mean quality factor and performs quite
better, concerning the minimum quality factor.

Fig. 6 presents meshes from test case (f) produced by the pro-
posed mesh generator in comparison with meshes obtained by
an adaptive meshing procedure starting from an CDT. The mesh
produced by the mesh generator had to be refined three times in
order to produce the same results as the CDT mesh, which had to
be refined 20 times. The complex voltage drop along the upper
left conductor of each test case has been calculated using the
FEM [19]. For this reason, a zero sequence system of currents,
having a magnitude of 1000 A per phase was applied to each
OTL. In test case (g), only the left half of the line was energized.
As a means of reference, the voltage drop has also been calcu-
lated by the electromagnetic transients program (EMTP) [22].
Results are presented in Table VI. The CPU time presented in-
cludes mesh generation. A reduction of CPU time from 50% up
to 70% has been recorded, which is very significant if a large
number of similar problems are to be solved.

In all test cases, the user-defined constantsand del have
been set equal to and del . The user defined func-
tions and are depicted in Fig. 7. These values have
been selected after experimenting with a variety of test cases
and have been found to be most suitable for the generation of
high-quality FEM meshes.

In order to present how the mesh develops into its final form,
Fig. 8 presents the C-shaped domain after 50, 100, 250, 500,
and 1100 nodes have been inserted into the initial CDT mesh. It
becomes apparent that even at the beginning of the procedure,
high-quality meshes are produced, which follow the prescribed
mesh density vector.

Test case (c) has been probed further, in order to investigate
the amount of time spent for the BMU location, as well as the
influence of erroneous BMU detection on the stability of the al-
gorithm. The mesh generator was asked to produce a final mesh
by adding 6000 nodes to the existing nodes of the initial CDT
mesh. In the first case, the absolute BMU was located using (1)
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(a) (b)

Fig. 12. (a) Percentage of erroneous BMU detection for test cases (a)–(d) (L, O, T, C) and four detection algorithms. (b) Averaged relative distances between
detected and actual BMU.

(a) (b)

Fig. 13. (a) Standard deviation for the BMU detection percentages presented in Fig. 12(a). (b) Standard deviation for the averaged relative distances presented in
Fig. 12(b).

(Fig. 9, curve 1). Then, the techniques presented in Section IV
were used. Curve 2 represents the gradient search algorithm,
curve 3 the variable start nodes technique from [12], curve 4 the
Cache array method, and finally, curve 5 the extended Cache
array technique.

The first two techniques are obviously unacceptable for the
production of large meshes. The variable start nodes technique
presented in [12] greatly reduces the BMU location time, al-
though the Cache array method appears to outperform it after a
critical point, which in the presented case is near 5000 nodes.
The fastest method, as expected, is the extended Cache array
method.

The variable start node, the Cache and the extended Cache
algorithms utilize the gradient search algorithm by issuing a

good starting point to begin the search for the BMU. Each
method introduces a different approach, but all three expect
that the actual BMU will be near the starting point. A number
of nodes are examined, until no neighboring node is nearer to
the input vector than the current node examined. The number
of nodes that have to be examined until the algorithm comes to
a stop will highlight the behavior of each algorithm. Therefore,
this number has been recorded as a function of the number
of BMU detections having taken place for test case (c). For
6000 node insertions, BMU
detections took place. This way, four graphs were generated
depicted in Figs. 10 and 11.

As expected, the number of examined nodes increases as
the mesh grows in the case of the gradient search algorithm
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[Fig. 10(a)] and in the case of the variable start node algorithm
[Fig. 10(b)]. This is in agreement with the computational com-
plexity analysis of Section V. The number of nodes examined
in the case of the Cache algorithm [Fig. 11(b)] stabilizes after
a short peak at the beginning of the mesh growing procedure.
According to this graph the algorithm should be of com-
plexity. Still, time spent to locate the starting node from within
the Cache array increases as the mesh grows, because the size
of the array increases as well, as explained in Section IV. In
the case of the extended Cache algorithm, the number of nodes
examined stabilizes at 1 or 2 after a short peak at the beginning.
This means that the BMU is located at most at a direct neighbor
of the starting node. Both algorithms rely on the discipline that
LG NN organize themselves in such a fashion that topologically
close elements in the network should have similar input vectors
mapped onto them and vice versa [21]. Thus, the short peak
present in both cases may be explained by the fact that in the
beginning the NN has not yet adapted itself perfectly to the pd.

The utilization of the above techniques introduces a propor-
tion of error in the location of the BMU, since the absolute
BMU may not be found in some cases, especially in nonconvex
regions [12]. To explore the introduced error, test cases (a) to (d)
have been considered. The proposed mesh generator was asked
to produce a mesh of additional 3000 nodes to the nodes already
present in the CDT, thus BMU
locations took place in each case. The percentage of failing to
locate the absolute BMU has been recorded and the numerical
experiment was repeated until the recorded percentage would
stabilize at a constant value. From 10 to 25 repetitions were
necessary varying from case to case. Results are presented in
Fig. 12(a), along with the standard deviationof the recorded
erroneous BMU location percentages from the presented av-
erage [Fig. 13(a)]. The gradient search algorithm produced
the worst results. The Cache array method, on the other hand,
produced better results, but with a great deviation from the
mean value. The variable start nodes and the extended Cache
array techniques produced the best results. The percentage of
erroneous BMU location is at worst 0.1%, while deviation is
minimal.

Additionally, for the cases where erroneous BMUs were lo-
cated, the relative averaged distance between the absolute and
the detected BMU has been recorded and presented in a similar
fashion in Fig. 12(b), along with the corresponding standard de-
viation [Fig. 13(b)]. The distances have been normalized to the
length of each domain. The variable start node algorithm and the
extended Cache algorithm again performed better than the other
methods. The highest averaged relative distance of about 50%
was recorded in test case (c) when the gradient search algorithm
was applied.

In order to exemplify the influence of erroneous BMU detec-
tion on the output of the mesh generator test case (e) has been
triangulated under the precondition that the percentage of erro-
neous BMU detections is, successively, 100%, 50%, and 0%.
The corresponding meshes are presented in the left column of
Fig. 14. The right column zooms on the right conductor of each
case. Apparently, the algorithm is quite insensitive to the per-
centage of erroneous BMU detections, since even at 50% error
the resulting mesh preserves the mesh density vector, although

Fig. 14. Left column: Overall view of the mesh produced by the mesh
generator for test case (e) for various predefined percentages of erroneous
BMU detections. Right column: Zoom onto the right conductor for the
corresponding mesh presented on the left.

not as close as in the case of 0% error. As expected, in the case of
100% the resulting mesh follows a random mesh density vector.
Obviously, results depend on the input mesh density vector. The
influence of erroneous BMU detection will become higher as
the concentration of the input signals is in a certain area of the
domain, compared to the rest of the domain, becomes higher
as well. Therefore, the example presented here can qualify as
a worst-case scenario, since the majority of the input vectors is
concentrated around the conductors. Bearing this in mind, the
recorded percentages of erroneous BMU detection presented in
Fig. 12(a) should be considered to have minimal influence on
the output of the mesh generator.

VII. CONCLUSION

A mesh generator based on LIG ANNs has been proposed.
The mesh generator produces a triangular mesh according to
a probability distribution of points on the plane. The initial
mesh is a CDT of the domain to be triangulated. The mesh
generator has been tested to a number of cases and was able to
produce good-quality meshes. Two techniques for accelerating
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the mesh generator have been introduced and their properties
have been investigated. One of the proposed techniques reduces
the computational complexity of locating the BMU to. The
proposed mesh generator may be used in addition to a mesh
density prediction technique, in order to fully automate the
mesh generation process. The Cache and the extended Cache
technique for accelerating the training process may be applied
to LIG ANNs, regardless of the application, hence, not only
for mesh generation purposes.
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