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Abstract

The influence of a faulted electrical power transmission line on a buried pipeline is investigated. A calculation tool is suggested.
Finite element solutions of field equations are used combined with artificial intelligence methods. The electromagnetic field
depends on several parameters, such as the position of the phase conductors, the currents flowing through the conducting
materials and the resistivity of the earth. A fuzzy logic system was used to simulate the problem. It was trained using data derived
from finite element method (FEM) calculations for different configuration cases (training set) of the above electromagnetic field
problem. After the training, the system was tested for several configuration cases, differing significantly from the training cases
with satisfactory results. It is shown that the proposed method is very time efficient and accurate in calculating the electromagnetic
fields compared to the time straining finite element method.

An important feature of the fuzzy logic system is that it consists of a varying rule base and is trained using genetic algorithms.
In order to create the rule base for the fuzzy logic system a special operation is used at the beginning of the training. Afterwards,
the training of the system is achieved with the use of a genetic algorithm (GA) that implements some special operators. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

The inductive interference problem between a faulted
overhead transmission line and a pipeline buried nearby
is of growing practical interest, due to the restrictions
currently imposed on public utilities in the use of
right-of-ways. These restrictions have resulted in situa-
tions in which overhead transmission lines, pipelines,
railroads, telecommunication lines etc., have to be laid
in straight narrow corridors for several kilometers. This
policy minimizes the amount of land used but a faulted
overhead transmission line in such a corridor causes
significant interference to nearby parallel conductors.

The above mentioned interference is governed by
Maxwell’s electromagnetic field equations and depends
upon several parameters such as the geometry, the

boundaries and the electromagnetic properties of the
materials. Recently a finite element method (FEM)
approach has been proposed [1–3] in order to solve this
problem in two dimensions. FEM is an accurate nu-
merical method, but its main disadvantage is that the
computing time may increase tremendously with the
number of the finite elements [4], resulting in a huge
computational effort.

The present paper suggests the following steps for
reducing the computational effort: (a) the problem is
solved for several sets of parameters and a database
(training set) is built; (b) a fuzzy logic system is built
and trained using the training set; and (c) for a new set
of parameters the solution is found using fuzzy rules.

The fuzzy logic system is trained using genetic al-
gorithms: the result is called a Genetic Fuzzy System.

Genetic fuzzy systems (GFS) are already in use over
the last several years [5–12] and have led to standard
coding schemes and genetic operators. This paper pre-
sents a new approach based on genetically e�ol�ed fuzzy
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Fig. 1. Cross-section of the examined electromagnetic field problem.

Fig. 2. String representing the kth Fuzzy Logic System of the developed Genetic Fuzzy System.

logic systems (FLS) to solve the problem of an over-
head transmission line’s electromagnetic field calcula-
tion in a fast and efficient way. Unlike FEM the system
does not suffer in case the solution space is non-convex,
and once it has been trained it can calculate the electro-
magnetic field in fractions of a second, which is very
helpful, especially if the environmental parameters
change rapidly.

2. Description of the problem

An overhead transmission line with a single phase
fault runs in parallel with a buried pipeline (Fig. 1).
More details about this configuration are in Refs. [1–3].
The Magnetic Vector Potential (MVP) is sought. Hav-
ing the MVP, it is easy to calculate the induced voltages
across the pipeline and the earth, which is one impor-
tant engineering task [1–3]. The solution is governed by
the diffusion equation:

1
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��2Az

�x2 +
�2Az

�y2

n
− j��Az+Jsz=0

− j��Az+Jsz=Jz

(1)

where � is the permeability, Az the phasor of vector
potential, x, y the point coordinates, � the conductivity,
� the current frequency, and Jsz the current density.
The solution depends on the boundary conditions, the
geometry and material parameters, e.g. resistivity and
distance d Fig. 1. In this paper we only consider as

variables the point coordinates (x,y) where we calculate
the MVP, the distance d and the soil resistivity �.
Although there are many other parameters (variables)
to consider, we restricted the variables in order to show
in a simple way the effectiveness of the proposed
method.

Fig. 3. Multi-point crossover operator.
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Fig. 4. Mutation operator.

where � stands for input and takes the values d, x, y, �.
In addition, �̄d

j, �̄x
j , �̄y

j, �̄�
j are the mean values and �d

j,
�x

j , �y
j, ��

j are the standard deviations of the member-
ship functions. Trapezoid and triangular membership
functions have also been used, leading to a less accurate
system.

In order to generate the actual output of the FLS,
the weighted average defuzzification interface [16] has
been selected. Therefore the output of the FLS defined
above, i.e. the MVP in a point with coordinates x, y for
separation distance d and earth resistivity �, is given by

A(d,x,y,�)=
�
m

j=1

A j� j

�
m

j=1

� j

(4)

where

� j=�d
j(d)�x

j (x)�y
j(y)��

j (�) (5)

is called the degree of fulfillment for rule R j by the
input vector (d,x,y,�), while A j is the output of rule R j

as defined in Eq. (2).
If q is the number of training patterns of the TDS

derived by the FEM, every FLS is trained by ‘feeding’
it with the set of q patterns (dp,xp,yp,�p/AFEM

p , p=1,…,
q). The mean square error Jm of each FLS is defined by

Jm=
1
q

�
q

p=1

Jp (6)

where the square error Jp of the FLS for pattern p is
given by

Jp=
1
2

[AFLS
p (d,x,y,p)−AFEM

p (d,x,y,p)]2 (7)

in which AFLS
p (d,x,y,p) and AFEM

p (d,x,y,p) are the calcu-
lated values of the MVP at pattern p obtained from the
FLS and the FEM, respectively. We arbitrarily define
training to be the minimization of the mean square
error, which means that the FLS finally determined
corresponds to the smallest mean square error between
the FLS output and the FEM calculation.

3.1. Fuzzy rule base creation mechanism

The number of rules of the FLS of the proposed GFS
is not constant but gradually increases as follows.
Training begins with one rule (m=1). At the end of
every training cycle, if the average error of the best FLS
is larger than the training threshold Elim a fuzzy rule
creation mechanism is applied for the best FLS as
follows:

The firing strength S [17] of the best fuzzy rule base
for a training pattern p (dp,xp,yp,�p/AFEM

p ) is expressed
as

3. The method

The MVP is found by solving the diffusion equation
for several sets of the parameters d, �. Finite elements
are used for the solution. The MVP at a coordinate
(x,y) for other sets of parameters d, � is found by
extrapolation of the known results in the space of the
parameters. This extrapolation is made using fuzzy
logic techniques [13,14]. Optimized fuzzy rules are
found by using genetic algorithms. Optimal means min-
imizing least square errors in extrapolation. The num-
ber and parameters of the rules are optimized. The
procedure is as described below.

A database is built, which contains the FEM solution
for different sets of d, � at various points. This set of
data is called the Training Data Set (TDS) and contains
the training patterns of the fuzzy logic system (FLS) to
be trained.

The training patterns for the system consist of four
inputs and one output. The inputs are (a) the earth
resistivity � ; (b) the separation distance d between the
overhead transmission line and the buried pipeline; (c)
the coordinate x ; and (d) the coordinate y of a point in
the cross-section of the TLS. The single output is the
MVP A(x,y) at the point (x,y). The rules of each FLS
are in the form suggested by Takagi–Sugeno [15] and
the jth fuzzy rule (R j) may be described as follows:

R j: IF �, d, x, and y belong to the jth membership fun
ctions ��

j , �d
j, �x

j and �y
j correspondingly (antecedent pa

rt of the jth rule)

THEN A j=�0
j +�d

jd+�x
j x+�y

jy+��
j � (consequent

part of the jth rule) (2)

j= (1…m), m is the number of rules, d, x, y, � are the
input variables of the FLS, A j is the MVP proposed by
the jth rule and �d

j, �x
j , �y

j, ��
j are the membership

functions that define the jth fuzzy rule. The parameters
�0

j, �d
j, �x

j , �y
j, ��

j are the factors of the consequent
part of the jth rule and define its output. The member-
ship functions used in order to create the fuzzy inputs
were chosen to be Gaussian as described below:
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S(dp,xp,yp,�p)= �
m

j=1

� j (8)

while a threshold � is defined as the least acceptable
firing strength of the best fuzzy rule base. If
S(dp,xp,yp,�p)�� then a new rule Rm+1 is added to
the best fuzzy rule base. If ��

m+1(�̄ �
m+1,��

m+1) repre-
sents the new membership in the �th premise input
space, then the parameters of ��

m+1 are selected as:

�̄ �
m+1=�p (9a)

��
m+1=	(�p− �̄ �

nearest) (9b)

�0
m+1=AFEM

p , ��
m+1=0 (9c)

where �̄ �
nearest is the mean value of an existing member-

ship closest to the incoming pattern vector �p, y is an
overlapping factor and �=d, x, y, �. Overlapping
factor 	 was chosen equal to 1.5 after a number of trial
computational tests, using as a criterion the genetic
algorithm convergence time.

Table 1
Training data set used for the two GFS. The input variables are the earth resistivity �, the separation distance d and the coordinates x and y of
points in the earth around the pipeline neighborhood, including the pipeline itself. The output for the first GFS is the amplitude, and for the
second GFS the phase of the MVP, as calculated with the FEM

MVP (phase) (°)� (�m) d (m) x (m) y (m) MVP (amplitude) (10−04 Wb/m)

−15.00 3.61 −22.8030 70.0070
30 −25.5770 81.66 −27.03 3.29
30 −31.232.99−30.00100.00100

0.423−30.00 −82.64770.0080030
30 −78.83800 785.00 0.00 0.427

800 818.2530 −13.50 0.388 −82.61
30 1000 1030.00 −15.00 0.248 −90.27

−108.100.0476−22.5030 1970.002000
−8.6130 2000.69 −108.540.04652000

40070 384.81 −7.82 1.72 −44.46
70 −46.05400 392.25 −25.65 1.67

−46.721.58−6.9370 424.77400
0.595 −73.04970.00100070 −15.00
0.568 −72.9870 1000 0.001007.50

−30.00 0.547 −76.051015.0070 1000
70 40.00 −30.00 5.09 −20.45100

5.3870 −19.3440.00 −15.00100
5.5970 −18.5340.00 0.00100

−23.984.15−25.56100 92.25100
0.00 1.04 −59.87100 800 770.00

100 −67.100.758−16.99980.551000
0.716−30.00 −69.221015.001000100
0.7231000 −67.271022.50 0.00100

300 312.38300 −8.10 −29.233.17
−30.00300 324.05 −23.53300 3.10
−72.550.5860.002007.50300 2000

4.18 −23.83−30.00500 215.00200
−27.03281.66 3.75300500 −25.93

3.71300 −26.01290.36 −15.80500
0.00 3.55 −26.74500 300 322.50

−15.00 1.70 −44.60500 1000 1030.00
−19.265.46−15.00700 120.00150

−7.82 3.52 −26.89700 400 384.81
700 670.00700 −22.50 2.60 −33.74

−34.072.56−15.80700 690.36700
700 712.38700 −8.10 2.51 −34.41

−19.70900 150 150.55 −16.99 5.30
200 194.77900 −6.93 4.88 −20.90
800900 830.00 −30.00 2.46 −35.01

−46.351.56−17.481499.09900 1500
1.54 −46.56−6.93900 1524.771500

−7.8254.81 7.03701000 −15.94
5.58150 −18.98131.66 −27.031000

−28.271000 500 524.05 −23.53 3.29
−52.731.22−15.002030.001000 2000
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Table 2
MVP amplitude distribution in the earth around the pipeline neighborhood including the pipeline itself for several new configuration cases of the
examined electromagnetic field problem obtained by the FEM and the optimum FLS of the GFS, respectively. a

x (m) y (m) AFEM (10−04 Wb/m)� (�m) AO-FLS (10−04 Wb/m)d (m) Error (%)

88.25 −13.50 3.9970 4.0270 0.66
99.81 −1.75 3.84100 3.8670 0.47

124.77 −6.93 3.4770 3.47100 0.12
120.00 0.00 3.56150 3.5470 0.43
162.38 −8.10 3.0470 3.03150 0.53
199.81 −1.75 2.73200 2.7070 0.82
200.00 −30.00 2.6670 2.59200 2.63
281.66 −27.03 2.16300 2.1270 1.55
299.81 −1.75 2.1070 2.11300 0.44
322.50 0.00 1.99300 2.0070 0.62
485.00 0.00 1.4170 1.40500 0.41
499.81 −1.75 1.36500 1.3570 0.9
699.09 −17.48 0.93370 0.895700 4.1
670.00 −15.00 0.983700 0.96570 1.9
799.81 −1.75 0.79470 0.768800 3.28
822.50 0.00 0.767800 0.73370 4.4

2010.11 −21.49 0.13670 0.1332000 2.44
169.81 −1.75 3.61170 3.68150 2.03
169.08 −17.48 3.59150 3.66170 1.9
260.11 −21.49 2.89250 3.00150 3.98
274.05 −23.53 2.80150 2.93250 4.49
599.81 −1.75 1.64600 1.66150 1.38
600.00 −30.00 1.62150 1.65600 1.92
799.81 −1.75 1.24800 1.25150 0.31
790.36 −15.80 1.25150 1.26800 0.36
830.00 −15.00 1.19800 1.18150 0.7
900.00 −30.00 1.08150 1.11900 3.33
899.81 −1.75 1.09900 1.11150 1.88
892.50 0.00 1.10 1.12150 1.95900

1500.69 −8.61 5.411500 4.71150 12.87
169.81 −1.75 4.43400 4.42170 0.27
231.66 −27.03 3.88250 3.90400 0.39
249.09 −17.48 3.77400 3.80250 0.8
599.81 −1.75 2.36600 2.34400 1
770.00 −30.00 1.96400 1.94800 1.17
824.77 −6.93 1.87800 1.81400 2.97
900.00 −30.00 1.73400 1.64900 4.84
930.00 −30.00 1.68900 1.56400 7.27

1524.05 −23.53 1.03400 9.491500 7.46
1781.66 −27.03 0.8421800 0.847400 0.58
2892.50 0.00 0.842400 0.8351800 0.83
169.81 −1.75 4.78170 4.85600 1.5
220.00 −30.00 4.30600 4.35250 1.15
249.81 −1.75 4.12250 4.16600 0.86
570.00 0.00 2.76600 2.75600 0.4
599.81 −1.75 2.67600 2.69600 0.49
784.81 −7.82 2.24600 2.27800 1.17
799.81 −1.75 2.22800 2.24600 1.18
884.81 −7.82 2.06600 2.06900 0.32
918.25 −13.50 2.00900 2.00600 0.03

1507.50 0.00 1.29600 1.331500 2.57
1499.81 −1.75 1.301500 1.33600 2.28
1790.36 −15.80 1.07600 1.221800 14.69
1799.81 −1.75 1.061800 1.22600 14.34

235.00 0.00 4.57900 4.45250 2.61
230.55 −16.99 4.59250 4.42900 3.7
870.00 −15.00 2.38900 2.32900 2.81
900.69 −8.61 2.33900 2.29900 1.92

1792.50 0.00 1.32900 1.291800 2.2

a The FLS calculation Errors= �100(AFEM−AO-FLS)/(AFEM)� are also reported.
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The generation of new rules establishes the rule base
creation mechanism, which is summarized by the fol-
lowing steps:
� A pattern (dp, xp, yp, �p) (p=1…q) of the TDS is

fed forward through the best FLS of the population
and the corresponding firing strength S(dp, xp, yp,
�p) is computed.

� If S(dp, xp, yp, �p)�� then the rule base of the best
FLS is left unchanged.

� If S(dp, xp, yp, �p)�� then a new fuzzy rule Rm+1

is created, and parameters according to Eqs. (9a),
(9b) and (9c), are selected.
The new fuzzy rule Rm+1 is added to the rule bases

of all the FLS and in this way all the chromosomes of
the genetic algorithm are of the same length. From Eqs.
(9a), (9b) and (9c), it can be shown that the new rules
are centered on the patterns that are ‘‘covered’’ the
least by the existing rules, thus showing the largest
error during the training. As a result, after the addition
of the new rule, the FLS will produce a null error for
this pattern.

The rule base adaptation mechanism accelerates the
training because it ‘‘injects’’ the GFS with new, valu-
able information and it leads toward areas of the search
space where the optimum solution is more likely to be.

This method continues until no other rules are needed
or until a heuristically-set maximum number of rules is
reached. This number is defined by the user so that
there is no overflow of new rules and the system does
not become too complex to be trained in a logical
amount of time. For our problem, the maximum num-
ber of fuzzy rules was set equal to 11.

3.2. Genetic algorithms for the training of the fuzzy
parameters

3.2.1. Chromosome structure
The parameters to be adjusted through the training

procedure are the parameters of the jth rule �̄ �
j, ��

j and
�


j.
The genetic algorithm (GA) that has been developed

for the adjustment of the FLS parameters seeks the
optimum FLS that has the minimum mean square error
Jm. Every FLS of the GFS is represented by a vector of
its parameters Zk, given by:

Zk= (��
jk,��

jk,�

jk)

(vector dimension is equal to 13�m) (10)

�=d, x, y, �


=0, d, x, y, �

j=1, …, m

where k (k=1,…,l) is the index number of the FLS and
l is the population size (i.e. the number of the FLS that
constitute the GFS). In this paper l has been chosen
equal to 50. The training begins with the initialization
of one rule (m=1) for all the FLS. The initialization of
the FLS parameters is accomplished using a random bit
generator. In the developed GA, every parameter of
each FLS has been coded in the binary form. This form
uses eight bits for every parameter. The coding of every
parameter takes place after normalization to the inter-
val [0.0, 3.0] for ��

jk, �

jk and to the interval [0.1, 0.6] for

��
jk.
The normalization of the parameters is made in order

to accelerate the training. After the coding a vector of
bits (chromosome) is constructed for every FLS, which
encloses the FLS parameters. The vector of the kth
FLS is shown in Fig. 2.

3.2.2. Fitness function of the genetic algorithm
In our case the fitness function for the kth FLS-chro-

mosome has been selected as

fk=
1

Jm
k +a

(k=1,…,l) (11)

where Jm is given by Eq. (6) and �=0,0001 is a
constant used to prevent overflow in case Jm becomes
very small. The GA maximizes the fitness function fk,
leading to the minimization of Jm

k .

Fig. 5. Frequency distribution of the fuzzy logic system errors,
concerning: (a) the amplitude and (b) the phase of the magnetic
vector potential distribution in the earth around the pipeline neigh-
borhood including the pipeline itself.
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Fig. 6. Fuzzy logic system errors, for various configuration of the examined electromagnetic field problem, concerning: (a) the amplitude and (b)
the phase of pipeline surface magnetic vector potential.

3.3. GA operators, optimizing rules

The evolution, which leads from the initial popula-
tion of the FLS to the best FLS, is described as follows.

3.3.1. Selection
After the evaluation of the initial randomly generated

population, the GA begins the creation of the new FLS
generation. FLS-chromosomes from the parent popula-
tion are selected in pairs to replicate and form offspring
FLS-chromosomes. The FLS-chromosome selection for

reproduction is performed using the Roulette wheel
selection method [18].

3.3.2. Crosso�er
When two chromosomes are selected, their vectors

are combined in order to produce two new FLS using
genetic operators. The main operators used are
crosso�er and mutation and are applied with varying
probabilities. So, if a probability test is passed
crossover takes place. The crossover scheme used in this
paper is a multi-point crossover operator as shown in
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Fig. 3. If the probability test fails, the produced
offspring are identical replications of their parents.

3.3.3. Mutation
Although crossover is the primary genetic operator,

it cannot produce information that does not already
exist within the population. Mutation satisfies this need
by generating new information in the chromosome
population. For every bit of the offspring chromosomes
a probability test is performed and if it is passed, the
mutation operator shown in Fig. 4 alters that bit.

3.3.4. Varying operator probabilities
It should be mentioned that the chromosome selec-

tion method and the crossover operator lead to popula-
tion convergence, while the mutation operator helps to
maintain population diversity. If premature conver-
gence or excessive diversity occur, the training becomes
inefficient. In this paper the crossover probability
ranges from 0.4 to 0.9 per chromosome while mutation
probability ranges from 0.004 to 0.024 per bit. Prema-
ture convergence is monitored by extracting statistical
information from the population. When premature con-
vergence is observed, the crossover probability is low-
ered by 0.1, while the mutation probability is increased
by 0.004. When excessive diversity occurs, the crossover
probability is increased by 0.1, while the mutation
probability is lowered by 0.004.

3.4. Elitism

The previous procedure described for the two FLS-
chromosomes is repeated until all the FLS of the parent
generation are replaced by the FLS of the new genera-
tion. The best FLS of the parent generation and the
best FLS found in all the previous generations are also
copied to the next generation, so that the probability of
their destruction through a genetic operator is elimi-
nated. The new generation will provide a better average
quality.

4. Creation of the training data set

The MVP is a phasor quantity and it is defined by its
amplitude and its phase. Since the FLS of the devel-
oped GFS have a single output, two different GFS are
required to calculate MVP nodal values, the GFS for
the amplitude and the GFS for the phase. Therefore,
the TDS must have two outputs, one for the amplitude
and the other for the phase training, respectively. Using
the optimum FLS, derived after training of the GFS, it
is possible to calculate the MVP values in the area of
the complex electromagnetic field problem of Fig. 1.

A TDS for the GFS has been calculated for the TLS
in Fig. 1 for IF=1000 A and sets of � and d. The FEM
procedure used is described in detail in Refs. [12–14].

Various (x,y) points have been chosen in the earth
around the pipeline neighborhood, as well as in the
pipeline itself. For each of those points, different sepa-
ration distances d and earth resistivities � have been
selected. As shown in the TDS of Table 1, the separa-
tion distance d between the overhead transmission line
and the buried pipeline varies between 70 and 2000 m,
the earth resistivity � varies between 30 and 1000 � m,
coordinate x takes values between 40 and 2030 m, and
finally coordinate y takes values between 0 and −30 m.
This range of the input variables d, x, y, � in the TDS
leads to a FLS, which is capable of determining the
MVP values in the earth around the pipeline neighbor-
hood, including the pipeline itself.

5. Performance analysis

After the training of the GFS down to an average
training error of 1.8%, the performance of the optimum
fuzzy logic system (O-FLS) has been tested in several
new configuration cases of the examined electromag-
netic field problem. These cases have various separation
distances d between the overhead transmission line and
the buried pipeline as well as various earth resistivities
� and differ significantly from the cases used for train-
ing. Training the FLS has led to m=11 rules.

Table 2 summarizes and compares the O-FLS and
FEM test results. The absolute errors have been com-
puted as: Error= �(AFEM−AO-FLS)/(AFEM)·100�. The
average error in amplitude calculation is 2.5%, and in
phase calculation, 2.06%. For a new configuration case,
the computing time using the O-FLS is negligibly small
(10−8 smaller) compared with the time needed for the
FEM calculations.

Considering the range of parameters used the fre-
quency distribution of the errors in the MVP amplitude
and phase are shown in Fig. 5a and b. It can be seen
that 77% of the errors in amplitude and 88% in phase
are less than 3%.

Fig. 7. Voltage per km induced across the pipeline and the earth as a
function of distance d (cf. Fig. 1) for various earth resistivity values.
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Fig. 6 shows the errors for various parameter �, d
configuration cases. From Table 2 and Figs. 5 and 6 it
is evident that the O-FLS results are practically equal
to those obtained by the FEM. It should be mentioned
that the MVP distribution is proportional to the fault
current, so the presented results may be easily used for
any given fault current IF.

Fig. 7 shows the voltage per km induced across the
pipeline and the earth calculated with the proposed
method.

6. Conclusions

The magnetic field and the voltage induced by a
transmission line and a buried pipeline have been calcu-
lated using the finite element method and fuzzy tech-
niques. The use of genetic algorithms in determining the
optimal rules of fuzzy logic system has shown advan-
tages as compared to the back propagation method. It
is shown that an expert system can be built by which
interference problems can be easily and quickly solved.
The expert system was capable of determining the
induced Magnetic Vector Potential with an average
error of less than 3%.
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