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Abstract

The in7uence of a faulted electrical power transmission line on a buried pipeline is investigated. The induced electromagnetic
)eld depends on several parameters, such as the position of the phase conductors, the currents 7owing through conducting
materials, and the earth resistivity. A fuzzy logic system was used to simulate the problem. It was trained using data derived
from )nite element method calculations for di9erent con)guration cases (training set) of the above electromagnetic )eld
problem. After the training, the system was tested for several con)guration cases, di9ering signi)cantly from the training
cases, with satisfactory results. It is shown that the proposed method is very time e:cient and accurate in calculating
electromagnetic )elds compared to the time straining )nite element method. In order to create the rule base for the fuzzy
logic system a special incremental learning scheme is used during the training. The system is trained using genetic algorithms.
Binary and real genetic encoding were implemented and compared. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy logic; Genetic algorithms; Fuzzy modeling; Inductive interference

1. Introduction

The word fuzzy in its technical meaning appeared
for the )rst time in the scienti)c community by
Prof. Lot) Zadeh [21]. Zadeh [21] laid the foundation
for many applications of the fuzzy logic systems (FLS
hereafter) in diverse areas like control systems, pat-
tern recognition, forecasting, reliability engineering,
signal processing, monitoring, and medical diagnosis
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that have appeared during the last few years. Fuzzy
set theory as well as various applications are presented
thoroughly in [22].

On the other hand, the underlying principles of
genetic algorithms (GAs hereafter) were )rst pub-
lished by Holland [7]. The mathematical frame-
work was developed in the late 1960s and is
presented by Holland’s pioneering book “Adap-
tation in Natural and Arti)cial Systems”, pub-
lished in 1975 [8]. GAs have been also used in
many diverse areas that require parameter train-
ing such as function optimization, image process-
ing, system identi)cations, etc. A good reference
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Fig. 1. Cross-section of the examined electromagnetic )eld problem.

on GAs and their implementation is the book of
Goldberg [4].

The present paper presents a combination of fuzzy
logic and genetic algorithm techniques for the cre-
ation of a system that calculates the electromagnetic
)eld induced by a faulted transmission line to the sur-
rounding area and the induced voltage on a nearby-
buried pipeline. The inductive interference problem
between a faulted overhead transmission line and a
nearby-buried pipeline is of growing practical inter-
est, due to restrictions currently imposed on public
utilities in the use of right-of-ways. These restrictions
have resulted in situations in which overhead trans-
mission lines, pipelines, railroads, telecommunication
lines, etc., have to be laid in straight narrow corri-
dors for several kilometers. This policy minimizes the
amount of land used but a faulted overhead transmis-
sion line in such a corridor causes signi)cant interfer-
ence to nearby parallel conductors. The mentioned
interference is governed by Maxwell’s electromag-
netic )eld equations and depends upon several param-
eters such as the geometry, the boundaries and the
electromagnetic properties of the materials. Recently,
a )nite element method (FEM) approach has been pro-
posed [15–17], in order to solve this problem in two
dimensions. FEM is an accurate numerical method,
but its main disadvantage is that the computing time
may increase tremendously with the number of the )-
nite elements [18], resulting to a huge computational
e9ort.

This paper suggests the following steps for reducing
the computational e9ort: (a) the problem is solved for
several sets of parameters using FEM and a database
(training set) is built, (b) a fuzzy logic system is built
and trained using the training set, and (c) for a new
set of parameters (evaluation set) the solution is found
in negligible small computing time using the trained
fuzzy rules.

The fuzzy logic system is trained using genetic
algorithms; the result is called genetic fuzzy sys-
tem. Genetic fuzzy systems (GFS) are already in
use in the last years [1–3,5,6,9–12,14,19] and have
led to standard coding schemes and genetic opera-
tors. Unlike FEM the GFS does not su9er in case
the solution space is non-convex and once it has
been trained it can calculate the electromagnetic
)eld in fractions of a second, which is very helpful
especially if the environmental parameters change
rapidly.

2. Description of the problem

An overhead transmission line with a single-phase
fault runs in parallel with a buried pipeline (Fig. 1).
More details about this con)guration are given in
[15–17]. The magnetic vector potential (MVP) is
sought. Having the MVP, it is easy to calculate in-
duced voltages across pipeline and earth, which is an
important engineering task. The solution is governed
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by the di9usion equation

1
�

[
@2Az

@x2 +
@2Az

@y2

]
− j!�Az + Jsz = 0;

− j!�Az + Jsz = Jz:

(1)

where � is the permeability, Az the phasor of vector
potential, x; y are the point coordinates, � the conduc-
tivity, ! the current frequency, and Jsz the current den-
sity. The solution depends on the boundary conditions,
the geometry, and the material properties (Fig. 1). In
this paper we only consider as variables the point co-
ordinates (x; y) where we calculate MVP, the sepa-
ration distance d, and the soil resistivity �. Although
there are many other parameters (variables) to con-
sider, we restricted the variables in order to show in a
simple way the e9ectiveness of the proposed method.

3. The method

The MVP is found by solving the di9usion equa-
tion for several sets of parameters d; � using the )nite
elements procedure of [15–17]. The MVP at coordi-
nates (x; y) for other sets of parameters d; � is found
by extrapolation of the known results in the space of
the parameters. This extrapolation is made using fuzzy
logic techniques. Fuzzy rules are trained using genetic
algorithms. The aim of the training is to minimize the
average rms error between the real MVP values and
the fuzzy system’s outputs. The procedure is as de-
scribed below.

A database is built which contains the FEM solu-
tions for di9erent sets of d; � at various points. This
set of calculations is called training data set (TDS)
and contains the training patterns of the fuzzy logic
system (FLS) to be trained.

The training patterns of the system consist of four
inputs and one output. The inputs are

(a) the separation distance d between the overhead
transmission line and the buried pipeline,

(b) the coordinate x,
(c) the coordinate y of a point in the cross-section

of the TLS, and
(d) the soil resistivity �. The single output is the

MVP A(x; y) at point (x; y). The rules of each
FLS consist of two premise inputs (variables):
the separation distance and the soil resistivity,

and two consequence inputs, which are the dis-
tance l of point (x; y) from the faulted line and
the distance l′ of point (x; y) from the buried
pipeline.

The jth fuzzy rule (Rj) may be described as follows:

Rj: IF d and � belong to the jth membership

functions �j
d and �j

� correspondingly

(premise part of the jth rule)

THEN Aj = �j
0 + �j

l
1

l2 + c
+ �j

l′
1

l′2 + c
(consequence part of the jth rule) (2)

where

l =
√

x2 + y2; l′ =
√

(x − d)2 + (y − dp)2;

c = 10−10; (3)

j = (1; : : : ; m); m is the number of rules, c is a constant
to prevent over7ow in case the point is located on
the pipeline or coordinates (0; 0); d; � are the premise
input variables of the FLS, dp is the depth at which
the pipeline is buried, Aj is the MVP proposed by the
jth rule and �j

d; �j
� are the membership functions that

de)ne the jth fuzzy rule. The parameters �j
0; �j

l ; �
j
l are

the consequence part coe:cients of the jth rule and
de)ne its output. The membership functions used in
order to create the fuzzy inputs were chosen to be
Gaussian as it is described below:

�j
�(�) = exp

[
−1

2

(
� − R�j

�

�j
�

)2
]

; (4)

where “�” stands for the premise input and takes the
values d; �. In addition R�j

d; R�j
� are the mean values and

�j
d ; �j

� are the standard deviations of the membership
functions (Fig. 2). Trapezoid and triangular member-
ship functions have also been used, leading to a less
accurate system.

In order to produce the actual output of the FLS, the
weighted average interface [21], which is a commonly
used method, has been selected. Therefore the output
of the FLS de)ned above, i.e. the MVP in a point with
coordinates x; y for separation distance d and earth
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Fig. 2. Representation of the fuzzy search space and corresponding membership functions (MF). Further division of premise input d with
the introduction of a new MF.

resistivity �, is given by

A(d; �) =

∑m
j=1 Aj�j∑m

j=1 �j
; (5)

where

�j = �j
d(d)�j

�(�) (6)

is the )ring strength for rule Rj by the input vector
(d; �), while Aj is the output of rule Rj as de)ned in (2).

If q is the number of training patterns in the train-
ing data set (TDS), the FLS is trained by introducing
it with the set of q patterns (dp; xp; yp; �p=Ap

FEM; p =
1; : : : ; q). The average rms error Jav of the FLS is de-
)ned by

Jav =
1
q

q∑
p=1

J p; (7)
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Fig. 3. String representing the kth fuzzy logic system of the GFS.

where the rms error Jp of the FLS for pattern p is
given by

J p = 1
2 |Ap

FLS(d; x; y; �) − Ap
FEM(d; x; y; �)|2; (8)

in which Ap
FLS(d; x; y; �) and Ap

FEM(d; x; y; �) are the
calculated values of MVP for pattern p obtained from
FLS and FEM, respectively. We de)ne training to
be the minimization of the average rms error, which
means that the )nally determined FLS corresponds to
the highest accuracy in MVP calculation that could be
obtained with this method.

3.1. GA for the training of the fuzzy parameters

3.1.1. Chromosome structure
The parameters of each FLS of the proposed GFS

that have to be adjusted through the training pro-
cedure are the parameters of the membership func-
tions R�nmf (�)

� ; �nmf (�)
� (for � = d; � and nmf (�) is the

number of membership functions used to partition
each premise input �) and �j

� (for � = 0; l; l′ and
j = 1; : : : ; m).

The GA that has been developed for the adjustment
of the FLS parameters seeks the optimum FLS that
presents the minimum rms error Jav. Every FLS of the
GFS is represented by a vector of its parameters Ck ,
given by

Ck = (�nmf(�)k
� ; �nmf(�)k

� ; �jk
� );

� = d; �; � = 0; l; l′; j = 1; : : : ; m;
(9)

where k (k = 1; : : : ; s) is the index number of the FLS
and s is the population size (i.e. the number of the

FLS that constitute the GFS). In this paper s has been
chosen equal to 50.

In the developed GFS two parameter-coding
schemes were used, binary and real. In the binary
coding, 8 bits resolution for every parameter was
used. A vector of bits or real numbers (chromosome)
is constructed, which embodies the FLS parameters
(9). The vectors of the kth FLS for m = 32 rules are
shown in Fig. 3.

3.1.2. Fitness function of the genetic algorithm
The )tness function of the kth FLS-chromosome

has been selected to be

fk =
1

J k
av + a

(k = 1; : : : ; l); (10)

where Jav is given by (7) and � = 0:0001 is a con-
stant used to prevent over7ow in case Jav becomes
very small. The GA maximizes the )tness function fk ,
leading to the minimization of J k

av.

3.1.3. GA operators, rules optimization
The evolution, which leads from the initial popula-

tion of FLS to the best FLS, is described as follows:

3.1.3.1. Selection. After the evaluation of the initial
randomly generated population, the GA begins the cre-
ation of the new FLS generation. FLS-chromosomes
from the parent population are selected in pairs
to replicate and form o9spring FLS-chromosomes.
The FLS-chromosome selection for reproduction
is performed using the method of Roulette wheel
selection [4].
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Fig. 4. Multi-point crossover operator.

3.1.3.2. Crossover. When two chromosomes are se-
lected, their vectors are combined in order to produce
two new FLS using genetic operators. The main oper-
ators used are crossover and mutation and are applied
with varying probabilities. So, if a probability test is
passed crossover takes place. If the probability test
fails, the produced children are identical replications
of their parents.

In the binary GA a multi-point crossover operator
has been used as shown in Fig. 4.

In the real GA theMax–min-arithmetical crossover
operator was used [5]. If Ct

v and Ct
w are to be crossed

four possible children are created:

Ct+1
1 = �Ct

w + (1 − �)Ct
v;

Ct+1
2 = (1 − �)Ct

w + �Ct
v;

Ct+1
3 with ct+1

3k = min{ck ; c′k};

Ct+1
4 with ct+1

4k = max{ck ; c′k}:

(11)

Parameter � is a constant equal to 0.5 for our exper-
iments. The two children who have the higher )tness
are chosen to replace the parents in the new population.

3.1.3.3. Mutation. In the binary coding every bit of
the o9spring chromosomes undergoes a probability
test and if it is passed, the mutation operator shown
in Fig. 5 alters that bit. In the real coding the same
probability test is performed with higher mutation
probability and if passed Michalewicz’s non-uniform
mutation operator is applied [14]. This operator is
described below:

If Ct
v = (c1; : : : ; ck ; : : : ; cL) is an FLS-chromosome

vector and ck is an FLS parameter that is chosen to be
mutated, the new parameter cmut

k will be after mutation:

cmut
k =

{
ck + $(t; ckr − ck) if r = 0;

ck − $(t; ck − ckl) if r = 1;
(12)

where L is the chromosome length, (ckl; ckr) the do-
main of parameter ck (k ∈ 1; : : : ; L); r a random bit,
and function $(t; y) returns a value in the range [0; y]
such that the probability of the returning value being
close to 0 increases with t:

$(t; y) = y(1 − n(1−t=T )b
);
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Fig. 5. Mutation operator.

where n is a random 7oating-point number in the in-
terval [0; 1], t the current generation, T the maximum
number of generations, and b a parameter chosen by
the user, which determines the degree of dependency
with the number of generations. In that way the op-
erator makes a uniform search at the beginning of
the training and in later stages narrows the search
around the local area of the parameter resembling a
hill-climbing operator. For our experiments b was cho-
sen equal to 5 [3].

3.1.3.4. Varying operator probabilities. It should be
mentioned that chromosome selection method and
crossover operator lead to population convergence,
while mutation operator helps to maintain population
diversity. If premature convergence or excessive di-
versity occurs, the training becomes ine:cient. In this
system crossover probability ranges from 40% to 90%
per chromosome while mutation probability ranges
from 0.04% to 0.24% per bit and 1% to 10% per
real parameter. Premature convergence is monitored
by extracting statistical information from the popula-
tion. When premature convergence is observed, the
crossover probability is lowered by 10% while mu-
tation probability is increased by 0.004% per bit and
0.2% per real parameter. When excessive diversity
occurs, the crossover probability is increased by 10%
while mutation probability is lowered by 0.004% per
bit and 0.2% per real parameter.

3.1.3.5. Elitism. The procedure for the two FLS-
chromosomes described previously is repeated until
all the FLS of the parent generation are replaced by the

FLS of the new generation. The best FLS of the par-
ent population is copied to the next generation while
the best FLS found in all the previous generations
is stored, so that the probability of their destruction
through a genetic operator is eliminated. According
to the schemata theory [5] the new generation usually
provides a better average )tness.

3.2. Fuzzy rule base incremental creation
mechanism

The aim of a fuzzy logic system (or model) is the
acquisition of a knowledge (rule) base that represents
the input–output function of the real system or prob-
lem that we want to model. The objective of the learn-
ing process is to create and then )ne tune the fuzzy
sets and rules consisting the rule base so as to meet
user speci)ed performance criteria of the system, in
our problem minimization of the error in MVP calcu-
lation. In this context the training=learning of the rule
base can be considered as a parameter optimization
problem. The parameters to be optimized are the cen-
ters and deviations of the fuzzy membership functions
and the consequence part coe:cients of each fuzzy
rule. The encoding of these parameters lengthens a
chromosome by 56 bits per rule (8 bits per parame-
ter) in case of binary coding and by 7 real numbers
in case of real coding. It is obvious that a complex
fuzzy system with a large number of rules results in a
huge chromosome and the )nding of the optimal rules
becomes a search for the “needle in the haystack”.

In case of two premise inputs the number of param-
eters remains tractable, but it grows rapidly with an
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Fig. 6. Partitioning of the premise input d into two sub-domains linguistically expressed as “pipeline is near to the transmission line” and
“pipeline is far from the transmission line”.

increasing number of membership functions per
premise input. The number of rules for each FLS of
the proposed GFS is not constant but gradually in-
creases in order to partition the overall optimization
problem to smaller, more feasible steps. The creation
of the rule base takes place in the following two steps:

1. The system scans the training database locating
the number of n discrete values in the earth resistivity
� premise input domain. The domain of the premise
input “earth resistivity” is then partitioned with the
introduction of n membership functions centered on
these values:

R�q
� = �q; q = 1; : : : ; n;

�q
� =

�max − �min

n
:

(13)

This is possible because the “soil resistivity” vari-
able takes only a few values, in our problem eight,
so the system does not become very complex. These
membership functions are centered on the patterns so
they do not need training leading this way to a smaller
chromosome.

2. Gradual partitioning of the “separation dis-
tance” premise input. Separation distance between
the pipeline and the transmission line varies from 0 to
more than 2km so we cannot follow the technique we
used for earth resistivity. Training begins with input

d containing only one membership function, form-
ing eight rules (Fig. 2(a)). That initial membership
function must cover the entire range of the premise
input for the following reason: Let us assume that the
initial membership function covers only partially the
premise space and the system encounters a pattern
that is beyond the range on the membership function.
Eq. (6) gives that the )ring strength of every rule for
this pattern will be zero. The weighted average (5)
that produces the output of the system encounters a
division by zero resulting in an over7ow. Of course,
this means that the calculated error (8) is in)nite and
there can be no continuance of the training since all
the FLS individuals will have the same bad perfor-
mance hence there can be no selection of the )ttest.

The system optimizes the consequence part coe:-
cients � of the existing eight rules for 100 generations.
If the desired accuracy is achieved (for our problem
2%) the training is complete. If not then the domain
of the input d is partitioned into two sub-domains, us-
ing two, partially overlapping fuzzy sets with the re-
sult that the knowledge base now contains 16 rules
(Fig. 2(b)). The parameters of the two new fuzzy sets
that derive from the original fuzzy set are (Fig. 6):

a1
new =

dmax − dmin

3
; (14a)
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Table 1
Training data set used for the training of the two GFS. Input variables are the earth resistivity �, the separation distance d and the
coordinates x and y of points in the earth around the pipeline neighborhood, including pipeline itself. Output for the )rst GFS is the
amplitude and for the second GFS the phase of the MVP as they were calculated with the FEM

� (U m) d (m) x (m) y (m) MVP(amplitude) (Wb=m) MVP(phase) (deg)

30 70 70.00 −15:00 3:61E − 04 −22:80
30 70 81.66 −27:03 3:29E − 04 −25:57
30 100 100.00 −30:00 2:99E − 04 −31:23
30 800 770.00 −30:00 4:23E − 05 −82:64
30 800 785.00 0.00 4:27E − 05 −78:83
30 800 818.25 −13:50 3:88E − 05 −82:61
30 1000 1030.00 −15:00 2:48E − 05 −90:27
30 2000 1970.00 −22:50 4:76E − 06 −108:10
30 2000 2000.69 −8:61 4:65E − 06 −108:54
70 400 384.81 −7:82 1:72E − 04 −44:46
70 400 392.25 −25:56 1:67E − 04 −46:05
70 400 424.77 −6:93 1:58E − 04 −46:72
70 1000 970.00 −15:00 5:95E − 05 −73:04
70 1000 1007.50 0.00 5:68E − 05 −72:98
70 1000 1015.00 −30:00 5:47E − 05 −76:05

100 70 40.00 −30:00 5:09E − 04 −20:45
100 70 40.00 −15:00 5:38E − 04 −19:34
100 70 40.00 0.00 5:59E − 04 −18:53
100 100 92.25 −25:56 4:15E − 04 −23:98
100 800 770.00 0.00 1:04E − 04 −59:87
100 1000 980.55 −16:99 7:58E − 05 −67:10
100 1000 1015.00 −30:00 7:16E − 05 −69:22
100 1000 1022.50 0.00 7:23E − 05 −67:27
300 300 312.38 −8:10 3:17E − 04 −29:23
300 300 324.05 −23:53 3:10E − 04 −30:00
300 2000 2007.50 0.00 5:86E − 05 −72:55
500 200 215.00 −30:00 4:18E − 04 −23:83
500 300 281.66 −27:03 3:75E − 04 −25:93
500 300 290.36 −15:80 3:71E − 04 −26:01
500 300 322.50 0.00 3:55E − 04 −26:74
500 1000 1030.00 −15:00 1:70E − 04 −44:60
700 150 120.00 −15:00 5:46E − 04 −19:26
700 400 384.81 −7:82 3:52E − 04 −26:89
700 700 670.00 −22:50 2:60E − 04 −33:74
700 700 690.36 −15:80 2:56E − 04 −34:07
700 700 712.38 −8:10 2:51E − 04 −34:41
900 150 150.55 −16:99 5:30E − 04 −19:70
900 200 194.77 −6:93 4:88E − 04 −20:90
900 800 830.00 −30:00 2:46E − 04 −35:01
900 1500 1499.09 −17:48 1:56E − 04 −46:35
900 1500 1524.77 −6:93 1:54E − 04 −46:56

1000 70 54.81 −7:82 7:03E − 04 −15:94
1000 150 131.66 −27:03 5:58E − 04 −18:98
1000 500 524.05 −23:53 3:29E − 04 −28:27
1000 2000 2030.00 −15:00 1:22E − 04 −52:73
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a2
new =

2(dmax − dmin)
3

; (14b)

�1;2
new = 0:6�old : (14c)

The consequence part coe:cients � of the newly
created rules (Fig. 2(b)) remain the same as the ones
of the original rules. In that way, the behavior of the
fuzzy system is not greatly disturbed by the fuzzy set’s
division. The partitioned premise input d can now be
expressed by two linguistic variables: (1) the pipeline
is near the faulted transmission line or (2) the pipeline
is far from the faulted transmission line. This allows
a more detailed modeling of the problem in the struc-
ture of the FLS. While before the partitioning the FLS
could only be trained on the in7uence of the soil’s re-
sistivity on the MVP distribution, it can now produce
di9erent outputs depending on the distance between
the pipeline and the transmission line. The knowledge
that was acquired through the )rst step is now ex-
tended and not discarded since the new fuzzy rules in-
herit the input=output function (� coe:cients) of the
original rules during initialization. During the training
these coe:cients will change so that they produce a
more specialized output than the generic one of step 1.

The chromosome is expanded in order to include the
parameters of the newly created rules (�new

d ; �new
d ; �j′

0 ;

�j′

l ; �j′

l′ ), for new = 1; 2 and j′ = 1; : : : ; 16. The new
fuzzy sets can shift and dilate during training. In or-
der to prevent complete overlapping, the overlapping
between fuzzy sets of input d is restricted to a max-
imum of half the fuzzy set’s standard deviation �.
Again training of the new parameters takes place for
200 generations and the performance is checked. A
similar incremental building of the fuzzy rule base can
be found in [9].

The gradual partitioning of the existing sub-
domains continues until the performance criterion
is met or until a maximum number of fuzzy sets is
reached. This number is chosen to be four (linguis-
tically “very near”, “near”, “far”, “very far”) so that
the system does not become too complex. If premise
input d is partitioned in four parts the resulting fuzzy
rules are 32.

As it was mentioned in Section 3.1.3.5 a part of the
elitism operator is the storage of the best chromosome
(FLS) that was found in all the previous generations.
This ensures that the expansion of the chromosome

Fig. 7. Binary GA vs. real GA. Best out of 20 runs.

and the addition of fuzzy rules will not ruin a possible
better solution that appeared in a previous expansion
step. Experiments though showed that the )nal FLSs
are always more accurate than the simpler ones which
is something that can be expected since the more rules
the FLS has the more adapted to the patterns it is,
which in turn leads to a smaller average error.

4. Creation of the training data set

The MVP is a phasor quantity and it is de)ned
by its amplitude and its phase. Since the FLS of the
developed GFS have a single output, two di9erent GFS
are required to calculate complex MVP nodal values,
a GFS for MVP amplitude and a GFS for MVP phase.
Therefore, the TDS must have two outputs, one for
the amplitude and the other for the phase training,
respectively. Using the optimum FLS, derived after
training of the GFS, it is possible to calculate the MVP
values in the area of the complex electromagnetic )eld
problem of Fig. 1.

A training data set (TDS) for the GFS has been
calculated for the TLS shown in Fig. 1 for IF = 1000A
and di9erent sets of � and d using the FEM procedure
described in detail in [15–17].

Various (x; y) points have been chosen in the earth
around the pipeline neighborhood, as well as on the
pipeline itself. For each of those points, di9erent
separation distances d and earth resistivities � have
been selected. As shown in the TDS of Table 1, the
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Table 2
MVP amplitude distribution in the earth around the pipeline neighborhood, including pipeline itself, for several new con)guration cases of
the examined electromagnetic )eld problem, obtained by the FEM and the best FLS of the GFS, respectively. The FLS calculation errors
= |[(AFEM − AB-FLS)AFEM] · 100| are also reported

� (U m) d (m) x (m) y (m) AFEM (Wb=m) AB-FLS (Wb=m) Error (%)

70 100 124.77 −6:93 3:47E − 04 3:47E − 04 0.04
70 150 120.00 0:00 3:50E − 04 3:56E − 04 1.55
70 150 162.38 −8:10 2:86E − 04 3:04E − 04 6.06
70 200 199.81 −1:75 2:55E − 04 2:73E − 04 6.77
70 200 200.00 −30:00 2:53E − 04 2:66E − 04 4.92
70 300 281.66 −27:03 2:15E − 04 2:16E − 04 0.35
70 300 299.81 −1:75 2:12E − 04 2:10E − 04 0.75
70 300 322.50 0:00 2:07E − 04 1:99E − 04 4.24
70 500 485.00 0:00 1:48E − 04 1:41E − 04 4.63
70 500 499.81 −1:75 1:46E − 04 1:36E − 04 7.66
70 700 699.09 −17:48 9:80E − 05 9:30E − 05 4.62
70 700 670.00 −15:00 9:90E − 05 9:80E − 05 0.38
70 800 799.81 −1:75 8:50E − 05 7:90E − 05 6.86
70 800 822.50 0:00 8:40E − 05 7:70E − 05 9.95

150 170 169.81 −1:75 3:46E − 04 3:61E − 04 4.02
150 170 169.09 −17:48 3:46E − 04 3:59E − 04 3.58
150 250 260.11 −21:49 2:85E − 04 2:89E − 04 1.49
150 250 274.05 −23:53 2:80E − 04 2:80E − 04 0.10
150 600 599.81 −1:75 1:58E − 04 1:64E − 04 3.58
150 600 600.00 −30:00 1:58E − 04 1:62E − 04 2.45
150 800 799.81 −1:75 1:19E − 04 1:24E − 04 4.25
150 800 790.36 −15:80 1:19E − 04 1:25E − 04 4.79
150 800 830.00 −15:00 1:18E − 04 1:19E − 04 0.97
150 900 900.00 −30:00 1:08E − 04 1:08E − 04 0.17
150 900 899.81 −1:75 1:08E − 04 1:09E − 04 1.06
150 900 892.50 0:00 1:08E − 04 1:10E − 04 1.81
150 1500 1500.69 −8:61 5:40E − 05 5:40E − 05 0.02
400 170 169.81 −1:75 4:43E − 04 4:43E − 04 0.01
400 250 231.66 −27:03 3:89E − 04 3:88E − 04 0.19
400 250 249.09 −17:48 3:83E − 04 3:77E − 04 1.47
400 600 599.81 −1:75 2:39E − 04 2:36E − 04 1.20
400 800 770.00 −30:00 1:96E − 04 1:96E − 04 0.00
400 800 824.77 −6:93 1:94E − 04 1:87E − 04 3.89
400 900 900.00 −30:00 1:82E − 04 1:73E − 04 5.32
400 1500 1524.05 −23:53 9:60E − 05 1:03E − 04 6.64
400 1800 1781.66 −27:03 8:40E − 05 8:40E − 05 0.01
400 1800 1792.50 0:00 8:40E − 05 8:40E − 05 0.01
600 170 169.81 −1:75 4:89E − 04 4:78E − 04 2.33
600 250 220.00 −30:00 4:20E − 04 4:30E − 04 2.27
600 250 249.81 −1:75 4:06E − 04 4:12E − 04 1.46
600 600 570.00 0:00 2:62E − 04 2:76E − 04 4.92
600 600 599.81 −1:75 2:60E − 04 2:67E − 04 2.78
600 800 784.81 −7:82 2:17E − 04 2:24E − 04 3.31
600 800 799.81 −1:75 2:16E − 04 2:22E − 04 2.74
600 900 884.81 −7:82 2:03E − 04 2:06E − 04 1.45
600 900 918.25 −13:50 2:02E − 04 2:00E − 04 1.00
600 1500 1507.50 0:00 1:30E − 04 1:29E − 04 0.72
600 1500 1499.81 −1:75 1:30E − 04 1:30E − 04 0.04
600 1800 1790.36 −15:80 1:06E − 04 1:07E − 04 0.55
600 1800 1799.81 −1:75 1:06E − 04 1:06E − 04 0.35
900 250 235.00 0:00 4:56E − 04 4:57E − 04 0.28
900 250 230.55 −16:99 4:59E − 04 4:59E − 04 0.08
900 900 870.00 −15:00 2:38E − 04 2:38E − 04 0.03
900 900 900.69 −8:61 2:37E − 04 2:33E − 04 1.74
900 1800 1792.50 0:00 1:32E − 04 1:32E − 04 0.05
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Fig. 8. Frequency distribution of the best fuzzy logic system errors, concerning (a) the amplitude, and (b) the phase of the magnetic
vector potential distribution in the earth around the pipeline neighbourhood including pipeline itself.

separation distance d between the overhead transmis-
sion line and the buried pipeline varies between 70
and 2000 m, the earth resistivity � varies between
30 and 1000 U m, coordinate x takes values between
40 and 2030 m and )nally coordinate y takes val-
ues between 0 and −30 m. This range of the input
variables d; x; y; � in the TDS leads to a FLS, which
is capable to determine the MVP values in the earth
around the pipeline neighborhood, including pipeline
itself.

5. Performance analysis

Real-coded GA proved to be more e:cient than
the binary-coded one. While both implementations
needed almost the same time to produce a generation,
the real-coded GA required fewer generations in or-
der to converge (Fig. 7). Someone would expect that
real coding would be faster than binary since there
is no need for breaking down the chromosomes and
decoding the FLS parameters, but this advantage dis-
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Table 3
Fuzzy rules’ parameters of the best FLS of the GFS including the centers and standard deviations of the membership functions

Rule no. �d �4 �p �p �0 �l �l′

1 200 247 30 100 0.000261 0 0
2 700 249 30 100 0 0 0.01955
3 1322 165 30 100 0.000018 12.02346 10.86999
4 1899 119 30 100 0.000298 10.43988 13.64614
5 200 247 70 100 0.00003 1.270772 0
6 700 249 70 100 0.00002 0.136852 0.039101
7 1322 165 70 100 0.000002 5.806452 0.273705
8 1899 119 70 100 0.000313 17.10655 6.549365
9 200 247 100 100 0.000187 3.460411 0

10 700 249 100 100 0.000116 17.49756 14.15445
11 1322 165 100 100 0.00004 6.529814 2.776149
12 1899 119 100 100 0.000504 7.781036 19.08113
13 200 247 300 150 0.000604 2.482893 0.078201
14 700 249 300 150 0.000192 11.12415 13.15738
15 1322 165 300 150 0.000124 19.98045 19.98045
16 1899 119 300 150 0.000062 2.776149 19.04203
17 200 247 500 150 0.000033 0.351906 0.938416
18 700 249 500 150 0.000126 3.773216 1.661779
19 1322 165 500 150 0.000015 4.496579 17.43891
20 1899 119 500 150 0.000076 6.744868 17.81036
21 200 247 700 150 0.000625 3.049853 0.097752
22 700 249 700 150 0.000187 19.98045 20
23 1322 165 700 150 0.00025 0.01955 7.44868
24 1899 119 700 150 0.000124 17.65396 9.442815
25 200 247 900 150 0.000064 2.502444 13.56794
26 700 249 900 150 0.000382 11.4565 0.449658
27 1322 165 900 150 0.000002 6.27566 0.54741
28 1899 119 900 150 0.000106 18.96383 17.43891
29 200 247 1000 100 0.000252 13.47019 1.505376
30 700 249 1000 100 0 1.642229 0.097752
31 1322 165 1000 100 0.000128 0.508309 17.1652
32 1899 119 1000 100 0.000155 0.195503 19.33529

appears due to the more complex crossover scheme
that requires more computational e9ort. On the other
hand, using 7oating-point numbers for the representa-
tion of the FLS parameters in the chromosome solves
the problem of how many bits should be used to rep-
resent a parameter accurately in a binary GA. Fig. 7
is a representation of the training process of binary
vs. real GA. The curves represent the best out of
20 runs.

After the training of the GFS down to an average
training error of 1.8%, the performance of the best
fuzzy logic system (B-FLS) has been tested in several
new con)guration cases of the examined electromag-
netic )eld problem. These cases have various sepa-

ration distances d between the overhead transmission
line and the buried pipeline as well as various earth re-
sistivities � and di9er signi)cantly from the cases used
for training. The training of the GFS has produced a
knowledge base consisting of m = 32 fuzzy rules.

Table 2 summarizes test results where MVP cal-
culations by the B-FLS and FEM have been com-
pared. Absolute errors have been computed as follows:
Error = |[(AFEM − AB-FLS)=AFEM] · 100|. The average
error in amplitude calculation is 2.5% and in phase
calculation 2.06%. For a new con)guration case, the
computing time using the B-FLS is negligibly small
(10−8 smaller) compared to the time needed for FEM
calculations.
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Fig. 9. Best fuzzy logic system errors, for various con)gurations of the examined electromagnetic )eld problem, concerning (a) the
amplitude, and (b) the phase of pipeline surface magnetic vector potential.

Considering the range of parameters used the fre-
quency distribution of the errors in MVP amplitude
and phase are shown in Figs. 8(a) and (b). It can be
seen that 77% of the errors in amplitude and 88% in
phase are less than 3% (see Table 3).

Fig. 9 shows the errors for various parameter �; d
con)guration cases. From Table 2, and Figs. 8 and 9 it
is evident that the B-FLS results are practically equal
to those obtained by FEM. It should be mentioned
that the MVP distribution is proportional to the fault

current, so the presented results may be easily used
for any given fault current IF.

Fig. 10 )nally shows the voltage per km induced
across pipeline and earth calculated with the proposed
method.

6. Conclusions

The magnetic )eld and the voltage induced by a
faulted transmission line on a buried pipeline have
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Fig. 10. Voltage per km induced across pipeline and earth as a function of distance d (cf. Fig. 1) for various soil resistivity values.

been calculated using )nite element method and fuzzy
techniques. The use of genetic algorithms in determin-
ing the optimal rules of fuzzy logic system has been
e:cient in providing accurate results. It is shown that
an expert system can be built by which interference
problems can easily and quickly be solved. The pro-
posed expert system was capable of determining the
induced voltage with an average error of less than 3%.
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